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Abstract. Irrigation accounts for the major form of human water consumption and plays a pivotal role in enhancing crop yields 

and mitigating the effects of droughtdrought effects. Accurate mapping of irrigation distribution is essentialThe precise 

distribution of irrigation is crucial for effective water resource management and the assessment of food security. However, the 

resolution of the global irrigated cropland map is coarse, typically approximately 10 kilometres, and lack regular updatesand 

the map is not regularly updated. In our study, we present a robust methodology that leverages irrigation performance during 15 

drought stress as an indicator of crop productivity and water consumption to identify global irrigated cropland. Within each 

irrigation mapping zone (IMZ), we identified the dry months of the growing season from 2017 to 2019 or the driest months 

from 2010 to 2019. To delineate irrigated cropland, we utilized the collected samples to calculate normalized difference 

vegetation index (NDVI) thresholds for the dry months of 2017 to 2019 and the NDVI deviation from the ten-year average for 

the driest month. By integrating combining the most accurate results of from these two methods, we generated the Global 20 

Maximum Irrigation Extent dataset at 100-metre resolution (GMIE-100), achieving an overall accuracy of 83.6% ± 0.6%. The 

GMIE-100 reveals that the maximum extent of irrigated cropland encompasses 403.17 ± 9.82 million hectares, accounting for 

23.4% ± 0.6% of the global cropland. Concentrated in fertile plains and regions adjacent to major rivers, the largest irrigated 

cropland areas are found in India, China, the United States, and Pakistan, which rank 1st to 4th, respectively. Importantly, the 

spatial resolution of GMIE-100 surpasses that of the dominant irrigation map, offering more detailed information essential to 25 

supportfor supporting estimates of agricultural water use and regional food security assessments. Furthermore, with the help 

of the deep learning (DL) method, the global central pivot irrigation system (CPIS) was identified using Pivot-Net, a novel 

convolutional neural network built on the U-net architecturebased on U-net. We found that there are 11.5 ± 0.01 million 

hectares of CPIS, accounting for approximately 2.90% ± 0.03% of the total irrigated cropland. In Namibia, the US, Saudi 

Arabia, South Africa, Canada, and Zambia, the CPIS proportion was greater than 10%. To our knowledge, this is the inaugural 30 

study to undertake a global identification of specific irrigation methods, with a focus on the CPIS.To our knowledge, this study 
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is the first attempt to globally identify irrigation methods globally. The GMIE-100 dataset containing both the irrigated extent 

and CPIS distribution is publicly available accessible on Harvard Dataverse at https://doi.org/10.7910/DVN/HKBAQQ (Tian 

et al., 2023a). 

1. Introduction 35 

Irrigation plays a pivotal role in mitigating the impacts of drought events (Wang et al., 2021; Wu et al., 2022). As climate 

change intensifieshas intensified, droughts and heatwaves have become more frequent; thus, irrigation has emerged as an 

effective strategy to counter these extreme events and bolster the resilience of agricultural systems (Mcdermid et al., 2023). 

However, irrigation represents a significant human intervention in the global water cycle, as it accounts for 67% of global 

freshwater withdrawal and 87% of total water consumption (Wu et al., 2022). Therefore, accurate information aboutpertaining 40 

to irrigation is criticalimportant for both crop monitoring and water resource management purposes (Wu et al., 2023b; Tian et 

al., 2022). However, the highest available resolution for existing irrigation maps remains within a range of 500 metres to 10 

kilometres (Nagaraj et al., 2021; Siebert et al., 2005; Siebert et al., 2013). This resolution is insufficient to support effective 

This limitation falls far short of the resolution needed to adequately support crop condition monitoring and sustainable water 

resource management at the subbasin level (Zhang et al., 2022b; Xie and Lark, 2021). 45 

Traditionally, two methods have been used employed for generating gridded irrigation maps. The first method involves 

the allocation of statistical data that uses specific indicators such as land cover area, peak normalized difference vegetation 

index (NDVI) values, and irrigation potential indices (Zhu et al., 2014; Pervez and Brown, 2010; Zajac et al., 2022). For 

exampleNotably, the Food and Agriculture Organization (FAO) applied utilized this approach to produce the Global Map of 

Irrigation Area (FAO-GMIA) from 1995 to 2005 at a 10-kilometre resolution; this renowned irrigation map is widely applied 50 

in global water resource management (Siebert et al., 2015). At the national scale, several irrigation maps for China have been 

produced with resolutions ranging from 500 to 1000 metres; these maps primarily utilize data from the Chinese Statistical 

Yearbook (Zhu et al., 2014; Zhang et al., 2022c). For the United States, Pervez and Brown (2010) developed an Irrigated 

Agriculture Dataset for the US (MIrAD-US) with a resolution of 250 metres. Zajac et al., 2022, produced the European 

Irrigation Map for 2010 (EIM2010), albeit with a coarser 10-kilometre×10-kilometre resolution. Importantly, the accuracy of 55 

irrigated cropland maps generated through these methods relies heavily on the representativeness of the spatial allocation 

indicators and the precision of the statistical data. The indicators used to allocate irrigation areas to each grid often fail to 

capture the precise distribution of irrigated cropland, especially in humid regions (Pervez and Brown, 2010). As a 

resultConsequently, achieving higher-resolution irrigation maps using via this approach can be challenging. Furthermore, due 

to variations in terrain types and irrigation techniques, census data may underestimate the actual irrigation area (Zhang et al., 60 

2022b). Furthermore, data from different departments may exhibit discrepancies owing to differing statistical criteria. For 

https://doi.org/10.7910/DVN/HKBAQQ


3 

 

 

example, in 2010, the reported irrigation area in California differed by more than 10% between the US Geological Survey and 

the state's Department of Water Resources (Meier et al., 2018). 

Scholars have sought to independently derive irrigated cropland using via spectral signatures (Thenkabail et al., 2009; 

Salmon et al., 2015). The peak values in time-series vegetation indices can serve as indicators of crop water stress, biomass, 65 

and chlorophyll content. Given that irrigated crops typically exhibit reduced water stress and elevated chlorophyll content, 

disparities in peak vegetation index values can be harnessed to differentiate between irrigated and rainfed croplands. 

Commonly employed vegetation indices for this approach include the NDVI, greenness index (GI), land surface water index 

(LSWI), chlorophyll vegetation index (GCVI), enhanced vegetation index (EVI), and others (Shahriar Pervez et al., 2014; Lu 

et al., 2021; Chen et al., 2018; Xiang et al., 2019; Dela Torre et al., 2021). The discrimination between irrigated and rainfed 70 

croplands is typically accomplished through thresholding or decision tree classification and relies on selected vegetation 

indices. Nevertheless, importantly, vegetation indices may not entirely capture crop water stress, leading to subtle differences 

in peak vegetation indices and complicating the mapping of large-scale irrigated farmland. 

To improve the delineation enhance the distinction of irrigated cropland, supervised classification models incorporate 

climate variables and environmental factors, such as precipitation, temperature, surface temperature, and terrain (Salmon et 75 

al., 2015). For instance, Thenkabail et al. (2009) combinedutilized a set of factors, including AVHRR vegetation index time 

series, precipitation data, elevation information, and vegetation cover maps, as inputs to a decision tree classifier, resulting in 

the creation of the first global irrigated irrigation area map (IWMI-GIAM) at a 10-kilometre resolution based on remote sensing 

data. Salmon et al. (2015) employed MODIS vegetation indices and 19 climate variables to produce the Global Rainfed and 

Irrigated Cropland map (GRIPC-500) for 2005 at a resolution of 500 metres. 80 

In recent years, the mapping of irrigated croplands at the national and regional scales has undergone significant 

advancements due to the availability of extensive meteorological and remote sensing data stored in Google Earth Engine (GEE) 

(Zhang et al., 2022b; Deines et al., 2019; Xie et al., 2019; Xie and Lark, 2021). Xie et al. (2021) developed a random forest 

model that incorporates incorporating a wide array of variables, including environmental factors (precipitation, Palmer drought 

severity index, soil moisture, aridity index, land surface and air temperature), vegetation indices (NDVI, NDWI, GCVI, WGI, 85 

and AGI), and ground irrigation samples. This model achieved an impressive 30-metre resolution irrigation dataset for the 

United States (LANID). Subsequently, Zhang et al. (2022a) applied this methodology to generate an irrigated cropland map 

for China from 2000 to 2019 with a resolution of 500 metres (IrriMap_CN). In the same year, Zhang et al. (2022c) enhanced 

the resolution of the irrigation cropland distribution map for China to 250 metres. However, this method heavily relies on 

sample datasamples, and the spatial representativeness of these irrigation and rainfed samples directly influences the accuracy 90 

of the results (Zhang et al., 2022b). Collecting ground sample points is a labour-intensive and time-consuming process, and 

ensuring their spatial representativeness across larger areas, including at a global scale, poses considerable challenges (Zhang 

et al., 2022c; Zhang et al., 2022d; Tian et al., 2022). 
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Though various irrigation maps exist at global and national scales, many of these maps suffer from either very low spatial 

resolution or outdated information, as outlined in Table 1Table 1 (Dari et al., 2023). Among these data, the Landsat-derived 

Global Rainfed and Irrigated-area Product (LGRIP30) is a high-resolution irrigated cropland with an overall accuracy of 86.5% 

using advanced machine learning algorithms, which is released on Feb 2023 and available through NASA’s Land Processes 130 

Distributed Active Archive Center (LP DAAC) (Teluguntla et al., 2023). The LGRIP30 data indicates a total global net 

irrigated area (TGNIA) of 0.71 billion hectares among all cropland area of 1.80 billion hectares of croplands, meaning the 

irrigation proportion was approximately 39.44%ie the irrigation proportion was about 39.44% , suggesting a relative high 

proportion compared with to exiting result (Thenkabail et al., 2009; Siebert et al., 2015). While some high-resolution irrigation 

maps are annually updated, they are typically applicable only at a national level (Zhang et al., 2022b; Xie et al., 2021). ThusIn 135 

essence, the challenge of generating a higher-resolution and up-to-date global irrigated cropland map via supervised methods 

persists. 

An additional significant issue is the phenomenon of "mixed pixels" in MODIS data, which is particularly pronounced in 

regions with fragmented croplands, such as farmlands in southern China and Africa, where agricultural fields are often smaller 

than one MODIS pixel (0.25 hectares) (Zhang et al., 2022a). Consequently, global irrigation maps map with higher resolution 140 

are urgently needed to support both water resource management and food security assessments. 

Inspired by the fundamental purpose of irrigation, which is to alleviate the impact of drought, we introduced the Global 

Maximum Irrigated Extent with 100-metre resolution (GMIE-100) dataset. This dataset leverages irrigation performance 

during periods of drought stress. When drought conditions prevail, disparities in crop conditions, as indicated by the peak 

NDVI values, become more pronounced between irrigated and rainfed farmlands. This amplification enables the precise 145 

identification of irrigated farmland across most regions while also reducing the number quantity of required training samples 

(Wu et al., 2023a). 

Furthermore, considerable variations in irrigation efficiency are apparent among different irrigation types, with central 

pivot irrigation systems (CPISs), which achieve an efficiency rate exceeding 80% and are the predominant global sprinkler 

irrigation methodwhich have an efficiency rate exceeding 80%, emerging as the predominant global sprinkler irrigation method 150 

(Tian et al., 2023b). In contrast, gravity-flowing irrigation methods, while widespread, exhibit a comparatively lower efficiency 

rate of approximately 60% (Waller and Yitayew, 2016). Despite the important role of irrigation in agriculture, few studies 

have been dedicated to the remote sensing identification of various irrigation types, indicating a notable gap in scientific 

exploration. Notably, the unique circular configuration of CPISs facilitates their visual interpretation from satellite imagery, 

presenting an avenue for enhanced monitoring and analysis through remote sensing technologies. The advent of deep learning 155 

(DL) has opened avenues for the classification of types of irrigation methods based on distinctive spatial patterns, such as 

CPIS. In this study, Pivot-Net, a shape attention neural network designed for CPIS identification in satellite imagery, was used, 

and a global CPIS dataset (GCPIS) was generated to estimate the proportion of types of irrigation methods for CPIS. 
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Table 1 List of existing irrigation maps at the global or national scale. 160 

Dataset Coverage Spatial Resolution Time Method summary Reference 

Global Irrigated Area Map 

(IWMI-GIAM) 

Global 10 km 2000, Uses decision tree classifier with vegetation 

index &environmental data as input 

(Thenkabail et al., 

2009) 

Global Map of Irrigation Area 

(FAO-GMIA) 

Global 10 km 1995/2000/2005 Allocates census data based on 

landcover area 

(Siebert et al., 2015) 

Global Rainfed, Irrigated and 

Paddy Croplands (GRIPC-500) 

Global 500 m Single map 2005 Includes climate variables and 

environmental factors 

in a decision tree classifier 

(Salmon et al., 2015) 

Global Food-Support Analysis 

Data (GFSAD) 

Global 1 km 2010 Created using multiple input data including 

satellite data, climatic and census data. 

(Thenkabail et al., 

2012) 

Landsat-derived Global 

Rainfed and Irrigated-Cropland 

Product at nominal 30 m of the 

World (USGS-LGRIP30) 

Global 30 m 2015 Landsat-derived global rainfed and irrigated 

cropland product within cropland extent 

(Teluguntla et al., 

2023) 

Landsat-based Irrigation 

Dataset (LANID) 

US 30 m 1997-2017 Random forest model based on 

environmental variables & vegetation 

indices 

(Xie et al., 2021; Xie 

et al., 2019; Xie and 

Lark, 2021) 

Annual irrigation maps across 

China (IrriMap_CN) 

China 500 m 2000-2019 Random forest with remote sensing index 

and environmental index 

(Zhang et al., 2022b) 

 

Remotely sensed high 

resolution irrigated area in India 

India 250 m 2000-2015 NDVI series in decision tree method (Ambika et al., 2016) 

2. Materials and methods 

Taking inspiration from the fundamental purpose of irrigation, our aim is to identify periods of drought stress to highlight 

accentuate the disparities in crop conditions between irrigated and rainfed croplands. We began by utilizinginitiated this 

process by utilizing the sixty-five monitoring and reporting units (MRUs) established by CropWatch (Wu et al., 2015; Gommes 

et al., 2016). These MRUs, which account for consider factors such as crop types, agricultural potential, and environmental 165 

conditions, served as the foundation for dividingbasis for further dividing global cropland into 110 irrigation mapping zones 

(IMZs). The first-level 65 agroecological zones provide offer a broad fundamental global overview. To address limitations in 

representing depicting water stress and irrigation within zones, we introduced a more detailed classification,a more detailed 

classification was introduced, creating second-level agroecological zones based on arid indices, water availability, soil types, 

and landforms. Ultimately, we utilized 110 IMZs as the foundational units for determining the specific timing of drought stress, 170 

as illustrated in Figure 1Figure 1. This comprehensive approach enabled allowed us to capture and amplify the distinctions in 

crop conditions between irrigated and rainfed croplands. Irrigated cropland is defined asSo, the Irrigated cropland is 

characterized as agricultural land that benefits from human interventions and is equipped outfitted with irrigation infrastructure, 
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including facilities like canals and central pivot systems  (Salmon et al., 2015; Meier et al., 2018). This definition includes 

areas that receive irrigation at any time during the season, regardless of whether they are irrigated in every season or not. 175 

 

 

 

 

Figure 1 Samples of irrigated, rainfed and central pivot irrigation system (CPIS) from multiple sources and mapping units for 180 
irrigation mapping and CPIS identification. GVG means GPS, Video, GIS system for collecting field data. VHR means very high 

resolution. IMZs means Irrigation mapping zones. 

The general framework for detecting drought stress and evaluating crop conditions in irrigated and rainfed cropland is 

illustrated in Figure 2Figure 2. Inspired by the from purpose of irrigation, what is to mitigate the effect of water stress. Basically, 

we assume that water stress can be regular or irregular. If there are crops during dry season, the irrigation should occur 185 

regularlyregular. Otherwise, irrigation is just complementary to rainfall in extremely dry year, which means irrigation is 

irregular. For regular irrigation, we could detect vegetation signal in the dry season (DM-NDVI) when precipitation 

cannotcouldn’t meet water demand for crops. For irregular irrigation, we compare the NDVI in extremely dry year to with 10-

year average level and calculate the deviation (NDVIdev) to determine whether it is irrigated or not. To determine whether a 

region has regular or irregular irrigation,whether, it is region with regular or irregular irrigation, we used both of these two 190 

indicators and choose the method get higher accuracy.  
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Then, with the support of the DL model, a CPIS identification model focused on circular shapes was trained and applied 

to the entire world to generate global CPIS distribution data. The extent of the CPIS was recognized as the extent of irrigation 

used to update the global extent of irrigation. Finally, we estimated the proportion of irrigation types of CPIS within irrigated 

cropland.in the CPIS within irrigated cropland. 195 

 

Figure 2 Flow chart of GMIE-100 with a typical irrigation type of CPIS. GVG means GPS, Video, GIS system for collecting field 

data. VHR means very high resolution. IMZs means Irrigation mapping zones. NDVIdev : NDVI deviation in extremely dry year 

with 10-year average level. DM-NDVI: NDVI in the dry season. 

2.1 Input data 200 

In this research, the distribution of rainfall on a global scale plays a pivotal role in determining the necessity for crop 

irrigation. The focus of this study was the ten-year period from 2010 to 2019 and the aim was to identify the driest year within 

this timeframe. Two distinct sources of precipitation data were utilized: a) Tropical Rainfall Measuring Missiontropical rainfall 

measuring mission (TRMM) data from the TRMM collection TRMM/3B43V7, which provides monthly precipitation 

estimates, was employed for geographical areas ranging from 50°S to 50°N. This data source offers insights into precipitation 205 
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patterns within this specific region; b) Global Land Data Assimilation Systemglobal land data assimilation system (GLDAS) 

data for precipitation was used for areas outside the 50°S to 50°N range, as GLDAS provides information on precipitation in 

regions beyond the tropical band. 

Additionally, the evapotranspiration product, MOD16A2.006, which was introduced by Mu et al. in 2013, was utilized. 

This product can determine the water surplus during the driest months within each IMZ. The MOD16A2.006 dataset is 210 

characterized by an 8-day composite timeframe and a pixel resolution of 500 metres. It is derived from the Penman–Monteith 

equation and incorporates both daily meteorological reanalysis data and remotely sensed data products from MODIS. This 

comprehensive dataset aids in the assessment of water availability and evapotranspiration dynamics during critical dry periods. 

The 30-metre spatial resolution NDVI data from the Landsat sensors Thematic Mapper (TM), Enhanced Thematic Mapper 

Plus (ETM+), and Thermal Infrared Sensor (OLI-TIRS) onboard Landsat-5, Landsat-7, and Landsat-8, respectively, were used 215 

utilized in Google Earth Engine (GEE) (Gorelick et al., 2017) to differentiate irrigated and nonirrigated areas across various 

IMZs during a specific period. The NDVI data were was masked using the cloud and water mask in the flag file and rescaled 

into the same range between -1 and 1.  

2.2 Sample Data 

Acquiring irrigation samples on a global scale presents an enormous challenge due to that is characterized by significant 220 

labour and cost requirements, primarily attributable to the extensive geographic scope. To globally classify irrigated and 

nonirrigated cropland, a single dataset of adequately representative samples is needed; however, such a dataset is currently 

unavailabledoes not currently exist. The scarcity of irrigation datasets tailored to specific crop types hinders precise 

differentiations between irrigated and nonirrigated croplands. In most countries, except for India, China, and Pakistan, the area 

allocated to irrigated croplands constitutes a relatively minor fraction of the total cultivated area. This paucity of representation 225 

poses challenges in amassing a substantial sample size suitable for classification purposes. Contemporary irrigation maps often 

have coarse spatial resolutions, which curtail their efficacy in generating precise samples for classification endeavours. To 

overcome these limitations and establish a robust sample dataset, an integrative methodology was employed. This approach 

entailed the fusion of data originating from three independent sources, facilitating a more comprehensive and accurate appraisal 

of global irrigated and nonirrigated croplands. 230 

The first source comprises involves field data points collected using the GVG (GPS, Video, GIS) application in China 

(surveyed from 2010 to 2019), Cambodia (in 2019), Ethiopia (from 2018 to 2019), Zambia (from 2016 to 2019), Mozambique 

(from 2016 to 2019), and Zimbabwe (from 2016 to 2019). This application serves as a comprehensive field data collection 

system that integrates GPS for precise positioning, a video for capturing geo-tagged photographs, and a GIS system for 

managing geographic information (Wu et al., 2023a; Wu et al., 2020), which can be downloaded download via 235 

https://gvgserver.cropwatch.com.cn/download. By conducting observations of irrigation infrastructure, including irrigation 

canals, reservoirs, lakes, rivers, and irrigation wells, and through interactions with farmers, we were able to determine the types 

https://gvgserver.cropwatch.com.cn/download
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of irrigation in the fields. Additionally, irrigationAlso, irrigated was applied for certain crop types, such as winter wheat in 

North China Plain, Cotton in Xinjiang and vegetable and tomatoes in most province, et.al. Meanwhile, irrigated crops usually 

appear greener and lush compared with near crops. Even it cannot be distinguished following above characteristics, the injury 240 

of local farmer could give the answer. The collected dataset comprises a total of 78,338 sample points, including 36,809 rainfed 

samples and 41,529 irrigation samples, with the majority of these points located in China, totaling totalling 72,224 points. 

The second data source consists of validation points collected as part of the Global Food Security Analysis Data 30 

(GFSAD30) project, which is made available to the public through the website https://croplands.org/app/data/search. This 

project is a collaborative effort involving the United States Geological Survey (USGS), various universities, research 245 

institutions, and companies such as Google. These sample points were collected or derived as part of the project's objective to 

support global food security analysis at a 30-metre spatial resolution. Some samples were collected via Some of the sample 

points were gathered through field surveys conducted using mobile applications. Others were derived from interpretations ofby 

interpreting remote sensing imagery, such as MODIS and Landsat TM data, crop-specific thematic maps, foundational 

geographic data (e.g., road networks), and other geospatial information (e.g., elevation data layers). The dataset encompasses 250 

a total of 17,076 sample points, comprising 3,000 rainfed points and 14,076 irrigated points. The majority of these points are 

located in Brazil (13,368), Australia (2,192), Thailand (393), and Tunisia (389). 

The third supplementary data source involved the acquisition of samples through visual interpretation of very high-

resolution (VHR) images available in GEE. The following irrigation points were selected based on identifiable irrigation 

infrastructure: 1) central pivot irrigation systems, which are easy to identify due to their shapes; 2) clearly visible irrigation 255 

systems, which are clearly visible on VHR images; 3) rain-deficient cultivated areas, which are areas classified as cropland 

with insufficient rainfall but exhibiting NDVI values indicating vegetation presence and annual growth rings; and 4) high 

vegetation signals during dry seasons, identified by elevated vegetation indices during these periods.which are areas displaying 

elevated vegetation signals during dry seasons. The United Nations Food and Agriculture Organization's Global Map of 

Irrigation Areas (FAO GMIA) (Siebert et al., 2013) and the World Heritage Irrigation Structures (WHIS) list 260 

(https://www.icid.org/icid_his1.php#HIS) were used as reference sources. The FAO GMIA's Irrigation Areas of Interest (AEI) 

and WHIS listings were consulted to identify irrigation areas. Rainfed irrigation points were selected based on FAO GMIA's 

criteria. If a region lacked any irrigation infrastructure and the AEI value from the FAO GMIA was zero, the area was classified 

as a rainfed irrigation sample. 

Figure 1Figure 1 illustrates a total of 115,379 sample points. Eighty percent of this dataset, or 92,303 points (comprising 265 

37,650 rainfed and 54,653 irrigated points), was employed for training or calibrating the threshold. The remaining 20%, or 

23,076 points (comprising 10,892 rainfed cropland points and 12,184 irrigated points), were used for result validation. 
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2.3 Land cover and cropland datasets 

In this research, we delineated irrigated croplands within the extent of cropland. The definition of cropland was the same as 

that of the Joint Experiment of Crop Assessment and Monitoring (JECAM) network for Group on Earth Observations Global 270 

Agricultural Monitoring Initiative (GEOGALM), which defines the land used for seasonal crops (sowed/planted and harvested 

at least once within 12 months), such as cereals, root and tuber crops, for oil crops, and for economically significant crops, 

such as sugar, vegetables, and cotton (Waldner et al., 2016). Additionally, the land occupied by greenhouses was considered 

cropland. To achieve comprehensive global cropland coverage, the synthesized data were obtained from 16 recent national 

and regional datasets spanning 2015-2019, which were supplemented by two global satellite-derived land cover datasets, as 275 

listed in Table 2. In this study, all land cover classes that met the cropland definition were consolidated into a single category 

labelled "cropland." On the other hand, various nonvegetation land cover classes (e.g., urban or water) and vegetated classes 

(e.g., forest or grasslands), including agricultural categories (e.g., permanent crops, cultivated rangeland, and grassland), were 

amalgamated into one class as "noncropland." The cropland mask at a 30-metre resolution could be obtained from the 

International Research Center of Big Data for Sustainable Development Goals via 280 

https://data.casearth.cn/thematic/cbas_2022/158. This data integrated more than 10 cropland dataset including global cropland 

product: FROM-GLC (Yu et al., 2013), GFSAD30 (Thenkabail et al., 2021) as well as National and regional data sets, such 

as ChinaCover (Wu et al., 2017; Wu et al., 2024), Cropland Data Layers (Boryan et al., 2011), Agriculture and Agri-Food 

Canada Annual Crop Inventory (Fisette et al., 2013; Mcnairn et al., 2009), MapBiomass (Do Canto et al., 2020) et.al. More 

information about this cropland mask can be found in supplementary. These data have been utilized for their extensive 285 

validation by local experts, leading to their high precision in mapping cropland (Wu et al., 2023a). The overall accuracy of 

this cropland was 89.4%. Moreover, this mask has also been employed in other studies to map global crop intensity (Zhang et 

al., 2021a).  

2.4 Irrigation mapping method 

2.4.1 Identifying the dry months and dry years 290 

The cumulative yearly rainfall and monthly rainfall (P) for 2010-2019 were calculated from the TRMM dataset for all the 

IMZs via GEE. Simultaneously, monthly potential evapotranspiration (PET) for the same time were was derived from the 

MOD16A2.006 product in GEE. The monthly water surplus (P - PET) was calculated by subtracting established as the 

difference between the monthly P and the monthly PET. 

Within the growing seasons of 2017-2019, we identified the dry months by pinpointing the lowest differences between 295 

the monthly P and PET. Additionally, we determined the driest year from 2010-2019 based on the lowest annual P, and the 

corresponding driest month was identified as the month with the lowest P-PET value during the driest year within the growing 

season. 

https://data.casearth.cn/thematic/cbas_2022/158
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2.4.2 Identifying thresholds of NDVI and NDVI deviation 

Irrigated cropland is characterized as cropland subjected to human interventions and equipped with irrigation 300 

infrastructure, including systems such as canals and CPISs (Wu et al., 2023a). The specific threshold for distinguishing 

between irrigated and nonirrigated cropland varies acrossdiffers among IMZs. The threshold for each IMZ was determined by 

training samples through visual interpretation of very high-resolution images from Google Earth. 

For each IMZ, the maximum NDVI was calculated within the cropland extent during the dry month (NDVImax-DM) by 

using Landsat-8 images in Google Earth Engine to detect vegetation signals. In regions where regular irrigation is necessary, 305 

irrigated cropland can be mapped annually. However, to avoid missing fallow land based on the results of a single year, 

irrigated croplands were identifiedthe irrigated lands represented irrigated croplands identified through the NDVI threshold 

over a three-year period from 2017 to 2019. 

For regions with ample rainfall, drought stress may not be a concern. Hence, satellite data spanning the 2010-2019 period 

were utilized to identify the crop conditions during extreme drought events. The NDVI deviation (𝑁𝐷𝑉𝐼𝑑𝑒𝑣) was calculated 310 

for the driest month of the driest year from 2010-2019 for the cropland pixels according to the following formula: 

𝑁𝐷𝑉𝐼𝑑𝑒𝑣 =
NDVImax−DriestM − 10YNDVI𝐷𝑀

10YNDVI𝐷𝑀

 (1) 

where NDVI max-DriestM is the maximum NDVI value in the driest month over 10 years, and 10YNDVI𝐷𝑀 is the monthly 

average NDVI in the same month. 

For each IMZ, the midpoint value for a cropland pixel was determined from the irrigated and nonirrigated training points 315 

via Fisher’s linear discriminant (Duda et al., 2012): 

Nmidpoint =  
𝑁𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 + 𝑁𝑛𝑜𝑛𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑

2
 (2) 

where 𝑁𝑖𝑟𝑟𝑔𝑎𝑡𝑒𝑑 and 𝑁𝑛𝑜𝑛−𝑖𝑟𝑟𝑔𝑎𝑡𝑒𝑑  represent the mean values of the NDVI or NDVIdev at irrigated and nonirrigated points, 

respectively. 

For each IMZ, the Nmidpoint , which serves as the threshold value, of the NDVI value and NDVIdev , serving as the 320 

threshold value, was calculated was computed using irrigated and rainfed samples. Subsequently, pixels exhibiting an NDVI 

exceeding their specific threshold values for dry months or an NDVIdev below the thresholdless than the threshold during the 

driest month of the driest year were designated irrigated; otherwise, the pixels below the threshold were classified as 

nonirrigated. 

The final threshold value was determined by selecting the NDVI or NDVIdev threshold that yielded the highest overall 325 

accuracy in distinguishing irrigated cropland in the validation samples. Subsequently, the chosen threshold value for either the 

NDVI or NDVIdev of the IMZ was applied to the respective pixels, which were accepted as the final results. If the maximum 

NDVI value in the dry month achieved higher greater accuracy for identifying irrigated cropland, the corresponding region 
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usually needs regular irrigation and thus is labelled as region irrigation regular (RIR). Otherwise, the region needs irrigation 

only occasionally for some years and thus is labelled as region irrigation occasional (RIO). 330 

 

Figure 3. NDVI profile in 2017 (a); NDVI histogram in February 2017 (b) (Pakistan IMZ C48 as an example); monthly NDVI in an 

extremely dry year (2012), ten-year average NDVI, and NDVIdev for typical central pivot irrigated cropland (c, d) and rainfed 

cropland (e, f) in southern Ukraine (IMZ C58). The background images in c and e are Landsat-8 images. c and e are credited to 

@U.S. Geological Survey 335 

Taking IMZ C48, primarily situated in Pakistan, as an example, Figure 4a illustrates the monthly NDVI profile for the 

year 2017 within Pakistan (IMZ C48, South Asia Punjab to Gujarat). It is evident that the discrepancy in NDVI values between 

irrigated and nonirrigated crops remained marginal for the majority of the months in 2017. However, in February 2017, during 

a period of drought stress characterized by a meager meagre precipitation of 4.4 mm or a precipitation-to-evapotranspiration 

ratio of 0.02, the disparity in NDVI values became notably more pronounced and distinguishable. Consequently, the optimal 340 

NDVI threshold of 0.44 was ascertained to be the most suitable for discriminating irrigated from nonirrigated regions, as 

depicted in Figure 4b. 

For the RIO, IMZ C58 was chosen as an example. Figure 3Figure 3d and f illustrate show the monthly NDVI profiles for 

the extreme drought year of 2012, the ten-year average NDVI value, and the NDVI deviation of the extreme drought year from 
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the ten-year average. The comparison revealed that rainfed cropland exhibited more substantial fluctuations in the NDVI than 345 

did irrigated cropland. Consequently, the NDVIdev (NDVI deviation) during severe drought or extremely arid conditions was 

employed to differentiate irrigated cropland from other categories. The NDVIdev midpoint was established as 0.12 following 

equation (2). 

By combining amalgamating these two categories of irrigated cropland, we created a comprehensive global irrigation 

map. For further detailed information, please refer to (Wu et al., 2023a). Originally, the Global Maximum Irrigated Extent 350 

(GMIE) dataset was established at a 30-metre resolution, featuring a binary classification into irrigated and rainfed cropland. 

This resolution was determined by the availability of cropland masks and NDVI data, both of which are at the 30-metre scale. 

However, the extent of irrigation may vary due to crop rotation and fallow cropland, which are clearly observablecan be 

distinctly observed at a 30-metre resolution and impact the extent of irrigated cropland. We calculated the irrigated cropland 

proportion within 100 m ×100 m to reduce these effects. The GMIE-100 dataset ranges from 0 to 1, with a no-data value set 355 

at -99. 

2.5 CPIS Irrigation method identification 

Inspired Motivated by the spatial attention gate, four attention blocks were incorporated into the connections between 

downsampling and upsampling within the U-Net architecture (Figure 4Figure 4). Pivot-Net incorporates includes four spatial 

attention gates to effectively capture information aboutpertaining to the round shape of the CPIS. To enhance the model's 360 

ability to understand shape-related intermediate featuresmodel comprehension of shape-related intermediate representations 

during boundary detection and segmentation tasks, a multitask learning approach was employed to train the model. This 

approach integrates pixelwise segmentation and boundary prediction encompasses pixelwise segmentation and boundary 

prediction as integral components of Pivot-Net's learning objectives. This method was successfully applied to identifyin 

identifying CPIS for the whole US (Tian et al., 2023b). 365 
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Figure 4 Architecture of the shape-attention Pivot-Net (Tian et al., 2023b). 

We generated composite, cloud-free satellite data by utilizing optical images from Sentinel-2 and Landsat-8 for each tile 

within GEE from March to August 2020. All exported data from GEE were stored in Google Drive. The world was divided 

into 345 tiles of 345 6°×6° tiles, 23 of which were annotated manually (Figure 5Figure 5). Eighty percent of all the CPIS labels 370 

or 9,140 patches with 256×256 pixels were used for training the model, and the remaining 20% of the CPIS labels or 2,284 

patches were used for accuracy validation. 
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Figure 5 a) Distribution of irrigation mapping zones and irrigated and rainfed cropland samples. b-f) 5 annotated tiles for CPIS 

labels and images. b-f are the coordinates of the lower left corner point of each tile. g-k are detailed maps of CPIS labels. Their 375 
locations are shown in b-f) as yellow rectangles. The background images in b-k are Landsat-8 images. 

Subsequently, we transferred the trained model, which was stored on a local high-performance computer, to Google Drive. 

By employing the robust computational capabilities of Google Colab Pro+ (https://colab.research.google.com/), which 

seamlessly accesses satellite data in Google Drive, we applied the well-trained Pivot-Net model across all tiles. The satellite 

data were partitioned into 256×256 patches with a 128-pixel overlap (Stride = 128 pixels). The final prediction was determined 380 

by selecting the maximum prediction probability within the overlap region. 
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3. Results and Discussion 

3.1 Spatial pattern of irrigated cropland and GCPIS 

The spatial distribution of GMIE-100 is shown depicted in Figure 6Figure 6. The GMIE-100 revealed that the maximum 

extent of irrigated cropland is 403.17 ± 9.82 million hectares (Mha), which accounts for 23.4% ± 0.6% of the global cropland, 385 

equivalent to 1,724.08 Mha. This figure surpasses the total area equipped for irrigation reported by FAOSTAT for 2000–2008 

(307.60 Mha) (Siebert et al., 2013) and closely aligns with the irrigated area estimated by IWMI–GIAM (406.40 Mha, 

representing 19.5% of global cropland in 2000) (Thenkabail et al., 2009). India (94.85 Mha, representing 50.4% of cropland) 

has the largest area of irrigated cropland in the world, with China (85.16 Mha, 50.0% of cropland) and Pakistan (18.04 Mha, 

80.2% of cropland) ranking 2nd and 4th, respectively. In addition, the United States (26.54 Mha, 15.5% of cropland) ranks 3rd 390 

globally in terms of irrigated cropland. For the remaining countries, less than 10 million hectares of cropland are irrigated. 

The irrigated cropland is notably concentrated in regions characterized by expansive plains and proximity to rivers. These 

flat and river-proximal areas are well suited for irrigation due to easy access to water resources (Jianxi et al., 2015; Bingfang 

Wu et al., 2021). In fact, a substantial portion of the global irrigated cropland, encompassing 224 million hectares, or 55.6% 

of the total irrigated cropland, is situated in such plain regions. Prominent examples include the Ganges Plain, the Indus Plain, 395 

and the North China Plain, all of which host significant expanses of irrigated cropland. Nevertheless, despite their close 

proximity to water sources, there are areas where the proportion of irrigated land remains low. For instance, regions such as 

the Danube estuary in Romania exhibit an irrigation proportion of 3.65%, despite experiencing high annual food production 

variability (Wriedt et al., 2009). Similarly, the Zambezi basin, which encompasses countries such as Zambia (4.1%) and 

Mozambique (4.2%), struggles with food insecurity despite its access to water resources. 400 
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Figure 6 Global dataset of 100 m resolution irrigated cropland proportions. 

Apart from plains, oases within arid zones represent a significant category of regions with extensive irrigated cropland. 

These areas are distinctive due to their limited precipitation but abundant sunlight and heat resources (Chen et al., 2023b). In 

oases, the availability of irrigation is crucial for crop survival. Approximately 31 million hectares of irrigated cropland are 405 

situated within arid zone oases, constituting 7.7% of the total irrigated cropland. Well-known oasis agricultural regions across 

the world include the Nile basin and the delta region in Egypt, the California Valley in the USA, and Xinjiang in China. These 

areas thrive due to their irrigation practices, which enable the productive use of scarce water resources amid arid conditions 

(Cui et al., 2024). 

The distribution of irrigated cropland exhibits distinct patterns when examined from both latitude and longitude 410 

perspectives. Along the latitudelatitudinal axis, we observe exceptionally high irrigation proportions around the 30°N 

latitudelatitudinal line, which encompasses regions along the lower Yangtze River, Ganges River, Indus River, and Nile River. 

These river basins are characterized by dense concentrations of irrigated cropland, owing to the availability of water resources 

from these major river systems (Nagaraj et al., 2021). On the other hand, when assessing irrigation proportions along the 

longitudelongitudinal axis, we observe elevated levels of irrigation between 60°E and 120°E. This longitudinal span 415 

encompasses prominent regions such as the Indus-Ganges Plain and the North China Plain, which are renowned for their high 

levels of irrigated agriculture. 
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For the CPIS worldwide, the spatial pattern is depicted in Figure 7Figure 7. The total area of the CPIS is estimated to be 

115,192.2 ±100.0 km2, comprising 2.9% of the total irrigated area. The area in Chen’s research is 107,232.8 km2 (Chen et al., 425 

2023a) in global arid regions. The CPIS is mainly distributed in the high plain aquifers (HPAs), including north Texas, Kansas 

and Nebraska, southern Brazil, South Africa, and the middle east region. Along the longitude, the CPIS proportion is high 

from 90°W to 120°W, which matches the range of HPA, while the CPIS proportion is relatively apparent between 30°N and 

60°N with latitude. 
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Figure 7 The distribution of irrigation types within the irrigation extent. Figure b to d are the detail map of CPIS. The location of 

each sub figure was labelled labelled in the main global map.  

The distributions of irrigated cropland and CPIS proportions across the six continents are depicted in Figure 8Figure 8a. 

Asia has the most irrigated area, covering 273.79  million hectares (Mha), with an irrigation proportion of 39.3%. North 435 

America follows followed with 16.9%, South America with 15.5%, Europe with 10.6%, Africa with 9.6%, and Oceania with 
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9.2%. For the types of irrigation method, the CPIS proportion was highest in North America, with CPIS accounting for 13.8% 460 

of the total irrigated area, followed by South America at 5.0% and Oceania at 2.9%. 

In Figure 8Figure 8b, we summarize the irrigation and CPIS proportions across different climate zones. We used the 

global aridity index and criteria in the literature to classify climate zones (Zomer et al., 2022). The irrigation proportion 

decreases significantly, from 91.8% in hyperarid zones to 20.7% in semihumid zones. It then exhibits a slight increase to 21.4% 

in humid zones. These variations in irrigation proportions correspond to the distinct water availability and climatic conditions 465 

in these regions. For the irrigation methodsirrigation method, the CPIS proportion is highest in the hyperarid region (5.7%), 

followed by the semiarid region (3.9%). 

 

Figure 8 The irrigation proportion and CPIS proportion of total irrigated area for continents (a) and climate zones (b) 

Figure 9Figure 9a shows the irrigation proportion for each country. Notably, the irrigation proportion increases with 470 

geographical expansion from North Africa through West Asia, South Asia, and East Asia. In Figure 9Figure 9b, the irrigation 

proportions are presented for each IMZ. The spatial distribution aligns with the pattern depicted in Figure 9Figure 9a. Several 

countries in West Asia and North Africa, including Oman, Saudi Arabia, Qatar, and Egypt, boast irrigation proportions of 

100%. Additionally, three countries surpassed an irrigation proportion of 80%, namely, Turkmenistan (89.4%), Uzbekistan 

(81.3%), and Pakistan (80.4%). Among all the AEZs, Gansu-Xinjiang in China has the highest irrigation proportion at 100.0%, 475 

followed by the Central Northern Andes (96.2%), Old World Deserts (90.5%), Southern Himalayas in India (84.0%), Semi-

Arid Southern Cone (82.9%), and China Lower Yangtze (80.8%). 

Figure 9Figure 9c and 8d are the CPIS proportions for each country and the IMZ, respectively. CPISs are mainly 

concentrated in countries with intensified agricultural regions and extreme arid zones, such as the Middle East. The highest 

proportion of CPIS is in Namibia (23.4%), followed by the US (20.33%), Saudi Arabia (16.3%), South Africa (15.7%), Canada 480 

(12.6%), Zambia (12.5%), the Gaza Strip (12.2%) and Brazil (9.6%). For the IMZs, the proportions of CPIS were greatest in 

the Amazon (C24) at 81.2%, north of the High Plains (C12-4) at 42.5%, South Zambia (C09-3) at 41.6%, American 
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northwestern Great Plains (C12-3) at 36.0%, Western Mongolia (C47) at 25.0%, British Columbia to Colorado (C11) at 24.2%, 

American cotton belt to the Mexican coastal plain (C14-1) at 22.8%, and the southwest Mexican and northern Mexican 

highlands (C18) at 21.4%. 485 

 

Figure 9 The irrigation proportion for each country (a) and IMZ (b) and the CPIS proportion of total irrigated cropland for each 

country (c) and IMZ (d) 
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3.2 Reliability of the GMIE-100 490 

 

Figure 10 The thresholds of the NDVI difference and deviation for each IMZ 

For each IMZ, the irrigation mapping method and threshold of the NDVI or NDVIdev are shown in Figure 10Figure 10. 

For the IMZ with a consistent regular dry season, the NDVI difference method was employed to determine the difference in 

amplification conditions between irrigated and rainfed cropland. To avoid the omission of fallow land and crop rotation, the 495 

maximum NDVI in the dry months of 2017-2019 was selected. The NDVI threshold for each IMZ was determined using 

training samples, which ranged from 0.10 in extremely arid regions, such as the Old-World Deserts (IMZ C64), to 0.74 in 

British Columbia to Colorado in North America (IMZ C11), as shown in orange in Figure 10Figure 10. These thresholds are 

integral to the accurate identification of irrigated cropland within each IMZ. 

For regions without a significant dry season, the driest month of an extremely dry year among the 10 years (2010-2019) 500 

was selected to amplify the crop conditions between irrigated and rainfed cropland. The NDVIdev wwas used as a proxy to 

measure crop condition deviations from the 10-year average as calculated as a proxy of crop condition departure from the 10-

year average by using collected training samples. The values ranged from −1.0% (Amazon, C24) to −37.0% (C60-10, 

northwestern Greece and southwestern Albania), as shown in blue in Figure 10Figure 10. 
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 505 

Figure 11 Training accuracy for each irrigation map zone 

Figure 11Figure 11 shows is the training accuracy of each IMZ. The NDVI or NDVIdev threshold was determined using 

the Fisher discrimination method with 92,303 obtained samples. Then, the training accuracy was assessed, which was between 

0.31% in the Amazon (C24) and 100% in Western Asia (C31-2). Despite the accuracy in some humid regions, such as northern 

South and Central America (42%) and the Caribbean (49%), there are 89 IMZs with accuracies greater than 80% among the 510 

105 IMZs with cropland. The specific accuracy for each IMZ is detailed incould refer to Table S1. The confusion matrix 

accuracy metrics of GMIE-100 are shown in Table 2Table 2. To validate the final accuracy of the GMIE-100, the remaining 

20% of the samples totaling or 23,076 points were used. The overall accuracy of GMIE-100 was 83.6%, with user accuracy of 

86.1% and producer accuracy with a user accuracy of 86.1% and an accuracy of 82.2%. 

Table 2 Confusion matrix and accuracy assessment of GMIE-100 515 

  Field points 

  Classes Rainfed Irrigation Total 
User 

accuracy 

P
re

d
ic

te
d

 

Rainfed 9,270 2,170 11,440 81.0% 

Irrigated 1,622 10,014 11,636 86.1% 

Total 10,892 12,184 23,076  

Producer accuracy 85.1% 82.2%   
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Overall Accuracy: 83.6% 

The accuracy of GMIE-100 was evaluated in 10 countries, and the results are presented in Figure 12Figure 12, which 

shows the overall accuracy, user accuracy and producer accuracy for each country. In China, the accuracy was assessed using 

13,963 ground truth data points derived from multiyear GVG data. The overall accuracy was 85.5%, with a predicted accuracy 

of 86.7% and user accuracy of 83.3%. Commission and omission errors were prevalentCommissions and omissions were 

common in humid areas, such as southern China, Cambodia and Myanmar. In other countries, the overall accuracy of the 520 

GMIE-100 datasets was generally basically acceptable. 

 

Figure 12 Accuracy for countries with GVG (GPS, Video, GIS) irrigation validation points 

The accuracy metrics and confusion metrics for the CPIS are listed in Table 3Table 3. The model achieved a high 

validation accuracy of 97.87% ± 0.1%. The F1 score, which is a balance between precision and recall, is 86.87% ± 525 

0.1%. The mean intersection over union (IOU) is 87.25% ± 0.2%. We visualized four patches with dense CPIS in Figure 

13Figure 13. Overall, the CPIS was accurately is well identified in most cases. 

Table 3 Confusion matrix of GCPIS identified with Pivot-Net 

 
CPIS Predict 

Recall 
0 1 

CPIS Label 
0 119938874 735300  

1 2077463 9303403 81.75%±0.2% 

Precision  92.68%±0.1%  

Overall Accuracy 97.87%±0.1% 
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Figure 13 Accuracy assessment for the CPIS identification results. a-d are the composted images; a1-d1 are the prediction results 530 
of Pivot-Net; a2-d2 are the comparisons between our results and the labels. TP represents true positive pixels, while TN represents 

true negative pixels. FP means false positive samples. a3-d3 are the labels. The central point coordinates of a-d are (33.86, 46.37), (-

47.34, 16.41), (-65.74, 32.03), and (25.11, 28.06), respectively. The background images in a-d are Landsat-8 images. a-d are credited 

to @U.S. Geological Survey 
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3.3 Comparison with existing irrigation datasets 535 

3.3.1 Comparison of irrigated cropland 

 

Figure 14 Comparison of existing irrigation production at 1 km (GMIE-100, GRIPC-500, USGS-LGRIPC30) or 10 km resolution 

(IWMI-GIAM and FAO-GMIA)  

To compare GMIE-100 against with four existing irrigation products, we downscaled GMIE-100 and GRIPC-500 and 540 

USGS-LGRIP30 to a 1 km resolution and scaled IWMI-GIAM and FAO-GMIA to a 1 km resolution via the bilinear 

interpolation method. The results are shown in Figure 14Figure 14. The spatial pattern of irrigated cropland in GMIE-100 

generally coincided with that of the other products. Irrigated cropland was most concentrated in the North China Plain and 

Ganges and & Indus River basin worldwide. 

Nevertheless, there were notable discrepanciesdiscernible differences in the detailed distributions of irrigated cropland 545 

patches, such as those in Northeast China, the Eastern European Plain, the Planicie de la Plata of South America and the lower 

Mississippi River basin (Figure 15Figure 15). In the Northeast China Plain, the irrigated cropland appears denser withinis 
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denser in USGS-LGRIP30 and GRIPC-500 than in the other products. According to census data from China, the average 

irrigation proportion for three provinces (Heilongjiang, Jilin, Liaoning Province) is 39.32%. According to the GMIE-100 

results, the irrigation proportion is 27.45%, which is closer to the census data. For the irrigated cropland in the Eastern 550 

European Plain, USGS-LGRIP30 illustrates a broader distribution ofwidely distributed irrigated cropland, which is 

significantly denser than that portrayedwhat is portrayed in GMIE-100 and the other three datasets (Figure 15Figure 15 b1-

b4). Notably, the GRIPC-500 dataset indicates a considerable extent of irrigated cropland in the Planicie de la Plata region 

when compared to GMIE-100 and the other products (Figure 15Figure 15 c1-c4). According to census data from Brazil, the 

reported irrigation proportion is 6%, whereas it is 58% and 72% in USGS-LGRIP30 and GRIPC-500, respectively. 555 

 

Figure 15 Comparison with existing irrigation production for the hot-point region of irrigation. The corresponding location is 

labelled in Figure 14Figure 14 with a blue rectangle. 

To validate the proposed GMIE-100, we compared compare it with national census data. The results are shown in Figure 

16Figure 16. For comparison with existing global irrigation products, we also compared GMIE-100 against with FAO-GIAM, 560 

IWMI-GMIA, USGS-LGRIP30 and GRIPC-500. The R2 between the GMIE-100 and 23 national census datasets was 0.92, 
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with an RMSE of 3.52% and an MAE of 2.74%. For FAO-GIAM and IWMI-GMIA, the R2 values with GMIE-100 were0.72 

and 0.73, respectively. The determination coefficient between USGS-LGRIP30 and GMIE-100 was only 0.45, with an RMSE 

of 35.6%, the lowest value among these three existing irrigation products. When we compared USGS-LGRIP30 with the 

national census, the R2 value was only 0.25. When comparing GMIE-100 with GRIPC-500, the R2 value was 0.51, with an 565 

RMSE of 29.89%. The scatterplot shows that GRIPC-500 was consistently overestimated in comparison withoverestimated 

compared to GMIE-100. 

 

 

 570 

Figure 16 Comparison of national irrigation proportions between GMIE-100 and national census data (a), FAO-GMIA (b), IWMI-

GIAM (c), USGS-LGRIP30 (d) and GRIPC-500 (e). 

3.4 Advantages and limitations of GMIE-100 

We used irrigation performance to map irrigation at regular intervals. Irrigation areas exhibit significanthave a high level 

of variability in irrigation water use (Puy et al., 2021; Puy et al., 2022). Thus, changes in the irrigated area could reflect 575 

variations in agricultural water use, which is important for local water resource management. Due to a lack of updated 

information, global maps of irrigated areas often rely on estimates from approximately 2000 (Nagaraj et al., 2021). For RIR 
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regions, irrigation maps can be updated every three years by collecting the vegetation signals during each dry season.signal in 

each dry season. For RIO regions, irrigation maps can be updated every ten years based on crop status during extremely dry 

events. Although the irrigated cropland extent during the dry season can be identified from 2010 to 2019, our aim was to 580 

provide the most up-to-date information based on satellite data over the 2017–2019 period. 

Periodic cropland fallowing refers to the practice of not cultivating or tilling all croplands within a single year. This 

approach is often employed to restore soil fertility as part of a crop rotation scheme or to prevent excess agricultural production. 

The use of the NDVI or NDVIdev thresholds threshold enables the identification of only those lands that have been actively 

cultivated. Subsequently, these cultivated lands can be further categorized into either irrigated or rainfed land. An area is 585 

designated as irrigated if it has been cultivated at least once during the driest month over a span of three years. This criterion 

aids in discerning areas that are actively managed for crop production from those temporarily left fallow or unplanted. 

The spatial resolution of this dataset was 100 m, which is greater than that of the dominant irrigation data map. High-

resolution irrigated cropland data are essential for quantifying agricultural water use (Wu et al., 2022). The resolution of most 

existing irrigation data is very coarse, varying between 500 m and 10 km (Xie et al., 2019). As shown in Figure 17Figure 17, 590 

GRIPC-500, IWMI-GIAM and FAO-GMIA fail to captureare not able to present detailed information on irrigated cropland. 

Even though the resolution of USGS-LGRIPC-30 was greater than that of GMIE-100, the latter descriptions of heterogeneous 

irrigated cropland distributions in the North China Plain (Figure 17Figure 17 a1 and a3) and the US Plateau (Figure 17Figure 

17 d1 and d3) were better than the former. EThe evapotranspiration, precipitation product with 500-meter resolution was used 

to determine the driest months within each IMZ,. aAnd the time period was used to detect irrigation performance and detect 595 

irrigated cropland. Within In each IMZ, 30-meter NDVI data was used as major input. Then to avoid effect fallow land and 

crop rotation, we calculate the irrigation proportion within 100 meters. 

As for the maximum extent should be understood separately for RIR and RIO. For RIR, the largest area refers to means 

the cropland area irrigated at least once over the past three yearsone time at least for last three years (2017-2019). Because we 

detect irrigation every year for this region. To avoid missing fallow land, we identify the largest extent fover the three-year 600 

periodor last three years (2017-2019). For RIO, it means the cropland area irrigated at least once in the last decadeone time at 

least for last ten years (2010-2019). For RIO, irrigation occurs occasionally. We determine detect weather the cropland is 

irrigated in the driest year. But in the normal year, the irrigation maybe not necessary in this area. ThusSo, this means the 

largest extent area for last ten years (2010-2019). On the other hand, when we compare our result with nation census data, the 

result shows high consistent. Compared with USGS-LGRIP30 and GRIPC-500, our result does not exhibit significant didn’t 605 

show much overestimation.  

When discussing irrigation extents, it is crucial to differentiate between “net irrigated area” and “gross irrigated cropland 

area.” The net irrigated area refers to the actual land area equipped with irrigation facilities and receiving irrigation, while the 

gross irrigated cropland area encompasses all the land that can potentially becould be irrigated during a crop’s growing season, 

regardless of whether it is continuously irrigated throughout the season. For instance, if a plot of land is planted and irrigated 610 
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twice in one growing season, that land should would be counted twice, reflecting in the gross irrigated cropland area. Therefore, 

the gross irrigated area typically exceedsmay exceed the net irrigated area because it accounts for instances of multiple 

plantings and irrigations. This distinction is vital for accurately assessing the use of water resources and planning agricultural 

production. In our research, we estimated estimate maximum irrigation extent under the assumption that irrigation equipment 

is specifically primarily deployed to mitigate the most water-stressed conditions. ThusSo, we estimatedjust estimate the net 615 

irrigation area for selected growing season, whose value should be largest during that decade or three-year perioddecades or 

three years. For RIR, we estimate the net irrigation in the dry season & growing season that experiences the greatest water 

stress each year.for every year. Similarly, for RIO, we evaluate net irrigation area based on a single growing season that has 

undergone an extreme drought event in the last decade. 

Furthermore, with the support of the DL method, we successfully mapped CPIS globallyachieved CPIS mapping 620 

worldwide, which enabled our investigation of specific irrigation methods. We found 11.5 ± 0.1 Mha of CPISs worldwide, 

composing 2.90% ± 0.03% of the total irrigated cropland. To the best of our knowledge, this is the first study to map in which 

the CPIS irrigated method was mapped, despite Chen’s research on CPI mapping in global arid regions (Chen et al., 2023a). 

GMIE comprises both the irrigated cropland extent and specific some irrigation method (CPIS) distributions with relatively 

high resolution, thus providing subbasin water consumption and withdrawal estimations for all sectors (Wu et al., 2022). Due 625 

to the variation in irrigation efficiency among for different types of irrigation methods, CPISs demonstrate an efficiency 

exceeding 80%, while gravity-flowing irrigation methods exhibit a comparatively low efficiency of approximately 60% 

(Waller and Yitayew, 2016). Therefore, irrigation efficiency can be estimated based onin relation to types of irrigation methods 

in the future. This process could enhance the understanding of the irrigation paradox (Grafton et al., 2018), which indicates 

that technological advancement increases irrigation efficiency, but crop water levels do not decrease. However, this study 630 

excludeddidn’t include the other irrigation types, because the identification of CPIS was relied on the circle shape in the 

satellite data and other irrigation types lackdidn’t show this distinguish feature. The identification of other irrigation types in 

the future will beis definitely important for water use estimations (Boutsioukis and Arias‐Moliz, 2022), maybe with the help 

of big-geo data. In the maximum irrigation extent, we include all the irrigation types that could mitigate water stress. 

 635 
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Figure 17 Comparison between GMIE-100 and existing global irrigation products in detail; their specific locations are labelled in 

the corresponding subfigure Figure 15Figure 15 with red rectangles. 

Compared to the surveillance classification method, our method requires fewer samples. However, due to a lack of 

expertise, all spectral characteristics of irrigated farmland were studied using training samples, which increased the required 640 

number of samples. Xie's research used 20,000 samples for irrigation mapping in the United States (Xie et al., 2019). Zhang's 

research used approximately 100,000 samples to identify irrigated croplands in China (Zhang et al., 2022b). By determining 

the NDVI NDV difference and NDVI deviation between irrigated and rainfed cropland, the required amount of training 

samples could be drastically reduced. In this study, a total of 92,303 samples were used to determine the NDVI threshold and 

the NDVI deviation threshold at the global scale. Moreover, training samples in China were mostly collected on site, which is 645 

more precise than visual interpretation. 
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Additionally, there are several limitations to this method. Firstly, the accuracy of our method varies significantlyindeed 

varies across different regions due to the variability in climate, soil types, crop species, and irrigation practices among different 

areas. According to the accuracy reports for each irrigation mapping zone, cropland is present in 105 out of the total 110 

irrigation mapping zones, with 96 of them exhibiting an accuracy greater than 70%. There are only 9 divisions with accuracies 650 

below accuracy less than 70%, most of which are situated in the Southeast Asian island countries, regions such as Thailand, 

Myanmar, Laos, and the tropical rainforest areas of South America, notably the Amazon, characterized bywhich are 

characterized by their humid conditions. We acknowledge that there is significant uncertainty in these aforementioned regions; 

however, the proportion of irrigation in these areas is typically not as substantial compared to arid and semi-arid regions. The 

task of identifying irrigation in these regions using machine learning methods is also challenging, as it is not straightforward 655 

to fully distinguish between irrigated and rainfed cropland without accurate phenological inputs. A potential solution for 

improving accuracy in humid regions could involve the integration of irrigation performance assessments to select optimal 

time windows, coupled with advanced machine learning techniques. Additionally, the representativeness of sample points can 

be further improved, e.g., by identifying CPISs via DL methods (Tian et al., 2023b; Chen et al., 2023a), which are commonly 

used in the US, Brazil and the Middle East. 660 

Second, Although GMIE-100 provides a relatively high-resolution distribution of irrigated cropland, it producesdoes 

produce some mixed pixels with cropland or noncropland and irrigated or rainfed cropland. This is especially true for regions 

with extremely small agricultural fields (Fritz et al., 2015). The cropland masks had the greatest influence on the GMIE-100 

dataset (Salmon et al., 2015; Meier et al., 2018), despite the selection of 16 distinct cropland datasets derived from country- 

and region-level sources as high-priority inputs. These datasets often demonstrate exhibit disparities in estimating the 665 

distribution of cropland, particularly in African countries, due to the complex landscape, frequent cloud cover, and the presence 

of small agricultural fields (Nabil et al., 2020). Consequently, inaccuracies within the cropland datasets transferred were 

transposed onto the GMIE-100 dataset. Nevertheless, importantly, these datasets remain the primary sources of cost-effective 

and up-to-date information covering vast geographical areas. Actually, we just focus on seasonal cropland, because the 

permanent crops are generally used forwere usually for fruit trees, nut trees, coffee, tea, and some types of vines, which is 670 

recognized as shrub or tree in most landcover system such as ESRI (Karra et al., 2021), FROM-GLC (Yu et al., 2013), 

GLAD_Map (Potapov et al., 2022), GLC-FCS30 (Zhang et al., 2021b) and WORDCOER (Zanaga et al., 2022). ConverselyOn 

the contrary, harvest crops, maize, soybean, wheat, and rice are was most important for food security.  ThereforeSo, we choose 

this definition to distinguish irrigated and rainfed cropland, rather than the definition from FAO’s. Different crop definitions 

definition of crop as input data may produce varied irrigated cropland area, which will definitely introduce uncertainty in the 675 

final result. A consistent, high resolution cropland mask with high accuracy is urgently needed to solve this problem.  

Thirdly, it is challenging hard to collect the global field samplesfiled samples globally, we fused three sources of samples. 

From different country, there is varied dominant samples source. For instance, in China, most samples were collectedSuch as 

in China, most of samples was obtained from GVG field survey. While in Brazil, major samples were from USGS samples. 



33 

 

 

Except country with GVG and USGS-samples, the visual interpretation data was dominant sources of samples. This also 680 

ensures ensure the represented manner of irrigated cropland. Overall, the number of samples was very large. Basically, this 

irrigated and rain-fed samples database csuffices forould meet the globally irrigated cropland mapping compared with global 

cropland expansion mapping research (Potapov et al., 2022), which achieved cropland mapping globally with thousands of 

samples. Meanwhile, this fused samples maybe introduce some uncertainty in terms of representation. This effect should be 

acceptable in arid and semi-arid regions because the irrigation performance is relatively easy to identify. However, the 685 

uncertainty may increasemaybe enlarged in wet region due to complexitycomplex manner of irrigated cropland. Also, a parcel 

of land is designated as irrigated if it receives any supplemental artificial water supply to support crop cultivation at least once 

during the growing season. The Global Maximum Irrigated Extent (GMIE) dataset, initially developed at a 30-meter resolution, 

categorizes each pixel as either irrigated or rainfed cropland. Thus, even if a pixel contains less than 100% irrigated cropland, 

it is classified as an irrigated pixel within that 30×30-meter area. As a resultAs the result, there may be a tendency towards 690 

overestimation due to the mixed pixels at the 30-meter resolution, particularly in regions with smaller fields such as Southern 

China, Southeast Asia, and parts of Africa. However, the relatively high resolution of the pixels helps to mitigate this 

uncertainty to a certain extent. 

4. Conclusion 

High-resolution and updated irrigation maps are important for tracking regional water use and food production situations. 695 

Using irrigation performance data collected during the dry season of the growing season and during extreme drought events, 

we produced the GMIE-100 with a 100-meter resolutionat 100 m with the support of GEE. In this study, the entire globe was 

divided into 110 zones based on variations in climate and phenology. In each IMZ, we identified the dry months during the 

growing seasons from 2017-2019, or alternatively, the driest months during the most arid year from 2010 to -2019. To 

distinguish irrigated cropland, we employed 92,303 samples to determine thresholds for the NDVI during the dry months of 700 

2017 to -2019 and the NDVI deviation from the ten-year average for the driest month (NDVIdev). The NDVI or NDVIdev 

threshold that achieved the highest overall accuracy was selected to distinguish irrigated and rainfed cropland. All the 

algorithms were conducted using GEE with the code 

https://code.earthengine.google.com/eaafaab35dde9bbe37f443e80c716479. 

With the support of the DL method, the global CPIS was identified using Pivot-Net. We identified 11.5 million hectares 705 

of CPIS irrigated cropland, accounting for approximately 2.90%±0.03% of the total irrigated cropland. However, in Namibia, 

the US, Saudi Arabia, South Africa, Canada and Zambia, the proportion of CPIS was greater than 10%. To our knowledge, 

this is the first attempt to identify types of irrigation methods globally, although other types of irrigation methods, such as 

gravity flow, are still dominant types of irrigation methods. NeverthelessHowever, our approach facilitatesour method can 

https://code.earthengine.google.com/eaafaab35dde9bbe37f443e80c716479
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facilitate the estimation of irrigation efficiency based on different types of irrigation method proportions to support high-710 

accuracy subbasin-scale water resource management. 

Finally, the GMIE-100 was produced with a 100-meter resolutionat 100 metres. Using 23,076 points to validate the results, 

we found that the overall accuracy of GMIE-100 was 83.6%±0.6%, but it varied among the different IMZs. The GMIE-100 

indicates that the largest extent of irrigated cropland reached 403.17±9.82 million hectares, which accounts for 23.4% ± 0.6% 

of the total global cropland. Spatially, irrigated cropland is concentrated in great plains regions and regions near rivers. A total 715 

of 224 million hectares of irrigated cropland, accounting for 55.6% of the total irrigated cropland, is was in the plains regions. 

The Ganges Plain, the Indus Plain and the North China Plain all have large amounts of irrigated cropland worldwide. The 

GMIE-100 provides more detailed information about irrigated and rainfed cropland and thereby improves its ability to thus 

can better support agricultural water use estimation and regional food situation assessment. 

5. Code and data availability 720 

The data are publicly accessible through the following link: https://doi.org/10.7910/DVN/HKBAQQ (Tian et al., 2023a). 

The GMIE-100 dataset spans values ranging from 0 to 1, with a designated no-data value of -99. Globally, there are 67 tiles 

available, each with a maximum extent of 21°×21°. In cases where these tiles overlap with land, they maintain the standard 

extents; however, adjustments are made to the tile extents as needed to accommodate the terrestrial range. The GCPIS was 

stored in shapefile format in zip files. The irrigation unit zone can be downloaded from http://cloud.cropwatch.com.cn/  725 
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