Calving front positions for 19 key glaciers of the Antarctic Peninsula: a sub-seasonal record from 2013 to 2023 based on a deep learning application to Landsat multispectral imagery

Erik Loebel¹, Celia A. Baumhoer², Andreas Dietz², Mirko Scheinert¹, and Martin Horwath¹

¹Technische Universität Dresden, Institut für Planetare Geodäsie, Dresden, Germany
²German Aerospace Center, Earth Observation Center, Weßling, Germany

Correspondence: Erik Loebel (erik.loebel@tu-dresden.de)

Abstract. Calving front positions of marine-terminating glaciers are an essential parameter to understanding dynamic glacier changes and constraining ice modelling. In particular, for the Antarctic Peninsula, where the current ice mass loss is driven by dynamic glacier changes, accurate and comprehensive data products are of major importance. Current calving front data products are limited in coverage and temporal resolution because they rely on manual delineation being time-consuming and unfeasible for the increasing amount of satellite data. To simplify the mapping of calving fronts we apply a deep learning based processing system designed to automatically delineate glacier fronts from multispectral Landsat imagery. The U-Net based framework was initially trained on 869 Greenland glacier front positions and is here extended by 236 front positions of the Antarctic Peninsula. The here presented data product includes 2064 calving front locations of 19 key outlet glaciers from 2013 to 2023 and achieves sub-seasonal temporal resolution. This data set will help to better understand marine-terminating glacier dynamics on an intra-annual scale, study ice-ocean interactions in more detail and constrain glacier models. The data is publicly available at PANGAEA under https://doi.pangaea.de/10.1594/PANGAEA.963725 (Loebel et al., 2023b).

1 Introduction

From 1992 to 2020 the Antarctic Ice Sheet lost 2671 ± 530 Gt of ice, raising the global sea level by 7.4 ± 1.5 mm (Otosaka et al., 2023). Mass loss is dominated by ice-dynamic processes, where warming ocean temperatures and the collapse of ice shelves reduce buttressing and accelerate ice flow (Slater et al., 2020). At the Antarctic Peninsula (AP) in particular, increasing ice loss has been linked with ice shelf disintegration (Rott et al., 1996; Rignot et al., 2004; Cook and Vaughan, 2010; Adusumilli et al., 2018; Rack and Rott, 2004). Forcing from ocean (Cook et al., 2016) and atmosphere (Vaughan and Doake, 1996; Cook et al., 2005; Cape et al., 2015) has led to reduced ice shelf thickness and extent. And this, in turn, has reduced buttressing strength and thereby increased outlet glacier dynamics and ice discharge (Rignot et al., 2004; Rott et al., 2018; Seehaus et al., 2018; Wallis et al., 2023a). Hence, it is of utmost importance to monitor AP glaciers and ice shelves to come up with up-to-date diagnostics and reliable predictions of future change.

One particularly important parameter of each glacier is the calving front position and its temporal variation. Calving front locations are essential for (1) mapping glacier area change (Davies et al., 2012); (2) studying and understanding ice-ocean
Table 1. Overview of publicly available calving front data sets for the AP. The number of mapped fronts in (Cook et al., 2021) is not documented. It is specified that more than 2000 aerial photographs and over 100 satellite images were used to compile the dataset.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Annotation</th>
<th>Sensor type</th>
<th>Glaciers</th>
<th>Mapped fronts</th>
<th>Time span</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD (Cook et al., 2021)</td>
<td>Manually</td>
<td>Optical</td>
<td>244</td>
<td>1843-2008</td>
<td></td>
</tr>
<tr>
<td>GLIMS (GLIMS Consortium, 2005)</td>
<td>Manually</td>
<td>Optical</td>
<td>>300</td>
<td>>900</td>
<td>Since 1986</td>
</tr>
<tr>
<td>Seehaus et al. (2016)</td>
<td>Manually</td>
<td>SAR</td>
<td>1</td>
<td>133</td>
<td>1993-2014</td>
</tr>
<tr>
<td>CryoPortal (ENVEO)</td>
<td>Manually</td>
<td>SAR & Optical</td>
<td>16</td>
<td>124</td>
<td>2013-2017</td>
</tr>
<tr>
<td>Gourmelon et al. (2022)</td>
<td>Manually</td>
<td>SAR</td>
<td>5</td>
<td>457</td>
<td>1996-2020</td>
</tr>
<tr>
<td>Wallis et al. (2023b)</td>
<td>Manually</td>
<td>SAR</td>
<td>8</td>
<td>3430</td>
<td>2015-2021</td>
</tr>
<tr>
<td>This study (Loebel et al., 2023b)</td>
<td>Automatic</td>
<td>Optical</td>
<td>19</td>
<td>2604</td>
<td>2013-2023</td>
</tr>
</tbody>
</table>

interaction as well as underlying processes (Scambos et al., 2011; Seehaus et al., 2015, 2016); and (3) constraining ice-dynamic models to improve simulations of future mass loss and sea level contribution (Alley et al., 2005; Barrand et al., 2013; Cornford et al., 2015). Accurate calving front data with both high temporal resolution and a high spatial coverage is therefore critical. These data products are not widely available for the AP. This is due to limitations of the manual and therefore time-consuming, process of delineating these frontal positions from the increasing amount of satellite imagery available.

Table 1 gives an overview of publicly available calving front data sets for the AP. The Antarctic Digital Database (ADD) and Global Land Ice Measurements from Space (GLIMS) products have circum-Antarctic coverage but very limited temporal resolution. The calving front data by Seehaus et al. (2015), Seehaus et al. (2016), Lippl (2019) and Wallis et al. (2023b) are by-products of regional glaciological studies. Calving fronts reported by Gourmelon et al. (2022) are part of a benchmark dataset developed for evaluating automated extraction from SAR imagery. The availability of calving front positions at the AP is limited, emphasising the necessity for additional and more comprehensive data products. For this, we need to use automatic annotation methods.

In recent years, deep learning has emerged as the tool of choice to accomplish this task (Mohajerani et al., 2019; Baumhoer et al., 2019; Zhang et al., 2021; Heidler et al., 2021; Marochov et al., 2021; Periyasamy et al., 2022; Davari et al., 2022a, b; Heidler et al., 2022; Herrmann et al., 2023). This has already been demonstrated by Baumhoer et al. (2023), who applied neural networks on SAR imagery to generate a high temporal resolution dataset of Antarctic ice shelf frontal positions. On the AP this IceLines data set (Baumhoer et al., 2023) solely encompasses the Larsen Ice Shelf and excludes the outlet glaciers. Similar methods have been used to generate calving front data products for outlet glaciers in Greenland (Cheng et al., 2021; Zhang et al., 2023; Loebel et al., 2023c) and Svalbard (Li et al., 2023).

With this contribution, we provide a dense calving front data product for 19 key glaciers of the AP. We achieve this by applying a processing system, initially developed for Greenland, and incorporating new reference data. The locations of these
glaciers are shown in Figure 1, and the period covered ranges from 2013 to 2023. Glaciers were chosen for their glaciological importance, mass balance and size. Mainly, our data incorporates the glaciers and former ice shelf tributaries of the two sub-regions Larsen-A and -B (east coast of the northern AP) as well as Wordie Bay – the two major hotspots of ice loss at the AP. Our data for Larsen-A and -B area includes the glaciers Crane, Jorum, Punchbowl, Hektoria-Green-Evans, Drygalski, Dinsmore-Bombardier-Edgeworth, Sjogren and Boydell. For Wordie Bay we provide data for the glaciers Hariot, Fleming and Prospect. The Fleming, Drygalski and Hektoria-Green-Evans glaciers alone account for almost 40% of the total mass loss in our processing area from 2013 to 2017 (Seehaus et al., 2023). Driven by ice shelf disintegration, glaciers in these two sub-regions have undergone recent changes in ice dynamics, elevation, and calving front retreat (Seehaus et al., 2018; Friedl et al., 2018; Rott et al., 2018). The remaining glaciers in our data set (Murphy Wilkinson, Widdowson, Hugi, Birley, Trooz, Bleriot, Cayley and Stringfellow), all located on the west coast of the AP, were selected based on the relatively large size of their calving front.
2 Methods

The processing is based on the method previously described in Loebel et al. (2023c). Originally developed for marine-terminating outlet glaciers in Greenland, the method is built with a high degree of automatization. The only modification applied to the framework is the extension of the reference dataset to incorporate glaciers on the AP. Figure 2 gives a comprehensive overview of the processing system. The steps involved are briefly described below, followed by an accuracy assessment of the results.

2.1 Calving front delineation by deep learning

Our processing is based on multispectral Landsat-8 and Landsat-9 Level-1 data. During pre-processing nine available satellite bands, ranging from visible and infrared (VNIR) over short-wave infrared (SWIR) to thermal infrared (TIR), are cropped into 512 px × 512 px tiles with a unified ground sampling distance of 30 m, centered at the corresponding calving front. To counteract image overexposure we apply a cumulative count cut image enhancement, clipping the data between the 0.1 and 98 percentile. Furthermore, all bands are normalized between 0 and 1 by a 8-bit quantization. Ground truth reference was inferred by manual delineation for both training and testing our Artificial Neural Network (ANN). To train the model we apply 869 Greenland calving front positions and additional 236 calving fronts from 11 AP glaciers. Due to the similar morphology of Greenland and AP outlet glaciers, these 869 Greenland calving front positions represent an ideal basis for a well-generalized ANN model. The additional AP 11 glacier are Jorum, Punchbowl, Prospect, Hektoria-Green-Evans, Dryglaski, Birley, Crane, Widdowson, Fleming, Sjogren and Boydell. Expanding the training data set is beneficial to account for the partly different glacier morphology, such as the presence of free-floating glacier tongues. To avoid model overfitting, we make sure that the training data covers different calving and ice mélange conditions, as well as varying illumination, cloud situations.

The applied ANN performs a land cover classification where an ocean class is semantically segmented from a glacier/land class. In particular we use a modified U-Net (Ronneberger et al., 2015) with two additional contracting and expanding blocks.
This modification results in a larger receptive field which is helpful for calving front extraction (Heidler et al., 2021). 20% of the input data is used for internal model validation and model selection. Training data is augmented eight times by rotation and mirroring. For model training, we used the Adam optimization algorithm (Kingma and Ba, 2014) on a binary cross-entropy loss function for 200 epochs and randomized batches of size eight. The model output is a floating point probability mask. Each image pixel is assigned a probability between 0 (water) and 1 (glacier and land). Since the terminus length of the Hektoria-Green-Evans glacier system exceeds the fixed window size, we infer five separate but partially overlapping predictions here. We then merge these five predictions by averaging the values where they overlap. During post-processing the prediction is vectorized using the Geospatial Data Abstraction Library (GDAL/OGR contributors, 2020). The glacier front is then extracted from the predicted coastline using a static mask.

For further analysis and illustration, the calving front location shape-files are processed using the rectilinear box method (Moon and Joughin, 2008). We use this method not only to generate the time series of terminus area change but also to remove failed calving front extractions. For this we separate all entries that have an area difference of more than $1 \, \text{km}^2$ from the previous and following entries. Separated entries are checked manually.

2.2 Accuracy assessment

The accuracy of the data product is estimated by comparing automated calving front extractions to manual delineations. In Loebel et al. (2023c), the processing system has already been validated for accuracy and generalizability, with particular emphasis on Greenland Glaciers. Since we use additional training data for this analysis, we also apply a manually delineated test data set specifically for the AP. This test data set contains 57 calving front locations over all 19 processed glaciers. This includes additional eight glaciers which are not part of the training data set. These additional eight test glaciers ensure the spatial transferability of our method. Whereas the training data contains calving fronts from 2013 to 2021, the test data set contains calving fronts for the separate period from 2022 and 2023. As ANN training is not deterministic, we train five separate models for our assessment. Our main error metric is the distance between the predicted delineation and the manual delineation. This is implemented by averaging the minimum distance every 30 m along the predicted front trajectory.

Figure 3 shows test images for a diverse range of challenging conditions concerning ice mélangé, cloud cover, iceberg presence, low illumination and satellite scene borders. Our processing system reliably delineates calving fronts from images with a wide range of ocean, ice mélangé and illumination conditions. Furthermore, the ANN is able to handle images affected by light cloud cover as well as images with calving fronts near the edge of a satellite scene. This is due to the large training data set, which covers a wide variety of satellite images under these conditions. In addition, the integration of multispectral input data leads to more accurate predictions under these difficult situations (Loebel et al., 2022). The largest mean distance errors occur on glaciers with frequent calving events (e.g. Fleming glacier or Prospect glacier), where it is difficult to distinguish icebergs from the crevassed glacier terminus. Within the entire test data set, 49 out of 57 calving front predictions have an assessed accuracy of better than 100 m.

Table 2 gives an overview of the accuracy assessment over the entire test dataset. In addition to mean and median distance to manual delineation, we also specify the binary classification metrics accuracy, precision, recall and F1-Score. Whilst a high
Figure 3. Accuracy assessment results of sample scenes from the test data set for challenging conditions concerning ice mélange, cloud cover, iceberg presence, low illumination and satellite scene borders. Dashed black lines show manually delineated calving fronts. Yellow lines show the five ANN predictions from five models. Overlap of lines is indicated by higher color intensity. The mean distance error for each scene is given in meters. For location of specific glaciers, see Figure 1. Landsat imagery courtesy of the U.S. Geological Survey.

Table 2. Results of the accuracy assessment presented as mean values with corresponding standard deviations calculated over the five trained models. The mean and median distance to manual delineation as well as accuracy, precision, recall and F1-Score are given. Binary classification metrics relate to the land/glacier class.

<table>
<thead>
<tr>
<th>Distance to manual delineation</th>
<th>Binary classification metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (m)</td>
<td>Median (m)</td>
</tr>
<tr>
<td>59.3 ± 5.9</td>
<td>33.9 ± 1.5</td>
</tr>
</tbody>
</table>

Binary classification performance does not necessarily translate to an accurate prediction of the calving front trajectory, we report these values to facilitate comparability of our results with other studies and datasets. Although completely different test data sets are involved, the 59.3 ± 5.9 m mean distance error calculated here aligns very well with the 61.2 ± 7.5 m reported by Loebel et al. (2023c). Importantly, it is below the accuracy level of manual digitization, which Goliber et al. (2022) reported to be 107 m based on duplicated delineations from different authors.

When assessing the accuracy only for the 23 test scenes of glaciers outside the training dataset we calculate a mean delineation error of 51.9 ± 6.7 m (median: 37.3 ± 5.3 m). Interestingly, this is a lower mean and higher median error compared to an assessment over the 34 scenes from glaciers within the training dataset, where we estimate a mean delineation error of...
65.3 ± 7.7 m (median: 33.8 ± 1.5 m). This is because of training glaciers that have challenging-to-delineate calving conditions (like Prospect Glacier, see Fig. 3). Based on these numbers, we confirm the high degree of ANN model generalization and hence the spatial transferability of our method.

3 Data product and usage notes

The data product presented here has been created to provide glaciologists and glacier modellers with high quality calving front positions of the AP without the need for manual delineation. Figure 1 gives a spatial overview of the 19 processed glaciers. These glaciers have been selected on the basis of their glaciological significance, in particular their mass balance, retreat rate, size and flow velocity. A tabular overview is given in Table 3. In total the data record encompasses 2604 calving front positions. Since the data is derived from optical imagery, the time series have a 14-week gap during polar night from May to mid-August. Outside polar night, on average the data set has one entry every 19.5 days. However, the sampling is irregular and primarily dependent on the satellite orbit and cloud cover. The time frame from 2013 to 2023 covers that of the IceLines dataset (Baumhoer et al., 2023), facilitating a combined analysis of circum-Antarctic calving front change.

Figure 4 gives seven example time series of terminus area change within two regions of the AP. The terminus area change of glaciers in the Larsen-B embayment (Fig. 4 a-d) is spatially correlated and shows a steady advance from 2013 until the end of 2021. At the beginning of 2022, our data show a simultaneous retreat of the four glaciers. Subsequently, the glacier tongues of Hektoria-Green-Evans, Jorum, and Crane glacier have collapsed. The dramatic retreat of these glaciers is shown for the first time in such high temporal resolution. This simultaneous retreat is attributed to the disintegration of landfast sea ice inside the embayment in early 2022 and the resulting loss of buttressing (Ochwat et al., 2023). The glaciers in Wordie Bay (Fig. 4 e-g) show a more varied calving front dynamics. These range from stable calving front positions (Hariot Glacier since mid 2020) over steady terminus advance superimposed by frequent calving events (Fleming Glacier) to large calving events (Prospect...
Figure 4. Example time series of terminus area change generated by our processing system for (a-d) four AP glacier in the Larsen-B embayment and for (e-g) three glaciers at Wordie Bay. Color-coded calving front locations are depicted in the maps in the left. Corresponding time series are shown on the right with entries marked by black dots. The blue dots are additional validation marks that indicate the frontal positions of the manually delimited reference data set. Landsat imagery courtesy of the U.S. Geological Survey.
Glacier in 2018). The reason for this increased glacier dynamics is due to the disintegration of the Wordie Ice Shelf by the late 1990s. This has led to an increased ice flow and calving of the three main tributary glaciers Hariot, Fleming and Prospect (Friedl et al., 2018). Therefore, an operational and temporally high resolution monitoring of these glaciers is particularly important. An overview of the time series of all 19 glaciers of our data product is given in Figure S2 and Figure S3 in the supplement.

The glacier calving front locations are stored in linestring shapefiles, sorted by glacier and date within a file system structure. All shapefiles are georeferenced using the Antarctic Polar Stereographic Projection (EPSG:3031). This allows an easy handling e.g. by means of GIS software or geospatial data libraries. Additionally to the calving front location we also provide the entire coastline prediction. This facilitates the combination of the calving front with an overlapping ice mask. The file naming convention for each entry is: [glacier name]_[YYYYMMDD]_[type].shp. An example entry would be: jorum_20230423_coastline.shp. The attribute table of each file includes the glacier name, calving front date, type, processing date and processing version number.

4 Data and code availability

The AP calving front location data record is publicly available at PANGAEA under https://doi.pangaea.de/10.1594/PANGAEA.963725 (Loebel et al., 2023b). The calving front locations can be downloaded separately for each glacier by clicking on the "View Dataset as HTML" button in the overview. We provide a containerized implementation (platform: Docker) of the presented processing system. The software automatically extracts calving front positions from Landsat-8 or Landsat-9 Level-1 data archives for glaciers used within this study or at user-defined coordinates. This enables the analysis of glaciers that are outside our reference data set or beyond the temporal frame of our study. The software is available at https://github.com/eloebel/glacier-front-extraction (last access 20 December 2023) and https://doi.org/10.5281/zenodo.7755774 (Loebel, 2023a). Our implementation (software: Python 3) of the rectilinear box method is available at https://github.com/eloebel/rectilinear-box-method (last access 20 December 2023) and https://doi.org/10.5281/zenodo.7738605 (Loebel, 2023b). The processed time series of terminus area change, provided in text file and image format are available at http://dx.doi.org/10.25532/OPARA-277 (Loebel et al., 2023a).

5 Conclusions

Accurate as well as temporally and spatially comprehensive calving front data is essential for understanding and modelling glacial evolution. This paper addresses this requirement and presents a new data record for glaciers at the AP. The data is generated by applying multispectral Landsat-8 and Landsat-9 imagery to a deep learning based processing system. We validated the processing system for accuracy, robustness, and generalization capabilities using independent test data. The mean difference between automated and manual extraction 59.3 ± 5.9 m. The resulting data record contains 2604 calving front locations for 19 key outlet glaciers from 2013 to 2023. It achieves sub-seasonal temporal resolution for all of the processed glaciers.
More broadly, this contribution exemplifies that well generalised ANN processing systems can be applied to various regions of interest with only minor additions to reference data. With over 3000 marine-terminating glaciers worldwide (RGI Consortium, 2017), this is particularly relevant for extracting calving fronts. We expect that our presented data record will not only advance glaciological research for the AP, but also contribute to future deep learning based calving front data products and data inter-comparison projects.

Author contributions. EL applied the processing system, did the accuracy assessment and carried out the data product generation. CAB, AD and MS provided direction for the study and supervised the work. EL prepared the paper with contributions from CAB, MH and MS. AD and MS acquired funding for this research.

Competing interests. The author declares that there are no competing interests.

Acknowledgements. We thank the USGS for providing Landsat-8 and Landsat-9 imagery. We are grateful to the TU Dresden computing centre (ZIH) for providing their high-performance and storage infrastructure. We acknowledge the Norwegian Polar Institute’s Quantarctica package. This work was supported by the Helmholtz Association of German Research Centers as part of the Helmholtz Information and Data Science Incubator, project “Artificial Intelligence for Cold Regions” (AI-CORE, grant no. ZT-I-0016), and by the German Federal Ministry of Education and Research (BMBF), project "Greenland Ice Sheet/Ocean Interaction" (GROCE2, grant no. 03F0778G).
References

Gourmelon, N., Seehaus, T., Braun, M. H., Maier, A., and Christlein, V.: CaFFe (CAlling FrOnTs and where to Find thEm: a benchmark dataset and methodology for automatic glacier calving front extraction from sar imagery) [Data set], https://doi.org/10.1594/PANGAEA.940950, 2022.

