We are highly appreciated for your constructive comments and suggestions on our manuscript. Those comments and suggestions are valuable and helpful for revising and improving our article, as well as inspiring our research. We have carefully reviewed the comments and have revised the manuscript accordingly. Our responses are given in a point-by-point manner below and **BLUE** fonts. Please find our detailed responses in supplement to all these comments/suggestions and thank you again for everything you have contributed.

RC1

Overall, this will be a useful work to publish. However, there are, currently, numerous highly significant issues that needs to be addressed and re-reviewed before further consideration.

1. Very poor reference to literature

I have marked at number of places where existing Landsat-derived rainfed and irrigated area product @ 30 m (LGRIP30) is completely overlooked. Authors claim other existing products are coarse but fail to mention at number of places LGRIP30 which is a 30 m global irrigated and rainfed cropland product exists.

Apart from that reference to literature pertaining to previous irrigated and rainfed areas is poor. I definitely like to see upfront reporting of this keeping in view highest scientific ethics.

Response:

Thanks for your useful comments we included the Landsat-derived rainfed and irrigated area product at 30 meters (LGRIP30) in the list of existing products. We acknowledge the oversight in our initial submission and have now added a detailed description of LGRIP30 within the text.

We would like to clarify that our product GMIE, was published in March 2023, coinciding with the release of LGRIP-30. This timing may have contributed to the initial lack of a comprehensive description of LGRIP-30 in our introduction. However, we have since rectified this by including a thorough introduction to LGRIP-30, recognizing its importance as a high-resolution irrigated land product. We have also taken the opportunity to compare our GMIE with LGRIP-30, highlighting the similarities and differences in methodology, application, and results. This comparison is aimed at providing a clearer understanding of the contributions our work makes to the field of high-resolution agricultural land classification using remote sensing.

We appreciate the reviewer's guidance in maintaining the highest scientific standards and ethics in our work. We believe that the revisions made will strengthen the manuscript and ensure that it acknowledges and builds upon the existing body of research in a respectful and scholarly manner.

Line 92-98:

Among these data, the Landsat-derived Global Rainfed and Irrigated-area Product (LGRIP30) is a high-resolution irrigated cropland with an overall accuracy of 86.5% using advanced machine learning algorithms, which is released on Feb 2023 and available through NASA's Land Processes Distributed Active Archive Center (LP DAAC)(Teluguntla et al., 2023). The LGRIP30 data indicates a total global net irrigated area (TGNIA) of 0.71 billion hectares among all cropland area of 1.80 billion hectares of croplands, ie the irrigation proportion was about 39.44%, suggesting a notably

high proportion compared with exiting result (Thenkabail et al., 2009; Siebert et al., 2015).

2. Methods

Authors divide the world into 110 zones and use very simplistic NDVI approach to determining where are the irrigated and rainfed croplands. This approach when applied within each zone like those in Indus or Ganges will provide reasonable results in separating irrigation from rainfed. But in numerous other zones where there is minor ground water irrigation or in humid areas will have huge uncertainties.

Why is such a simplified approach adopted for such a complex problem of separating irrigated from rainfed. Please refer to algorithm theoretical basis document (ATBD) of LGRIP30:

https://lpdaac.usgs.gov/products/lgrip30v001/

I understand that such a simplified approach is easy to code in GEE. But, uncertainties of the outputs will be huge.

Response:

Thank you for your valuable comment. We acknowledge that decision tree methods are indeed beneficial for information mining and can handle complex datasets to extract useful insights. Nevertheless, In developing our method, we have retraced the essence of irrigation to identify key time windows that require irrigation. We use these time windows along with vegetation indices to differentiate between irrigated and rainfed croplands. While the final thresholding approach is relatively straightforward to implement in Google Earth Engine (GEE), the selection of appropriate time windows, preparation of multi-year remote sensing data, and accurate zoning processes are crucial.

As you pointed out, the accuracy of our method does indeed vary across different regions. This is due to the variability in climate, soil types, crop species, and irrigation practices among different areas. According to the accuracy reports for each irrigation mapping zone, there is cropland in 105 zones of total 110 irrigation mapping zones, whilw 96 of them have an accuracy greater than 70%. There are just 9 divisions with accuracy less than 70%, most of which are located in the Southeast Asian Island countries, regions like Thailand, Myanmar, Laos, and the tropical rainforest areas of South America (Amazon), which are humid regions.

Furthermore, our method has been published in the journal *Global Environmental Change* (*GEC*), where the article provides a detailed description of our approach and implementation process. The current paper is a description of the dataset generated by that method. Our goal is to provide a reliable dataset for researchers and policymakers to better understand and manage irrigated croplands.

We recognized that there is huge uncertainty in the above-mentioned regions, but the irrigation proportion in this region is usually not that much compared with arid and semi-arid regions. Meanwhile, the identification of irrigation in these regions using the machine leaning methods is also challenging task and not easy to fully distinguish irrigated and rainfed cropland without proper feature inputs.

We understand and agree with your concerns about the uncertainties that may arise for humid regions. Therefore, we have also discussed these potential uncertainties in the paper and suggested possible directions for improvement in future research. We believe that the combination of irrigation performance assessment to choose optimal time windows and powerful machine learning methods could be potential way to handle this problem for humid regions.

Line 563-573:

The accuracy of our method indeed varies across different regions due to the variability in climate, soil types, crop species, and irrigation practices among different areas. According to the accuracy reports for each irrigation mapping zone, cropland is present in 105 out of the total 110 irrigation mapping zones, with 96 of them exhibiting an accuracy greater than 70%. There are only 9 divisions with accuracy less than 70%, most of which are situated in the Southeast Asian island countries, regions such as Thailand, Myanmar, Laos, and the tropical rainforest areas of South America, notably the Amazon, which are characterized by their humid conditions. We acknowledge that there is significant uncertainty in these aforementioned regions; however, the proportion of irrigation in these areas is typically not as substantial compared to arid and semi-arid regions. The task of identifying irrigation in these regions using machine learning methods is also challenging, as it is not straightforward to fully distinguish between irrigated and rainfed cropland without accurate phenological inputs. A potential solution for improving accuracy in humid regions could involve the integration of irrigation performance assessments to select optimal time windows, coupled with advanced machine learning techniques.

4. Accuracy assessments

Each of the 110 zones much have accuracy error matrices.

Response:

Thank you for your comment regarding the accuracy assessments for each of the 110 zones in our study. We understand the importance of providing detailed accuracy error matrices for each zone to ensure the credibility and robustness of our findings.

In response to your request, we have prepared and included detailed accuracy reports for each zone as supplementary material. These reports contain point number used for validation and overall accuracy for each zone, which are useful for understanding the reliability of the data.

We appreciate your comments and look forward to your further feedback on our revised manuscript and provided supplementary materials.

Line 434:

The specific accuracy for each IMZ could refer to Table S1

								-	Threshold			NDVI difference		Point number
Region code	Region name	Cropland Sources Byear	Crop Types	Climate Zone	Driest Year	Dry Months		PIPET	P-PET	NOVI at Dry	NDVI deviation at	(average Irrigated -	Overall	used for
										883500	Extreme events	average rainfed)	annany	validataion
C01_1 C01_2	Equatorial central Africa_zone1 (Cameron, Central African Republic, and South Sudar) Equatorial central Africa_zone2 (North DRC, Equatorial Guines, Uganda, Republic of Co	GESAD30AFC GESAD30AFC	Cassava, rice and banana Cassava, rice and banana	Tropical savanna Tropical monacon & Tropical teinforest	2014 2014	April-July April-July	104.3 90.5	0.90	-11.6		-1.2%		77.50%	18
C01_3	Equatorial central Africa_zone3 (South DRC, Reanda, Bunundi, Gabon)	GESAD30AFC	Cassava, rice and barana	Tropical savanna	2014	April-July	94.6	0.89	-11.2		-1.0%		88.90%	29
C01_4 C02	Equatorial central Africa, zone4 (Angola, Zambia, and Malawi) East African highlands	GFSAD304FC FORM-GLC30	Cassava, rice and barana Cassava, rice and barana	Temperale, dry winter, hot summer Temperale	2013 2015	July-August January - March	23.0	0.78	-4.5	0.49		0.40	92,90%	53
C00_1	Gulf of Guinea zone1 (Ngeria, Benin, Togo, Ghana, Cole d'Aoire, Guinea, and Guinea-B	FORM-GLC30	tice and maize	Tropical savanna	2015	January - March	42.9	0.21	-163.3	0.42		0.34	98.104	31
C00_2 C04	Guil of Guinea zone2 (South Nigeria, Liberia, Sierra Leone, aouth Ghana, aouth Cole d'Ir Rom of Africa	FORM-GLC31 FORM-GLC30	rice and maize Wheat, maize, sorghum and scybean	Tropical manapon arid, sub-arid, warm humid and sub humid	2015 2017	March-May September-November	67.0	0.95	-4.5	0.71	-10.0%	0.17	90 90%	23
C05	Madagascar(main)	FORM-GLC30	Rice, maize, beans and peanuts	sub#spical	2016	September	10.3	0.16	-50.0	0.55		0.25	59.00%	32
C05	SVI Madagancar Nexh Micra Mediamanan	FORM-GLC30 FORM-GLC30	tics and maize Where Dire Barley, Studenty, Maine	aub arid tropical climate Arid & Temprate climate	2016	September	4.9	0.09	-47.1	0.55		0.39	91.00%	20
C08	Sabel	FORM-GLC30	apple , vogetable	Tropical savannah	2017	Oct - December	17.0	0.07	-223.4	0.45		0.40	99.50%	79
C09_1 C09_2	Southern Africa_zone1 (West Angolan coast) Southern Africa_zone2 (southeastern Kenya, East Tanzania, and Mazambique)	GFSAD30AFC GFSAD30AFC	cotion, maize wheat, maize	Arid, steppe, hot Tropical savannah	2017 2015	March-May September-October	26.5 19.2	0.17	-122.8	0.60	-93.0%	0.39	85.20%	9
C09_3	Southern Africa_zone3 (South Zambia)	GESAD30AFC	ahaat, maize	Temperate, dry winter, hot summer	2015	September-October	7.8	0.03	-248.4	0.51		0.39	59.00%	62
C09_4 C09_5	Southern Africa_zone4 (Zmbabwe) Southern Africa_zone5 (Northeast of Namibia, Botswana, and south Zimbabwe :	GFSAD30AFC GFSAD30AFC	ahaat, maloo ahaat, maloo	Temperate, dry winter, warm summer Arid, steppe, hot	2015 2015	September-October August - October	12.0	0.05	-244.9 -256.2	0.53		0.44	93.00%	93 94
C09_6	Southern Africa, zone6 (West Namibia coast)	GESAD30AFC	wheat, maize	Arid, desert, hot	2018	July-December	14.3	0.06	-218.9	0.32		0.25	92.00%	31
C09_7 C09_8	Southern Africa, 20147 (Southeast Namibia, Southeast Bioteastra, and northeast of South Southern Africa, 201488 (South Africa, and southwest Namibia)	GESADDAFC	etes; mize	Arid, desert, hot	2015	July-December May-June	16.0	0.06	-247.8	0.34		0.52	88.00%	72
C09_9	Southern Africa, zone@ (western part of South Africa, Lesotho, and Exwatini)	GFSAD30AFC	wheat, make	Temperale, dry sinter, warm summer	2015	May-December	27.6	0.26	-79.4	0.68		0.42	58.00%	83
C09_10 C10	Southern Africa, zone10 (Middle part of South Africa) 5. Africa Western Cape	GFSAD30AFC FORM-GLC30	aheat, maize aheat, maize	Arid, steppe, cold temperate climate	2015 2017	June-October Nov-Dec.	40.8	0.21	-154.8	0.70		0.41	89.00%	89
C11	British Columbia To Colorado	CDLBAAFC	wheat	Cold, no-dry season, cold summer	2013	May-August	49.5	0.20	-129.4	0.74		0.28	80.00%	139
C12_1 C12_2	America northern great plains_canada America northeastern oreat plains	CDLBAAFC	einter wheat, spring wheat einter wheat, spring wheat	Ooki, no dry season, warm summer Ooki, no dry season, warm summer	2012 2012	July-August Mar-June	28.0	0.95	-144.0		-10.0%		#00.88	83 77
C12_3	America northwestern great plains	CDLBAAFC	winter wheat, spring wheat	Cold, no-dry season, warm summer	2012	May-June	32.0	0.15	-109.0		-10.0%		92.00%	64
C12_4	Shorth of high plain	CDLBAAFC	winter wheat, spring wheat	Cold, no-dry season, warm summer	2012	June-July	29.0	0.12	-204.0	0.52	-12.0%	0.53	97.00%	72
C13 C14 1	America com beit America coton beit-Mexican coastal plain	CDL	Corn, soybean cotion	Cold, no dry season, warm summer Temperails, no dry season, hot summer	2012 2011	June-July July-August	80.8	0.37	-135.2	0.37	-10.0%	0.21	76.00%	144
C14_2 C14_3	America coton beb-lover Masiasippi	CDL	cotton	Temperais, no dry season, hot summer Temperais, no dry season, hot summer	2010	July-August	111.2	0.49	-117.0	0.70	.45.0%	0.45	96.00%	101
C15	America coton beb-high plain Sub-bornel North America	AAFC	cotton winter wheat, spring wheat	Cold, no dry season	2010	Apti-June	76.3	0.42	.72.4		-13.0%		85.00%	66 76
C16	America West Coast	CDLBAAFC	wheat, maize	Temperale, dry summer, warm summer	2013	May-July	28.7	0.90	-200.7	0.64		0.25	78.00%	70
C17 C18	Sierra Madre SVI Mexico and N. Mexico highlands	FORM-GLC30 CDL	Soybean, Maize, Wheat, Sorghum and Rice maize, wheat	Tropical, dry and tempered Arid, desert	2012 2011	March-May June-July	28.0	0.11	-221.5 -242.6	0.52	-20.0%	0.54	73.00%	75
C19	Northern South and Central America	FORM-GLC30	Rice, Maize and Sorghum	Tropical temperate, Arid	2015	February	55.5	0.28	-129.7		-92.0%	0.04	42.00%	46
C20 C21_1	Caribbean Central-Northern Andes	FORM-GLC30 FORM-GLC30	Rice, Maize and Sorghum Soybean, Barley, Wheat, Sorghum and Rice	Tropical warm Arid	2015 2010	March-December	25.3	0.15	-184.2	0.10	-8.0%	0.74	49.00%	64
C21_2	Central-Northern Andes	FORM-GLC30	Scybean, Barley, Wheat, Sorghum and Rice	Polar, tundra & Arid, steppe, cold	2016	August	49.6	0.22	-104.5	0.47		0.40	92.10%	60
C22 C23	Brazil Hardeste Central-Eastern Brazil	Maplionas &FORM-GLC30 Maplionas & DORM-GLC30	Barky, Mulas, Rice, Cotton and Wheat Barky, Mulas, Rice, Cotton and Wheat	Tropic, Semi-arid Tropical temperate	2012	August-October August	12.7	0.07	-178.0	0.42		0.40	89.20% Set TOP	335
C24	Amazon	MapBiomas & FORM-GLC30	Barky, Malas, Rice, Coton and Wheat	Rainforest climate	2015 2015	September	70.9	0.37	-121.3		-1.0%	0.05	31.00%	59
C25	Central-North Argentina SE Brazil-Concescior-Bahia Blanca	FORM-GLC30 & INTA Madiliomat, FORM-GLC30 & INTA	Maize, Barley, Wheat, Sorghum and Rice Sorbean, Maize, Wheat, Sorghum and Rice	Temperaie, dry summer Trapical rainforest	2013 2008	July-September July	9.3	0.05	-194.1	0.57	-11.0%	0.34	94208	75
C27	SW Southern Cone	FORM-GLC30	Barky, Malas, Rice and Wheat	Semi-arid	2016	January-March	34.6	0.17	-164.7	0.44	1404	0.49	96.90%	62
C28 C29	Semi-arid Southern Cone Caucasus	FORM-GLC30 FORM-GLC30	Maize, Barley, Wheat, Sorghum and Rice Wheat, Barley, Corn, Rice, Soybeans	Arid Cold	2009 2017	January-December June & July	24.8	0.23	-81.1 -228.0	0.57	-10.0%	0.27	84.536	13
C20	Central Asia Pamir mountains	FORM-GLC30	Maize	Cold, dry summer	2016	July	40.5	0.17	-195.0		-20.0%		85.00%	82
C21-1 C21-2	Western Aala	FORM-GLC30 FORM-GLC30	naize com(maize)	Arid Semi-arid	2017 2017	July-September	6.1 7.3	0.69	-1.0	0.25		0.44	59.00%	51 58
C32 C32	Western Asia1 China Gansu-Xinjiang	China_Cover China_Cover	Corre marze) Wheat Maize	Semi-and Temperate continental climate		July- September Jan Dec.	25.4	0.09	-122.2	0.12		0.65	100.00%	155
C33	China Hainan China Huang Huaihai	China_Cover China_Cover	Rice Wheat Majos	Tropical monsoon climate Temperate monsoon climate	2017 2015 2014	May March - May	69.5 41.0	0.34	-136.0	0.36	-12.0%	0.23	99.00% 81.00%	75
C35	China Huang Huana China Inner Mongolia	China_Cowr	Wheat Maize	Temperale continental climate	2017	June - August	117.0	0.45	-154.0	0.30	-16.0%	0.23	81.00%	1120
C36 C37	Chira Losss region	China_Cover China_Cover	Milet,Wheat,Maize Wheat,Maize	Temperate monacon climate Subtropical represent climate	2015 2011	July April	49.1	0.25	-150.6		-20.0%		59.00%	1246
C38	China Lower Yangtee North East China	China_Cover	Wheat Maize	Temperate monacon climate	2011	April-June	90.0	0.43	-83.7		-93.0%		72.00%	7000
C29	China Qinghai-Toet	China_Cover	Wheat,Barley	Plateau mountain climate	2015 2011	July	67.3	0.35	-127.6		-15.0%		91.00%	51
C40 C41	Southern China South-West China	China_Cover China_Cover	Early_Ros Rice,WheatMaize	Subtropical monecon climate Subtropical monecon climate	2011	April April	53.8 28.6	0.27	-91.5 -118.6		-12.0% -20.0%		76.00%	330
C42	Talean	China_Cover	Rice,Wheat,Maize	Tropical monacon climate/Subtropical monacon climate	2014	April	56.6	0.37	-97.5		-25.0%		\$9.00%	48
C43 C44-111	East Asia feuthern Mensioner Street 11 (Mension Laure Manunar)	GFSAD30AFC SERVIR-Mekong Land Cover	Rice, Maize Rice, Maize, Wheat	Temperale monecon climate Temperale, dry winter, hot summer/Tropical, savannah	2008	June Noember	83.5	0.45	-101.4	0.52	-30.0%	0.22	100.00%	49
C44-112	Southern Himalauss, 2014112 (Manmar)	SERVIR-Mekong Land Cover	Rice, Maize, Wheat	Temperaia, dry winter, hot aummer	2014	December	2.1	0.03	-120.8		-0.2%	011	77.00%	6
C44-113 C44-12	Southern Himalayas, 20re 113 (India, Mjanmar, Bangladweh)	SERVIR-Melong Land Cover/INGESAD30AFC Land cover data of Bhutan	Ros, Wheat Ros, Maize, Wheat	Temperais, dry winter, hot summer/Tropical, savannah Temperais, dry winter, hotikwarm summer	2014 2016	January December	2.7	0.02	-121.4	0.50	.0.0%	0.26	82.00% 78.00%	9
C44-211	Southern Himalayas, Joned 11 (India)	GESAD30400	Corn. Milet. Rice. Wheat	Temperaia, dry winter, hotikwarm summer	2016	May	53.8	0.21	-201.0	0.51		0.32	97.00%	43
C44-212 C44-221	Southern Himalayas, Jane222 (Negal, India) Southern Himalayas, Jane227 (India)	National landcover database for Nepal&GFSAD30AFC GFSAD30AFC	Corn, Milet, Rice, Wheat Rice, Maize, Wheat, Soubean	Temperale, dry winter, holikwarm summer Anid, stecce, holi Arid, desert, hol	2017 2017	October March	6.9 12.9	0.03	-265.6	0.62		0.04	65.00% 94.00%	36
C44-222	Southern Himaliayas, Jone222 (India)	GESAD30AFC	Rice, Maize, Wheat, Soybean	Tropical, savannah	2017	March	2.4	0.03	-111.0	0.31		0.31	98.00%	14
C44-223 C45	Southern Hinalayas, Jore223 (India) Southern Asia	GESAD304FC FORM-GLC30	Rice, Maize, Wheat, Soybean	Temperale, dry winter, hot summer Tropical, savannah	2017 2017	February JanFeb.	20	0.02	-184.5 -182.2	0.44		0.32	90.00%	9
C45	Southern Japan and Korea	GESAD30AFC	Rice	Temperate manitime monacon climate	2013	May	79.6	0.44	-101.4		-30.0%		100.00%	43
C47	Mongolia region (Western of Mongolia) S. Asia Pumjab to Gujarat	Nongola Land Cover ECENA.GLC20	Wheat, Barley, Potatoes, and vegetables	Arid, steppe, cold / Arid, desert, cold Arid, desert, hot	2017	Jan-Feb	44	0.02	.175.0	0.10		0.74	00.008	
C49-1	si. Ada Pungo to Gepra GE Asia Islanda, ponet (Indonesia, Malaysia)	GFSAD30AFC	Maize, Rice	Tropical rainforest & savannah	2014	July	130.8	0.89	-15.6	0.04	-5.0%	0.34	54.00%	31
C49-2 C49-3	55 Acia islandi: 20142 (Edonesia, Milaysia) 55 Acia islandi: 20143 (Edonesia, Papua New Guinea)	GFSAD30AFC GFSAD30AFC	Maize, Rice Maize, Rice/ meet potatoes, sugar care, copra, coffee, coccas, rubber	Tropical rainforest Tropical rainforest	2015 2015	October November	109.4 190.2	1.21	29.6		-2.9%		58.00%	25
C50-1	lah Alala salahat, Janeti (Haonesa, Papuli New Guinea) Sili Asia mainland, Janeti (Mjanmar, Bangladosh)	SERVIR-Melong Land Cover/IGFSAD30AFC	Rice, Wheat	Tropical, savannah/Arid, steppe, hot	2016	February	43	0.02	-181.2		-10.0%		94.00%	50 54
C50-2 C50-3	55 Asia maintand, soned (Thalland, Mjanmar, Laos) 55 Asia maintand soned (Cambodia, Vernam, Thalland, Laos)	SERVIR-Mekong Land Cover SERVIR-Mekong Land Cover	Maize, Rice, Wheat Rice, Maize	Tropical, savannah/Tropical, monsoon Tropical, savannah/Tropical, monsoon	2015 2015	February January	10.9	0.05	-188.0		-5.0%		48.00%	25
CSI	Eastern Siberia		no crop	Tundra							-1.2%		98.006	15
C52 C53-1	Castern Central Asia (Gastern of Norgala)	Morgola Land Cover	Wheat, Barley, Potatoes, and vegetables	Arid, steppe, cold / Arid, desert, cold	2016 2015	September	16.5	1.07	1.1	0.50	-1.2%	0.41	78.00%	18
C53-2	North Australia, Jonet (Timor-Leste, Indonesia, Papua New Guinea) North Australia, Joned (Northern Australia)	GFSAD30APC Catchment Scale Land Use of Australia	Maize, Rice Wheat, Barley, Corn, Sorghum, Peanuts Osis, Milet, Coton	Tropical swannah&monsoon Tropical Savanna/Arid, steppe, hot	2015	July June	32.3 25.8	0.19	-138.0 -105.8		-5.0%		100.00%	19 38
C54-1	Australia Queencland to Victoria _zonet (Southeast Australia-coset)	Catchment Scale Land Use of Australia	Wheat, Barley, Corn, Sorghum, Rice, Osts, Milet, Cotton	Temperate, no dry season, warm & hot summer	2014	November	40.6	0.18	-187.9		-12.0%		100.00%	12
C54-21 C54-22	Averalia Queensland to Victoria _ zonel? (Southeast Averalia Marin Darling) Averalia Queensland to Victoria _ zonel? (Southeast Averalia Adeixid)	Catchment Scale Land Use of Australia Catchment Scale Land Use of Australia	Wheat, Barley, Onts Wheat, Barley, Corn, Songhum, Rice, Oats, Milet, Cotton	Arid, steppe, cold@hotiArid, desert, hot Temperale, dry summer, warm summer	2015 2015	October February	20.5	0.92	-186.5	0.37	-15.0%	0.42	99.00% 100.00%	32
C55-1	Australia Nutarbor-Daning, ponet (Southwest Australia)	Catchment Scale Land Use of Australia	Wheat, Barley, Osts	Arid, meppe, cold@hot	2014	October	44.5	0.23	-50.3		-15.0%		90.00%	24
C55-2 C56	Australia Nutarbor-Daning, pone2 (Southwest Australia) New Zasland	Catchment Scale Land Use of Australia New Zealand Land Cover Database	Wheat, Barley, Osts Cereal, veostables, and Ituits	Temperate, dry summer, hotilaxerm summer Temperate.no. dry season, warm summer	2015	November October	13.0	2.75	-215.3		-10.0%		92.00%	30
C57	Boreal Eurasia	Cosine2018 & FORM-GLC30	Wheat, Corn, Rice, Barley, Soybeans	Cold & Polar	2011	July & Aug.	26.8	0.22	-76.7		-20.0%		75.00%	13
C58 C59	Ukraine to URAL Mountains Meditemanean Europe and Tarkey	Contre2018 & FORM-GLC30 Contre2018	Wheat, Barley, Corn, Rice, Soybeans, Rice, Coton, Orchards Wheat, Barley, Corn, Rice, Soybeans, Coton, Orchards	Cold Arid & Temperate	2011 2017	August June & July	21.0	0.44	-29.8 -205.5	0.40	-12.0%	0.45	79.00%	22
C60-1	W. Europe_zone1 (Germany, Poland, Switzerland, Czechia, Hungary, Austria,		Wheat, Barley, Corn, Rice, Soybeans, Cotton, Orchards	Doki	2011	May, June & July	50.0	0.22	-123.5		-20.0%	9.49	76.30%	34
060-2	W. Europe_zone2 (Southeastern of Romania, Moldova, and southwestern Ura W. Europe_zone3 (Ebro River, Zaragoza, Spain)	Corine2018 Corine2018	Wheat, Barley, Corn, Rice, Soybeans, Cotton, Orchards Wheat, Barley, Corn, Rice, Soybeans, Cotton, Orchards	Arid Arid	2011 2017	June Vult & enut	92.6 21.2	0.45	-114.2	0.25	-20.0%	0.49	7610%	21
C60-4	W. Europe zone4 (Northeastern of Italy and southwestern coast of France)	Corine2018	Wheat, Barley, Corn, Rice, Soybeans, Cotion, Orchards	Temperate	2017	August	19.8	0.90	-172.2	0.23		0.39	93,20%	35
C60-5 C60-6	W. Europe_cone5 (North Italy) W. Europe_cone5 (Switzerland, North Italy and west Austria)	Conne2018 Conne2018	Wheat, Barley, Corn, Rice, Soybeans, Cotion, Orchards Wheat, Barley, Corn, Rice, Soybeans, Cotion, Orchards	Temperate Dolor	2015 2015	July June & July	35.0 60.5	0.15	-193.0	0.25	-20.0%	0.47	84,706	39
C60-7	W. Europe zone? (Ireland, United Kingdom, France, Belgium, Netherland)	Corine2018	Wheat, Barky, Corn, Rice, Soybeans, Cotton, Orchards	Temperate	2015	May, June & July	28.0	0.08	-166.0		-20.0%	9,47	71.00%	43
C60-8 C60-9	W. Europe_zonell (Northwest of turkey and northeast of Greece) W. Europe_zonell (North Greece and North Macedonia)	Corine2018 Corine2018	Wheat, Barley, Corn, Rice, Soybeans, Cotion, Orchards Wheat, Barley, Corn, Rice, Soybeans, Cotion, Orchards	Temperale Cold & Arid	2017 2011	July August	19.1 27.0	0.08	-216.9 -250.0	_	-20.0% -25.0%		100.00%	50 33
C60-10	W. Europe_zone10 (Northwestern Greece and southwestern of Albania)	Corine2018	Wheat, Barley, Com, Hote, Soydeans, Cotton, Orchards Wheat, Barley, Com, Rice, Soydeans, Cotton, Orchards	Temperale	2011	August	2/.0	0.04	-250.0		-25.0%		100.00%	43
C61 C62	Boneal North America URAL to Attal Mountains	FORM-GLC30 FORM-GLC30	apring wheat	Cold, no-dry season, cold summer Cold, no-dry season, warm summer	2012	April-July	38.5	0.15	-152.4		-23.0%		00.000	
CE3	Australian Desert (Central Australia)	Catchment Scale Land Use of Australia	apring wheat Wheat, Barley, Corn, Sorghum, Coton	Arid, desert, hot	2012	June	22.4	0.15	-152.4	0.30		0.52	74.006	10
C64 C65	Old World Deserts	FORM-GLC30 Conine2018		Hyber-Arid Polar, tundra	2015	June	45.5	0.37	-75.9	0.10		0.72		
C65	per non remove (onland)	Conneatre	v vgronotos	Pose, and a	2015	3376	40.5	0.37	-6-8	0.52		0.40	100004	16

5. cropland mask

Also refer to this important work on global cropland mask:

https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/

Response:

Thank you for drawing our attention to the important work on global cropland mask released by the Land Processes Distributed Active Archive Center (LP DAAC). We appreciate your suggestion to incorporate this valuable resource into our study.

The Global Food Security-support Analysis Data (GFSAD30) offers invaluable highresolution data on cropland extent worldwide, which is essential for informed decision-making in areas such as water sustainability and food security. Actually, we have already integrated GFSAD30 data into our synthesized cropland mask for Southeast Asia. However, due to varying definitions of what constitutes cropland, we have not applied this data in other regions. Our focus has been primarily on seasonal croplands, as permanent crops—such as fruit and nut trees, as well as coffee, tea, and certain vines—are often classified as shrubland or tree cover in most land cover classification systems. Nevertheless, it's important to note that the GFSAD30 includes these continuous plantations within its cropland data. (Phalke, Özdoğan et al. 2020).

We will ensure that the GFSAD30 data is properly cited in our manuscript. Thank you once again for your valuable feedback, which undoubtedly enhances the quality and integrity of our work.

Line 241:

Thenkabail, P.S., Teluguntla, P.G., Xiong, J., Oliphant, A., Congalton, R.G., Ozdogan, M., Gumma,

M.K., Tilton, J.C., Giri, C., Milesi, C., Phalke, A., Massey, R., Yadav, K., Sankey, T., Zhong, Y., Aneece, I., and Foley, D., 2021, Global Cropland-Extent Product at 30-m Resolution (GCEP30) Derived from Landsat Satellite Time-Series Data for the Year 2015 Using Multiple Machine-Learning Algorithms on Google Earth Engine Cloud: U.S. Geological Survey Professional Paper 1868, 63 p., <u>https://doi.org/10.3133/pp1868</u>.

6. Definitions

What is irrigated areas?. Do you consider an area as irrigated if it gets water once in growing season or is the area irrigated if it is irrigated during one season and not the other. Definitions are key to mapping. But, clarity is lacking.

Response:

Thank you for your inquiry about the definition of irrigated areas within our study. Your point about the importance of clear definitions for accurate mapping is well-taken.

Irrigated cropland is characterized as agricultural land that benefits from human interventions and equipped with irrigation infrastructure, including facilities like canals and central pivot systems. In our study, an irrigated area is defined as a land area where water is artificially supplied to the crops at least once during the growing season to supplement natural rainfall. This definition includes areas that receive irrigation at any time during the season, regardless of whether they are irrigated in every season or not.

Therefore, we have revised our manuscript to include a more explicit definition of irrigated areas. This definition will be clearly stated in the methods section to ensure that there is no ambiguity for readers and users of our data. We appreciate your feedback and the opportunity to clarify our methodology. We believe that these revisions will enhance the quality and precision of our research.

Line 133-136:

So, the Irrigated cropland is characterized as agricultural land that benefits from human interventions and is outfitted with irrigation infrastructure, including facilities like canals and central pivot systems(Salmon et al., 2015; Meier et al., 2018). This definition includes areas that receive irrigation at any time during the season, regardless of whether they are irrigated in every season or not.

7. area calculations

Only net irrigated areas are calculated. What about gross irrigated areas? In same piece of land crops are grown one, two, or three times in some areas. How do you distinguish that.

Response:

Thank you for your insightful question regarding the calculation of irrigated areas, specifically the distinction between net and gross irrigated areas and the management of multiple cropping cycles within the same piece of land.

We have concentrated on the net irrigated area, which represents the actual land area equipped and utilized for crop irrigation. This approach is commonly used to assess the land area that requires water resources for irrigation purposes. However, gross irrigated cropland area encompasses all the land that could be irrigated during a crop's growing season, regardless of whether it is continuously irrigated throughout the season. For instance, if a plot of land is planted and irrigated twice in one growing season, that land would be counted twice, reflecting in the gross irrigated cropland area. Therefore, the gross irrigated area may exceed the net irrigated area because it accounts for instances of multiple plantings and irrigations. This distinction is vital for accurately assessing the use of water resources and planning agricultural production.

In our research, we estimate maximum irrigation extent under the assumption that irrigation equipment is primarily deployed to mitigate the most water-stressed conditions (such as the dry season in the RIR and extreme drought events within ten years for the RIO). Regarding multiple cropping cycles, our methodology identifies an area as irrigated if irrigation occurs at least once within a crop season. For the regions need regular irrigation (RIR), we choose only the dry season & growing season that experiences the greatest water stress for every year to estimate the net irrigation in that growing. Similarly, for the region needs irrigation only occasionally for some years (RIO), we evaluate net irrigation area based on a single growing season that has undergone an extreme drought event in the last decade. After all, we didn't consider the multiple cropping with in one-piece land. So, we just estimate the net irrigation area for selected growing season, whose value should be largest during that decades or three years.

We have expanded our discussion in the manuscript to include a more comprehensive analysis of both net and gross irrigated cropland, as well as future perspectives on this topic.

Line 525-536:

When discussing irrigation extents, it is crucial to differentiate between "net irrigated area" and "gross irrigated cropland area." The net irrigated area refers to the actual land area equipped with irrigation facilities and receiving irrigation, while the gross irrigated cropland area encompasses all the land that could be irrigated during a crop's growing season, regardless of whether it is continuously irrigated throughout the season. For instance, if a plot of land is planted and irrigated twice in one growing season, that land would be counted twice, reflecting in the gross irrigated cropland area. Therefore, the gross irrigated area may exceed the net irrigated area because it accounts for instances of multiple plantings and irrigations. This distinction is vital for accurately assessing the use of water resources and planning agricultural production. In our research, we estimate maximum irrigation extent under the assumption that irrigation equipment is primarily deployed to mitigate the most water-stressed conditions. So, we just estimate the net irrigation area for selected growing season, whose value should be largest during that decades or three years. For RIR, we estimate the net irrigation in the dry season & growing season that experiences the greatest water stress for every year. Similarly, for RIO, we evaluate net irrigation area based on a single growing season that has undergone an extreme drought event in the last decade.

8. Uncertainties in irrigated area map and area calculations

So, if the proportion of a pixel irrigated is say 10%., so you then only calculate fraction of the pixel area as irrigated or is it full pixel area. This is unclear.

Response:

Thank you for addressing the uncertainties in our irrigated area map and the calculations therein. We appreciate your emphasis on the necessity for precise definitions to ensure the accuracy of our mapping efforts.

In our methodology, a parcel of land is designated as irrigated if it receives any supplemental artificial water supply to support crop cultivation at least once during the growing season. The Global Maximum Irrigated Extent (GMIE) dataset, initially developed at a 30-meter resolution, categorizes each pixel as either irrigated or rainfed cropland. Thus, if a pixel contains at least 10% irrigated cropland, it is classified as an irrigated pixel within that 30×30 meter area. We recognize that the actual extent of irrigation at 30m resolution can fluctuate due to factors such as crop rotation and the presence of fallow land, which are clearly discernible at the 30-meter resolution and can influence the overall measurement of irrigated cropland. To mitigate these variations and enhance the accuracy of our data, we have calculated the proportion of irrigated cropland within a larger 100 m \times 100 m grid.

As the result, there may be a tendency towards overestimation due to the mixed pixels at the 30-meter resolution, particularly in regions with smaller fields such as Southern China, Southeast Asia, and parts of Africa. However, the relatively high resolution of the pixels helps to mitigate this uncertainty to a certain extent.

We added more discussion regarding to this uncertainty of overestimation.

Line 600-607:

Also, a parcel of land is designated as irrigated if it receives any supplemental artificial water supply to support crop cultivation at least once during the growing season. The Global Maximum Irrigated Extent (GMIE) dataset, initially developed at a 30-meter resolution, categorizes each pixel as either irrigated or rainfed cropland. Thus, even if a pixel contains less than 100% irrigated cropland, it is classified as an irrigated pixel within that 30×30 -meter area. As the result, there may be a tendency towards overestimation due to the mixed pixels at the 30-meter resolution, particularly in regions with smaller fields such as Southern China, Southeast Asia, and parts of Africa. However, the relatively high resolution of the pixels helps to mitigate this uncertainty to a certain extent.

9. Irrigation Method

There are numerous types of irrigation. Centre Pivot irrigation is well mapped. However, rest are all totally unclear. I suggest this aspect is completely removed from the manuscript and the manuscript is limited to irrigated and rainfed.

Response:

Thank you for your insightful comments and suggestions regarding the manuscript. We have given careful consideration to your recommendation to remove the sections discussing various types of irrigation systems that are not well-documented or clear, and to focus the manuscript on irrigated and rainfed systems.

After thorough evaluation, we have decided to retain the section on Centre Pivot irrigation. Our rationale for this decision is based on the fact that Centre Pivot irrigation is one of the most efficient and widely used systems globally. Moreover, we have identified a significant gap in the global mapping of CPIS, although there is some research mapping the CPIS for the dryland (Chen, Zhao et al. 2023). In light of this, we propose to maintain the current scope of the manuscript, which includes the part and description of global Centre Pivot irrigation, and to emphasize the importance of further research and data collection on other types of irrigation systems.

In another hand, we changed the title to "GMIE-100: A global maximum irrigation extent and central pivot irrigation system dataset derived via irrigation performance during drought stress and machine learning methods" to deal with the problem that other irrigation type is not well documented. Also, in the discussion part, we put these points in Limitation and outlook the identification of other irrigation types in the future with the help of big-geo data, which is important for water use estimations.

Line547-550:

However, this study didn't include the lateral other irrigation types, because the identification of irrigation CPIS method was relied on the circle shape in the satellite data and other irrigation types the lateral irrigation didn't show this distinguish feature. The identification of other irrigation types in the future is definitely important for water use estimations (Boutsioukis and Arias-Moliz, 2022), maybe with the help of big-geo data.

- Chen, F., H. Zhao, D. Roberts, T. Van de Voorde, O. Batelaan, T. Fan and W. Xu (2023). "Mapping center pivot irrigation systems in global arid regions using instance segmentation and analyzing their spatial relationship with freshwater resources." Remote Sensing of Environment 297: 113760.
- 2) Phalke, A. R., M. Özdoğan, P. S. Thenkabail, T. Erickson, N. Gorelick, K. Yadav and R. G. Congalton (2020). "Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine." ISPRS Journal of Photogrammetry and Remote Sensing 167: 104-122.