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Abstract. Multi-temporal measurements quantifying the changes to the Earth’s surface are critical for understanding many 

natural, anthropogenic, and social processes. Researchers typically use remotely sensed earth observation data to quantify 

and characterize such changes in land use and land cover (LULC). However, such data sources are limited in their 15 

availability prior to the 1980s. While an observational window of 40 to 50 years is sufficient to study most recent LULC 

changes, processes such as urbanization, land development, and the evolution of urban, and coupled nature-human systems 

often operate over longer time periods covering several decades or even centuries. Thus, to quantify and better understand 

such processes, alternative historical-geospatial data sources are required that extend farther back in time. However, such 

data are rare, and processing is labor-intensivelabour-intensive, often involving manual work. To overcome the resulting lack 20 

in quantitative knowledge of urban systems and the built environment prior to the 1980s, we leverage cadastral data with rich 

thematic property attribution, such as building usage and construction year. We scraped, harmonized, and processed over 

12,000,000 building footprints including construction years to create a multi-faceted series of gridded surfaces, describing 

the evolution of human settlements in Spain from 1900 to 2020, at 100 m spatial and 5- years temporal resolution. These 

surfaces include measures of building density, built-up intensity, and built-up land use. We evaluated our data against a 25 

variety of data sources including remotely sensed human settlement data and land cover data, model-based historical land 

use depictions, as well as historical maps and historical aerial imagery, and find high levels of agreement. This new data 

product, the Historical Settlement Data Compilation for Spain (HISDAC-ES), is publicly available 

(https://doi.org/10.6084/m9.figshare.22009643; Uhl et al., 2023a) and represents a rich source for quantitative, long-term 

analyses of the built environment and related processes over large spatial and temporal extents and at fine resolutions. 30 

https://doi.org/10.6084/m9.figshare.22009643
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1 Introduction 

The built environment, encompassing cities, towns, villages, and transportation infrastructure connecting them, represents a 

fundamental component of our civilization. It determines the social, environmental, economic, identity-related, perceptual, 

safety- and health-related aspects of human settlements in urban and rural settings. The built environment interacts with 

human life and society in various ways. For example, the morphological structure and dimension of the built environment 35 

and of cities in general affects the efficiency and sustainability of cities and urban ecosystems, human health, economic 

development and social inequality (Alonso 1964; Ewing and Rong, 2008; Saiz 2010; Seto et al., 2011). 

Measuring the physical, functional, and socio-economic characteristics of the built environment, as well as their evolutionary 

trajectories, helps researchers to understand the development of complex urban systems, and enables informed decision 

making in urban and regional planning. Information about different dimensions of the built environment and the building 40 

stock can be obtained from a variety of data sources, such as remote sensing data or volunteered geographic information 

(VGI). In particular, detailed building data are critical for the development of long-term urban sustainability strategies 

(Hudson, 2018). Data sources for contemporary studies or analyses covering the last 30 to 40 years include gridded data on 

impervious surfaces (e.g., Gong et al., 2020), built-up areas, building functions, building height and volume (Marconcini et 

al., 2020; Haberl et al., 2021; Pesaresi et al., 2021; Esch et al., 2022; Li et al., 2022; Schiavina et al., 2022), urban fabric 45 

classification (Demuzere et al., 2019), mass and material of the building stock (Haberl et al., 2021). Moreover, building-level 

data is available from industry-generated data sources, such as Google (Sirko et al., 2021), Microsoft 1 , from VGI 

(OpenCityModel2, Atwal et al., 2022), as well as increasingly from cadastral data sources, for parts of the U.S. (Uhl and 

Leyk, 2022a) or, recently, for large parts of Europe (EUBUCCO, Milojevic-Dupont et al., 2023). In addition, (commercial) 

property / real estate data can be obtained through large-scale, data harmonization and dissemination efforts (e.g., ZTRAX3, 50 

Regrid4, ParcelAtlas5, EuroGeographics6). Such efforts have catalyzedcatalysed the data-driven study of environmental 

processes in general (Nolte et al., 2021) and opened upopened new avenues to increase our knowledge of the human habitat 

and its interactions from a multi-dimensional, quantitative perspective. 

HoweverHowever,, such multi-source, multi-modal data often suffer from spatial, temporal, or semantic inconsistencies or, 

incompatibilities, which  and impede the direct, quantitative analyses of the built environment from a multi-dimensional 55 

perspective. Moreover, while data on the contemporary state and recent history of the built environment are available for 

 
1 https://github.com/microsoft/GlobalMLBuildingFootprints 
2 https://github.com/opencitymodel/opencitymodel 
3 https://www.zillow.com/research/ztrax/ 
4 https://regrid.com/ 
5 https://www.boundarysolutions.com/BSI/ParcelAtlas/page1.html 
6 https://www.mapsforeurope.org/datasets/cadastral-all 
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many places in the world, analysis-ready geospatial vector or raster data, or systematically georeferenced historical 

information for cities, towns and villages prior to the 1980s is generally scarce (Uhl and Leyk, 2022a).  

We argue that cadastral data sources (i.e., parcel and building data including construction dates and other thematic 

information on building size, material, or function) allow to mitigate these two shortcomings to be mitigated and 60 

complement the traditional data sources (e.g., remote sensing data). Cadastral data are increasingly available as open data 

(von Meyer and Jones, 2013; Haberl et al., 2021; Milojevic-Dupont et al., 2023) and have been used in a variety of 

geographic, demographic, and economic studies (e.g., Tapp 2010; Leyk et al., 2014; Zoraghein et al., 2016; Nolte 2020; 

Sapena et al., 2022; Domingo et al., 2023). In previous work, for example, (Uhl and Leyk,  (2022a)  integrated cadastral 

parcel data and building footprint data to generate multi-temporal building footprint data for some regions within the 65 

conterminous United States (CONUS), which constitutes a valuable data source for accuracy assessments of remote sensing 

derived built-up surface data (Leyk et al., 2018; Uhl et al., 2018; Uhl and Leyk, 2022b; Uhl and Leyk, 2022c), and remote 

sensing based construction year estimation (Uhl and Leyk, 2017; Uhl and Leyk, 2020). We also used cadastral and property 

data sources to create accessible, geohistorical data infrastructure on the built environment in the United States (Leyk and 

Uhl, 2018; Uhl et al., 2021; McShane et al., 2022), and demonstrated the value of such data for quantitative analyses of long-70 

term urbanization and land development (Leyk et al., 2020; Uhl et al., 2021), road network evolution (Burghardt et al., 

2022), long-term urban scaling analyses (Burghardt et al., 2023), long-term settlement trends in the context of natural 

hazards (Braswell et al., 2022; Iglesias et al., 2021), and for assessments of historical neighborhoodneighbourhood changes 

(Connor et al., 2020). 

Specifically, in our past work, we employed the Zillow Transaction and Assessment Dataset (ZTRAX) was employed, an 75 

industry-generated property dataset on covering over 150,000,000 properties in the US, resulting from a large cadastral data 

harmonization effort, to generate the Historical Settlement Data Compilation for the US (HISDAC-US). HISDAC-US 

consists of gridded datasets that measure built-up intensity and settlement age (Leyk and Uhl, 2018), as well as building 

density from 1810 to 2015 (Uhl et al., 2021), and building function (McShane et al., 2022), at 250m spatial resolution from 

1810 to 2015, and from 1940 to 2015, respectively at 250m spatial resolution. These datasets have widely been used by 80 

researchers for various scientific studies (e.g., Millhouser 2019; Balch et al., 2020; Mietkiewicz et al., 2020; McDonald et 

al., 2021; Ferrara et al., 2021; Boeing 2021; Li et al., 2021; Dornbierer et al., 2021; Millard-Ball 2022; Salazar-Miranda 

2022; Wan et al., 2022).  

A lack of comparable data outside of the US has impeded similar efforts for other regions of the world. However, the 

INSPIRE directive (“Infrastructure for Spatial Information in Europe”) has paved the way for the availability of open 85 

cadastral and building data for the member countries of the European Union (EU). INSPIRE is the legal framework to 

implement a European Spatial Data Infrastructure (SDI; Bernard et al., 2005; Minghini et al., 2021), enabling harmonized 

and searchable data resources across the European UnionEU. One of the core components of INSPIRE are standardized 
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metadata specifications (Cetl et al., 2019). Moreover, INSPIRE provides a taxonomy of geospatial data into 34 data themes, 

encompassing cadastral parcels, buildings, land cover, as well as population, environmental, and infrastructure-related topics 90 

(Minghini et al., 2021). One of the data themes defined in the INSPIRE data scheme is the building theme, representing a set 

of data models for spatial vector data on the geometric and thematic attributes of buildings, with a rich set of thematic 

attributes describing the physical, functional, and temporal age-related characteristics of buildings. The INSPIRE building 

model can be implemented at different geometric and thematic levels of detail, specified in the “core 2d”, “extended 2d”, 

“core 3d”, and “extended 3d” profiles, accounting for different levels of data availability across EU member countries 95 

(Gröger and Plümer 2014).  

Many member countries of the European UnionEU have made such data publicly accessible (as regulated for instance in the 

EU PSI directive;  (European Union 2019), typically derived from cadastral data records, at varying levels of geometric 

detail and attribute completeness. We roughly compared the building footprint data available for some European countries, 

in a non-systematic manner (including France, Spain, the Netherlands, and Germany) and found that data from Spain has 100 

high levels of data coverage and attribute completeness (for an in-depth study on building data availability across Europe, 

see Milojevic-Dupont et al., 2023). However, these building data are maintained by different institutions within Spain, i.e., 

the chartered communities (“diputaciones forales”) of Navarra and the provinces of the Basque country, as well as the 

national cadastral agency (“Dirección General del Catastro”) for the remaining autonomous communities7, and are available 

as large, distributed datasets in slightly different data models and data formats, impeding direct and wide usage of these data 105 

for country-level analyses. 

Spain is one of the two major countries that make up the Iberian Peninsula. It has an area of 506,000 km2. In addition to the 

peninsular territory, it has two archipelagos, the Canary Islands in the Atlantic Ocean and the Balearic Islands in the 

Mediterranean Sea, and two exclaves in North Africa, the autonomous cities of Ceuta and Melilla. It is a decentralized state 

with autonomous communities, seventeen in total, and the aforementioned autonomous cities. The autonomous communities 110 

have a high degree of self-government, and several of them are classified as "historic" due to their differential identity 

associated with their own language. This is the case with Catalonia, Galicia, Valencia, the Balearic Islands, the Basque 

Country, and Navarre. The latter two, located in the Northern coast of the Iberian Peninsula, also have their own economic 

agreement and a different fiscal and tax collection system from the rest of the territories. This is the reason why their 

cadastral data differs from the rest of the country. The administrative organization has four levels: the national level, the 115 

autonomous communities (with powers in territorial planning, education, healthcare, primary sector, industry, commerce, 

and tourism), the provinces (50 in total with limited competencies, mainly coordination and assistance to small 

municipalities), and theover 8,100 municipalities (8,125), which have powers in urban planning and local services. Spain has 

had two distinct settlement systems, increasingly diluted, associated with its historical and climatic evolution. In the 

 
7 Herein, we refer to the autonomous communities as “regions”. 
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northwest and the Cantabrian area (Galicia, Asturias, Cantabria, Basque Country, northern Navarre, and part of Catalonia), 120 

there has been a traditional dispersal of the rural population in isolated houses and/or small settlements associated with an  

Atlantic climate, with intensive agriculture and livestock favoured by the presence of abundant water. In contrast, the rest of 

the territory, with a Mediterranean climate, has experienced concentrated settlements associated with cereal crops, vineyards, 

and olive groves, as well as extensive livestock farming. 

To increase the accessibility of cadastral such data, we obtained and harmonized INSPIRE-conforming building data from 125 

the different cadastral systems in Spain to create an accessible and consistent geospatial data resource enabling the analysis 

of the built environment in Spain from a physical, functional, and temporal perspective. More specifically, we generated a 

set of fine-grained gridded surfaces describing physical, functional, and temporal dimensions of the built environment in 

Spain. These surfaces encompass, for example, the building area, the number of housing units, predominant land use type, 

and building age statistics at a fine spatial resolution of 100m × 100 m. Moreover, we used building age information 130 

available in these INSPIRE-conforming building databases to estimate and map historical building densities and built-up 

land from 1900 to 2020. 

These gridded surfaces are intended to enable researchers from various disciplines to carry out fine-scale, multi-dimensional 

analyses of the built environment in Spain, consistently enumerated in a common spatial grid, and to facilitate long-term 

studies of the evolution of the built environment within an observational window of up to 120 years. We call this dataset the  135 

Historical Settlement Data Compilation for Spain (HISDAC-ES) and make all data  publicly available 

(https://doi.org/10.6084/m9.figshare.22009643; Uhl et al., 2023a). This data descriptor presents our data curation effort 

(Section 2), highlights the resulting gridded surfaces (Section 3), and includes a thorough evaluation of the created data, 

encompassing several comparative analyses against a variety of independent data sources on land use and built-up land 

across both, space and time (Section 4), technical notes on the published data and code (Sections 5 and 6, respectively), and 140 

concludes with some final remarks and an outlook (Section 57). 

2 Data and methods 

INSPIRE-conformingCadastral building footprint data for Spain is hosted by national, regional, or provincial authorities. 

The data processing workflow consisted of the following steps: 1) We acquired around 12,000,000 building footprints plus 

attributes as polygonal, geospatial vector data in Geographic Markup Language (GML) format, from official web resources 145 

using automated and manual downloads (Section 2.1.1). 2) We harmonized the data (Section 2.1.2), and 3) We aggregated 

the data into gridded surfaces, and computed zonal statistics at the municipality level (Section 2.1.3). Furthermore, we 

evaluated the resulting gridded surfaces through comprehensive comparisons with a wide variety of independent spatial 

datasets (Sections 2.2 and 2.34). 

https://doi.org/10.6084/m9.figshare.22009643
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2.1 INSPIRE building data processing 150 

2.1.1 Data collection 

For most parts of Spain, INSPIRE-conformingcadastral building data is available through an ATOM interface. The ATOM 

feed format is an XML-based language that allows the automated, web-based content retrieval by providing a machine-

readable web interface (IBM 2023). The ATOM XML files are organized in a hierarchical manner (see Table 1 for 

examples) and allow accessing the building data to be accessed in Geographic Markup Language (GML) format, at the 155 

municipality level. We created a Python script to automatically download these GML files 

(https://github.com/johannesuhl/hisdac-es). In some cases (e.g., Basque country, Navarra region, which have their own 

cadastral systems) we manually downloaded the data available as a Web Feature Service (WFS) (Table 1). All downloaded 

data was were projected in UTM Zone 30N (EPSG:25830). 

2.1.2 Data preprocessing 160 

After downloading and gathering the building data for 8,131 over 8,100 municipalities, covering all regions of Spain, we 

first  calculated and attached the building footprint area (obtained after reprojecting to EPSG:3035) and converted the 

polygonal building footprint data to centroids, retaining all relevant attributes, to reduce the computational effort for the 

subsequent data processing. Despite the common INSPIRE framework, attribute names and building function classes 

differed slightly between the different data sources. Thus, we harmonized the data by renaming columns, and by applying a 165 

common building function classification scheme, including the six building function classes “residential”, “commercial”, 

“industrial”, “agricultural”, “public services”, and “office”. “Public services” is probably the broadest of these categories, 

including governmental buildings, but also health-related buildings and cultural institutions (e.g., churches or museums). 

Specifically, building function ontologies differed slightly for the data from the region of Navarra, the province of Alava, 

and were consistent across the other regions / provinces. For example, commercial buildings in Navarra are called “trade” 170 

instead of “commercial". The applied mapping scheme can be accessed on the HISDAC-ES GitHub repository8.    

We decided to provideThe gridded surfaces of HISDAC-ES are provided in three different spatial reference systems: (a) 

ETRS89 UTM Zone 30N (EPSG:25830) for the Spanish mainland, Balearic Islands, as well as the exclaves Ceuta and 

Melilla located in Northern Africa; (b) REGCAN-95 (EPSG:4083) for the Canary Islands; and (c) for all Spanish territory in 

the reference grid of the European Environmental Agency (EEA), which is based on the ETRS89 Lambert Azimuthal Equal 175 

Area projection (LAEA; EPSG:3035) and is commonly used for pan-European statistical mapping (e.g., Corine Land Cover 

data), for all Spanish territory. This way, users can refer to the data in UTM / REGCAN for mapping purposes (North-

oriented, angle-preserving); while the datasets in area-preserving LAEA projection can be used for statistical modelling and 

integration with other datasets (e.g., gridded statistical data from Eurostat9 or gridded Spanish census data (INE grid10). 

 
8 https://github.com/johannesuhl/hisdac-es/blob/main/landuse_mapping.csv 
9 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/grids Formatted: Space After:  0 pt

Formatted: Font: 9 pt

https://github.com/johannesuhl/hisdac-es
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Thus, we reprojected the building centroids into these reference systems, yielding two sets of harmonized building centroid 180 

data: (a) in UTM / REGCAN and (b) in LAEA projection. 

After an initial examination of the attribute coverage and completeness, we decided to focus on six well-covered attributes, 

measuring different aspects of the built environment, including the construction year, building function, number of 

dwellings, number of building units, building indoor area, and building footprint area (Fig. 1). For clarity, the number of 

dwellings describes the number of housing units in residential buildings, whereas the number of building units counts also 185 

includes the number of units within non-residential buildings (e.g., number of commercial businesses within a building 

complex, etc.). Furthermore, the building indoor area represents the attribute “official area” and measures the gross indoor 

area (across all stories) within a building. 

2.1.3 Data aggregation 

Based on the preprocessed, harmonized building data, and the six selected thematic attributes, we created a range of different 190 

aggregated representations of the data. These aggregations include (a) spatial aggregation into grid cells within regular 

spatial grids of 100m × 100m, (b) aggregation to the municipality level by calculating zonal statistics per municipality 

polygon, and (c) temporal aggregation by stratification into different temporal classes. The combination of spatial 

aggregation and temporal stratification applied to the different thematic attributes yields a range of different sets of gridded 

surfaces. For example, we calculated the sum and the mean of the building units (BUNITS) per and dwellings (DWEL) over 195 

all buildings within a given grid cell, as well as both the sum and mean building indoor area (BIA) and building footprint 

area (BUFA), respectively, based on the building centroids located within a grid cell. The resulting gridded surfaces 

represent physical features of the built environment. Similarly, we calculated the minimum, maximum, mean, median, 

mode, and the variety of construction years (COY) per grid cell, which measures settlement age (heterogeneity), and 

quantifies construction / remodelingremodelling activity within each grid cell. Thus, COY statistics describe the age-related 200 

features of the built environment.  

We stratified the building records by their construction year into temporal classes (epochs) based on 5-year intervals (e.g., 

built-up before 1900. before 1905, etc.) and calculated the number (or density) of buildings (BUDENS), and the total 

building footprint area (BUFA) per grid cell, in each of these epochs from 1900 to 2020. We further binarized these grid 

cells to measure developed area (DEVA) (i.e., grid cells containing at least one building) and undeveloped areas in each 205 

epoch. These gridded surfaces measure the physical evolution of the built environment in Spain. Similarly, we thematically 

disaggregated the building count surfaces per epoch based on the building function attribute of the buildings in each grid cell 

and epoch, yielding time series of function-specific building density surfaceslayers, for six types of building functions (i.e., 

residential, commercial, industrial, agricultural, public services, and offices) as a proxy measure for built-up land use 

evolution from 1900 to 2020. Table 2 provides an overview of the gridded surfaces and spatial variables generated by these 210 

 
10 https://www.ine.es/censos2011_datos/cen11_datos_resultados_rejillas.htm  
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data processing steps. These surfaces quantify for example the building density (i.e., number of buildings per grid cell, 

BUDENS), the built-up surface density (i.e., building footprint area per grid cell, BUFA), or the built-up intensity (i.e., the 

total building indoor floor area per grid cell, BIA). 

As mentioned before, all gridded surfaces are available in UTM Zone 30N for the Iberic peninsula, in REGCAN-95 for the 

Canaries, as well as in Lambert Azimuthal Equal Area (LAEA) projection for the whole extent. For selected variables, we 215 

also provide a time series of zonal statistics, aggregated to the municipality boundaries11 (see Section 3.5). We created these 

zonal statistics based on (a) spatially joining the municipality identifier and area to each building centroid of our harmonized 

building dataset (point-in-polygon query), and (b) deriving statistics (sums, densities) for each municipality. All data 

processing, as well as the evaluation experiments and data visualizations were implemented in Python 3.8, using libraries 

such as Numpy, Scipy, GDAL, Geopandas, Pandas, Matplotlib, PIL, and ESRI ArcPy. The core component of our grid cell 220 

aggregation procedure is the “binned statistic 2d” function in Scipy12. The overall processing workflow from the INSPIRE-

conforming building data to the spatial layers of the HISDAC-ES is shown in Fig. 2. 

2.2 Evaluation data and agreement assessments 

As historical spatial data is generally scarce, the evaluation of the produced historical data is difficult. In order to evaluate 

the quality of the produced spatial layers in the HISDAC-ES as thoroughly as possible, we employed a range of independent 225 

datasets that exhibit coherence to the spatio-temporal processes measured by HISDAC-ES and carried out different 

evaluations and cross-comparisons. Specifically, we used three types of spatial data for these experiments: (a) recent, remote 

sensing derived datasets (i.e., the Global Human Settlement Layer, Corine Land Cover), (b) spatial-historical land use 

models (i.e., History Database of the Global Environment), and (c) historical cartographic data (i.e., historical maps and 

urban atlases) and orthoimagery. For most of these experiments, we implemented the following strategy: (1) When 230 

comparing HISDAC-ES to other gridded datasets, we downsampled the dataset of higher resolution to the dataset of lower 

resolution. This way, additional uncertainty introduced by resampling is kept to a minimum. (2) We conducted agreement 

experiments at the grid cell level, i.e., based on cell-by-cell map comparison or correlation analysis. (3) From these cell-by-

cell level comparisons, calculated agreement metrics within local or regional strata, defined by administrative boundaries or 

other classificiations, granular enough that we could assess regional variations of agreement, and large enough to ensure 235 

statistical robustness within each local stratum.  

2.2.1 Global Human Settlement Layer 

To evaluate the plausibility and reliability of the developed area (DEVA) layers from 1975 to 2015, we used built-up areas 

from the Global Human Settlement Layer (GHS-BUILT R2018, Florczyk et al., 2019) for comparison. The GHS-BUILT 

 
11 https://doi.org/10.7419/162.09.2020, Dataset “Límites municipales, provinciales y autonómicos“ (August 2023) 
12 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic_2d.html 

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

https://doi.org/10.7419/162.09.2020


9 

 

surfaces are derived from multispectral remote sensing data (Landsat sensors, Sentinel-2) and map built-up areas globally 240 

from 1975 to 2014, at a spatial resolution of 30m (Fig. 3a,b). They are accompanied by a rural-urban classification 

(settlement model GHS-SMOD, Fig. 3c,d). GHS-SMOD is available at a resolution of 1km and classifies each location on 

Earth into one of seven classes of urbanness, ranging from sparse rural settlements to high-density urban centerscentres 

(Florczyk et al., 2019). While more recent versions of the GHS-BUILT are available at the time of writing, we decided to 

use the GHS-BUILT R2018A due to its fine spatial resolution, and because a lot of work has been done and published to 245 

quantify the accuracy of the GHS-BUILT R2018A across the rural-urban continuum, and over time (e.g., Liu et al., 2020; 

Uhl and Leyk 2022b,c), whereas little information is available on the accuracy of newer, multitemporal GHS-BUILT 

datasets. For example, it has been reported that the GHS-BUILT R2018A yields an average Intersection-over-Union of 

around 0.35 in 1975, in rural areas, to around 0.65 in 2018, in urban areas, respectively, for selected study areas in the U.S. 

(Uhl and Leyk 2022b), and correlation coefficients of built-up surface fraction > 0.7, compared to reference data for selected 250 

cities in China (Liu et al., 2020). 

We resampled the GHS-BUILT to the HISDAC-ES grid (i.e., upsampling from 30m to 100m spatial resolution) for the 

epochs 1975, 1990, 2000, and 2015 and thus, obtained binary grid cells (i.e., built-up vs. not built-up) for each epoch. To 

reduce spatial misalignment effects, we first upsampled the 30m GHS-BUILT data to a 10m x 10m grid, nesting within the 

100m × 100m HISDAC-ES grid, and then downsampled to the target grid, assigning 1 (built-up) if at least one 10m grid cell 255 

within the target cell was labeledlabelled as built-up. We then quantified the agreement between the resampled, binary GHS-

BUILT and the DEVA layers using Precision, Recall, and F1 score for each epoch and for each municipality. Specifically, 

we overlaid the binary raster surfaces of DEVA and GHSL and calculated the number of true positive (TP), false positive 

(FP), and false negative (FN) grid cells within each municipality polygon. These zonal statistics of binary agreement 

categories were then used to calculate municipality-level Precision, Recall, and F1 score. Moreover, we expected the 260 

agreement to vary across the rural-urban gradient (cf. Leyk et al., 2018; Uhl and Leyk, 2022a,b). Hence, we calculated these 

agreement metrics for each year, within each of the seven GHS-SMOD rural-urban classes, based on the zonal counts of TP, 

FP, and FN per SMOD class. Moreover, we generated a continuous rural-urban index for each municipality based on the 

GHS-SMOD layers, constructed from the weighted histogram of SMOD class instances within each municipality polygon 

(see Uhl et al., 2022 for details), and assessed the municipality-level agreement trends across this rural-urban continuum 265 

(Section 4.1). Here, it is worth noting that we qualitatively compared the built-up areas from GHS-BUILT to the World 

Settlement Footprint (WSF) Evolution dataset (Marconcini et al., 2020), and found high levels of agreement between these 

two datasets (Fig. A1). Thus, herein, we compared HISDAC-ES to GHS-BUILT only. 

2.2.2 Corine land cover data 

While the comparison of DEVA and GHS-BUILT evaluated the presence / absence of buildings in the HISDAC-ES, we also 270 

used Corine Land Cover data (CLC, Büttner 2014) and compared it to the land use / building function layers in HISDAC-ES. 

For most years in which CLC data is available, its estimated accuracy exceeds 85% (Büttner et al., 2021), while in the case 
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of Spain, the accuracy of the CLC versions 2000 and 2006 have an estimated overall accuracy of > 93% (Diaz-Pacheco & 

Gutiérrez, 2013) in the Madrid region. SpecificallyHerein, we obtained CLC data, available at a spatial resolution of 100m × 

100m  for the earliest (1990) and most recent (2018) available epoch (Fig. 3e,f, also Fig. A1)., and resampled it from the 275 

original resolution of 30m to the HISDAC-ES grid of 100m spatial resolution, using a majority resampling rule. As the grid 

underlying the HISDAC-ES LAEA version nests with the reference grid of the EEA, it also nests with the CLC grid. Thus, 

wWe then overlaid these the resampled CLC surfaces with the land use-specific building count surfaces layers of the 

respective years, and cross-tabulated the building counts for each combination of INSPIRE building function class and CLC 

land cover class on a cell-by-cell basis (Section 4.2). 280 

2.2.3 History database of the global environment (HYDE) 

While the remotely sensed data from the GHSL and CLC allows for assessing the plausibility of the HISDAC-ES since 1975 

and 1990, respectively, it does not provide any insight into the plausibility of the long-term trends (1900-2020) measured in 

the HISDAC-ES. To account for this, we employed the History Database of the Global Environment (HYDE V3.2, Klein-

Goldewijk et al., 2017), consisting of a set of global, gridded land use layers from 10000 BC to 2015, which are model-based 285 

and available at a spatial resolution of 5’ × 5’ (approx. 6km × 9km in Spain). While the accuracy of built-up area estimates in 

the HYDE data is difficult to quantify due to a lack of historical reference data (Klein-Goldewijk & Verburg, 2013), Uhl et 

al., (2021) find relatively high agreement of urban growth trends extracted from HYDE and from the integrated processing 

of remote-sensing data and historical maps. Specifically, we used the layer “urban area fraction” from HYDE for each 

decade from 1900 to 2015 (Fig. 3g,h) and aggregated both the building footprint area (BUFA) and developed area (DEVA) 290 

from the HISDAC-ES to the HYDE grid cells. We then conducted a correlation and regression analysis to quantify the 

agreement between BUFA, DEVA, and the total urban area as reported in HYDE, per grid cell. To account for potential 

regional differences in the agreement, we stratified our analyses into regions obtained from the NUTS-1 (Nomenclature of 

territorial units for statistics) administrative dataset13 (Section 4.3). 

2.2.4 Historical maps and orthoimagery 295 

While the evaluation approaches described in the previous sections are based on measured or modeled data, they suffer from 

measurement error, resampling errors, and other incompatibilities that may bias the comparative analyses. Thus, we decided 

to include alternative, historical data sources into our evaluation analyses, allowing for a more unbiased evaluation of 

HISDAC-ES layers in early years. These data sources include (a) historical “planimetría” maps (shown for the city of 

Alicante in Fig. 4a). (b) aerial photographs from 1956 (Fig. 4b), and (c) an urban atlas (Remírez et al., 1988) depicting 300 

different urban development phases (Fig. 4c). While no quantitative information on the accuracy of these data sources is 

available, the underlying maps are handcrafted and based on manual interpretation of orthophotos, topographic 

 
13 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts 
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measurements, or local domain knowledge, and can be deemed to be relatively accurate.  Specifically, we manually digitized 

the areas developed in different time periods for the city of Alicante and Madrid, and obtained a similar vector dataset, 

depicting different historical urban development phases for the city of Valencia (courtesy of Zornoza-Gallego 2022a). We 305 

quantitatively assessed the agreement between these historical urban extents and the MINCOY / DEVA layers (Section 4.4). 

Moreover, we visually compared the built-up areas depicted in “planimetría” topographic maps from around 190014 to the 

HISDAC-ES DEVA layer for several urban and rural places (Section 4.4). Finally, we manually delineated the approximate 

urban boundaries for the cities of Santiago de Compostela, Madrid, and Alicante based on aerial imagery from 195615 and 

compared them qualitatively to the developed areas in HISDAC-ES in the same year (Section 4.5). 310 

2.2.5 Attribute completeness 

In addition to the comparison to external datasets, we also aimed to quantify internal uncertainties in the HISDAC-ES, or the 

underlying INSPIRE building data, respectively, by assessing the completeness and coverage of relevant building attributes 

at the municipality level (Section 4.6).  

3 Results 315 

In this section, we present the different spatial layers contained in HISDAC-ES, resulting from the spatial aggregation and 

temporal stratification of the INSPIRE-conforming building data. This includes the gridded surfaces related to the four 

thematic components of HISDAC-ES (physical, temporalage-related, physical and land use evolution, Sections 3.1 to 3.4), 

as well as the municipality-level statistics (Section 3.5). 

3.1 Physical characteristics 320 

Fig. 5 displays the gridded surfaces measuring selected contemporary, physical features (in the year 2020) of the Spanish 

built environment, exemplarily shown for the city of Valencia. Surfaces showing the sums of these features These sum 

surfaces exhibit interesting spatial patterns of the density of building indoor area (BIA) and footprint area (BUFA), 

decreasing from the city centercentre towards the outskirts, whereas the density of dwellings (i.e., housing units) is higher in 

the outskirts than in the centercentre part. The grid cell means of these variables are measures of (vertical / horizontal) 325 

building size, and exhibit different patterns, illustrating the presence of large multi-apartment complexes in the outskirts and 

small, historical buildings in the centercentre part of the city. 

 
14 Maps from 1870-1950, predecessors of the minutas catastrones (MTN50), scale 1:50,000, available at 

http://www.ign.es/wms/minutas-cartograficas?request=GetCapabilities&service=WMS  
15 Ortofotos AMS (B) 1956-1957 (IGN, Instituto Geográfico Nacional), available at 

http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=FPNOA 
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3.2 Temporal Age-related characteristics 

Temporal, or ageAge-related statistics of the Spanish building stock are measured by different statistics calculated using the 

construction year attribute of the buildings within each grid cell. For example, the minimum construction year (MINCOY) 330 

impressively shows the settlement age patterns in the metropolitan area of Valencia (Fig. 6), depicting the historical city 

core, as well as recently developed suburban areas in the urban fringe, and older settlements in the surrounding villages. 

Similar patterns can be observed in the mean (MEANCOY), median (MEDCOY), and the most frequent (i.e., mode) 

construction year (MODECOY). The maximum construction year (MAXCOY) per grid cell measures the year of the last 

modification of the building stock, and alongside with the construction year variety (i.e., the number of unique construction 335 

years per grid cell, VARCOY) is a measure of construction activity, highlighting areas characterized by heavy urban renewal 

processes. Here it is worth noting that the construction year on record may also represent the year of the last building 

reformation, which introduces certain bias in the created surfaces (see Discussion section). 

3.3 Evolutionary characteristics 

Grid-cell level statistics (i.e., sums of BUFA, counts / densities of buildings BUDENS) stratified by the construction year 340 

attribute yield a time series of gridded surfaces measuring the long-term evolution of cities, towns, and villages. For 

example, the BUFA and BUDENS surfaces show how the built-up intensity (as measured by built-up surface density and 

building density) has increased from 1900 to 2020 (Fig. 7). These gridded surfaces uniquely document the long-term urban 

growth processes, measured at fine spatial granularity and over long time periods. The derived DEVA surfaces show 

developed / undeveloped land for each point in time, facilitating quantitative, multitemporal analysis of urban form, e.g., 345 

using landscape metrics (Uhl et al., 2021). The high temporal resolution (i.e., 5 years) of these multi-temporal layers enables 

measuring the evolution of urban extents and building density at fine spatial and temporal detail, as illustrated in a complete 

time series for the city of Valencia (Appendix Fig. B1). The additional stratification of the BUDENS surfaces layers by 

building function disaggregates the building stock spatially, by age, and by function. As an example shown in Fig. 7 (right 

column), industrial land use has heavily increased in suburban areas, in particularespecially in the Northern suburbs 350 

(between 1900 and 1960) and later in the Southern suburbs (after 1960).  

While the examples in Figs. 5-7 show the city of Valencia, we would like to emphasize the country-wide coverage of 

HISDAC-ES. For example, the minimum construction year surface (MINCOY) reveals commonalities and differences 

between settlement age patterns in different cities in Spain (Fig. 8), including polycentric development (e.g., Barcelona, 

Sevilla) and monocentric development (most other cities shown). Moreover, HISDAC-ES not only measures urban 355 

development across different cities, e.g., by means of the MINCOY surface (Fig. 8), but also long-term land development 

processes in rural areas, including towns, villages, and scattered, unincorporated settlements, as exemplified by the DEVA 

surfaces (Fig. 9). The DEVA surfaces layers reveal further detail on the spatial configuration of cities in early years, 

allowing e.g., for the computation of historical, urban morphological indicators (Appendix Fig. B2). We also provide several 
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supplementary animated data visualizations illustrating the value of HISDAC-ES for quantifying long-term urbanization 360 

processes (see Video Supplement). 

3.4 Built-up land use surfaces 

Lastly, we show the building density surfaces  layers stratified by building function, measuring the spatial distribution of 

different built-up land use classes (Fig. 10). These gridded surfaces not only highlight the dominance of residential land use, 

but also illustrate peri-urban clusters of industrial land use, as well as spatial patterns of commercial land use, which has a 365 

mixed clustered and scattered spatial pattern, or agricultural land use, mostly occurring in peri-urban areas to the Northeast 

of Valencia. These surfaces, along with the corresponding multi-temporal land use surfaces (Fig. 7d) enable the quantitative 

assessment of land use specific evolution of the built environment and add a unique thematic component to the HISDAC-ES 

data layers. Besides the building density layers stratified per building function, we also provide the total building indoor area 

and building footprint area per grid, for residential buildings only (RES_BIA, RES_BUFA), facilitating the integration with 370 

historical population data and population disaggregation. We created RES_BIA and RES_BUFA for each decade from 1900 

to 2020 (approximately in line with the decennial census), and in the LAEA grid only, as these layers are intended for 

statistical use. 

3.5 Municipality-level statistics 

We provide zonal statistics of INSPIRE-conforming building footprint data for all 8,131over 8,100 municipalities in Spain as 375 

tabular data and geospatial vector data. These datasets contain the zonal sums of grid-cell levelselected variables (i.e., 

building counts, as well as BUFA, BIA, DWEL, BUNITS, RES_BUFA, RES_BIA) as well as corresponding densities (per 

municipality area) and allow for coarse-scale analyses, and for the joint analysis with historical population data, available at 

the municipality level. The visualizations in Fig. 11 illustrate the usefulness of such aggregated statistics to observe and 

quantitatively assess broad-scale settlement and building stock age patterns. These patterns can be interpreted in the context 380 

of historical settlement development, but also provide insight into the contemporary building stock age and its spatial 

variation. As the absolute counts per municipality may be affected by regional trends of municipality area (Fig. 11, top row), 

we also provide these statistics as densities normalized by the municipality area, which show a different picture (Fig. 11, 

bottom row), see Video Supplement. 

4 Evaluation 385 

We compared the layers from HISDAC-ES to a variety of related but independent datasets to evaluate spatial, temporal, and 

thematic components of our data (Sections 4.1-4.5). The various comparisons carried out are of either quantitative or 

qualitative nature, and aim to evaluate the quality of the information contained in HISDAC-ES. The chosen evaluation 

datasets cover a range of data products of different sources (e.g., remote sensing, model-based hindcasting, historical 
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cartographic sources) and different thematic domains (e.g., land use / land cover, built-up areas, urban areas) While none of 390 

the evaluation datasets are free from uncertainty, in particular for early points in time, we believe that demonstrating the 

coherence between the phenomena measured in HISDAC-ES and the respective evaluation datasets will shed light on the 

quality of HISDAC-ES from various perspectives, These evaluation efforts are summarized in Table 3. Moreover, we 

assessed the attribute completeness of the building data underlying HISDAC-ES (Section 4.6). 

4.1 Multi-temporal built-up area evaluation (1975-2014) 395 

The comparison of the developed area (DEVA) to built-up areas from the GHS-BUILT reveals several trends: 1) The 

agreement between DEVA and GHS-BUILT changes from rural to urban areas. Specifically, the precision of DEVA is high 

in urban areas, and low in rural areas (Fig. 12a). A low precision in an agreement assessment would indicate high 

commission errors, which in this case implies that DEVA labels much more grid cells as built-up than GHS-BUILT. This is 

encouraging as previous work has shown that the GHS-BUILT tends to underreport built-up areas in rural regions (Leyk et 400 

al., 2018; Uhl and Leyk, 2022), and thus, the DEVA layers appear to account for this shortcoming. Similarly, recall of 

DEVA is slightly lower in urban areas such as the Madrid region (Fig. 12a). As previous work revealed, GHS-BUILT tends 

to overestimate built-up areas in urban settings (i.e., roads are often classified as built-up). The DEVA layers are not affected 

by this type of misclassification, resulting in lower recall values. Hence, both low precision (rural settings) and low recal l 

(urban settings) imply high accuracy in the DEVA layers, as the reference data (i.e., the GHS-BUILT) suffer from the 405 

described shortcomings. 2) We observe an increase of precision over time (Fig. 12b), which is likely due to increasing 

completeness of built-up areas in the GHS-BUILT, particularly in rural areas. Recall, however, shows a different trend over 

time (Fig. 12b), maximizing, on average across all municipalities, in 1990 and decreasing towards recent epochs. This is 

likely a superposed combined effect of (a) increasing incompleteness in GHS-BUILT as we go back in time due to poorer 

quality of underlying Landsat data, and (b) increasing incompleteness in DEVA as we go back in time due to a survivorship 410 

bias in the INSPIRE building footprint data. Specifically, new buildings that replace an existing (old) building will be 

attributed with the construction year of the replacement, and the building that existed prior to the replacement is not 

contained in our data. Thus, urban renewal causes this bias in our data, and this bias manifests in lower recall values towards 

early points in time. 

Looking at the agreement trends over time and across the GHS-SMOD rural-urban classes (Fig. 12c), we observe a sharp 415 

increase of agreement from rural to urban areas, and a slight increase over time, implying that the reliability of the DEVA 

layers is highest in urban centers. Lastly, the distributions of municipality-level agreement metrics across rural-urban strata 

confirm this trend (Fig. 12d). The peaks in recall in the low-density and rural cluster strata, across all years, indicate that the 

effects of incompleteness in the reference data (caused by omitting rural settlements) and in the DEVA (caused by 

survivorship bias) are of similar magnitude and thus, cause higher levels of agreement. Here it is noteworthy that the more 420 

recent GHS-BUILT v2022 is likely to perform better in rural areas, and thus, precision of the HISDAC-ES is expected to 

increase in such areas, and the agreement gradients across the rural-urban continuum are expected to be less steep (cf. Uhl et 
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al., forthcoming). However, as mentioned above, we prefer to use the GHS-BUILT R2018A because its accuracy has been 

well-studied and makes our interpretations more robust. 

4.2 Land use evaluation 1990-2020 425 

We cross-tabulated the land use-specific building counts from HISDAC-ES in 1990 and 2020, within the land cover classes 

from CLC for the years 1990 and 2018 (Fig. 13). The absolute building counts per land cover class in Fig. 13a indicated that 

most buildings underlying the HISDAC-ES fall into urban fabric, industrial or commercial areas, or in agriculturally used 

areas, and to a lesser extent, in areas characterized by forest (Fig. 13a). When plotting the proportions of buildings per 

HISDAC-ES land use class (Fig. 13b) or per CLC land cover class (Fig. 13c), we observe more interesting patterns. For 430 

example, most buildings of any land use (except agriculture) are located in areas of continuous urban fabric. Agriculturally 

used buildings are mostly located in areas classified as “complex cultivation patterns” in CLC. This indicates that the 

agricultural land use as reported in the INSPIRE building data is highly accurate. Moreover, in 2020, the proportion of 

buildings in “discontinuous urban fabric” has increased, as compared to 1990, which may be an effect of suburbanization, 

and increasing low-density built-up areas. Finally, the cross-tabulation relative to the CLC classes show that the residential 435 

land use is the most dominant across all land cover classes, with a few interesting exceptions: Industrial land use has also 

high proportions in CLC “industrial or commercial units”, and buildings attributed as INSPIRE “public services” buildings 

in the cadastral data  have a peak in “port areas” and “airport” CLC classes. Agricultural buildings peak in CLC classes “rice 

fields”, “annual crops”, and “agro-forestry areas”, which confirms the high levels of coherence between the two datasets. 

The peak of agricultural buildings in the “inland marshes” class may indicate higher levels of confusion between CLC 440 

classes “inland marshes” and “rice fields” which may be difficult to differentiate. All these observations confirm that the 

land use information from the INSPIRE cadastral building data and the derived HISDAC-ES land use layers seem highly 

plausible. Note that there is a slight temporal gap between the two datasets, as the most recent CLC data is from 2018. 

However, we expect this discrepancy to be of minor importance. 

4.3 Long-term trajectory evaluation (1900-2015) 445 

While the comparisons of HISDAC-ES to the GHS-BUILT and Corine Land Cover data focus on recent decades, the 

comparison to HYDE’s urban fraction estimates examines the long-term agreement with the BUFA and DEVA evolution 

layers. We observe that the correlation between urban area fraction and BUFA is high after 1980 (i.e., >0.8 for most 

regions), and decreases as we go back in time, but is still at around 0.6 in 1900, in most regions (Fig. 14a). This drop in 

correlation could be explained by the previously mentioned survivorship bias in HISDAC-ES, but could also be attributed to 450 

uncertainties in the model-based urban area fractions in HYDE. The correlation to DEVA (Fig. 14b) shows a similar trend, 

but slightly lower levels of correlations. Interestingly, correlations are highest in the Southern region (i.e., Andalucia), 

possibly due to low levels of building stock renewal and thus, a weaker effect of the survivorship bias in the HISDAC-ES 

data. Interestingly, correlations reach an early peak for the Madrid region (1960’s for BUFA, 1930’s for DEVA) and then 
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drop. Such a decreasing agreement towards recent epochs could be related to heavy (peri-)urban renewal in the Madrid 455 

region, which would be less well captured in HISDAC-ES (cf. Section 4.5). Besides this comparison of quantitative 

measures per grid cell, we also compared the agreement between developed and undeveloped grid cells in DEVA and 

HYDE, as measured by the time series of F1 scores in Fig. 14c. We observe extremely high agreement (>0.95) in recent 

decades, and just slightly lower F1 scores in the beginning of the 20th century. These high levels of agreement of the 

HISDAC-ES and model-based urban area estimations from HYDE underline the high quality of the HISDAC-ES 460 

evolutionary layers. It is noteworthy that the high F-1 scores may be an effect of the relatively low spatial resolution of 

HYDE (5’ × 5’ grid cells). 

4.4 Comparison to historical maps  

The previous evaluations are based on either remotely sensed data, or model-based reference data. Thus, those datasets are 

limited in their temporal coverage, or suffer from uncertainty themselves. Hence, we used multi-temporal urban areas 465 

manually digitized from historical maps, covering the time period from approximately 1900 to present, for the cities of 

Alicante, Madrid, and Valencia (Fig. 15). These extents were manually digitized for Alicante and Madrid from an urban atlas 

(Remírez et al., 1988; Valencia data are courtesy of C. Zornoza-Gallego), resulting in increments of urban area newly added 

in a given time period (see Fig. 4a,b). We rasterized the resulting vector data  in the HISDAC-ES grid, encoding the earlier 

year of each time period (Fig. 15a), using the sme grid like the HISDAC-ES MINCOY settlement age surface (Fig. 15ab). 470 

For each city, we reclassified the MINCOY surface to match the settlement age categories from the digitized urban areas , 

(Fig. 15b) and calculated agreement measures for each city, based on both the cumulative urban area per point in time, and 

on the newly added built-up area in each time period (Table 4). As the MINCOY surface only encodes the year of earliest 

settlement per grid cell, disregarding the settlement density in that year, we also used the BUDENS surfaces layers for the 

respective years (shown for 1900 and 2015 in Fig. 15c,d), to weight each grid cell by its building density. We did this 475 

because we assumed that misclassifications are more likely in sparsely populated areas, likely not contained in the urban 

extents from the historical urban atlases due to generalization. Thus, agreement metrics based on building counts rather than  

grid cell counts, would be more representative and realistic for a comparison between these two datasets.  Based on this 

evaluation strategy, we observe the following:  

1) Agreement levels are generally relatively low (F1 between 0.28 and 0.74). This may be attributed to the 480 

survivorship bias in HISDAC-ES, but also due to definitional differences (i.e., HISDAC-ES measures built-up area, 

while the urban extents derived from historical atlases measure urban area, and thus, are already a generalized 

representation of the developed land in at a given point in time . They are likely to omit low-density, scattered, peri-

urban settlements, but include roads, impervious surfaces, intra-urban greenspaces (e.g., parks, cemeteries, etc.) 

which are not directly measured in HISDAC-ES which is based on the presence of built structures only. 485 
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2) Recall is higher than precision. Low precision indicates high commission error (i.e., overestimation), likely 

because peri-urban, rural settlements are contained in HISDAC-ES, but not in the urban extents due to 

generalization and the (arbitrary) definition of the urban boundaries in the historical urban atlases, similar to what 

we observed in the comparison to the GHSL (Section 4.1). 

3) Agreement for cumulative urban extents is higher than for incremental time slices. This effect is to be 490 

expected, as the confusion between historical increments is irrelevant when comparing the total built-up / urban area 

in a given each point in time. As the urban areas (and the increments) in early time periods can be small, 

misclassification is more likely, also due to higher levels of survivorship bias in HISDAC-ES for early time periods. 

4) Precision based on the number of buildings is higher than precision based on the number of “occupied” grid 

cells. This indicated that grid cells label ed as “built-up” in HISDAC-ES but not in the historical urban areas tend to 495 

have low building density, confirming our aforementioned assumption that low-density settlements are not mapped 

in the historical urban extents. 

5) For cumulative urban extents, precision and recall increase over time. This is a direct effect of the survivorship 

bias, manifesting in higher omission errors (and thus lower recall) as we go back in time. Moreover, the proportion 

of scattered low-density settlements (which are not contained in the historical urban atlases) in relation to dense, 500 

urban settlements was higher in early than in recent epochs, resulting in an increase of precision over time. 

Moreover, the agreement levels are relatively similar across the three cities under study, implying that these observations are 

likely to be generalizable at least across the larger cities in Spain. Despite the low absolute numbers of the agreement metr ics 

reported in Table 4, which are likely due to definitional differences, the observed trends are in line with theoretical 

expectations (e.g., survivorship bias decreases over time), and with evaluation results of the HISDAC-US (Uhl et al., 2021), 505 

indicating similar characteristics of the historical settlement layers derived from cadastral / property data in the U.S. and in 

Spain. Confusion matrices underlying the agreement metrics shown in Table 4 can be found in Appendix Fig. E1. 

The qualitative comparison of the DEVA layers and “planimetría” historical maps (predecessors of the “Minutas 

catastrones” from 1870-1950, at scale 1:50,000) confirms the previously made observations. As shown in Fig. 16, the DEVA 

(1900) layer mimics quite well the urban areas as depicted in the maps, with some omission errors mainly in peri-urban 510 

areas, e.g.e.g., for Madrid, Sevilla, and Tarrasa. This could indicate that building replacements (causing survivorship bias in 

the HISDAC-ES) tend to occur least in the medieval city centerscentres, which are subject to monument protection 

(assuming concentric growth patterns). Moreover, these disagreement patterns may also be due to temporal inconsistencies 

between DEVA (1900) and the “planimetría” maps, which may have slightly different temporal references. In the small  

villages around Hornillos del Camino (Burgos) (Fig. 16 right column) we rather observe over- than underestimation. This 515 

could indicate that in rural, economically less prosperous areas, where less building remodeling occurs, the original buildin g 

stock is still dominating and thus, HISDAC-ES is less affected by survivorship bias. This observation may imply higher 

levels of data quality in small, rural places, a promising perspective for long-term settlement modeling in the often 
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understudiedoften-understudied rural settings. The bottom row (Fig. 16c) shows the contemporary (i.e., 2020) building 

densities, illustrating a positive association between building density and settlement age. On a side note, the building density 520 

in the small, rural communities around Hornillos del Camino is similar to the densities in the center parts of the large cities.  

4.5 Comparison to historical orthophotos from 1956 

The urban extents manually digitized from historical orthophotos acquired in 1956 show the urban boundary in those years 

in Alicante, Madrid, and Santiago de Compostela (Fig. 17 a,b,c). When we overlay these boundaries to the built -up areas 

from HISDAC-ES in the same year, we observe varying levels of agreement: In Alicante the agreement is relatively high 525 

(Fig. 17d), as well as in Santiago (Fig. 17f), whereas we observe higher levels of disagreement in the Madrid data (Fig. 17e), 

mainly occurring in suburban areas. While some of the disagreement may be attributed to differences in definitions (i.e.  , the 

urban boundaries drawn in the orthophotos only include dense, urban settlements), in the Madrid case there are additional 

issues, related to notable activities of urban renewal in previously informal settlements (e.g., the Entrevías 

neighborhoodneighbourhood (example 4 2 in Fig. 17e). See Fig. F1 for a more detailed discussion of historical reasons for 530 

these discrepancies. 

4.6 Attribute completeness and coverage 

Lastly, we report the INSPIRE building attribute completeness at the municipality level, as referredcompared to the total 

number of buildings available in each municipality (Fig. 18a). We observe very high levels of completeness of the 

construction year attribute (Fig. 18b). The building function attribute has a high coverage, except in the Gipuzkoa and 535 

Bizkaia provinces on the Northern Coast (Fig. 18c). Moreover, there is a building function attribute “other” that is only 

available in the Navarra region, which we excluded from the HISDAC-ES dataset (Fig. 18d). Thus, the uncertainty in the 

(historical) land use layers in HISDAC-ES in Navarra is slightly higher, as it is unknown what building function the “other” 

class encompasses. The indoor area, number of dwellings, and number of building units attributes have also lower levels of 

completeness in some areas of the Basque country (Fig. 18e,f,h). The completeness of “number of dwellings” is higher in 540 

buildings labelled as “residential” (Fig. 18g) than across all buildings (Fig. 18f), as this attribute is semantically linked to 

(mostly) residentially used buildings. Conversely, information on the number of floors is highly complete in the Navarra 

region (Fig. 18j), but otherwise not covered in the remaining provinces, and thus, has not been used in this version of 

HISDAC-ES.  

We also assessed the temporal coverage of construction year information at the municipality level, in order to better 545 

understand potential survivorship bias in the data. As can be seen in Fig. 18k, most municipalities have the earliest 

construction year on record <1850, or <1900. Only a few regions have minimum construction years between 1900 and 1925 

(e.g., regions around San Sebastián and Bilbao), whereas very few, scattered municipalities have earliest construction years 

between 1925 and 1950. In these municipalities, data users should be careful when conducting long-term analyses, as 

survivorship bias may be high. Likewise, we mapped out the the maximum construction year per municipality (Fig. 18l), 550 
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indicating the recentness of the cadastral building data underlying HISDAC-ES, as in most municipalities, the most recent 

construction year on record is between 2015 and 2020. Generally, these high levels of attribute completeness and temporal 

coverage are encouraging and indicate that the layers derived from these attributes are expected to be highly reliable at least 

for recent points in time. We made these municipality-level attribute completeness statistics available in the data repository. 

6 5 Data availability 555 

All datasets are available at https://doi.org/10.6084/m9.figshare.22009643 (Uhl et al., 2023a). All raster datasets are 

available in LZW-compressed GeoTIFF format and have a spatial resolution of 100m × 100m. All raster datasets are 

available in EPSG:3035 (LAEA, all Spanish territory), EPSG:4083 (REGCAN, Canary Islands), and EPSG:25830 

(UTM30N, Iberic peninsula) projections. The raster datasets are organized in subfolders as follows: They are grouped by 

geographic coverage (all, can, ibe) and reference system (laea, regcan, utm), and by theme (evolution, landuse, physical, 560 

temporal). For example, “ibe_utm_agetemporal” contains the surfaces layers measuring temporal age-related characteristics 

of the built environment, covering the Iberic peninsula, referenced to the UTM grid (see Table 5). In total, there are 717 743 

GeoTIFF files. Municipality-level aggregates and uncertainty measures are available in CSV format. In addition to that, 

municipality-level uncertainty metrics are available as GeoPackage (.gpkg) format (EPSG:258303035) including 

municipality boundaries, obtained from https://doi.org/10.7419/162.09.2020 565 

(recintos_municipales_inspire_peninbal_etrs89.shp, recintos_municipales_inspire_canarias_regcan95.shp). The CSV files 

can be joined to the municipality GPKG using the “lau_code” attribute field. The total uncompressed data volume is around 

3GB. The data in the repository is are partitioned in four ZIP-compressed archives, one for the raster data in each of the three 

spatial reference systems, and one for the municipality-level aggregates. For reproducibility purposes, the building footprint 

centroids derived from the cadastral data (downloaded in June 2021) are also made available as geospatial vector data in 570 

GeoPackage in GeoPackage format.. 

7 6 Code availability 

The Python code used to create HISDAC-ES (i.e., input vector data, raster data, municipality-level  isdata) is publicly 

available at https://github.com/johannesuhl/hisdac-es. R users can access the Spanish cadastral data underlying HISDAC-ES 

using the CatastRo package, which is available at (https://ropenspain.github.io/CatastRo/index.html), as well as the 575 

CatastRoNav package (for cadastral data from Navarra; https://ropenspain.github.io/CatastRoNav/), and a comprehensive 

instructions for building age visualization in R can be found at  https://dominicroye.github.io/en/2019/visualize-urban-

growth/. 

https://doi.org/10.6084/m9.figshare.22009643
https://doi.org/10.7419/162.09.2020
https://github.com/johannesuhl/hisdac-es
https://ropenspain.github.io/CatastRo/index.html
https://dominicroye.github.io/en/2019/visualize-urban-growth/
https://dominicroye.github.io/en/2019/visualize-urban-growth/
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8 7 Conclusions 

In this data descriptor, we presented the creation and characteristics of HISDAC-ES, a set of geospatial raster and vector 580 

layers measuring the built environment in Spain from different perspectives, including physical, temporal, evolutionary, and 

functional aspects. HISDAC-ES aims to (a) facilitate the access to and use of information derived from cadastral building 

data by spatial, temporal, and semantic aggregation, (b) provide empirically measured, historical geospatial data, enabling 

contemporary, but also long-term, historical analyses of urban growth, sprawl, and change; and (c) demonstrate the 

usefulness of cadastral data for geographic applications in general and domains of social and environmental sciences, more 585 

specifically. HISDAC-ES represents an extension of related work, recently conducted on U.S. property data (HISDAC-US; 

Leyk and Uhl, 2018; Uhl et al., 2021; McShane et al., 2022), and demonstrates the benefit of open data policies and large-

scale data harmonization efforts for the scientific community and beyond. 

HISDAC-ES provides a valuable data source for urban analysts, regional planners, and policy makers, enabling or upscaling 

the quantitative measurement and interpretation of long-term urbanization and land development processes (e.g., Arribas-Bel 590 

et al., 2011; Alvarez-Palau et al., 2019; Sapena and Ruiz, 2019; Zornoza-Gallego 2022b; Domingo et al., 2023). Together 

with the sister product HISDAC-US, it will enable the comparative study of urban size, shape, and morphology over long 

time periods, across different continents and across historical as well as cultural settings.  

We evaluated the agreement of HISDAC-ES with a range of related datasets obtained from remote sensing data and 

historical maps, identifying varying levels of agreement. While the associations between datasets imply some level of 595 

coherence and are generally promising, it is important to point out that a rigorous quality assessment of historical geospati al 

data is difficult. The main reasons are the general lack of reliable, historical reference data, but also differences in definitions 

and semantic discrepancies (ambiguity) between the evaluation datasets and HISDAC-ES, as well as vagueness in the 

evaluation datasets (e.g., arbitrarily defined urban boundaries).  

Nonetheless, there are a few shortcomings of HISDAC-ES that need to be addressed in the future. The main issue is the 600 

survivorship bias in the data: We infer settlement age based on the construction year on record in the cadastral building data. 

It remains unknown whether a construction date represents the first establishment of a building at a given location, or 

whether there was a built-up structure existing prior to that. Similarly, buildings that existed in the past, but have been 

demolished, are not contained in HISDAC-ES. Thus, HISDAC-ES can only measure urban growth, but not urban shrinkage 

or urban renewal). Fortunately, the latter process is rare. It is also unknown if the different attributes in the cadastral building 605 

data underlying the HISDAC-ES were measured at the same time. For example, the building function, indoor area, etc. 

reflects the contemporary state of a building (i.e., as of the year 2020), but these properties may have changed since the 

construction year on record, which may introduce additional uncertainty in the evolutionary layers in HISDAC-ES. 

Moreover, missing attributes in the cadastral data underlying HISDAC-ES could be estimated using specific data imputation 

strategies (e.g., Milojevic-Dupont et al., 2020). The complementary nature of certain, related building attributes (such as 610 
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building indoor area, building height, number of floors, building volume, average floor height) could also be exploited for 

such data imputation efforts (cf. Fig. 18). 

Importantly, as the cadastral data used to create HISDAC-ES originate from different cadastral systems, there may be 

inconsistencies in the definition and in the measurement of specific attributes. For example, the way how building indoor 

area (BIA) is defined and measured, could vary across the different cadastral systems, despite conforming to the 615 

specifications of the INSPIRE directive aiming to homogenize cadastral data across the EU. Also, the definition and 

measurement of building units or number of dwellings could be affected by such inconsistencies, where the building 

footprint area (the input data for the BUFA layers) can be expected to be least affected by differences in cadastral systems. 

Thus, future work needs to thoroughly assess (and account for) such potential inconsistencies between the different 

cadstralcadastral systems. Similarly, the variables DWEL (number of dwellings) and BUNITS (building units) need to be 620 

treated carefully, due to their potential semantic overlap: for exampleexample, while DWEL only contains residential units, 

BUNITS may contain both, residentially and non-residentially used building units, for example in the case of buildings of 

mixed use. Generally, we advicewe advise to be cautious when ingestingemploying the HISDAC-ES data layers intofor 

demographic modelling applications, where the progagationpropagation of uncertainty from the input data to the outputted 

products needs to be taken into account (e.g., Goehrlich-Gisbert & Marti, 2017) . Finally, the gridded surfaces in HISDAC-625 

ES are based on discrete point locations, rather than the actual building footprint geometries, in order to reduce 

computational processing effort. Thus, large buildings extending across two or more grid cells may not be represented 

correctly in HISDAC-US, introducing some positional uncertainty in the data. For this reason, grid cell values in the BUFA 

layers (representing the built-up area per cell) may exceed the grid cell area in some cases. 

Future work should focus on validation of the HISDAC-ES dataset, for example by employing large-scale historical map 630 

collections (cf. Olazabal et al., 2019), or other historical records. The integration of HISDAC-ES with historical population 

data in a dasymetric modelingmodelling framework could be useful to create fine-grained, historical population estimates 

(cf. Burghardt et al., 2023). Moreover, other components of Spanish INSPIRE-conformingcadastral building data could be 

used, such as sub-building level information (e.g., building parts), to create fine-grained data on building function at the sub-

building level, as well as information on building heights, which are available in a separate data pool16. Lastly, with the 635 

prospect of increasing availability of INSPIRE-conforming cadastral building data, HISDAC-related efforts will be 

expanded to other European countries where cadastral building data is of similarly high completeness, quality, and thematic 

richness. 

 
16 https://www.catastro.minhap.es/webinspire/documentos/Conjuntos%20de%20datos.pdf 
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Video supplement  

We provide eight animated data visualizations (available at http://doi.org/10.6084/m9.figshare.22064798, Uhl et al., 2023b), 640 

showcasing several data layers of the HISDAC-ES, at the grid cell level and at the municipality level: 

1) Evolution of developed areas (DEVA) in 30 urban centers in Spain (01_hisdac_es_developed_area_evolution.gif) 

2) Evolution of building density (BUDENS) in 30 urban centers in Spain 

(02_hisdac_es_building_density_evolution.gif) 

3) Evolution of building footprint area (BUFA) in 30 urban centerscentres in Spain 645 

(03_hisdac_es_building_footprint_area_evolution.gif) 

4) Evolution of residential land use in 30 urban centerscentres in Spain 

(04_hisdac_es_residential_landuse_evolution.gif) 

5) Evolution of commercial land use in 30 urban centerscentres in Spain 

(05_hisdac_es_commercial_landuse_evolution.gif) 650 

6) Evolution of industrial land use in 30 urban centerscentres in Spain 

(06_hisdac_es_industrial_landuse_evolution.gif) 

7) Evolution of building footprint area (BUFA) per municipality (07_hisdac_es_municipality_bufa_density.gif) 

8) Evolution of building density (BUDENS) per municipality (08_hisdac_es_municipality_building_density.gif) 

Animations 1-3 are shown from 1920 to 2020. Animations 4-6 are shown from 1950 to 2020. Note that for the land-use 655 

related animations (4-6), we binarized the building density layers stratified by land use category (i.e., highlighting grid cells 

where at least one building of the respective land use class exists). Major cities where no land use information was available 

(i.e., San Sebastián and Bilbao, shown in animations 1-3) were replaced by the cities of Cadiz and Jaén in animations 4-6. 

Animations 7 and 8 show the municipality-level aggregates, converted into densities (i.e., built-up area per km², buildings 

per km²), shown in percentiles based on the data distributions across all years. 660 

Author contribution 

JU, DR and SL designed the data model. JU and DR acquired the source data. DR, MBS, JAV and JU gathered evaluation 

data. JU implemented the code for data production. JU, DR, SL and KB designed the evaluation experiments. JU 

implemented and carried out the data production process and the evaluation analyses. JU and DR visualized the results. JU 
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Figures 

 

Figure 1: Input data: INSPIRE-conforming building footprint data provided by the Spanish authorities, including several 

attributes. (a) Year built, (b) building use, (c) number of dwellings, (d) number of building units, (e) building indoor area, and (f) 

building footprint area. Data shown for the city of Valencia. 870 
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Figure 2: Data processing workflow to create the spatial data layers of the HISDAC-ES, measuring multiple dimensions of the 

built environment in Spain from 1900 to 2020, obtained from cadastral building footprint data available via the INSPIRE spatial 

data infrastructure (SDI). 
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Figure 3: Remote-sensing and model-based evaluation data: built-up areas from the GHS-BUILT R2018A in (a) 1975 and (b) 

2014; GHS-SMOD rural-urban classes in (c) 1975 and (d) 2014; Corine Land Cover data in (e) 1990 and (f) 2018; Urban area 

fraction from the HYDE v3.2 dataset in (g) 1900 and (h) 2015. (a) - (f) show the city of Valencia, (g) and (h) show mainland Spain 

and the Balearic Islands. 880 
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Figure 4: Evaluation data based on historical cartography and orthoimagery: (a) “Planimetría” historical topographic map from 

1910 (Minutas catastrones at scale 1:50,000; Instituto Nacional de Geografía 2022), (b) historical aerial image from 1956 

(Ortofotos AMS(B) 1956-1957), (c) Historical urban atlas illustrating different urban development phases (Remírez et al., 1988), 

and (d) urban areas for different time periods, manually digitized from c). All datasets shown for the city of Alicante. 885 
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Figure 5: Examples of the created gridded surfaces of the HISDAC-ES, quantifying physical characteristics of the built 

environment: building indoor area (BIA), building footprint area (BUFA), number of dwellings (DWEL), and number of building 

units (BUNITS). HISDAC-ES contains the sum (top row) and the mean (bottom row) of these variables per grid cell. All datasets 

shown for the city of Valencia. 890 
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Figure 6: Examples of the created gridded surfaces of the HISDAC-ES, describing building-age related characteristics of the built 

environment: minimum construction year, maximum construction year, mean construction year, median construction year, mode 

(i.e., most frequent) construction year, and the variety (i.e., number of unique construction years) per grid cell. All datasets shown 

for the city of Valencia. 895 
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Figure 7: Examples of the created gridded surfaces of the HISDAC-ES, quantifying evolutionary characteristics of the built 

environment: Multi-temporal layers of developed area (DEVA), building footprint area (BUFA), and building density (BUDENS), 

as well as industrial land use in 1900, 1960, and 2020 (as one exemplary land use class). All datasets shown for the city of Valencia. 
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Fig. 8. HISDAC-ES settlement age surfaces for 30 cities in Spain: Minimum construction year (MINCOY) shown for a selection of 

30 cities, arranged in an approximate, quasi-geographic space (upper right = Northeast, lower left = Southwest) 



39 

 



40 

 

 905 

Figure 9: HISDAC-ES multitemporal surfaces of developed areas: DEVA layers for 1900 and 2020, shown for(a) for Greater 

Barcelona,  in (a) 1900, and (b) 2020, and for the Island of Mallorca, and  in (c) 1900 and (d) in 2020for the Greater León area. 

Basemap: Esri, USGS, NOAA. 



41 

 

 

Figure. 10:. Gridded surfaces describing the spatial distributions of different building function classes or building-related land use 910 
classes, shown for the city of Valencia in 2020. Formatted: Not Highlight
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Figure 11: Selected multi-temporal municipality-level statistics: Building counts and built-up surface density per municipality in 

1900, 1960, and 2020. See Appendix Fig. C1 for corresponding maps of the Canary Islands. 
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Figure 12: Evaluation of the HISDAC-ES developed area (DEVA) in comparison to built-up areas from the Global Human 

Settlement Layer per municipality, over time, and across the rural-urban continuum, by means of map comparison. (a) Maps of 

municipality-level precision, recall, and F1 score in 1975 and 2014, (b) overall temporal trends of municipality-level precision, 

recall and F1 score, (c) temporal trends of precision, recall and F-1 score calculated globally (i.e., at the country-level) within 920 
strata of the seven GHS-SMOD rural-urban classes, and (d) distributions of municipality-level agreement metrics within strata of 

a GHS-SMOD based rural-urban index calculated per municipality. See Appendix Fig. D1 for corresponding maps of the Canary 

Islands. All agreement metrics are obtained by map comparison on a cell-by-cell basis at a spatial resolution of 100m × 100m, 

calculated locally within municipality boundaries in (a), (b), and (d), and calculated globally (i.e., overall metrics for the whole 

country) within areas delineated by GHS-SMOD classes in (c). 925 
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Figure 13: Comparison of the HISDAC-ES land use data (columns) to land cover classes from Corine Land Cover (rows) for the 

years 1990 and 2018. The heatmaps show the number of buildings (BUDENS) assigned to grid cells within each combination of 

HISDAC-ES land use and CLC land cover classes. These bidimensional frequency maps are shown in three variants (a) showing 

absolute building counts, (b) proportions of buildings per HISDAC-ES land use class, and (c) proportion of buildings per CLC 930 
land cover class. Note that the 2020 HISDAC-ES data was compared to the 2018 CLC data. 
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Figure 14: Regionally stratified agreement analysis of HISDAC-ES developed area (DEVA) and building footprint area (BUFA) 

variables against HYDE urban area estimates. (a) time series of Pearson’s correlation coefficient of BUFA and HYDE, (b) time 

series of Pearson’s correlation coefficient of DEVA and HYDE, and (c) time series of F1 scores based on developed vs. non-935 
developed grid cells in HISDAC-ES and HYDE urban area fraction (5’x5’ grid cells). Regional stratification was done based on 

the seven NUTS-1 regions (https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-

units/nuts). 
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Figure 15: Data used for the quantitative comparison of the HISDAC-ES to historical urban extents, derived from historical maps 940 
for the cities of Alicante (top row), Madrid (middle row), and Valencia (bottom row): (a) Historical urban areas digitized from 

historical maps after rasterization, (b) the HISDAC-ES MINBUY layer, and the HISDAC-ES building density layers for (c) 1900 

and (d) 2020. Data source of the historical urban extents for Valencia: courtesy C. Zornoza-Gallego, Figure in the lower left corner 

adapted from Zornoza-Gallego (2022a). 
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Figure 16: Visual comparison of HISDAC-ES developed areas (i.e., DEVA layer in 1900) with historical maps. (a) “Planimetría” 

maps (b) overlaid with DEVA in 1900, and (c) contemporary building density layer (BUDENS 2020) illustrating the change 

between 1900 and 2020. Each layer is shown for Madrid, Sevilla, Tarrasa (Catalunia), and Hornillos del Camino (Burgos). 

Historical map source: Instituto Nacional de Geografía 2022. 
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Figure 17: Visual comparison of HISDAC-ES to aerial imagery from 1956. Aerial image overlaid with manually digitized urban 

extents for (a) Alicante, (b) Madrid, and (c) Santiago de Compostela; (d) – (f) overlaid with the HISDAC-ES built-up grid cells 

after and prior to 1955. Dashed black boxes are selected areas of discrepancies (i.e., turquoise areas within the digitized urban 

boundaries, or red areas without the urban boundary), which are enlarged and discussed in Appendix Fig. A6. 
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Figure 18: Attribute completeness and construction year coverage at the municipality level. See Appendix Fig. G1 for 960 
corresponding maps of the Canary Islands. 
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Tables 

Table 1: Source data overview. 965 

Province / Region Data format Online resource 

Araba province (Basque Country) WFS https://geo.araba.eus/WFS_Katastroa?SERVICE=WFS&VERSION=1.1.0&REQUEST=GetCapabilities 

Bizkaia province (Basque Country) ATOM/GML https://web.bizkaia.eus/es/inspirebizkaia 

Gipuzkoa province (Basque Country) ATOM/GML https://b5m.gipuzkoa.eus/web5000/es/utilidades/inspire/edificios/ 

Navarra region WFS https://inspire.navarra.es/services/BU/wfs 

Other regions (country level ATOM file) ATOM http://www.catastro.minhap.es/INSPIRE/buildings/ES.SDGC.bu.atom.xml 

Other regions (regional level ATOM example) ATOM http://www.catastro.minhap.es/INSPIRE/buildings/03/ES.SDGC.bu.atom_03.xml 

Other regions (municipality level example) GML http://www.catastro.minhap.es/INSPIRE/Buildings/03/03004-AIGUES/A.ES.SDGC.BU.03004.zip 

 

Table 2: Overview of the gridded surfaces of the HISDAC-ES, measuring different components of the built environment, including 

the underlying variables and statistics. 

Component Variable Statistics per grid cell Measurement of 
Surface 

Layer name 

Physical 

Building iIndoor area 

Sum, mean across buildings per grid cell 
Settlement intensity, built-up surface density, 

building density 

BIA 

Building footprint area BUFA 

Building units BUNIT 

Dwellings DWEL 

Age Construction year 
Minimum, Maximum, Mean, Median, Mode, 

Variety per grid cell 

Settlement age, building renewal, construction 

activity, building age heterogeneity 
COY 

Physical 

evolution 

Building footprint area 
Cumulative sum per 5-year time step T, per 

grid cell 

Land development, urban growth, settlement 

expansion, (sub)urbanization, urban sprawl, 

densification, infilling 

BUFAT 

Building density BUDENST 

Developed area DEVAT 

Land use 

evolution 

# Residential buildings 

Cumulative sum per 5-year time step T, per 

grid cell 

Land use dynamics, land development 

stratified by building function 

LU_REST 

# Commercial buildings LU_COMT 

# Industrial buildings LU_INDT 

# Agricultural buildings LU_AGRT 

# Public buildings LU_PUBT 

# Office buildings LU_OFFT 

Residential 

only (part of 

physical 

evolution) 

Residential building 

footprint area Cumulative sum of all residential buildings 

per grid cell, per 10-year time step T 

Residential settlement intensity, residential 

built-up surface density 

RES_BUFAT 

Residential building 

indoor area 
RES_BIAT 
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Table 3: Overview of the comparative evaluation efforts for HISDAC-ES. 

HISDAC-ES variable Evaluation data product (+URL) Evaluated time period Evaluated area Section 

DEVA GHS-BUILT, GHS-SMOD 

(https://ghsl.jrc.ec.europa.eu/) 

1975, 1990, 2000, -2014 Spain 4.1 

Land use Corine Land Cover 

(https://land.copernicus.eu/pan-european/corine-land-

cover) 

1990, -2018 Spain 4.2 

BUFA, DEVA HYDE v3.2  

(https://doi.org/10.17026/dans-25g-gez) 

1900-2010 (decadal) + 

2015 

Spain 4.3 

MINCOY Historical urban extents 

(Zornoza-Gallego 2022a,  Remírez et al., 1988) 

1900-20203-5 epochs 

between 1900 and 2020 

Alicante, Madrid, 

Valencia 

4.4 

DEVA (qualitative) Historical maps (Minutas catastrales, 1:50,000) 

(http://www.ign.es/wms/minutas-

cartograficas?request=GetCapabilities&service=WMS) 

1910 Several cities / 

villages 

4.4 

DEVA (qualitative) Historical orthophotos 1956-1957 

(https://centrodedescargas.cnig.es/CentroDescargas/catal

ogo.do?Serie=FPNOA) 

1955 Alicante, Madrid, 

Santiago de 

Compostela 

4.5 

 

Table 4: Map comparison results of digitized historical urban areas digitized from historical maps and HISDAC-ES settlement age 

surface (MINCOY), for both increments (i.e., newly developed grid cells between two points in time), and cumulatively (i.e., for the 

total developed land at a given point in time. Note that there is a slight temporal gap in the earliest Madrid epoch, where MINCOY 975 
from 1900 is compared to urban extents from 1892. 

  Incremental Cumulative 

  Cell-based 
Building-

weighted 
 Cell-based 

Building-

weighted 

Study area 
Time 

period 
Precision Recall F1 Precision Year Precision Recall F1 Precision 

Alicante 

urban atlas 

1900-1928 0.32 0.42 0.36 0.44 ≤1928 0.32 0.42 0.36 0.44 

1928-1970 0.47 0.52 0.49 0.56 ≤1970 0.64 0.73 0.68  0.73 

1970-1990 0.26 0.20 0.23 0.27 ≤1990 0.66 0.70 0.68 0.73 

Madrid 

urban atlas 

≤1900 0.44 0.40 0.42 0.53 ≤1900 0.44 0.40 0.42 0.53 

1900-1932 0.40 0.54 0.46 0.44 ≤1932 0.44 0.56 0.50 0.51 

1932-1962 0.25 0.40 0.31 0.33 ≤1962 0.50 0.71 0.59 0.53 

1962-1970 0.35 0.23 0.28 0.39 ≤1970 0.59 0.68 0.64 0.61 

1970-2020 0.31 0.22 0.26 0.33 ≤2020 0.65 0.67 0.66 0.66 

Valencia 

urban 

extents 

≤1902 0.34 0.46 0.39 0.59 ≤1902 0.34 0.46 0.39 0.59 

1902-1944 0.26 0.54 0.35 0.38 ≤1944 0.44 0.74 0.55 0.65 

1944-1980 0.32 0.51 0.4 0.50 ≤1980 0.53 0.87 0.66 0.74 

1980-2011 0.46 0.25 0.33 0.52 ≤2011 0.68 0.80 0.74 0.88 
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Table 55: HISDAC-ES dataset overview. 

Component Variable Surface Layer name Data format File name (pattern) 

Physical 

Building Indoor area BIA GeoTIFF hisdac_es_phys_bia_<mean/sum>_v1_100.tif 

Building footprint area BUFA GeoTIFF hisdac_es_phys_bufa_<mean/sum>_v1_100.tif 

Building units BUNIT GeoTIFF hisdac_es_phys_bunits_<mean/sum>_v1_100.tif 

Dwellings DWEL GeoTIFF hisdac_es_phys_dwel_<mean/sum>_v1_100.tif 

Age Construction year COY GeoTIFF hisdac_es_temp_<statistic>coy_v1_100.tif 

Physical 

evolution 

Building footprint area BUFAT GeoTIFF hisdac_es_evol_bufa _v1_100_<year>.tif 

Building density BUDENST GeoTIFF hisdac_es_evol_budens _v1_100_<year>.tif 

Developed area DEVAT GeoTIFF hisdac_es_evol_deva _v1_100_<year>.tif 

 

Residential building indoor 

area 
RES_BIAT GeoTIFF hisdac_es_evol_resbia_v1_100_ <year>_100.tif 

Residential building 

footprint area 
RES_BUFAT GeoTIFF hisdac_es_evol_resbufa_v1_100_ <year>_100.tif 

Land use 

evolution 

# Residential buildings LU_REST GeoTIFF hisdac_es_landuse_residential_v1_100_<year>.tif 

# Commercial buildings LU_COMT GeoTIFF hisdac_es_landuse_commercial_v1_100_<year>.tif 

# Industrial buildings LU_INDT GeoTIFF hisdac_es_landuse_industrial_v1_100_<year>.tif 

# Agricultural buildings LU_AGRT GeoTIFF hisdac_es_landuse_agriculture_v1_100_<year>.tif 

# Public buildings LU_PUBT GeoTIFF hisdac_es_landuse_publicservices_v1_100_<year>.tif 

# Office buildings LU_OFFT GeoTIFF hisdac_es_landuse_office_v1_100_<year>.tif 

Municipality-

level 

aggregates 

various 

Municipality-level 

variables 

 

GeoPackage, .csv hisdac_es_municipality_stats_multitemporal_v1.*csv 

% complete 
Municipality-level 

attribute completeness 
GeoPackage, .csv 

hisdac_es_municipality_stats_completeness_v1.*csv/gpk

g 

Building 

centroids 
Building locations - GeoPackage ES_building_centroids_merged_spatjoin.gpkg 
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Appendices 

Appendix A. Comparison of HISDAC-ES with remote-sensing based settlement and land cover data 
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Appendix Figure A1: Visual comparison of HISDAC-ES DEVA, WSF-Evolution, and GHS-BUILT, and Corine Land Cover, in 985 
1990 and approximately 2015. For Corine Land Cover, only the classes “continuous urban fabric”, “discontinuous urban fabric”, 

“industrial or commercial units”, “sport and leisure facilities”, “construction sites”, and “port areas” are shown, which are loosely 

related to developed / built-up areas. 

Appendix B. Visualizing urban development using HISDAC-ES 

 990 

Figure B1: Complete time series of the DEVA (developed area, left) and BUDENS (building density, right) raster time series in 5-

year intervals from 1900 to 2020. Data shown for the city of Valencia. 
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Appendix Figure B2: HISDAC-ES developed area layers (DEVA) for 1920, 1950, 1980, and 2020 for a selection of 30 cities in 

Spain. Cities are arranged in an approximate, quasi-geographic space (upper right = Northeast, lower left = Southwest). 995 
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Appendix C. Municipality-level aggregates for the Canary Islands 

 

Appendix Figure C1: Exemplary municipality-level aggregates for the Canary Islands in 1900, 1960, and 2020. 

 

Appendix D. Municipality-level agreement metrics between HISDAC-ES and GHS-BUILT for the Canary Islands 1000 

 

Appendix Figure D1: Municipality-level agreement of HISDAC-ES DEVA and GHS-BUILT R2018A for the Canary Islands. 
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Appendix E. Confusion matrices of historical urban areas obtained from historical maps vs. HISDAC-ES 

 1005 

Appendix Figure E1: Confusion matrices underlying Table 4 from map comparison of the MINBUY and urban extents digitized 

from historical maps for (a) Alicante, (b) Madrid, and (c) Valencia. While panels (a) – (c) cross-tabulate the grid cell counts in each 

category, Panels (d) – (f) are based on the number of buildings reported in HISDAC-ES within each category. 
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Appendix F. Aerial imagery from 1956 shown for exemplary discrepant areas 

 

Appendix Figure F1: Examples of discrepancies between HISDAC-ES and the 19565 aerial imagery. Shown are three regions 

highlighted in Fig. 17. 

1. Alicante: Alférez Rojas Navarrete Barracks. Even though this military facility existed in 1955, it is not well covered in 1015 

the cadastral data underlying the HISDAC-ES. Despite covering a large area, it is only represented by one grid cell in the 

HISDAC-ES layers for 1955. It is likely that military facilities were not mapped the same way like as regular residential 

neighborhoodsneighbourhoods, possibly for security reasons. 

2. Madrid: Housing colonies Entrevías (Vallecas II). A large social housing colony that was completely renewed at a later 

point in time. This is an extreme example of urban renewal, which cannot be measured by the HISDAC-ES data. 1020 

3. Santiago de Compostela: This discrepancy between the HISDAC-ES data and the manually drawn urban boundary is due 

to a definitional problem. In the aerial image of the Monte da Almáciga region, the large building complex is a college, 

surrounded by scattered settlements, possibly of agricultural usage. In this case, we excluded these areas from the “urban 

extent” due to the low settlement density, even though these areas should be considered as “urban” due to their functional 

importance. This definitional mismatch causes this discrepancy. 1025 
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Appendix G. Municipality-level attribute completeness for the Canary Islands 

 

 1030 

Appendix Figure G1: Attribute completeness and temporal coverage at municipality level for the Canary Islands. 
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