
Author's Comment 
We have carefully addressed the comments and suggestions provided by the 
reviewers, resulting in significant improvements to our manuscript. Below, we 
summarize the major changes made, organized by the issues addressed, including 
the corresponding responses to the reviewers and the sections of the manuscript 
where these changes are reflected. 

1. FHG parameters. We clarify and strengthen the hypothesis regarding the 
relationship between the Floodplain Hydraulic Geometry (FHG) parameters 
and hydroclimatic conditions. Specifically: 

1. Hypothesis Articulation: We consider aridity to be the primary 
determining factor due to the assumption that in a humid basin, rivers 
with larger upstream drainage areas (UPA) would have greater 
dominance over smaller river segments. Vegetation and other factors 
such as terrain and soil composition might also influence the results. 

2. Correlation Testing: We tested the correlation with factors including 
Leaf Area Index (LAI), mean elevation, elevation standard deviation, 
and soil components (clay, silt, and sand). Only the Aridity Index 
showed significant correlations with our parameters, while LAI showed 
significant correlations in the largest basins. Other factors did not 
present uniform results. 

3. Scale Testing: We tested our hypothesis on different scales (Level-4 
and Level-5 basins), finding that both the Aridity Index and LAI exhibit 
significant correlations, suggesting these factors might be influential. 

4. Parameter Provision: We provided our parameters to help derive 
regional datasets or apply hydrogeomorphic methods to different terrain 
data or resolutions, available at our Zenodo repository. 

Sections Updated: Sections 4.1 and 4.4, with Supplementary Table 1. 

2. Assessment of Accuracy and Effectiveness of the Methods.  

1. Comparison with Universal Parameters: We added a comparison 
with MERIT-Hydro using universal parameters (UP) for parameter 
estimation. This analysis showed terrain differences impact model 
agreement and that our locally optimized parameters offer better 



performance in most cases. 

2. Clarification of Effectiveness: We clarified that the effectiveness is 
supported by the parameters' statistically significant relationships with 
variables like the Aridity Index, conformity to a stable power law, and 
improved consistency observed in spatial patterns. 

Sections Updated: Section 3.3. 

3. Conceptual Improvements. 

1. Definition of Floodplain Boundary: We clarified that our study 
focuses on identifying boundaries encompassing all potentially 
inundated areas under extreme conditions using two 500-year return 
period flood maps. 

2. Distinction and Application: We emphasized that we are not using 
hydrodynamic models to create a hydrogeomorphic model but to obtain 
locally varying FHG parameters. Our approach aims to balance 
geomorphic principles with hydrological aspects. 

Sections Updated: Section 4.3. 

4. Improvements on our technical flow. 

1. Parameter 'b' Estimation: We modified the technical details of 
parameter 'b' estimation, specifically the binning parameter, adding a 
constraining mechanism to handle data noise. This resulted in stabler 
estimates for large basins and a clearer pattern of global residual 
uncertainty. 

2. Target Function for Parameter 'a': We changed our target function to 
balance information from both datasets, using Fleiss’s Kappa (FK) and 
a penalty term to reduce bias. 

3. Uncertainty Representation: We defined our metric as residual 
uncertainty, assessing how well data conforms to the power law, aiming 
to provide a clearer explanation of the uncertainty and a quantitative 
assessment of our approach. 

Sections Updated: Section 2.2 for methodological details and Section 
4.2 for uncertainty discussion. 

Other revisions include but are not limited to include the change of palettes, clarification 
of technical details. Please find our point-to-point response below. 



Reviewer #1 

The authors have developed a global geomorphic model of fluvial floodplains, notably 
at 90 m resolution. The authors made use of global elevation, flow direction, and 
drainage area models along with the global HydroBASINS boundaries for their analysis. 

The methods presented here closely follow the methods of Nardi et al., 2019 (i.e., 
GFPlain250) which uses height above nearest drainage (HAND) with a floodplain 
hydraulic geometry (FHG) thresholding scheme. FHG suggests that potential 
inundation depth can be represented as a function of a river’s upstream draining area. 
Here, the authors argue that FHG parameters optimized for each basin, as opposed 
to global values, will better represent the spatial heterogeneity of global basins and 
ultimately be of benefit to floodplain delineation.  

The authors propose an iterative process with starting values based on previous 
knowledge that converges on suitable parameter values for each global basin. The 
authors found that Parameter b in the FHG model loosely corelates with a basin’s 
aridity index. Finally, the authors use two global hydrodynamic inundation maps (JRC 
and GAR) and another geomorphic floodplain model (GFPlain250) as reference data 
for comparison. 

The authors have a logical claim; basins across the world are heterogenous and locally 
optimized FHG parameters could produce better models of floodplains when 
compared to global parameters. Of note, Nardi et al., justified the use of global 
coefficients by finding reasonable measure-of-fit values with varying b parameters. 
However, they also supported the notion that regional values for the scaling law 
parameterization could be further refined to capture local climatic variations. 

SHIFT data and code were easily accessible. In North America, SHIFT aligns well with 
GFPlain with some noticeable differences. Specifically, in North America, SHIFT tends 
to estimate a narrower floodplain in comparison to GFPlain. Both products have 
notable examples of areas identified as floodplains that are omitted by the other.  

I have several comments I would encourage the authors to consider. 

Reply: Thanks for your clear and comprehensive comment. You’ll find our point-to-
point replies below. 

• 170 - I’m unclear on why 34 ‘major’ river basins were selected for further analysis. 
The authors rely on the results in these 34 basins as evidence throughout their paper. 
Please explain the selection of these basins, what is significant about them, and what 
is the justification for analyzing them independently.  



Reply: Thank you for pointing out this. The selection of the major river basins was 
based on the largest river basins aggregated by MERIT-Basin that are 
hydrologically connected. Specifically, we traced from all the outlet basins inland 
(and aggregated the inland rivers accordingly) to identify the largest basins. We 
performed a separate investigation into the floodplain hydraulic scaling 
relationship for major river basins, based on the assumption that larger river 
basins may exhibit more consistent floodplain hydrological processes and 
formation mechanisms, thus having stronger scaling relationships. This 
consistency may also provide a clearer context to investigate the relationships 
between relevant factors and the scaling exponent. However, some of the Arctic 
basins fall beyond the boundary of our reference datasets, so we manually 
excluded those basins. In this revision, we have refined our selection process by 
detecting whether the centroid of a basin is within the Arctic to make the definition 
clearer. As a result, we have identified 7 Arctic basins to exclude, leaving 33 major 
river basins for our analysis. We have added the necessary explanations to our 
revised manuscript to clarify the selection criteria and the justification for analyzing 
these basins independently. 

Revision: 

(Line 185, Section 2.1) “Among the Level-3 basins, the 40 largest hydrologically 
connected basins were manually selected, based on the hypothesis that 
connected basins better apply the scaling law due to shared attributes within the 
same hydrological system. Seven of these 40 basins, with centroid located above 
60°N, were excluded since one of our reference maps does not cover regions 
above 60°N.” 

• 233 – This could use more explanation. Why did the authors choose to define river 
as a function of UPA versus using the delineated river network in MERIT Hydro? Why 
select 1000 km2? The authors touch on this at the end of the paper. 

Reply: The MERIT-Hydro dataset does not originally provide vector-based river 
network datasets [1], but MERIT-Basins does [2]. MERIT-Basins is delineated by 
setting a threshold on the UPA of the river, but it uses a 25 km² threshold, which 
would include too much small streams for global floodplain delineation. 
Conversely, a larger threshold, such as the 5000 km² used by the JRC dataset, 
imposes a stricter criterion on river streams, leading to fewer river networks and 
reduced floodplain boundaries in areas like deltas or other medium- to large-size 
rivers. We chose to define rivers as a function of UPA with a threshold of 1000 km² 
because it balances how many rivers are incorporated in the global-scale 



floodplain delineation process. This threshold ensures significant river networks 
are included without overwhelming the analysis with smaller, less relevant 
streams, which was also adopted by Nardi et al. (2019). Additionally, while MERIT-
Hydro provides Height Above Nearest Drainage (HAND) data, it is based on a 0.5 
km² threshold, which contains too many small streams not relevant for our 
purposes. Thus, we have chosen to use the 1000 km2 and we have expanded our 
explanation in the methods section (2.2) and provided relevant discussion in 
section 4.4 to clarify this choice. 

Revision: 

(Line 185, Section 2.2) “River grid here is identified by applying a 1000 km2 
threshold to the Upstream Drainage Area (UPA), supported by previous studies 
(Nardi et al., 2019). The threshold is determined by preliminary experiments to 
ensure that it is neither too small, which would misattribute large-river-dominated 
floodplains to small rivers, nor too large, which would overlook rivers with notable 
influence.” 

(Line 766, Section 4.4) “Lastly, when calculating HAND as the terrain attribute for 
SHIFT, we set an UPA threshold of 1000 km2 to delineate the river network grids 
following past studies (Nardi et al., 2019; Rudari et al., 2015). A sensitivity test on 
a smaller threshold (50 km2) not shown here suggests that more detailed 
floodplains around smaller rivers can be derived, but at the same time such a 
threshold can limit expected floodplains by large rivers. Conversely, a larger 
threshold, such as the 5000 km² used by the JRC dataset, imposes a stricter 
criterion on river streams, leading to fewer river networks and reduced floodplain 
boundaries in areas like deltas. Thus, this study considers the 1000 km2 UPA 
threshold to be valid. Future large-scale studies can further investigate the above-
mentioned scale parameters, but we expect the gains to be minimal.” 

• 350 – What method was used to resample to 1-km?  

Reply: For continuous data like UPA and HAND, we used median as the 
resampling method. As for categorical data like the reference datasets and 
watershed division, we used mode as it accounts for the majority of information in 
the selected area. The details are added to the corresponding section. 

Revision: 

(Line 409, Section 2.2) “We used median as the resampling method for continuous 
variables like UPA and HAND, and mode for categorical data, such as the 
reference maps, SHIFT, and watershed division.” 



• 352 – I see many permanent water bodies in the final SHIFT product. (e.g., the 
North American Great Lakes). 

Reply: In the previous version of our 1-km product, we’ve marked permanent 
water bodies with identifier 2, which can be easily filtered by putting a mask. We’ve 
also put the identifier for water bodies in the version 2 of our updated data. We 
will put our revised data in the Zenodo repository. 

• 450 - Use of overall accuracy overly rewards correctly classifying the 94.5% 
(author’s estimates) of the world’s land area that is not a floodplain. I would be more 
persuaded by overall accuracy if the authors were to limit their accuracy analysis to 
some reasonable distance from your river network (e.g., 1km, 10km).  

Reply: Thank you for bringing up this good point and we agree with your 
suggestion. To assess the consistency of our data with two other maps, in this 
revision, we've changed it to MAI because OA will overly reward non-floodplain 
areas as the reviewer noticed (Fig. 7). For the pairwise comparison, we've added 
the OA within a buffer of 20-km in the pairwise comparison section to provide a 
better understanding. The buffer here is calculated by the hydrological distance, 
that is by d-8 flow direction, and we've tried different buffer threshold from 5-km to 
50-km. Overall, the OA statistics shown by all buffered threshold showed quite 
similar patterns, and since 5-km to 10-km may be too small since it'll be 
continuously 10-km of floodplain in some large basins, so a 20-km buffer is finally 
decided. The buffered patterns generally align with the un-buffered OA because 
OA considers non-floodplain areas, and the buffer merely adjusts the extent of 
these areas considered. In contrast, MAI focuses exclusively on overlapping 
floodplain areas and does not consider non-floodplain areas, resulting in different 
patterns. Results and descriptions are revised correspondingly. 

Revision: 

(Line 425, Section 2.2) “The two types of indices applied here have different 
focuses: OA considers non-floodplain areas, while MAI focuses exclusively on 
overlapping floodplain areas. Considering the overall landmass is non-floodplain, 
we also calculated OA within 20-km buffer zones, with distance measured as the 
hydrological distance to the stream.” 



 

Fig. 1 (Fig. 7 in the revised manuscript). Validation of SHIFT against two 
reference datasets. In the bivariate map, the two variables are the MAI against 
the JRC map (magenta) and the GAR map (yellow). A balanced MAI results in red 
basins. 

• 454 – I would think to prove “the effectiveness of our parameter estimation scheme 
in capturing information from the reference maps”, I would need to see this same 
accuracy measurements but with global values used (e.g., the Ndari et. al., values: b= 
0.3, a = 0.01) and the deltas. 

Reply: Thank you for your suggestion. It is indeed a great idea to include this 
comparison. We have now added a comparison with MERIT-Hydro using 
universal parameters (UP) in this revision. Statistically, the total area of UP is 
50.85% larger than SHIFT. We further conducted a pairwise comparison including 
UP, and the spatial distribution is shown in Fig. 8b (shown below). Among all pairs, 
SHIFT-JRC performed best in 62 basins, SHIFT-GAR in 74, UP-JRC in 8, and 
UP-GAR in 37. This result offers evidence that the derived parameters are 
effective in deriving better floodplain maps. 

 

Fig. 2 (Fig. 8b in the revised manuscript). Bivariate choropleth map of the highest-



performance MAI pair among four pairs (SHIFT & JRC, SHIFT & GAR, UP & JRC, UP 

& GAR) and the corresponding MAI value for each basin Different pairs are 

represented by different hues, with higher MAI values shown in higher saturation. 

Basins where a SHIFT-pair performs best are marked in cool colors, while those where 

a UP-pair performs best are represented in warm colors. 

In the boxplot showcasing consistency between the hydrodynamic maps and the 
geomorphic maps, however, we observed vast statistical difference between 
GFPlain and UP larger than that of SHIFT and UP. The explanation for these 
observations is twofold. First, the terrain inputs of GFPlain and UP are different. 
MERIT-Hydro includes hydrological corrections where all water body values are 
manually lowered, resulting in significantly lower HAND values and subsequently 
larger inundation extents under the same parameter applied. Second, the 
difference in SHIFT and UP is underrepresented in the boxplot, as SHIFT-JRC pair 
usually has high consistency where UP-GAR agrees better, and vice versa. We 
have documented these interpretations objectively in the revised texts. 

 

Fig. 3 (Fig. 8a in the revised manuscript). Boxplots of pairwise analysis among 

SHIFT, GFPlain, UP (MERIT-Hydro but with Universal Parameters), JRC and GAR 

across three metrics: MAI (left), OA (middle) and OA within a 20-km buffer (right). Two 

group comparisons are marked in different colors (magenta for JRC and yellow for 

GAR). Statistics for all basins with valid data inputs (see Methods) are shown in blue 

boxes, and those for the 33 major river basins are shown in orange. 

Revision: 

(Line 413, Section 2.2) “After getting the updated floodplain boundary with the 

optimized parameters (SHIFT), we conduct a pairwise consistency analysis 
among five maps, i.e., SHIFT, GFPlain250m, UP (Universal Parameters, applying 



b = 0.3 and a = 0.01 on MERIT-Hydro), JRC and GAR. UP was generated to allow 
the assessment of how changes in parameters influence the results.” 

(Line 585, Section 3.3) “To better understand the impact of our estimated 
parameters on the consistency performance, we analyze the most consistent pair 
and corresponding MAI values for each basin. Among all pairs, SHIFT-JRC aligns 
the best in 62 basins, with SHIFT-GAR in 74, UP-JRC in 8, and UP-GAR in 37 
(Fig. 8b). This validates that SHIFT exhibits better consistencies with the 
reference maps even though the difference between SHIFT and UP seems not 
statistically significant (Fig. 8a). Spatial patterns (Fig. 8b) show that SHIFT-JRC 
pairs aligns best in humid major basins (e.g., the Mississippi and Amazon) and 
very arid regions (e.g., the Taklamakan and central Australia). SHIFT-GAR pairs 
are the most consistent in mountainous regions (e.g., the Rockies and Andes), 
aggregated deltas (e.g., eastern Australia and southern Africa), islands (e.g., 
Indonesia), and inland river basins (e.g., the Tibetan Plateau) where few rivers 
meet the 5000 km² drainage area threshold of JRC. In contrast, cases where UP 
pairs align best are less common. UP aligns better with GAR due to their shared 
large prediction extents, such as around the Caspian Sea. In rare instances where 
UP-JRC pairs perform best, it is typically in deltas or regions where SHIFT-GAR 
performs well, such as deltas and islands. This is likely because our method 
balances consistency between the datasets, but GAR’s wider prediction coverage 
makes this strategy less effective in these infrequent cases.  

Note that GFPlain and UP use the same parameter for its geomorphic delineation, 
but their consistency with JRC and GAR differs significantly (Fig. 8a). This is 
because GFPlain uses 250-m SRTM as the terrain input, while UP uses MERIT-
Hydro, which has undergone hydrological correction to lower the elevation of 
waterbody pixels, resulting in higher HAND values and smaller floodplain extents. 
GAR, which generally overpredicts floodplain extents especially in arid regions, 
aligns better with GFPlain. The overprediction of GAR is evidenced by GAR-pairs 
having the lowest OA, as OA strictly penalizes overprediction. At the same time, 
we found the difference between SHIFT and UP may be under-represented in the 
statistical plots (Fig. 8a) while the actual impact of variable parameters brought 
by SHIFT is substantial: the global floodplain extent estimates are 14.95 million 
km² for UP and 9.91 million km² for SHIFT, showing a 50.85% difference in total 
predicted areas. Additionally, regions where UP-GAR has the highest consistency 
(Fig. 8b) generally coincide with regions where SHIFT-JRC aligns best. This 
reversed pattern of consistency further supports that the statistical differences 



between UP and SHIFT are underrepresented in Fig. 8a.” 

• 472 – “Superiority” is an overstatement. Agreement does not equate to superiority. 

Reply: We agree and this was removed in this revision. We stepped back and 
more objectively mentioned the improvement of agreement of SHIFT.  

Revision: 

(Line 28, Abstract) “Our results demonstrate that SHIFT validates better with 
reference maps than both hydrodynamic modeling and DEM-based approaches 
with universal parameters. The improved delineation is mainly with better 
differentiation between mainstreams and tributaries in major basins and a more 
comprehensive representation of stream networks in aggregated river basins.” 

(Line 796, Section 5) “Parameter changes lead to improved consistency with 

existing maps, with better differentiation between mainstreams and tributaries in 
major basins and more comprehensive representation of stream networks in 
aggregated river basins.” 

• 560 – I’m not sure I would call FHG correlation with hydroclimatic conditions 
‘reasonable’. There is a loose correlation. Earlier the authors described it as 
‘statistically significant but weak’. That is a more apt description. 

Reply: Thank you for raising this reasonable concern. We agree that "significant 
but weak" is a more accurate description. By "reasonable", we meant that the 
correlation is within our expectations, as it is important to notice that we did not 
anticipate a perfect correlation between exponent 'b' and hydroclimatic conditions 
for several reasons. First, the scaling relationship is a simplified theory that 
summarizes floodplain-forming processes, and the strength of this relationship 
itself warrants further investigation. Second, there are inherent noises in the two 
maps (as inherited from their own model chain errors), which can also limit the 
strength of the observed relationship. Since 'b' is an empirical parameter, and its 
physical interpretation remains an area of study [4], our goal was to identify any 
observable patterns between our optimized b with other factors, rather than 
expect perfect correlations.  

We’d like to argue though, that while the correlation with the Aridity Index is not 
strong, its statistical significance supports the effectiveness of our parameter 
estimation methods, which helps to derive spatially-varying parameters that are 
physically meaningful. The largest basins, being hydrologically connected and are 
internally consistent in hydrological characteristics, also result in stronger 



correlations with the factors as expected. 

To address our focus on interpreting the exponent b and its linkage with physical 
factors, we conducted two additional experiments in the hope of more 
comprehensively identifying factors that can be related to the geomorphic 
floodplain-forming processes: 

i. Additional Variables: We included more variables in our analysis, such 
as LAI, terrain (mean and deviation), and soil factors (soil components in a 
river buffer). Our hypothesis was that AI would be the most significant factor, 
with LAI inherently related to AI, while terrain and soil might also be related 
but with less clear mechanisms. The results showed that AI was indeed the 
most significant, with LAI only significant in large basins. Other factors exhibit 
inconsistent correlations with b, also as expected. 

ii. Different Scales: We also tested the estimation of the parameters at 
different scales (i.e., Level-4 and Level-5 basins) to increase the sample size. 
The results showed that AI and LAI have statistically significant relationships 
with the exponent b, while terrain factors showed significant but much weaker 
relationships, followed by soil factors that do not show statistically significant 
relationships with b. 

While the correlations shown in the above analyses may not be very strong, they 
meet our expectations: AI is significant as the primary factor for explaining the 
spatial variability of b, LAI plays a role, and terrain might be related but not showing 
readily detectable correlations with the exponent b. We've revised our manuscript 
accordingly. Please refer to the newly performed analyses in Supplementary Table 
1, and more objective statements of our parameters and hypothesis in Section 4.1. 

Revision: 

(Line 21, Abstract) “The estimated FHG exponent exhibits a significant positive 
relationship with the basins’ hydroclimatic conditions, particularly in 33 of the 
world’s major river basins, indicating the ability of the approach to capture 
fingerprints from heterogeneous hydrological and geomorphic influences.” 

(Line 783, Section 5) “The optimized empirical exponent b in FHG exhibits 
statistically significant positive correlations with hydroclimatic conditions, 
particularly in major river basins.” 

• 561 – I’m not convinced this loose correlation proves effectiveness of the methods. 

Reply: Thank you for your comment. We agree that it is challenging to prove the 



effectiveness of our methods without ground truth. However, we’d like to argue 
that the correlation analysis is only an indirect way of demonstrating that it is 
meaningful to derive spatially-varying exponent b for floodplain delineation, 
because these spatially-varying parameters are related to possible floodplain-
forming factors, but not random values leading to floodplain maps matching with 
the hydrodynamic model outputs. To be more specific, we believe the 
effectiveness is indirectly supported by: 1) the parameters have weak but 
statistically significant relationships with variables like the Aridity Index, which 
aligns with our hypothesis; 2) the filtered data conforms to a relatively stable power 
law, indicating a relatively robust scaling relationship, and 3) changes in 
parameters result in improved consistency, and they are observed in spatial 
patterns. For a detailed explanation of our hypothesis and the correlation, please 
refer to Section 4.1 and our previous reply. For the spatial pattern of improvement, 
please see our subsequent reply.  

Revision: 

(Line 662, Section 4.1) “Second, our estimated parameters aim to capture 
fingerprints from spatially varying hydrological and geomorphic processes that can 
influence the floodplain extent. We consider aridity as the primary factor 
influencing the spatial variability of b, based on the assumption that in humid 
basins, rivers with larger upstream drainage areas exert greater dominance over 
smaller segments in shaping floodplains. Vegetation also plays a role, as it 
influences runoff generation and modulates soil erosion, both key to floodplain 
formation. Additionally, factors such as terrain and soil composition might influence 
the results. Given the data uncertainties and the complex physical interpretations 
of b, it is important to note that we do not expect perfect relationships between 
these factors and the derived exponent b. The correlation analysis indeed aligns 
with our expectations: AI is statistically significant in explaining the spatial 
variability of b, while LAI plays a role and terrain does not show strong correlations 
with b. Soil compositions (Poggio et al., 2021) do not exhibit a consistent pattern 
across analyses done at different scales (Table S1). Despite the not-so-strong 
correlation with AI and LAI, its statistical significance supports the effectiveness of 
our proposed methods, which helps to derive spatially-varying parameters that are 
also physically meaningful.” 

(Line 791, Section 5) “The parameters show statistically significant but relatively 
weak relationships with hydroclimatic variables (e.g., AI, LAI), suggesting an 
enhanced representation of spatially heterogeneous hydrological and geomorphic 



information at the basin level.” 

• 566 – I’m not convinced of “superior consistency”. Sometimes SHIFT is part of the 
highest agreement pair in a basin and sometimes it is not (Fig 7). The authors mention 
“superior consistencies” in the abstract as well. I’m not sure how to interpret that phrase. 

Reply: We agree and this was removed in this revision. We stepped back and 
more objectively mentioned where improvements occur and what leads to the 
change of consistency. Descriptions are now better delivered in section 3.3. 

Revision: 

(Line 30, Abstract) “The improved delineation is mainly with better differentiation 
between mainstreams and tributaries in major basins and a more comprehensive 
representation of stream networks in aggregated river basins.” 

(Line 571, Section 3.3) “Prominently, it shows that the consistency between SHIFT 
and JRC significantly improves over UP and GFPlain, but that with GAR does not 
(as shown in MAI). The consistency pattern can be explained by delving into the 
inner working of each dataset. For large basins, SHIFT highlights the mainstreams 
and reduces prediction of tributaries, thus aligning more closely with JRC as it 
highlights major rivers, leading to a decrease in consistency with GAR. UP and 
GFPlain align better with GAR in these regions, as they all tend to overpredict, 
especially in tributaries. For other basins, SHIFT strikes a balance between the 
two datasets. Comparing SHIFT with UP, SHIFT increases the lower interquartile 
range for JRC’s OA and the upper interquartile range for GAR’s OA, highlighting 
a general improvement with SHIFT. For MAI, the upper quartile with GAR has 
decreased while the lower quartile has improved, suggesting a consistency trade-
off between the two datasets. Notably, all geomorphic maps show a better 
consistency with the hydrodynamic outputs than the hydrodynamic pair, proving 
again that the hydrogeomorphic delineation method is a more globally consistent 
framework. 

To better understand the impact of our estimated parameters on the consistency 
performance, we analyze the most consistent pair and corresponding MAI values 
for each basin. Among all pairs, SHIFT-JRC aligns the best in 62 basins, with 
SHIFT-GAR in 74, UP-JRC in 8, and UP-GAR in 37 (Fig. 8b). This validates that 
SHIFT exhibits better consistencies with the reference maps even though the 
difference between SHIFT and UP seems not statistically significant (Fig. 8a). 
Spatial patterns (Fig. 8b) show that SHIFT-JRC pairs aligns best in humid major 
basins (e.g., the Mississippi and Amazon) and very arid regions (e.g., the 



Taklamakan and central Australia). SHIFT-GAR pairs are the most consistent in 
mountainous regions (e.g., the Rockies and Andes), aggregated deltas (e.g., 
eastern Australia and southern Africa), islands (e.g., Indonesia), and inland river 
basins (e.g., the Tibetan Plateau) where few rivers meet the 5000 km² drainage 
area threshold of JRC. In contrast, cases where UP pairs align best are less 
common. UP aligns better with GAR due to their shared large prediction extents, 
such as around the Caspian Sea. In rare instances where UP-JRC pairs perform 
best, it is typically in deltas or regions where SHIFT-GAR performs well, such as 
deltas and islands. This is likely because our method balances consistency 
between the datasets, but GAR’s wider prediction coverage makes this strategy 
less effective in these infrequent cases.” 

• Fig 7 – It looks like GFPlain has higher agreement with GAR and SHIFT has higher 
agreement with JRC. Any explanations as to why this is? 

Reply: Thank you for pointing that out. Indeed, GFPlain has higher agreement 
with GAR, while SHIFT shows higher agreement with JRC. In our original 
manuscript, we suggested that this might be because GAR tends to overpredict 
in certain regions such as in dry regions, similar to GFPlain. Now that we've 
performed the analysis with UP (i.e., universal parameters), we also observed that 
UP tends to provide larger estimates in some areas, whereas the estimates of 
MERIT-Hydro are inherently smaller. As seen in Figure 8b, although taking up a 
small percentage, UP still aligns better with GAR as both of them tend to over-
predict floodplains, such as areas around the Caspian Sea. SHIFT aligns well with 
JRC as it highlights the inundation of large rivers, especially in the major river 
basins. 

Revision: 

(Line 603, Section 3.3) “This is because GFPlain uses 250-m SRTM as the terrain 
input, while UP uses MERIT-Hydro, which has undergone hydrological correction 
to lower the elevation of waterbody pixels, resulting in higher HAND values and 
smaller floodplain extents. GAR, which generally overpredicts floodplain extents 
especially in arid regions, aligns better with GFPlain. The overprediction of GAR 
is evidenced by GAR-pairs having the lowest OA, as OA strictly penalizes 
overprediction.” 

• Why include JRC & GAR and SHIFT & GFPlain combinations in the choropleth 
map? I’m less interested in where the two hydrodynamic models (JRC & GAR) or the 
two geomorphic models (GFPlain & SHIFT) agree and I’m more interested in where 



SHIFT outperforms or underperforms against GFPlain. That is, where does GFPlain 
better align with hydrodynamic models and where does SHIFT better align with 
hydrodynamic models? 

Reply: Thank you for your suggestion. We have redesigned our experiments in 
the pairwise comparison accordingly. Now, group comparisons were conducted 
with JRC and GAR, where each hydrodynamic map was tested against SHIFT, 
GFPlain, and UP (Universal Parameters on MERIT-Hydro, see above). The JRC-
GAR pair serves as the baseline. For the choropleth map, we only compared 
SHIFT and UP to the two hydrodynamic maps individually to see which pair 
performs best and to identify any patterns in their performance. GFPlain is 
excluded as to address your comments on showing results in localized 
parameters. These results show that SHIFT outperforms UP for majority areas in 
Fig. 8a (see blue and green areas where they have the highest MAI), which is a 
proof that the estimated parameters of SHIFT are useful.  

Revision: 

(Line 589, Section 3.3) “Spatial patterns (Fig. 8b) show that SHIFT-JRC pairs 
aligns best in humid major basins (e.g., the Mississippi and Amazon) and very arid 
regions (e.g., the Taklamakan and central Australia). SHIFT-GAR pairs are the 
most consistent in mountainous regions (e.g., the Rockies and Andes), 
aggregated deltas (e.g., eastern Australia and southern Africa), islands (e.g., 
Indonesia), and inland river basins (e.g., the Tibetan Plateau) where few rivers 
meet the 5000 km² drainage area threshold of JRC. In contrast, cases where UP 
pairs align best are less common. UP aligns better with GAR due to their shared 
large prediction extents, such as around the Caspian Sea. In rare instances where 
UP-JRC pairs perform best, it is typically in deltas or regions where SHIFT-GAR 
performs well, such as deltas and islands. This is likely because our method 
balances consistency between the datasets, but GAR’s wider prediction coverage 
makes this strategy less effective in these infrequent cases.”  

• Fig 7 - The color combinations for SHIFT + GAR and JRC + GFPLAIN are 
indistinguishable. 

Reply: Thank you for your advice and we've changed the color combinations 
accordingly. Please see our revised Fig.8. 

General: The authors argue that locally optimized FHG parameters better represent 
the climatic heterogeneity of the world’s basins than using global parameters. I would 
be more persuaded by a direct comparison of the two methods. That can be 



accomplished either by comparing SHIFT to the results of the author’s methods but 
with global FHG parameters (e.g., Fig 6 using b = 0.3, a = 0.01 globally) or a direct 
comparison of SHIFT and GFPlain to reference data (e.g., Fig 7 without the JRC & 
GAR and SHIFT & GFPlain250 combinations) 

Reply: We have performed the analysis as suggested, and please see our reply above 
and the revision in Section 3.3 that addresses this comment. 

Revision: Please see the above. 

Essentially, the question is: Do locally optimized FHG parameters meaningfully 
improve the delineation of floodplains over global parameters and is there a spatial 
pattern of where those improvements occur? Any answer to those questions would be 
useful information for the community. 

Reply: Thanks for highlighting again the key contributions of this study (scientifically in 
addition to contributing to data), that we should better discuss how locally optimized 
FHG parameters can help better delineate floodplains. We have revised our main texts 
and figures with additional analyses, attempting to more objectively document the pros 
and cons of SHIFT. 

Revision: Please see the above. 

References: 

1. The website of MERIT-Hydro: https://hydro.iis.u-
tokyo.ac.jp/~yamadai/MERIT_Hydro/ 

2. MERIT-Basins: https://www.reachhydro.org/home/params/merit-basins 

3. Nardi, F., Annis, A., Di Baldassarre, G., Vivoni, E. R., and Grimaldi, S.: 
GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains, Sci. Data, 6, 
180309, https://doi.org/10.1038/sdata.2018.309, 2019. 

4. Nardi, F., Vivoni, E. R., and Grimaldi, S.: Investigating a floodplain scaling relation 
using a hydrogeomorphic delineation method: HYDROGEOMORPHIC FLOODPLAIN 
DELINEATION METHOD, Water Resour. Res., 42, 
https://doi.org/10.1029/2005WR004155, 2006. 

  

https://www.reachhydro.org/home/params/merit-basins


Reviewer #2 

This manuscript tackles the floodplain mapping at the global scale. The authors 
use a methodology to estimate floodplains using a geomorphic approach (integrating 
heterogeneity), based on past studies such as Nardi et al. (2019). This methodology 
involves applying a geomorphic descriptor such as HAND (Height Above the Nearest 
Drainage) and globally optimizing its parameters to delimit floodplains, resulting in a 
global map with a resolution of 250m. In this study, the authors take a further step by 
optimizing the parameters of the same geomorphic descriptor (HAND) for more than 
200 basins (delimitation at level 3 with respect to HydroBASINS). They consider 
heterogeneity in the production of a new map on a global scale, which is provided with 
resolutions of approximately 90m and 1km. 

For the calibration and validation of the applied methodology, they relied on 500-year 
return period maps (JRC, GAR flood maps) and on the 250m Nardi resolution map 
(GFPlain250m), which presented a general precision greater than 0.85. Additionally, 
they facilitate access to the results through the following links: available at 
https://zenodo.org/records/10440609 and the main code at 
https://github.com/Mostaaaaa/SHIFT_floodplain. 

The study is of interest and may be worthy to be published, but some effort should be 
made to better emphasize the impact of the study. In the following, you will find my 
comments. 

Reply: Thanks for your comment and positive evaluation of our work. You’ll find our 
point-to-point replies below. 

Major comments 

• The scaling of hydraulic depth is investigated at the global level, obtaining a very 
scattered graph. Data seem to be better aligned for larger basins, but some additional 
effort should be spent to explain the variability observed in other river basins. Climate 
cannot be the only variable controlling the scaling exponent. Other factors such as 
rainfall, river morphology, or land use could also impact the result. 

Reply: Thank you for raising this reasonable concern, and we fully agree with your 
interpretation. In this revision, we have expanded our discussion on our analyses 
of possible relevant factors affecting the empirical parameters. We've approached 
this expansion in the following ways: 



1. Hypothesis Clarification: We have better articulated our hypothesis. We 
consider aridity to be the primary factor influencing the spatial variability of b 
due to the assumption that in a humid basin, rivers with larger upstream 
drainage areas (UPA) would have greater dominance over smaller river 
segments in shaping riverine floodplains. Vegetation should also be related 
since it is involved in the runoff generation process as well as modulating soil 
erosion that can be key to floodplain formation. Additionally, other factors such 
as terrain and soil composition in riverine areas might also influence the 
results, although the underlying mechanisms are not as intuitive. It is 
important to clarify that in no way do we expect perfect relationships 
between these factors and our derived exponent b, because of the data 
uncertainties as well as the complex physical interpretations with b. 
Based on this hypothesis, we have thoroughly tested the correlation with 
other possible factors, including Leaf Area Index (LAI), mean elevation, 
elevation standard deviation, and three types of soil components (clay, silt, 
and sand). Results indicate that only the Aridity Index exhibits significant 
correlations with our estimated parameters, while LAI shows significant 
correlations in the largest basins, and other factors do not present a uniform 
result. We have included the Aridity Index along with LAI in the revised 
manuscript as they are results of our primary hypothesis. Other results are 
provided in the Supplementary Materials. Please refer to the revised Figure 4 
and Supplementary Table 1 for these results. 

2. Scale Testing: We further tested our hypothesis on different scales. We 
estimated parameters on Level-4 and Level-5 basins to observe if the 
correlation changes or if any new patterns emerge. Results show that both 
the Aridity Index and LAI exhibit significant correlations, and terrain factors 
also show positive but weak correlations, suggesting that these factors might 
be influential, though the underlying mechanisms could be more complex. 
See Supplementary Table 1 for the results. 

3. Discussion of Variability: We have discussed why other basins do not 
exhibit as strong correlations as the largest basins in the revised Section 4.4. 
The largest basins are hydrologically connected and thus are expected to 
have more internally consistent hydrological characteristics from upstream to 
downstream. In contrast, many other basins are aggregates of smaller basins, 
so the relationship between the basin-average estimate of parameter 'b' and 
the Aridity Index might be affected by this aggregation process. 



Overall, the comments helped us to perform some meaningful analyses. The 
insights were included in our revised manuscript and this response letter. 

Revision: 

(Line 662, Section 4.1) “Second, our estimated parameters aim to capture 
fingerprints from spatially varying hydrological and geomorphic processes that can 
influence the floodplain extent. We consider aridity as the primary factor 
influencing the spatial variability of b, based on the assumption that in humid 
basins, rivers with larger upstream drainage areas exert greater dominance over 
smaller segments in shaping floodplains. Vegetation also plays a role, as it 
influences runoff generation and modulates soil erosion, both key to floodplain 
formation. Additionally, factors such as terrain and soil composition might influence 
the results. Given the data uncertainties and the complex physical interpretations 
of b, it is important to note that we do not expect perfect relationships between 
these factors and the derived exponent b. The correlation analysis indeed aligns 
with our expectations: AI is statistically significant in explaining the spatial 
variability of b, while LAI plays a role and terrain does not show strong correlations 
with b. Soil compositions (Poggio et al., 2021) do not exhibit a consistent pattern 
across analyses done at different scales (Table S1). Despite the not-so-strong 
correlation with AI and LAI, its statistical significance supports the effectiveness of 
our proposed methods, which helps to derive spatially-varying parameters that are 
also physically meaningful. The parameter a could also encapsulate influences 
from relevant processes, but its physical interpretation is highly dependent on b, 
as its unit is less uniform (Nardi et al., 2006). Therefore, clarifying the influencing 
processes of a is beyond the scope of this study.”  

(Line 751, Section 4.4) “The spatially varying parameters for SHIFT are derived at 
the scale of HydroBASINS Level-3 basins, which depicts 269 river basins globally 
with some containing aggregations of smaller basins. These aggregated basins 
are not hydrologically connected and are less suitable for our thresholding scheme 
that estimates one set of parameters for each basin, compared to the largest 
basins which shares internally consistency hydrogeomorphic processes. A 
possible strategy to improve the scheme is to further divide these basins into 
smaller sub-basins, but smaller-scale analysis can increase the impact of 
reference data uncertainties especially in delta regions with high floodplain 
discordance (Fig. 5a). Parameters for Level-4 and Level-5 basins were also 
calculated (statistics are given in Table S1), but many basins had insufficient 
reference grids to give reliable estimations. Considering the high data noise that 



may limit further integration of sub-basin level heterogeneity in estimating 
parameters, the spatial disaggregation scheme used by SHIFT (i.e., level-03) is 
sufficient in improving heterogeneity while offering reasonable physical 
interpretations of the parameters.” 

 

Table 1 (Supplementary Table 1 in the revised manuscript). Correlation of FHG 

parameter b from HydroBASINS Level-3 to Level-5 basins and relevant 

hydroclimatic factors. This table presents the correlation of the FHG parameter b 

from HydroBASINS Level-3 to Level-5 basins with relevant hydroclimatic factors. Tests 

at different scales (Level-4 and Level-5 basins) are added to increase the sample size 

and confirmed that AI and LAI have statistically significant relationships with the 

exponent b. Terrain factors, specifically elevation mean and standard deviation, 

exhibited significant but weaker positive correlations with Level-4 and Level-5 basins. 

Soil factors showed inconsistent and generally insignificant correlations. The results 

for Level-4 and Level-5 basins were filtered to include only basins with at least 1000 

reference grids at a 1-km resolution, ensuring reliable estimation of b. The 33 largest 

basins are those presented in Figure 4 of the revised manuscript. Terrain data are 

sourced from MERIT-Hydro. Soil data are derived from the Soilgrids 2.0 dataset 

(Poggio et al., 2021), with zonal averages calculated within a 10-km buffer based on 

hydrological distance. While some correlations are not very strong, the results meet 

expectations, highlighting AI as a primary factor, with LAI playing a secondary role, and 

the other factors showing less observable mechanisms. 

 
Aridity 

Index 
LAI 

Elevation 

Mean 

Elevation 

STD 
Clay Silt Sand 

Level-3 
All  0.335*** 0.083 -0.007 0.121 0.152* 0.170* -0.041 

Largest 0.680*** 0.668*** -0.165 0.208 0.314 -0.134 -0.042 

Level-4 0.338*** 0.256*** 0.131** 0.246*** -0.067 0.050 -0.003 

Level-5 0.405*** 0.349*** 0.104*** 0.188*** -0.033 -0.019 0.033 

Note: *** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05. 

 



• In Section 4.1, The authors discuss the uncertainty associated to the parameter b. 
In this section, results are not clear or do not display a clear pattern. It is also surprising 
that the results obtained over the larger basins still have a large uncertainty even if the 
regression function works better. 

Reply: Thank you for your comment. We have conducted a deeper investigation 
into the uncertainty related to parameter 'b', which has led us to restructure and 
clarify our discussion on this topic. Additionally, we have refined some technical 
details in the parameter 'b' estimation, resulting in generally smaller uncertainties. 
Our revisions are as follows: 

Conceptually, we've better defined our metric and clarified its interpretation. The 
metric is now defined as residual uncertainty, which calculates the remaining 
uncertainty after our data filtering scheme. Physically, this metric assesses how 
well the data conforms to the power law: a better-conforming set of data result in 
a narrower range of the estimated b sequence and, consequently, lower standard 
deviation. By calculating the metric, we aim to see 1) how well the filtered data in 
these basins align with power law, and 2) the robustness of our parameters, as a 
lower standard deviation supports the application uniform filtering percentiles 
globally (see 2.2 Methods). Our goal in refining this section is to provide a clearer 
explanation of the uncertainty we are addressing and to give a quantitative 
assessment of our approach to managing it. 

Technically, we have modified the technical details of parameter 'b' estimation, 
specifically the binning parameter in the estimated 'b' sequence generation. The 
binning parameter determines the number of bins when grouping 'b' values. It 
should be set higher for samples with high data noise to better filter out outliers. 
However, setting the binning parameter too high reduces the amount of data 
available in each bin, and could interfere with the results with few reference grids 
available. We have improved this process by adding a constraining mechanism to 
maintain a baseline level of data and clean out empty bins. We tested how the 
number of bins influences our estimated results. Sensitivity tests show that when 
the binning parameter exceeds a certain value (150), the estimated 'b' sequence 
becomes more statistically stable (median, quantiles, and standard deviation). 
This parameter, which we previously thought was insignificant, has shown that it 
does not interfere with the overall 'b' values but narrows down the quantiles for 
large basins with numerous reference points (and subsequently more noise points, 
e.g., the Mississippi and the Amazon), leading to stabler estimates for these 
basins. As you pointed out, some large basins (e.g., the Amazon and the 



Mississippi) showed greater uncertainties in the previous version of our 
manuscript. It was possibly due to our prior setting of the binning parameter. 
Therefore, we've updated the process with the newly set binning parameter and 
the constraining mechanism, which helps us to rule out another possible source 
of data noise. Global residual uncertainty now shows a clearer pattern (see 
revised Fig. 9). 

Based on these improvements, we have revised the original Section 4.1 on 
uncertainty. Please refer to Section 4.2 for the updated content, and Section 2.2 
for the improvements above on parameter 'b' estimation. 

Revision: 

(Line 691, Section 4.2) “We also recognize several uncertainties associated with 
the FHG relation. The primary source of uncertainty comes from the inconsistency 
between the two reference hydrodynamic datasets across regions, which can be 
traced back to their model chain errors. Several measures are taken to mitigate 
the potential influence: we take the intersection of the two datasets as the 
reference, apply an iterative moving-window scheme to filter the data, and force 
scaling-law relationships to estimate the parameter b. However, residual 
uncertainties may still exist due to three aspects: (1) Inconsistencies in terrain data, 
as both JRC and GAR use SRTM as the inputs while we use MERIT-Hydro; (2) 
Potential intra-basin heterogeneity of scaling relationships which may lead to 
unstable estimates; (3) The lack of reference data in certain basins, which lowers 
our credibility in the estimated parameters. To evaluate how the residual 
uncertainty influences our FHG parameter estimation, we quantify the uncertainty 
of b by calculating the standard deviation among all possible b values derived at 
different percentiles. This metric assesses how well the data conforms to the 
power law: a better-conforming set of data result in a narrower range of the 
estimated b sequence and, consequently, lower standard deviation. A lower 
standard deviation also supports the application uniform filtering percentiles 
globally (see Methods) and proves robustness of our approach.  

Figure 9 reveals the residual uncertainty in parameter b, which ranges from 0 to 
0.03 with a median of 0.01. This is considered reasonable for a global median b 
of 0.3. The pattern is similar to that parameter b itself (Fig. 3), with lower 
uncertainties in large humid basins (blue color), and greatest uncertainty (red color) 
observed in arid regions (e.g., The Saharan Regions and western-central 
Austrailia), mountainous areas (e.g., the Rocky Mountains and the Andes), and 
deltas (e.g., The Jiaodong Peninsula, the western Mississippi Delta and the Nile 



Delta). High residual uncertainty in these regions are possibly due to the 
particularly strong differences between the reference datasets. For deltas, the 
great inconsistencies in spatial extents are amplified by their different definition of 
rivers, as JRC and GAR respectively takes up a stream threshold of 5000 km2 
and 1000 km2. It also explains the unexpectedly low b values in deltas observed 
in Fig. 3. In contrast, the Arctic exhibits generally low uncertainty, likely because 
only one reference dataset is available above 60N, reducing discrepancies and 
thus lowering remaining uncertainty.”  

(Line 350, Section 2.2) “The binning parameter is tuned to effectively reduce data 
noise for all basins.” 

 

Fig. 1 (Fig. 9 in the revised manuscript). Spatial pattern of the residual 

uncertainty of parameter b by basins. Residual uncertainty is quantified as the 

standard deviation among all possible b values derived at different percentiles (see 

Section 2.2 for details). 

 

• Results should be better described. For instance, it would be valuable to have 
floodplain patterns obtained from SHIFT with the river network layer and one image 
showing the differences between SHIFT and a reference map. Additionally, it would be 
good to enlarge the images in Figure 4. 

Reply: Thank you for your advice on better presenting our results. Regarding 
figures, we've changed our figures on regional differences to better represent 
regional differences (see our changes in the revised Figure 5). 

Revision: 



 

Fig. 2 (Fig. 5 in the revised manuscript). Geomorphic floodplain extent in SHIFT. 

a) Global spatial distribution of floodplains, with major river basins or plains marked 

out. b) and c) show two cases of that compares SHIFT with GFPlain250m, with 

background image from © Google Earth on EPSG: 3857 projection. b) locates in the 

humid Indian-Ganges River basin, while c) locates in the semi-arid yellow river basin 

in inner Mongolia, China. Major rivers of the region is marked on the map. SHIFT 

delineates fewer areas in the upstream Ganges River (b) and reduces the floodplain 

extent outside the Yellow River mainstream (c). It also offers more comprehensive 

coverage, including the Indus River basin (b) and the Hetao basin (c). 

 

Minor edits: 

1. Line 120-123: ‘overestimated floodplains in arid or semi-arid area as reported by 
existing assessments of geomorphic floodplains’ (Dhote et al., 2023; Lindersson et al., 
2021). In these references, only Lindersson et al. refers to arid areas and their 



difficulties. While Dhote et al. only highlights the overestimation and underestimation 
of the descriptors HAND and TWI respectively, but does not talk about the relationship 
with arid areas. 

Reply: Thanks for identifying our negligence and we’ve removed Dhote et al. in 
our revised manuscript. 

Revision: 

(Line 125, Section 1) “for example, overestimated floodplains in arid or semi-arid 
area as reported by existing assessments of geomorphic floodplains (Lindersson 
et al., 2021).” 

2. Line 314-315: ‘This iterative process stops either when every data point fits within 
all moving windows, or if the procedure fails to converge towards a stable solution’. It 
could explain what is meant by a stable solution, for a better understanding. 

Reply: "Fails to converge towards a stable solution" refers to the situation where, 
when dealing with highly noisy or unevenly distributed data, the iterative process 
fails to reach a stable state within a finite number of steps, resulting in extensive 
data filtering. The ideal iterative denoising process should filter out fewer and 
fewer points each time, eventually keeping all points within the 3-sigma range of 
the sliding window. This assumes that the data is primarily composed of a majority 
of valid data fitting an assumed overall distribution, combined with a small amount 
of noise. Under such ideal circumstance, the final sliding window's mean and STD 
should be an unbiased representation of the population. However, if the valid data 
is scarce and noise is abundant, it may lead to high natural variability of the data, 
or the data distribution may be significantly skewed or non-normal, preventing the 
sliding window's mean and STD from representing the main population, thus 
leading to a failure of convergence. In this study, non-convergence occurred in 
very few watersheds with limited reference data points, to address which we 
established this termination condition. Consequently, we believe that the 
parameters fitted in these highly noisy watersheds may come with uncertainty. 
This is further discussed in the revised Section 4.2. We've added a short 
explanation in the corresponding paragraph to explain it further, but since it's not 
a major concern we didn't expand in the method section. 

Revision: 

(Line 346, Section 2.2) “This iterative process stops either when every data point 
fits within all moving windows, or if the procedure fails to converge towards a 
stable solution (e.g., for highly noised or significantly non-normal data).” 



3. Line 343: change ‘as the as the’ for ‘as the’. 

Reply: Thanks for pointing out. We’ve removed the typo. 

4. Line 385: only the range of values obtained for the coefficient 'a', For what reason 
is not presented a graph as in fig.3 of parameter 'b'? If it is possible to provide the 
values of both parameters, so that this method can be studied at smaller scales 
focusing future studies in a single basin or a single region and its sub-basins. It would 
be ideal to base the importance given to the parameter 'b' on the parameter 'a'. 

Reply: Thank you for your constructive comment. We do consider parameter 'b' 
to be more important in our study. In the broader sense of hydraulic geometry, 
while the value of 'a' is also a determining factor in the floodplain delineation 
process, the physical interpretation and research focus have historically been 
more concentrated on the parameter 'b' (since Leopold, 1953). In most cases, the 
understanding of parameter 'a' is dependent on 'b', and 'b' could be more clearly 
interpreted as the sensitivity to scale. Thus, in cases where the actual mechanism 
of the hydraulic geometry relation is not clear, it would be more common to dig 
into the possible influencing factors of parameter 'b'. In the context of FHG, 
previous researchers have also primarily focused on 'b'. For example, in a study 
by Annis et al. (2019), when evaluating the performance of varying FHG 
parameters across different stream orders, the emphasis was mainly on 'b'.  

In our study, the two parameters have different impacts on delineating floodplains. 
Parameter 'b' determines whether the river with larger upstream drainage area 
dominates the floodplain. The difference in impact between large and small rivers 
is greater when 'b' takes a larger value. This is related to our assumption in our 
paper that in humid areas, the difference between small and large rivers would be 
more significant, leading to a stronger dominance of those with larger upstream 
drainage areas. In comparison, 'a' lacks a unified unit and a clear physical 
interpretation, and it is highly dependent on 'b'. To provide better understanding, 
we have provided the spatial distribution of parameter 'a' (see supplementary 
Figure 1). Unlike the clearer pattern of 'b' of generally better aligning with the 
Aridity Index, values of 'a' vary largely. For instance, small 'a' values appear in 
some of the largest river basins (e.g., the Amazon and Yangtze River Basin), 
possibly balancing out the influence brought by larger 'b' values. While there are 
possible physical interpretations, it is challenging to interpret 'a' when the 
underlying mechanism related to 'b' is not clear. Our discussion on the 
interpretation of parameters was further added to Section 4.1 in Discussion. 



Thank you for suggesting that we provide parameters for all basins. We have 
uploaded all the parameters, along with our confidence levels of all the parameters, 
in a shapefile our Zenodo repository. We will provide a link in our revised 
manuscript.  

Revision: 

(Line 676, Section 4.1) “The parameter a could also encapsulate influences from 
relevant processes, but its physical interpretation is highly dependent on b, as its 
unit is less uniform (Nardi et al., 2006). Therefore, clarifying the influencing 
processes of a is beyond the scope of this study.” 

1. 3b: include a legend. 

Reply: Thanks for pointing out. The original Figure 3b was revised to Figure 4 now 
to expand our discussion on relevant factors. In each of the sub-graphs we’ve 
added a legend correspondingly. 

2. 3a: change 'estimatio' for 'estimation' in the description. 

Reply: Thanks for pointing out. We’ve removed the typo. 

References: 

1. Leopold, L. B. and Maddock, T.: The Hydraulic Geometry of Stream Channels and 
Some Physiographic Implications, U.S. Government Printing Office, 68 pp., 1953. 

2. Annis, A., Nardi, F., Morrison, R. R., and Castelli, F.: Investigating 
hydrogeomorphic floodplain mapping performance with varying DTM resolution and 
stream, Hydrol. Sci. J., 64, 515–538, 2019. 

 
  



Reviewer #3 

The paper is well-written and addresses a critical need of the community by developing 
a new, relatively finer resolution global scale floodplain map. It uses HAND as the 
driving topographic attribute. While the paper presents a comprehensive dataset, I do 
see some major conceptual limitations that make the dataset and the underlying logics 
questionable. Given these limitations and my strong reservations about ESSD's high 
standards with regards to study methods, I think this paper would be suitable for a 
regular hydrology or flood related journal.  

Reply: Thank you for recognizing our work and bringing reasonable criticisms to our 
study, particularly concerning our conceptualization. Your concerns suggest that some 
potential confusion may need further clarification, which we believe can be addressed 
through improved framing and writing. We have significantly revised and restructured 
our Discussion section to clarify any potential confusion about concepts, and to provide 
a more objective presentation of our results and the contributions of our research. 
Below, you’ll find our point-to-point replies and we hope they clears up your concerns. 

(1) The purpose of topography-based hydrogeomorphic floodplain mapping is to (a) 
avoid complex and computationally intensive modeling approaches, and (b) map flood 
hazards without any specific return period of extreme event (eg 50, 100, 500 year 
flood). But this study overrides that concept and uses existing 500-year flood maps 
from two hydrodynamic models to calculate scaling parameters for HAND. Clearly, this 
opposes what we know about the science of hydrogeomorphic floodplain mapping. In 
short, the method proposed in this study takes years of development and conceptual 
knowledge in a confusing direction. If I have to use hydrodynamic models for creating 
a hydrogeomorphic model, then the whole idea of hydrogeomorphic modeling is 
meaningless. 

Reply: Thank you for your comment on the possible confusion of our conceptualization. 
We would like to clarify that we are not using hydrodynamic models to create a 
hydrogeomorphic model but to better determine the floodplain boundary. Although the 
conceptual definition of a geomorphic floodplain does not involve such a boundary, in 
practice, it is essential that we obtain some sort of information, be it from hydrodynamic 
maps or in-situ measurements as the reviewer mentioned in the other comment, to 
help us define this boundary. By incorporating outputs from hydrodynamic maps (not 
models), we are obtaining Floodplain Hydraulic Geometry (FHG) parameters for the 
already established hydrogeomorphic modelling framework, and the maps from 
hydrodynamic models have proven to be of use. The contribution in our study to the 



framework is to add information on spatial variability in parameters.  

Conceptually, we believe that different definitions of floodplain boundaries are 
complementary rather than contradictory, each highlighting different facets of 
floodplain dynamics. In our case, the concept of a geomorphic floodplain emphasizes 
the formation process of floodplains, but it is also predominantly shaped by low-
probability, high-impact flood occurrences (Lindersson et al., 2021). Considering that 
FHG describes the extent of inundation depth (hydrological factor) with drainage area 
(geomorphic factor), our goal of delineating a geomorphic floodplain is subsequently 
connected with identifying a boundary that encompasses all potentially inundated 
areas under extreme conditions. Therefore, we’ve used two 500-year return period 
flood inundation maps as references for estimating our parameters, only to 
ensure a sufficiently large boundary for the carrying out of this algorithm. This 
way, we believe that the geomorphic definition of a floodplain is still obeyed. 
While the FHG parameters can be approximated for various return periods (Nardi et 
al., 2006) and can subsequently be viewed from an inundation perspective, our 
approach does not focus on a specific return period for inundation. In other words, our 
goal is not to provide a mere substitute for inundation maps; rather, we aim to consider 
both the stream's geographical characteristics and hydrological extreme conditions, to 
identify scaling relationships that align with geomorphic principles, and to offer a more 
comprehensive understanding of floodplain dynamics.  

Thank you again for pointing out this potential confusion on our conceptualization. To 
better address your concerns, we have largely revised the above discussion on 
floodplain boundary definition and delineation in the revised Section 4.3 in Discussion. 
Additionally, to facilitate future studies and reduce computational efforts, we will 
provide our spatially varying parameters for easier application. These parameters are 
now available at the same Zenodo repository at https://zenodo.org/records/118358133. 

Revision: 

(Line 728, Section 4.3) “We also dedicate some discussions to the definition of 
floodplains here as numerous definitions exist for different intended uses. 
Geomorphically, a floodplain is an accumulation plain along a watercourse, formed by 
unconsolidated sediment transported and deposited by the stream, usually flooded 
during high flows (Brierley and Fryirs, 2013). This definition emphasizes the formation 
process. From a hydrologist or a flood manager’s perspective, the floodplain is often 
associated with inundation attached to certain flood strengths (Krizek et al., 2006), 
which can be also referred to as the hydraulic floodplain. Alternatively, focusing on 
material flux exchanges yields different boundaries (Wohl, 2021). We consider these 



perspectives not contradictory but complementary in floodplain mapping processes as 
they highlight different aspects of floodplains. Specifically, geomorphic floodplains are 
predominantly shaped by low-probability but high-impact flood occurrences 
(Lindersson et al., 2021), which subsequently connects our goal of delineating a 
geomorphic floodplain with identifying a boundary that encompasses all potentially 
inundated areas under extreme conditions. Therefore, we have used two 500-year 
return period flood maps as references for estimating our parameters, only to ensure 
a sufficiently large boundary for the carrying out of this algorithm. This way, the 
geomorphic definition of a floodplain is still obeyed. While the FHG parameters can be 
approximated for various return periods (Nardi et al., 2006), our approach does not 
focus on nor involve a specific return period for inundation. In other words, our goal is 
not to provide a mere substitute for inundation maps. Instead, we aim to leverage a 
river's geographical characteristics and hydrological extreme conditions, to identify 
scaling relationships that align with geomorphic principles, and to offer a more 
comprehensive understanding of global floodplain extents.” 

(2) Alongside the conceptual limitation, the work is self-contradictory. The authors on 
and on tag their approach as parsimonious and existing hydrodynamic models as 
uncertain (see Lines 84-86). Parameterizing HAND with two hydrodynamic model-
based flood maps, as the authors did, is in no way a parsimonious method. This is also 
not a practical method. Because if I don’t have hydrodynamic models existing in my 
area of interest (let’s forget about uncertainty for the sake of discussion), I won’t be 
able to reproduce the authors’ method.  

Reply: We respectfully disagree with this point and would like to emphasize that our 
approach remains parsimonious. Strictly speaking, we did not use hydrodynamic 
models but rather publicly available flood maps as references, despite their 
uncertainties and inconsistencies. Thus, no complex models or simulations are 
involved in our method, as the core process is described by a power-law. The most 
intricate part of our study is the data filtering scheme, but it still demands significantly 
less computational effort compared to hydrodynamic models. Besides, we believe that 
the issue of parsimony and practicality can be better addressed by providing our 
optimized scaling law parameters. For anyone who wish to reproduce the 
method/results using terrain data, it is easy to grab our results and derive new maps 
of their own, thus replicating our method should be feasible. 

In addition to the above, in this revision, we have carefully conducted additional 
investigations into the concern on the uncertainty related to using hydrodynamic maps. 
Despite their acknowledged inconsistencies, the reference maps we used are informed 



by climatic forcing and are subsequently expected to offer a more spatially 
heterogeneous basis than universal geomorphic parameters. In other words, while we 
do acknowledge these maps can be uncertain, they contain useful information that can 
be applied to constrain geomorphic floodplain boundaries. We have thus introduced a 
rigorous data filtering process to optimize the parameters best conforming to the power 
law contained within the data. Our results show that the filtered data conform well to 
the power law (see revised Figure 9), supporting the validity of our approach. 

We hope this resolves the “self-contradictory” concern for our work. Revisions have 
also been made more clearly to address your conceptual concerns: for detailed 
explanations of using these maps as references, please see the newly added Section 
4.1, and for the remaining uncertainty please refer to Section 4.2. Our supplied 
parameter maps can be found in the zenodo repository for more expert users. 

Revision: 

(Line 644, Section 4.1) “First, we believe the need for localized parameters arises from 
the role that empirical parameter in FHG plays in determining floodplain boundary. A 
higher b value emphasizes the influence of larger rivers in shaping geomorphic 
floodplains, reflecting hydrogeomorphic processes that vary across different basins 
and should be better represented. Given the absence of ground truth for floodplain 
boundaries, we attempt to improve representation of these heterogeneous processes 
by balancing information from two existing reference maps from hydrodynamic 
modeling. Despite acknowledged inconsistencies, the hydrodynamic maps are 
informed by climatic forcing, providing a common basis more likely to spatially 
heterogeneous than universal geomorphic parameters. In other words, while we do 
acknowledge these maps can be uncertain, they contain useful information that can 
be applied to constrain geomorphic floodplain boundaries. This leads to our data 
filtering process to reduce inconsistency and to identify a scaling law from the 
references. By incorporating outputs from hydrodynamic maps, our approach 
optimizes the DEM-based model without altering its foundation, as evidenced by the 
overall better consistency regardless of parameters used (Fig. 8a). Although certain 
regions may benefit less from our strategy (e.g., where UP-JRC performs best), results 
(Fig. 8b) show convincing general improvements and consistency patterns. The 
estimated parameters derived here are also provided to support potential future 
studies with regionalized focuses.” 

(Line 691, Section 4.2) “We also recognize several uncertainties associated with the 
FHG relation. The primary source of uncertainty comes from the inconsistency 
between the two reference hydrodynamic datasets across regions, which can be 



traced back to their model chain errors. Several measures are taken to mitigate the 
potential influence: we take the intersection of the two datasets as the reference, apply 
an iterative moving-window scheme to filter the data, and force scaling-law 
relationships to estimate the parameter b. However, residual uncertainties may still 
exist due to three aspects: (1) Inconsistencies in terrain data, as both JRC and GAR 
use SRTM as the inputs while we use MERIT-Hydro; (2) Potential intra-basin 
heterogeneity of scaling relationships which may lead to unstable estimates; (3) The 
lack of reference data in certain basins, which lowers our credibility in the estimated 
parameters. To evaluate how the residual uncertainty influences our FHG parameter 
estimation, we quantify the uncertainty of b by calculating the standard deviation 
among all possible b values derived at different percentiles. This metric assesses how 
well the data conforms to the power law: a better-conforming set of data result in a 
narrower range of the estimated b sequence and, consequently, lower standard 
deviation. A lower standard deviation also supports the application uniform filtering 
percentiles globally (see Methods) and proves robustness of our approach.  

Figure 9 reveals the residual uncertainty in parameter b, which ranges from 0 to 0.03 
with a median of 0.01. This is considered reasonable for a global median b of 0.3. The 
pattern is similar to that parameter b itself (Fig. 3), with lower uncertainties in large 
humid basins (blue color), and greatest uncertainty (red color) observed in arid regions 
(e.g., The Saharan Regions and western-central Austrailia), mountainous areas (e.g., 
the Rocky Mountains and the Andes), and deltas (e.g., The Jiaodong Peninsula, the 
western Mississippi Delta and the Nile Delta). High residual uncertainty in these 
regions are possibly due to the particularly strong differences between the reference 
datasets. For deltas, the great inconsistencies in spatial extents are amplified by their 
different definition of rivers, as JRC and GAR respectively takes up a stream threshold 
of 5000 km2 and 1000 km2. It also explains the unexpectedly low b values in deltas 
observed in Fig. 3. In contrast, the Arctic exhibits generally low uncertainty, likely 

because only one reference dataset is available above 60°N, reducing discrepancies 
and thus lowering remaining uncertainty. ” 

Many examples of HAND’s parsimonious applications already exist in literature. HAND 
is parsimonious in operationalized flood prediction systems where a streamflow or 
stage height (the H in authors’ scaling equation) comes from an operational watershed 
hydrology simulation model followed by a process of automatic synthetic rating curve 
generation. See examples like https://doi.org/10.31223/osf.io/hqpzg 

Reply: We thank the reviewer for this comment, and we are actually aware of the 
alternative thresholding methods for HAND that are available and widely utilized. The 



paper you provided outlines two approaches: 1) directly estimating stage height, which 
is useful when in-situ measurements are available, and 2) using a synthetic rating 
curve, as also calculated from terrain-based methods. The latter method is indeed 
effective for large-scale applications and is used by the US National Water Model, but 
it introduces additional sources of uncertainty as it requires estimated Manning's 
coefficients for water-stage estimation and it is also computationally very demanding 
as it has not been accomplished worldwide. Therefore, outside of the United States 
where high-quality data is available, replicating this globally poses significant 
challenges. 

To compare with, the FHG method requires only terrain input, which is recognized as 
the least uncertain component in global floodplain mapping when using hydrodynamic 
models. The necessary information is encapsulated in the parameters, making it easier 
to identify the influence of each parameter. Therefore, we consider the FHG 
thresholding approach to be more globally consistent and easily applicable, and still a 
useful contribution to the community. We have added an additional section on FHG in 
Section 4.1 and included a paragraph on other thresholding schemes for HAND to 
address your concerns. We have also supplied parameters for use by future 
researchers to make it parsimonious.  

Revision: 

(Line 680, Section 4.1) “Third, although alternative thresholding methods that use river 
discharge and synthetic rating curves exist (e.g., those used by the US National Water 
Model, Zheng et al., 2018), these methods come with more sources of uncertainty by 
requiring high-quality data inputs (e.g., gauged discharge, Manning’s coefficient). Thus, 
while they may work well with in-situ observations, replicating this globally poses 
challenges and is conceptually different from our approach. Our proposed FHG 
method requires only terrain input, which is recognized as the least uncertain 
component in global floodplain mapping method (Bates, 2023). By providing the 
optimized parameters derived here, we consider the FHG thresholding as more 
globally consistent and easily applicable.” 

(3) The aridity came out of nowhere. I think bringing aridity into the mix was arbitrary 
and unnecessary. 

Reply: Thank you for pointing out this potential confusion, which was also brought up 
by other reviewers and which we have carefully addressed in this revision. We’d like 
to clarify that including aridity in our analysis was purposeful and based on our 
hypothesis. Our estimated parameters aim to capture spatial heterogeneity of 



geomorphic floodplain forming factors and, if possible, we should be able to identify 
significant relationship between examined factors and our derived parameters. Due to 
uncertainties with the data as well as the scaling law itself, we do not expect the 
relationship to be perfect. We hypothesized that in humid areas, the stronger 
discrepancy between small and large rivers would lead to a stronger dominance by 
larger rivers. While the correlation with the Aridity Index (AI) is not strong, its 
significance supports our parameter estimation efforts. The largest basins, being 
hydrologically connected and thus internally consistent in hydrological characteristics, 
result in stronger correlations with these factors as expected. Despite the seemingly 
loose correlations, our analyses may still be helpful in identifying geomorphic 
floodplain-forming mechanisms. 

To address your comment regarding the clarity of our purpose, we have clarified our 
hypothesis and strengthened the tests we conducted in this revision. In terms of writing, 
we have explained this in the Methods section and elaborated on it in the revised 
Section 4.1 on our hypothesis with the FHG parameters.  

Experimentally, we conducted two additional analyses. First, we included more 
variables in our analysis, such as LAI, terrain (mean and deviation), and soil factors 
(soil components in a river buffer). Our hypothesis was that AI would be the most 
significant factor, with LAI inherently related to AI, while terrain and soil might also be 
related but with less clear mechanisms. The results showed that AI was indeed the 
most significant, with LAI only significant in large basins. Other factors exhibit 
inconsistent correlations with b, also as expected. We also tested the estimation of the 
parameters at different scales (i.e., Level-4 and Level-5 basins) to increase the sample 
size. The results showed that AI and LAI have statistically significant relationships with 
the exponent b, while terrain factors showed significant but much weaker relationships, 
followed by soil factors that do not show statistically significant relationships with b (see 
our Supplementary Figure 1, included below).  

While the correlations shown in the above analyses may not be very strong, they meet 
our expectations: AI is significant as the primary factor for explaining the spatial 
variability of b, LAI plays a role, and terrain might be related but not showing readily 
detectable correlations with the exponent b.  

 

Table 1 (Supplementary Table 1 in the revised manuscript). Correlation of FHG 

parameter b from HydroBASINS Level-3 to Level-5 basins and relevant 

hydroclimatic factors. This table presents the correlation of the FHG parameter b 



from HydroBASINS Level-3 to Level-5 basins with relevant hydroclimatic factors. Tests 

at different scales (Level-4 and Level-5 basins) are added to increase the sample size 

and confirmed that AI and LAI have statistically significant relationships with the 

exponent b. Terrain factors, specifically elevation mean and standard deviation, 

exhibited significant but weaker positive correlations with Level-4 and Level-5 basins. 

Soil factors showed inconsistent and generally insignificant correlations. The results 

for Level-4 and Level-5 basins were filtered to include only basins with at least 1000 

reference grids at a 1-km resolution, ensuring reliable estimation of b. The 33 largest 

basins are those presented in Figure 4 of the revised manuscript. Terrain data are 

sourced from MERIT-Hydro. Soil data are derived from the Soilgrids 2.0 dataset 

(Poggio et al., 2021), with zonal averages calculated within a 10-km buffer based on 

hydrological distance. While some correlations are not very strong, the results meet 

expectations, highlighting AI as a primary factor, with LAI playing a secondary role, and 

the other factors showing less observable mechanisms. 

 
Aridity 

Index 
LAI 

Elevation 

Mean 

Elevation 

STD 
Clay Silt Sand 

Level-3 
All  0.335*** 0.083 -0.007 0.121 0.152* 0.170* -0.041 

Largest 0.680*** 0.668*** -0.165 0.208 0.314 -0.134 -0.042 

Level-4 0.338*** 0.256*** 0.131** 0.246*** -0.067 0.050 -0.003 

Level-5 0.405*** 0.349*** 0.104*** 0.188*** -0.033 -0.019 0.033 

Note: *** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05. 

 

We've revised our manuscript accordingly to include both the more clearly stated 
hypothesis and our interpretations. Please refer to the newly performed analyses in 
Supplementary Table 1, and more objective statements of our parameters and 
hypothesis in Section 4.1. 

Revision: 

(Line 680, Section 4.1) “Second, our estimated parameters aim to capture fingerprints 
from spatially varying hydrological and geomorphic processes that can influence the 
floodplain extent. We consider aridity as the primary factor influencing the spatial 



variability of b, based on the assumption that in humid basins, rivers with larger 
upstream drainage areas exert greater dominance over smaller segments in shaping 
floodplains. Vegetation also plays a role, as it influences runoff generation and 
modulates soil erosion, both key to floodplain formation. Additionally, factors such as 
terrain and soil composition might influence the results. Given the data uncertainties 
and the complex physical interpretations of b, it is important to note that we do not 
expect perfect relationships between these factors and the derived exponent b. The 
correlation analysis indeed aligns with our expectations: AI is statistically significant in 
explaining the spatial variability of b, while LAI plays a role and terrain does not show 
strong correlations with b. Soil compositions (Poggio et al., 2021) do not exhibit a 
consistent pattern across analyses done at different scales (Table S1). Despite the 
not-so-strong correlation with AI and LAI, its statistical significance supports the 
effectiveness of our proposed methods, which helps to derive spatially-varying 
parameters that are also physically meaningful. The parameter a could also 
encapsulate influences from relevant processes, but its physical interpretation is highly 
dependent on b, as its unit is less uniform (Nardi et al., 2006). Therefore, clarifying the 
influencing processes of a is beyond the scope of this study.” 

 

References: 

1. Lindersson, S., Brandimarte, L., Mård, J., and Di Baldassarre, G.: Global riverine 
flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?, 
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-
2021, 2021.  

2. Nardi, F., Vivoni, E. R., and Grimaldi, S.: Investigating a floodplain scaling relation 
using a hydrogeomorphic delineation method: HYDROGEOMORPHIC FLOODPLAIN 
DELINEATION METHOD, Water Resour. Res., 42, 
https://doi.org/10.1029/2005WR004155, 2006.  

3. Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., 
Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with 
quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-
2021, 2021. 

 
 


	Author's Comment
	Reviewer #1
	Reviewer #2
	Major comments
	Minor edits:

	Reviewer #3

