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Abstract. Open biomass burning (OBB) significantly affects regional and global air quality, the climate, and human health. 15 

The burning of forests, shrublands, grasslands, peatlands, and croplands influences OBB. A global emission inventory based 

on high-resolution satellite fire detection enables an accurate estimation of OBB emissions. In this study, we developed a 

global high-resolution (1 × 1 km) daily OBB emission inventory using the Chinese Fengyun-3D satellite’s global fire spot 

monitoring data, satellite-derived biomass data, vegetation index-derived spatiotemporally variable combustion efficiencies, 

and land-type-based emission factors. The average annual estimated OBB emissions for 2020–2022 were 2,586.88 Tg C, 20 

8841.45 Tg CO2, 382.96 Tg CO, 15.83 Tg CH4, 18.42 Tg NOX, 4.07 Tg SO2, 18.68 Tg OC, 3.77 Tg BC, 5.24 Tg NH3, 15.85 

Tg NO2, 42.46 Tg PM2.5 and 56.03 Tg PM10. Specifically, taking carbon emissions as an example, the average annual estimated 

OBB for 2020–2022 were 72.71 (Boreal North America; BONA), 165.73 (Temperate North America, TENA), 34.11 (Central 

America; CEAM), 42.93 (Northern Hemisphere South America; NHSA), 520.55 (Southern Hemisphere South America; 

SHSA), 13.02 (Europe; EURO), 8.37 (Middle East; MIDE), 394.25 (Northern Hemisphere Africa; NHAF), 847.03 (Southern 25 

Hemisphere Africa; SHAF), 167.35 (Boreal Asia; BOAS), 27.93 (Central Asia; CEAS), 197.29 (Southeast Asia; SEAS), 13.20 

(Equatorial Asia; EQAS), and 82.38 (Australia and New Zealand; AUST) Tg C/year. Overall, savanna grassland burning 

contributed the largest proportion of the annual total carbon emissions (1,209.12 Tg C/year; 46.74%), followed by woody 

savanna/shrubs (33.04%) and tropical forests (12.11%). SHAF was found to produce the most carbon emissions globally 

(847.04 Tg C/year), followed by SHSA (525.56 Tg C/year), NHAF (394.26 Tg C/year), and SEAS (197.30 Tg C/year). More 30 

specifically, savanna grassland burning was predominant in SHAF (55.00%, 465.86 Tg C/year), SHSA (43.39%, 225.86 Tg 

C/year), and NHAF (76.14%, 300.21 Tg C/year), while woody savanna/shrub fires were dominant in SEAS (51.48%, 101.57 

Tg C/year). Furthermore, carbon emissions exhibited significant seasonal variability, peaking in September 2020, and August 

of 2021 and 2022, with an average of 441.32 Tg C/month, which was higher than the monthly average of 215.57 Tg C/month. 
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Our comprehensive high-resolution inventory of OBB emissions provides valuable insights for enhancing the accuracy of air 35 

quality modeling, atmospheric transport and biogeochemical cycle studies. 

1 Introduction 

Open biomass burning (OBB) releases significant amounts of trace gases (CO, NOX, NMVOC, SO2, and NH3), particulate 

matter (PM2.5, PM10), and greenhouse gases (CH4 and CO2), which are major atmospheric pollutants (Mehmood et al., 2022) 

and have profound impacts on the global carbon cycle, climate, and air quality, thus exerting a significant influence on the 40 

global environment and human health (Wu et al., 2022). The burning of forests, shrublands, grasslands, crop residues, and 

peatland constitutes the major types of fires worldwide (van der Werf et al., 2017). These open burning activities severely 

affect air quality and ecosystems (Anon, 2017), with high degrees of sporadicity and spatiotemporal clustering (Murdiyarso 

and Lebel, 2007; Liu et al., 2014; Senande-Rivera et al., 2022). In addition, some regions worldwide are experiencing a notable 

increase in fire incidents (Richardson et al., 2022; Kolden et al., 2024) such as the Amazon rainforest (Pivello, 2011), 45 

Australian bush (Jegasothy et al., 2023), and the United States (You and Xu, 2023), where large-scale fire incidents occur 

periodically and frequently (Kolden et al., 2024). Therefore, accurately estimating these emissions is crucial for devising 

effective environmental policies and safeguarding human health and quality of life, thereby providing significant support for 

a sustainable future. 

Previous studies have investigated numerous methods for estimating biomass burning emissions (Ito and Penner, 2004; 50 

Wiedinmyer et al., 2006). The burned-area-based fire emission estimation method, which is based on the burned area, available 

biomass fuels burned in the fields, fuel-related combustion efficiency, and emission factors, has demonstrated good accuracy 

in quantifying larger fire events. This method has been widely used in databases such as the Global Fire Emissions Database 

(GFED) (van der Werf et al., 2017) and the Fire INventory from NCAR (FINN) (Wiedinmyer et al., 2023). However, this 

method relies heavily on the fire-detection precision, particularly for small fires. A method based on fire radiative power (FRP) 55 

can enhance the detection and quantification of small fire events by measuring the energy released during combustion (Filizzola 

et al., 2023). However, these approaches can overestimate emissions from localized fire events, which are intense, small-scale 

fires that may not reflect wider fire activity (Nguyen et al., 2023). For example, Fire Emissions and Energy Research (FEER), 

based on FRP, reported that the global total particulate matter emissions were approximately 55% higher than those estimated 

by the GFED (Ichoku and Ellison, 2014). Similarly, the Global Fire Assimilation System (GFAS) using FRP estimated global 60 

and regional combustion values exceeding those of the GFED by approximately 126 Tg C/year during 2003-2008 (Kaiser et 

al., 2012). However, all these methods rely on MODIS active fire products. 

Similar to the MERSI-2 instrument, the Fengyun-3D (FY-3D) satellite has spatial resolutions of 250 and 1000 m at the nadir 

(Yin et al., 2020), which is more advantageous in detecting and monitoring various active fire events compared with MODIS 

(Zheng et al., 2023). Furthermore, the Global Fire Monitoring (GFR) product with FY-3D employs optimized automatic 65 

identification algorithms for fire spots (Shan and Zheng, 2022), leading to improved fire point detection accuracy. Thus, it has 
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an overall accuracy rate of 79.43% and exclusion omission error accuracy of 88.50%, surpassing the capabilities of MODIS 

satellite products (Xian et al., 2021; Chen et al., 2022), based on field-collected references from China throughout 2020. Cross-

verification between MODIS and FY-3D showed the highest consistency (over 80%) in Africa and Asia, whereas the 

consistency in America, Europe, and Oceania exceeded 70% (Chen et al., 2022). The number of fire spots in July, August, and 70 

September was higher, with a mean consistency of over 85% between MODIS and FY-3D fire products (Chen et al., 2022). 

Although the Landsat Fire and Thermal Anomaly (LFTA) product has a finer spatial resolution, its lower temporal resolution 

limits its global coverage to only 16 days; thus, large numbers of fires with short durations are missed. Given these limitations 

in the monitoring frequency with the LFTA product, employing the FY-3D GFR product and allocation approaches for short 

fires are expected to yield reliable estimates of OBB emissions. 75 

Fuel loading (F) represents the ground biomass of the fire-affected pixels. Many studies have adopted a static approach to F 

(Chang and Song, 2010; Zhou et al., 2017; Puliafito et al., 2020; Shi et al., 2020), assigning constant values based on regional 

land-cover types. This methodology overlooks the inherent spatial and temporal variability of F within each land type, which 

changes continuously and dynamically (Wiedinmyer et al., 2011). The combustion factor (CF), which denotes the ratio of 

consumed fuel to total available fuels, is typically a linear variable within a specific range when considering the fuel status and 80 

humidity conditions (van der Werf et al., 2006; Wiedinmyer et al., 2011). However, this approach leads to increased uncertainty 

in biomass estimation and poor quantification of the extent of combustion during fire events, thereby affecting OBB emissions 

assessment (Shi et al., 2020). To address these issues, this study employed observational and satellite-based aboveground 

biomass (AGB) and CF based on time-series vegetation index data derived from satellite products. The CF considers moisture-

related factors, enabling the calculation of the spatiotemporal variance in combustion efficiency across diverse land types. 85 

This study aimed to develop a high-resolution daily OBB emissions inventory (including carbon (C), carbon dioxide (CO2), 

carbon monoxide (CO), methane (CH4), nitrogen oxides (NOX), sulfur dioxide (SO2), particulate organic carbon (OC), 

particulate black carbon (BC), ammonia (NH3), nitrogen dioxide (NO2), PM2.5, and PM10) and analyze the various types of fire 

events along with their emission patterns across 14 distinct regions. To estimate the OBB emissions from forests, 

savannas/shrublands, grasslands, and peatlands, we utilized the updated FY-3D GFR product based on the continuous 90 

spatiotemporal dynamics of AGB, spatially and temporally variable combustion efficiencies, and emission factors specific to 

different land types. Our comprehensive high-resolution inventory of OBB emissions represents a valuable asset for 

applications in air quality modeling, atmospheric transport simulations, and biogeochemical cycling studies. This provides a 

robust framework for in-depth understanding and analysis of the environmental implications of OBB on a global scale. 

2 Materials and Methods 95 

The Global Emissions Inventory from Open Biomass Burning (GEIOBB) (1 km daily) was estimated using the burned area 

method based on the framework described by Wiedinmyer et al. (2006) and Shi et al. (2015). GEIOBB includes OBB emissions 

based on burned areas retrieved from active fire data from the FY-3D satellite, available biomass from satellite and ground 
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measurements, CF scaled by tree cover (TC) and the Normalized Difference Vegetation Index (NDVI), and land cover (LC)-

based emission factors. The GEIOBB is obtained by calculating the product of the above terms. 100 

𝐸𝑖(𝑥) = 𝐵(𝑥, 𝑡) ×  𝐹(𝑥) × 𝐶𝐹(𝑥) × 𝐸𝐹(𝑖), (1) 

where Ei (g) represents pollutant type i emissions at location x, which is equal to the product of burning area B (m2) at time t 

and location x, biomass F (kg /m2) at location x, CF (expressed as a fraction), and the emission factor EF (g/kg) for pollutant 

type i . 

2.1 FY-3D global fire spot monitoring data based burned area (B) 105 

The Fengyun-3 series of satellites is a second-generation Chinese polar-orbiting meteorological satellite system. The FY-3D 

satellite was the fourth in the FY-3 series. It was launched on November 15, 2017, at an altitude of 836 km, and the data 

became accessible in May 2020 (Li et al., 2017). FY-3D completes 14 orbital observations of the Earth’s surface on a global 

scale twice daily. The MERSI-2 instrument onboard FY-3D was greatly improved from the MERSI-1 instrument onboard FY-

3C, with high onboard accuracy and lunar calibration capabilities. Compared with MODIS, FY-3D fire products have been 110 

optimized in terms of auxiliary parameters, fire identification, and re-identification. First, FY-3D introduces an adaptive 

threshold using automatic identification algorithms for fire spot detection, which calculates the background temperature as the 

mean temperature of all the background pixels within each 3×3 window. If fewer than 20% of the pixels are identified as 

cloudless, the window size is expanded to 5×5, continuing up to 51×51 in order to accommodate more data (Chen et al., 2022). 

This approach eliminates the limitations posed by fixed thresholds in the MODIS and VIIRS algorithms, which set T4 to 115 

greater than 360 K (320 K at night) and fixed the moving window size at 21×21 (Giglio et al., 2016). Second, FY-3D uses a 

re-identification index that reflects varying geographical latitudes and underlying surface types, together with the effects of 

clouds, water, and bare land (Zheng et al., 2020). The integration of multiple influencing factors increases the fire detection 

accuracy. For example, the influences of factory thermal anomalies and high reflectance of photovoltaic power plants are 

removed. Finally, FY-3D employs a far-infrared band with a high resolution of 250 m, and channels 24 and 25, which has a 120 

higher resolution than MODIS (1 km) (Zheng et al., 2023). The far-infrared band has a higher sensitivity to large fires or high-

brightness fire events and can distinguish differences against background brightness temperatures (Zheng and Chen, 2020). 

These characteristics are essential for the accurate identification of fire spots, thereby enhancing the fire detection precision of 

satellites (Chen et al., 2022). Overall, the FY-3D GFR product has an accuracy of 94.01% globally, as calculated using fire 

detection after eliminating errors based on visual checks conducted using SMART (Visual Check) in 2019. It has accuracies 125 

of 94.61, 94.12, 90.63, 91.76, and 92.69% for Southern Central Africa, Eastern Central South America, Siberia, Australia, and 

the Indo-Chinese Peninsula, respectively (Chen et al., 2022). Specifically, owing to the removal of the underlying surface 

interference in China, FY-3D has accuracies of 79.43% and 88.50% for accuracy and accuracy without omission (Chen et al., 

2022). These accuracies were determined by comparing the results of a large-scale field experiment conducted jointly by the 

State Grid Corporation of China and China Meteorological Administration with the GFR product, thereby calculating the 130 

accuracy, including and excluding mis-judgments. This comprehensive assessment took place throughout 2020 across five 
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provinces in China—Guangdong, Guangxi, Yunnan, Guizhou, and Hainan—utilizing a combination of real-time satellite data 

and ground-truth validation to evaluate the suitability of these fire detection products. These accuracies are significantly higher 

than those achieved by MODIS, which are 74.23 and 79.69%, respectively (Chen et al., 2022). 

The location, timing and burned area of the fire events used in the GEIOBB were determined globally using the FY-3D GFR 135 

product (Chen et al., 2022). Processed fire event detection data Fengyun Satellite Remote Sensing Data Service Network of 

National Satellite Meteorological Centre (http://satellite.nsmc.org.cn/PortalSite/Default.aspx), which estimated the actual area 

of fire spots based on radiation in different infrared channels. When the mid-infrared channel was not saturated, it was used to 

estimate the sub-pixel fire spot area and temperature. Otherwise, a far-infrared channel was employed for the estimation (Zheng 

and Chen, 2020). These data offer daily fire detection at a 1-km resolution, including the location, time, burned area, and 140 

confidence level (Liu and Shi, 2023). Furthermore, multiple counts of the same fire may have been recorded on a single day, 

leading to data duplication. To address this issue, we performed a global identification and removed multiple daily detections 

of the same fire pixels and data with confidence levels below 20%. Specifically, we removed single daily fire detections within 

a 1-km radius of another fire detection. Thus, only one fire per 1 km2 of a hotspot could be counted per day and was reset on 

the next day (Wiedinmyer et al., 2023). 145 

2.2 Fuel loading (F) 

Previous studies based on burned areas have distinguished F by categorizing it according to regions of different fire types 

(Wiedinmyer et al., 2011). The data generated by this method have some discontinuities, which may lead to large deviations 

at the boundaries of different areas; this is unreasonable and does not reflect the spatial distribution pattern of F. Ground 

observation data are more accurate and reliable, but are limited by the sparse distribution of observation stations, preventing 150 

comprehensive global coverage. In contrast, satellite data cover the entire globe and provide worldwide surface parameters, 

thereby enabling biomass estimation. However, their accuracy and usability are limited by factors such as their temporal and 

spatial resolutions and cloud cover. Therefore, combining ground observations with satellite data is an effective solution. This 

fusion method combines the high accuracy of ground observation data with the wide coverage of satellite data to generate 

global biomass products. Using this method, it is possible to overcome the limitations of using a single data source, thereby 155 

enhancing the accuracy of biomass estimations. 

This study used multi-source data, including NDVI, TC, and AGB, to assess the terrestrial biomass. NDVI data were obtained 

using the MODIS Combined 16-Day NDVI fusion product available on the Google Earth Engine platform. AGB shows a 

strong linear correlation with TC and NDVI (Yao et al., 2017). The TC data were derived from the MOD44B product (DiMiceli 

et al., 2022) generated based on MODIS onboard the Terra satellite (https://lpdaac.usgs.gov/products/mod44bv061/), which 160 

provides a continuous global vegetation field at 250m resolution for each year from 2000 to the present. AGB data were 

obtained from the Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010 product 

(https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763) provided by Spawn and Gibbs (2020). This dataset uses thousands of 

satellite data points and ground measurements to produce a biomass map with a 1-km resolution (Spawn and Gibbs, 2020). A 

http://satellite.nsmc.org.cn/PortalSite/Default.aspx
https://lpdaac.usgs.gov/products/mod44bv061/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763
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combination of 2118 other ground measurements and Lidar data to validate observations, and showed that the fused map had 165 

a root mean-square error (RMSE) that was 15–21% lower than those reported by Saatchi et al. (2011) and Baccini et al. (2012). 

We used the AGB for 2010, annual TC, and NDVI data, and linearly stretched the fuel loading for other years. 

𝐹(𝑥, 𝑡) = (
𝑁𝐷𝑉𝐼𝑛𝑜𝑤 + 𝑇𝐶𝑛𝑜𝑤

𝑁𝐷𝑉𝐼2010 + 𝑇𝐶2010

) ∗ 𝐴𝐺𝐵 (2) 

where NDVInow is the mean value of the month before a single fire event, NDVI2010 is the mean value of NDVI in 2010, TCnow 

is the tree cover in the year of the fire incident, TC2010 is the tree cover in 2010, and AGB is the aboveground biomass in 2010. 170 

2.3 Combustion factor (CF) 

The CF is mainly defined as the percentage of fuel consumed during individual fire events, which primarily depends on the 

type of fuel and humidity. Typically, the CF is set as a linear variable within a specific range, which may lead to biases in 

emission estimations and generate significant uncertainties. Although some studies used TC to quantify CF and explain its 

spatial and temporal variations (Wiedinmyer et al., 2006; Qiu et al., 2016; Bray et al., 2018; Wu et al., 2018), previous research 175 

has mainly focused on areas with herbaceous vegetation cover, where the TC ranges from 40% to 60%. They assumed that the 

CF remained consistent across other land types, such as farmlands, forests, and grasslands. The fire type at the location of the 

fire event has a major influence on OBB. We used International Geosphere-Biosphere Programme (IGBP)-categorized data 

from the MODIS land cover type (LCT) information (Friedl and Sulla-Menashe, 2022) (MCD12Q1, 

https://lpdaac.usgs.gov/products/mcd12q1v061/). We reclassified the original 17 classifications into 7 categories to better 180 

differentiate fire types; grasslands and savannas (V1), woody savannas or shrubs (V2), tropical forests (V3), temperate forests 

(V4), boreal forests (V5), temperate evergreen forests (V6), and crops (V7); this was to allow for better matching in the 

calculation and subsequent analysis processes. In the GEIOBB, the CF of all fires in each grid cell was allocated as a function 

of TC, fire type, and NDVI (Ito and Penner, 2004). We segmented the reclassification results into 4 categories to calculate the 

CF. Specifically, we amalgamated the reclassification outcomes of V3, V4, V5, and V6 into forest types, designated V1 as 185 

grassland, V2 as woodland, and V7 as cropland (the specific classification method is detailed in Supplementary Information 

(SI) Table S1). 

For woodland fires, CF is highly correlated with TC (Ito and Penner, 2004): 

𝐶𝐹𝑤𝑜𝑜𝑑𝑙𝑎𝑛𝑑 = 𝐸𝑋𝑃(−0.013 × 𝑇𝐶). (3) 

For grassland fires, a change in the NDVI is usually associated with the occurrence of fires, especially in dry seasons or in 190 

areas prone to wildfires. Generally, a decrease in NDVI may indicate deteriorating vegetation health, which increases the risk 

of fires because dry or withered vegetation is more prone to burning. We introduced the vegetation condition index (VCI) to 

determine the fuel moisture conditions, which were used to measure the vegetation drought conditions by calculating 

contemporaneous changes in NDVI as a metric for assessing the contemporaneous conditions of vegetation. We supplemented 

our research based on Ito and Penner (2004) by replacing the percentage of green grass from the total grass with the VCI, 195 

https://lpdaac.usgs.gov/products/mcd12q1v061/
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which was computed using the NDVI with a time interval of 16 d at a spatial resolution of 1 km for the period of 2020–2022. 

In addition, we introduced a compensatory term to mitigate the impact of tree cover on grassland fires. 

𝑉𝐶𝐼 =
𝑁𝐷𝑉𝐼𝑛𝑜𝑤 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

, (4) 

𝐶𝐹𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 = (0.9 − 𝑇𝐶) × (−2.13 × 𝑉𝐶𝐼 + 1.38) + 𝑇𝐶. (5) 

where NDVInow is the mean value of the month before a single fire event, NDVImax is the maximum value of NDVI for the same 200 

period in the previous three years of the fire event, and NDVImin is the minimum value of NDVI for the same period in the 

previous three years of the fire event. 

For forest fires, we used moisture category factors (MCF) to measure forest moisture and conducted an analysis based on the 

partitioning of MCF values (very dry: 0.33, dry: 0.5, moderate: 1, moist: 2, wet: 2, and very wet: 5) provided by Anderson et 

al. (2004). We used the VCI as a criterion for assessing wetness and dryness and discovered that it approximately conformed 205 

to the power function distribution characteristics of VCI. Subsequently, a power function fitting was performed (R2 = 0.94), 

through which we determined the CF. 

𝑀𝐶𝐹 = 0.1759 × 𝑒3.5181×𝑉𝐶𝐼 , (6) 

𝐶𝐹𝑓𝑜𝑟𝑒𝑠𝑡 = (1 − 𝑒−1)𝑀𝐶𝐹 . (7) 

Most fires in croplands are artificially active, resulting in full combustion processes that are not designed for woody fuels. 210 

Therefore, we set the CF for crops to 0.98, which is the upper limit proposed by Wiedinmyer (2006). 

2.4 Emission factor (EF) 

EFs are used to convert dry matter burned into trace gas and aerosol emissions, which denotes the number of pollutants released 

per unit of fuel burned. The measurements of EFs in different regions for grasslands and savannas, woody savannas or shrubs, 

tropical forests, temperate forests, temperate evergreen forests, and crops were reviewed and tabulated by Akagi et al. (2011), 215 

whereas those for boreal forest fires were obtained from the averages reported by Akagi et al. (2011) and Urbanski (2014). 

The EFs for maize, sugar, and rice crop fires were taken from the averages reported by Akagi et al. (2011), Fang et al. (2017), 

Liu et al. (2016), Santiago-De La Rosa et al. (2018), and Stockwell et al. (2015). The BC EFs of BC for crop fires were sourced 

from Kanabkaew and Kim Oanh (2011) and those for wheat fires were obtained from Cao et al. (2008). In addition, the 

emission factors of NO2, PM2.5, and PM10 for the crop fire were derived from Li et al. (2007), and the EF from the crop was 220 

the average of maize, sugar, rice, and wheat. The EFs values are presented in Table 1. 

Table 1. Emission factor (g/kg) of different species. 

Species 

Grasslands 

and 

Savannas 

Woody 

Savannas 

or Shrubs 

Tropical 

Forests 

Temperate 

Forests 

Boreal 

Forests 

Temperate 

Evergreen 

Forests 

Crop 

Maize Sugar Rice Wheat 

C 488.31 489.41 491.77 468.31 478.88 493.18 687.09 323.35 368.04 429.17 

CO2 1,686a 1,681a 1,643a 1,510a 1,565b 1,623a 2,327c 1,130c 1,177c 1,470e 
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CO 63.00a 67.00a 93.00a 122.00a 111.00b 112.00a 114.70c 34.70c 93.00c 60.00e 

CH4 2.00a 3.00a 5.10a 5.61a 6.00b 3.40a 4.40c  0.40c 9.59c 3.40e 

NOX 3.90a 3.65a 2.60a 1.04a 0.95b 1.96a 4.30c  2.60c 2.28c 3.30e 

SO2 0.90a 0.68a 0.40a 1.10a 1.00b 1.10a 0.44c 0.22c 0.18c 0.85e 

OC 2.60a 3.70a 4.70a 7.60a 7.80b 7.60a 2.25c  3.30c 2.99c 3.90d 

BC 0.37a 1.31a 0.52a 0.56a 0.20b 0.56a 0.78d  0.82d 0.52d 0.52d 

NH3 0.56a 1.20a 1.30a 2.47a 1.80b 1.17a 0.68c  1.00c 4.10c 0.37e 

NO2 3.22a 2.58a 3.60a 2.34a 0.63b 2.34a 2.99f 

PM2.5 7.17a 7.10a 9.90a 15.00a 18.40b 17.90a 6.43f 

PM10 7.20a 11.4a 18.50a 16.97a 18.40b 18.40a 7.02f 

All the value of C were Calculated by CO2, CO, and CH4. 

a is average value from (Akagi et al., 2011). 

b is average from (Akagi et al., 2011) and (Urbanski, 2014). 225 

c is average from (Akagi et al., 2011; Fang et al., 2017; Liu et al., 2016; Santiago-De La Rosa et al., 2018; Stockwell et al., 

2015). 

d is from (Kanabkaew and Kim Oanh, 2011). 

e is from (Cao et al., 2008). 

f is from (Li et al., 2007). 230 

3 Results and Discussions 

3.1 Spatial map of OBB emission estimates 

We estimated global OBB emissions using GEIOBB, and the average annual values for 2020–2022 were 2586.88 Tg C, 3.77 

Tg BC, 15.83 Tg CH4, 382.96 Tg CO, 8841.45 Tg CO2, 5.24 Tg NH3, 15.85 Tg NO2, 18.42 Tg NOX, 18.68 Tg OC, 56.03 Tg 

PM10, 42.46 Tg PM2.5, and 4.07 Tg SO2 (Table 2). Taking carbon as an example, the annual carbon emissions from the OBB 235 

were estimated for the period 2020–2022 (Figure 1), and the total OBB emissions reached 7760.63 Tg C. The average annual 

carbon emissions during this period were 2586.88 Tg. Overall, clear spatial variations in the OBB carbon emissions were 

observed across Africa and certain regions of the Americas and Asia. In Central and Southern America, elevated emissions 

were observed in central and northeastern Brazil, northern Bolivia, northern Paraguay, eastern Mexico, and Honduras. In 

Africa, substantial OBB emissions originate from Central Africa (excluding the Democratic Republic of the Congo), the 240 

northern regions of West Africa, and the southern regions of East Africa, where most 1 × 1 km grid cells exhibit annual average 

carbon emissions exceeding 50 g C/m². Elevated carbon emissions were observed in Southeast Asia (Indo-Chinese Peninsula), 

with significant emissions detected in western and eastern Myanmar, northern Laos, eastern Cambodia, southern Nepal, and 

parts of northern India. Notable carbon emissions were also observed in equatorial Asia, South Sumatra, South Kalimantan, 

and southern Papua New Guinea. 245 
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Figure 1: Spatial distribution of annual average OBB carbon emissions (1 × 1 km) during 2020–2022. 

Table 2. Global OBB annual emissions and region-specific average annual emissions during 2020–2022 (Tg Species/year). 

 C BC CH4 CO CO2 NH3 NO2 NOX OC PM10 PM2.5 SO2 

2020 2,861.05 4.09 17.39 423.12 9,777.79 5.76 17.58 20.37 20.64 61.59 47.18 4.54 

2021 2,991.16 4.52 18.22 439.67 10,226.55 6.11 18.17 21.36 21.64 64.76 48.89 4.70 

2022 1,908.42 2.69 11.87 283.09 6,520.04 3.87 11.82 13.53 13.74 41.76 31.31 2.97 

average 2,586.88 3.77 15.83 381.96 8,841.46 5.24 15.85 18.42 18.68 56.03 42.46 4.07 

BONA 72.71  0.16  0.49  10.92  248.08  0.18  0.36  0.49  0.63  1.80  1.29  0.11  

TENA 165.73  0.30  1.02  26.14  563.78  0.38  0.92  1.11  1.45  3.98  3.18  0.28  

CEAM 34.11  0.06  0.23  5.21  116.26  0.08  0.20  0.23  0.27  0.81  0.56  0.05  

NHSA 42.93  0.06  0.28  6.42  146.58  0.08  0.28  0.30  0.31  1.01  0.70  0.06  

SHSA 520.55  0.61  3.74  83.09  1,767.83  1.12  3.42  3.45  4.01  13.00  9.08  0.74  

EURO 13.02  0.02  0.09  2.02  44.33  0.03  0.08  0.09  0.09  0.26  0.22  0.02  

MIDE 8.37  0.01  0.06  1.28  28.54  0.02  0.05  0.06  0.05  0.15  0.13  0.01  

NHAF 394.25  0.41  2.05  54.58  1,354.19  0.62  2.56  2.99  2.39  7.01  6.01  0.66  

SHAF 847.03  1.28  4.52  116.23  2,910.72  1.52  5.17  6.40  5.55  16.48  12.82  1.38  

BOAS 167.35  0.31  0.98  23.57  573.90  0.35  0.93  1.22  1.22  3.53  2.68  0.27  

CEAS 27.93  0.04  0.21  4.55  94.68  0.08  0.17  0.19  0.20  0.56  0.47  0.04  

SEAS 197.29  0.37  1.54  32.49  668.10  0.55  1.16  1.26  1.71  5.24  3.50  0.28  

EQAS 13.20  0.03  0.10  2.04  44.94  0.03  0.08  0.09  0.11  0.36  0.22  0.02  
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AUST 82.38  0.11  0.52  13.41  279.54  0.19  0.48  0.54  0.70  1.83  1.59  0.15  

 

We divided the world into 14 regions for analysis and discussion; the geographical regions were the same as those used by van 250 

der Werf et al. (2017) (Figure 2(a)). As delineated by the reclassification in Figure 2(b), savanna grasslands emerged as the 

predominant LCT worldwide, encompassing 53.30% of the total area. This type primarily occurs in South America, Africa, 

and Asia. Following closely is woody savanna accounting for 19.74% of the global coverage. They are predominantly situated 

in Boreal Asia, Australia, selected areas of southern Africa, and parts of North America. The third most prevalent type was 

tropical forest, comprising 9.03% of the total area, mainly distributed in South America, particularly within the Amazon 255 

Rainforest, regions adjacent to the African equator, and Southeast Asia. Other LCTs, such as temperate forest, boreal forest, 

temperate evergreen forest, and crops, are less extensively spread and exhibit a more dispersed distribution. 

 

Figure 2 (a) Global geographic regions and its abbreviations. The acronyms on the figure represent the following: BONA: Boreal 

North America; TENA: Temperate North America; CEAM: Central America; NHSA: Northern Hemisphere South America; SHSA: 260 
Southern Hemisphere South America; EURO: Europe; MIDE: Middle East; NHAF: Northern Hemisphere Africa; SHAF: Southern 

Hemisphere Africa; BOAS: Boreal Asia; CEAS: Central Asia; SEAS: Southeast Asia; EQAS: Equatorial Asia; AUST: Australia 

and New Zealand;(b) Global land cover type reclassification. 

This study then quantified the estimated global average annual OBB carbon emissions from different regions and fire types 

during 2020–2022 (Table 3). Southern Hemisphere Africa (SHAF) was found to be the primary source of global OBB carbon 265 

emissions (847.04 Tg; 32.74%); this trend also held true for other pollutants. Southern Hemisphere South America (SHSA) 

and Northern Hemisphere Africa (NHAF) ranked second and third, accounting for 20.12% (520.55 Tg) and 15.24% (394.26 

Tg), respectively. The contributions of each fire type to the global OBB carbon emissions were then quantified. Savanna 

grasslands were the largest contributor (1209.12 Tg, 46.74%), followed by woody savanna/shrubs (854.71 Tg, 33.04%), 

tropical forest (313.32 Tg, 12.11%), temperate forest (92.65 Tg, 3.58%), crop (58.06 Tg, 2.24%), temperate evergreen forest 270 

(41.65 Tg, 1.61%), and boreal forest (17.37Tg, 0.67%). According to GFED4.1s, the annual average carbon emissions from 

wildfires in SHAF, SHSA, and NHAF during 2020–2022 were 1271.63 Tg/year, accounting for approximately 64.55% of the 

global total OBB carbon emissions. Their research findings are similar to the results of this study, which recorded 1761.84 Tg, 

equivalent to 68.10% of the total. 
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Specifically, the contributions of the seven fire types to OBB carbon emissions varied dramatically across continents (van der 275 

Werf et al., 2010). In SHAF, the primary sources of OBB were savanna grasslands and woody savanna or shrubs, contributing 

465.85 (54.99%) and 324.08 Tg/year (38.26%), respectively, consistent with Nguyen et al. (2023). Unlike SHAF, OBB in 

SHSA primarily originated from savanna grasslands and tropical forests (Shi et al., 2015), contributing 225.86 (43.38%) and 

177.17 Tg/year (34.03%) to the region’s carbon emissions, respectively. This variation could be associated with the ecological 

and climatic conditions unique to each region (Sahu and Sheel, 2014; Santana et al., 2016). South America hosts the world’s 280 

largest rainforests and is known for its rich biodiversity and biomass (Fagua and Ramsey, 2019). However, they are severely 

threatened human-induced deforestation and forest fires (Chen et al., 2013). Studies indicate that forest fires and human 

activities, such as deforestation and land-use changes, are the main drivers of increased carbon emissions from OBB in this 

region (Nepstad et al., 1999; Cochrane and Laurance, 2002). In the NHAF, the predominant source of OBB was savanna 

grasslands (Roberts et al., 2009), contributing 76.14% to the region’s total biomass-burning carbon emissions, averaging 285 

300.21 Tg/year. This may be related to the arid climate and low forest cover in the region (De Sales et al., 2016; Ichoku et al., 

2016). Previous research has shown that climate change and human activities, such as grazing and agricultural expansion, are 

the major factors in this region (Scholes and Andreae, 2000; Flannigan et al., 2009). 

Table 3. Annual carbon emissions from global OBB in different regions during 2020–2022 (Unit: Tg/year). 

Different 

Region 

Savanna 

Grasslands 

Woody 

Savanna/Shrubs 

Tropical 

Forest 

Temperate 

Forest 

Boreal 

Forest 

Temperate 

Evergreen Forest 
Crop Total 

BONA 4.43  57.55  0.00  0.36  7.58  2.15  0.63  72.70  

TENA 41.20  83.89  0.00  5.71  0.00  30.85  4.07  165.72  

CEAM 8.62  17.47  4.57  2.33  0.00  0.02  1.11  34.12  

NHSA 19.12  11.08  12.23  0.28  0.00  0.00  0.22  42.93  

SHSA 225.86  76.69  177.17  27.49  0.00  0.37  12.98  520.56  

EURO 5.21  4.60  0.00  0.71  0.19  0.40  1.92  13.03  

MIDE 4.95  1.17  0.00  0.15  0.00  0.33  1.78  8.38  

NHAF 300.21  47.03  30.31  3.93  0.00  0.00  12.78  394.26  

SHAF 465.86  324.09  41.17  12.70  0.00  0.00  3.22  847.04  

BOAS 59.51  95.97  0.00  1.29  9.01  0.07  1.50  167.35  

CEAS 10.31  7.71  0.68  1.86  0.59  0.33  6.45  27.93  

SEAS 21.46  101.57  42.39  22.26  0.00  0.26  9.36  197.30  

EQAS 1.43  7.23  4.45  0.02  0.00  0.00  0.08  13.21  

AUST 40.95  18.66  0.35  13.57  0.00  6.86  1.97  82.36  

 290 

Fire events in savanna grasslands remain a major source for most pollutants generated by global OBB, whereas crops contribute 

relatively less (Figure 3). However, with respect to BC and NH3, fire events in woody savanna/shrubs have become the primary 

contributors (BC, 59.40%; NH3, 39.33%). Furthermore, when considering the different regions, the primary sources of 
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pollutants from OBB vary. For instance, fire events in woody savanna/shrubs were the primary sources in the BONA, SEAS, 

and EQAS regions, whereas crop-related fire events mainly occurred in the EURO, MIDE, CEAS, and SEAS regions. 295 

 

Figure 3: Cumulative percentage of annual OBB emissions for each land type in each region during 2020–2022. 

3.2 Temporal variations in OBB carbon emissions 

The monthly carbon emissions at both the global and regional levels are illustrated in Figure 4. Overall, global OBB carbon 

emissions experienced notable shifts, with considerable monthly variations from 2020 to 2022, and peak emissions were 300 

observed in August 2021 (729.37 Tg). Global OBB carbon emissions were 2,861.05 Tg in 2020, rising slightly to 2,991.15 Tg 

in 2021, but showing a significant decline to 1,908.41 Tg in 2022. Monthly and seasonal variations in the OBB carbon 

emissions from each region exhibited substantial differences. Of the 14 regions, the annual contribution of SHAF, the largest 

global contributor of OBB carbon emissions (32.74%), increased by 2.70% per year, with the peak emission of 283.59 Tg 

occurring in August 2021. SHAF has emerged as a primary contributor to global OBB carbon emissions owing to its substantial 305 

biomass and escalating human activities. Abundant biomass, including dense vegetation and rich forest resources, provides 

ample fuel for carbon emissions that are exacerbated by intensifying human activities (Chen et al., 2017). In August, specific 

meteorological conditions, such as high temperatures and low humidity facilitated the increased combustibility of biomass, 

resulting in a peak in carbon emissions (Shea et al., 1996). Although the SHAF region consistently remained the largest 

contributor to global OBB carbon emissions during 2020–2022, its annual emissions remained relatively stable, with minor 310 
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fluctuations. Conversely, emissions from SHSA decreased at a rate of 105.22 Tg per year from 2020 to 2022, with peak 

monthly emissions over the 3 years reaching 184.63, 222.12, and 123.98, respectively, size and status of emissions consistent 

with Griffin et al. (2023). Annual C emissions in NHAF also declined, decreasing by 55.44 Tg over the 3 years, with its 

emissions accounting for the lowest percentage at 13.76% in 2021. 

Cumulatively, SHAF, SHSA, and NHAF represent almost 70% of the global OBB carbon emissions, a testament to the 315 

profound intertwining of their native ecosystems, land utilization, and climatic influences on biomass combustion (Roy et al., 

2022). Deeper exploration revealed that the SHAF, which is endowed with vast stretches of savannahs and grasslands, 

undergoes intermittent dry periods (Hoffmann and Jackson, 2000). This climatic pattern, combined with entrenched 

agricultural customs like slash-and-burn, renders the region prone to wildfires (Lourenco et al., 2022). In the SHSA, which 

covers significant portions of the Amazon rainforest, rampant deforestation often involves controlled burning (Kröger and 320 

Nygren, 2020). Unfortunately, these sometimes escalate beyond the control level, adding substantially to emissions figures 

(Eufemia et al., 2022). In contrast, the NHAF’s shifting land-use paradigms, coupled with increasingly recurrent droughts—

potentially a byproduct of global warming—intensify frequency of fires in the area (Machete and Dintwe, 2023). 

Examination of monthly emissions data revealed significant regional disparities. For example, every January, the NHAF, 

influenced by its monsoon cycles (Martin and Thorncroft, 2014), consistently emerges as the primary contributor to biomass 325 

carbon emissions, accounting for contributions of 50.74, 81.16, and 67.66% across the 3 years, as reported by Tsivlidou et al. 

(2022). By March, SEAS witnessed a surge in emissions, largely due to shifts in forestry practices (Shi et al., 2014), with 

contributions escalating to 50.82, 57.78, and 40.67% in subsequent years (Pletcher et al., 2022), respectively. The peak biomass 

carbon emissions in 2020 occurred in September, reaching 500.62 Tg. However, the peaks in 2021 and 2022 appeared sooner 

in August, with emissions of 729.37 and 357.57 Tg, respectively. The 2021 ascent of BONA emissions might be linked to 330 

altered land-use guidelines or increased farming activities (Zerriffi et al., 2023) and the many wildfires that occurred (Hoffman 

et al., 2022), while California’s heightened investment in fire mitigation programs (Umunnakwe et al., 2022) and the U.S. 

Forest Service’s implementation of a decade-long strategy (Confronting the Wildfire Crisis, 2023) in 2022 have effectively 

curbed wildfire incidents in the TENA region. This shift in the perception of forest fire management has been instrumental in 

mitigating wildfire risk in the area. Nevertheless, it is important to acknowledge that the occurrence of wildfires varies over 335 

time (Bowman et al., 2017). 
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Figure 4: Global OBB carbon emissions in different regions during 2020–2022. 

Figure 5 shows the notable temporal fluctuations in global wildfire carbon emissions for different fire types throughout the 340 

study period from 2020 to 2022. Global combustion exhibited the highest carbon emissions in August and September. In 

September 2020, single-month emissions peaked at 500.62 Tg C. However, in 2021 and 2022, the zenith of carbon emissions 

from fires occurred in August, registering at 729.37 and 357.57 Tg respectively. The smaller peaks observed in March should 

not be overlooked. Interestingly, although the timing of these emission peaks varied, their main contributing factors remained 

similar. In September, the daily carbon emission peaks from savanna grasslands, woody savanna/shrubs, and tropical forest 345 

regions were 7.54 (38%), 7.12 (37%), and 3.36 (31%) Tg C/day, respectively. These sources constituted the primary 

contributors to the global biomass combustion carbon emissions from July to October. 

Spatial and temporal variations in global OBB emissions are pronounced because of the differences in ecosystems, climatic 

conditions, and human activities across different regions (Moritz et al., 2012; Ward et al., 2018). For instance, areas with 

expansive tropical grasslands, such as Sub-Saharan Africa and Australia, typically experience high levels of OBB emissions 350 

because of the prevalence of both natural and anthropogenic fire activities (Williams et al., 2019; Zheng et al., 2021). Moreover, 

many regions undergo cyclical OBB emission patterns, coinciding with the onset of the dry and wet seasons (Dury et al., 2011; 

Gautam et al., 2013). The dry season, characterized by an increase in dry biomass and conducive weather conditions, often 

witnesses a surge in fire activity, resulting in elevated emission levels (Zhang et al., 2023b). These considerable spatial and 

temporal fluctuations in global OBB emissions mirror the diversity of ecosystems and climatic conditions across various 355 

geographic locations (Fagre et al., 2003), which are further influenced by human endeavours and natural fire regimes (Jones 

et al., 2022). 

In 2020 and 2021, significant wildfire events, such as the California wildfires and Australian forest fires, led to an escalation 

in carbon emissions from fires (Collins et al., 2021; Gallagher et al., 2021; Keeley and Syphard, 2021; Collins et al., 2022; 

Safford et al., 2022). However, a dual phenomenon was observed in 2022. The implementation of robust wildfire control 360 
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measures contributed to a reduction in emissions (Wollstein et al., 2022); however, an overall augmentation in annual 

precipitation led to a reduction in the degree of drought (Thackeray et al., 2022; Zhang et al., 2023a). Consequently, the annual 

OBB carbon emissions in 2022 were lower than those in the preceding years. 

 

Figure 5: Variations in total global OBB carbon emissions and carbon emissions in different fire types across various regions from 365 
2020 to 2022. 

Specifically, carbon emissions resulting from fire events were analysed in 14 global subregions from 2020 to 2022 (Figure 6). 

This analysis revealed the primary sources of carbon emissions from fires worldwide and provided insights into the main 

constituents of combustion in different regions. Emission patterns across different global regions vary both temporally and 

spatially. The top three major emitting regions were SHAF, SHSA, and NHAF, which were closely associated with global 370 

emission trends, representing the main source of the emission peak in August and the emission during the winter months. 

During 2020 to 2022, the OBB conditions in the SHAF, SHSA, and NHAF regions have been relatively stable, with daily peak 

values of 12.04 Tg, 9.81 Tg and 4.38 Tg respectively. For the SHAF and SHSA, burning activities were predominantly 

observed from July to September, which can be attributed to a combination of dry weather, strong winds, and specific 

meteorological conditions (Eames et al., 2023; Li et al., 2023). These factors collectively enhanced the combustibility of the 375 

biomass during this period, leading to an increased likelihood of burning. In the SHAF, emissions were primarily influenced 

by savanna grasslands (49%) and woody savanna/shrubs (47%). Similarly, in the SHSA, emissions were mainly affected by 

savanna grasslands (34%) and tropical forests (38%). While burning in the NHAF region is concentrated between November 

and January, primarily in January, this pattern is significantly influenced by the practice of slash-and-burn agriculture (Serrani 

et al., 2022), with savanna grasslands accounting for 77% of the contributing factors. 380 
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CEAM and SEAS exhibited similar wildfire patterns, primarily occurring in March, and a noticeable decrease in burning 

activity emissions from 2020 to 2022. The predominant fire type in the CEAM region was woody savanna/shrubs (50%), 

whereas in the SEAS region, it was mainly influenced by woody savanna/shrubs (50%) and tropical forest (25%). Overall, 

owing to similarities in factors, such as biomass fuel load and climate, the wildfire types in the CEAM and SEAS were quite 

alike. 385 

The BONA, TENA, EURO, MIDE, BOAS, and AUST share a common characteristic: OBB carbon emissions exhibit a high 

degree of randomness, indicating their primary influence on natural wildfire events. For instance, British Columbia, Canada, 

experienced a series of wildfires in July 2021 (Copes-Gerbitz et al., 2022), leading to peak carbon emissions for BONA in 

2021 (4.46 Tg). TENA, affected by a series of wildfires in the western United States in 2020 (Safford et al., 2022) and the 

ongoing wildfires in California in 2021 (Varga et al., 2022), showed elevated emissions in both years (2020, 6.12 Tg; 2021, 390 

3.76 Tg), with woody savanna/shrubs being the main fire event type. For the EURO, the apex of wildfires in 2021 was distinctly 

shaped by wildfires in Southern and Southeastern Europe (Tedim et al., 2022). The emissions were predominantly associated 

with fire type savanna grassland (48%). Moreover, in the BOAS region, wildfires were influenced by forest fires in Siberia 

(Ponomarev et al., 2022), where the principal fire type was woody savanna/shrubs (31%). Regarding AUST, in January 2020, 

a significant forest fire event occurred (Storey et al., 2023), resulting in peak emission of 4.48 Tg. The primary fire types were 395 

temperate forest (24%) and savanna grassland (18%). 

The situation of OBB in CEAS is intricate. In March, substantial OBB emissions resulted from agricultural practices, such as 

slash and burn cultivation and the burning of crop residues (Liu and Shi, 2023), with crops being the predominant fire event 

type (30%). In contrast, from August to November, OBB was mainly attributed to scorching weather and monsoon conditions 

(Shi et al., 2018), with savanna grasslands being the dominant type (28%). Recently, owing to improvements in agricultural 400 

management practices, there has been a noticeable decrease in OBB events of crop types. 
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Figure 6: Global OBB emissions for different fire types in different regions (averaged over a 15-day window) from 2020 to 2022. 

3.3 Cross-verification in different database 

In this study, we juxtaposed the global distribution of OBB carbon emissions as estimated in GEIOBB with data published in 405 

the GFAS, GFED, and FEER datasets for 2020–2022 (Figure 7). Overall, our assessments corresponded well with the GFAS, 

GFED, and FEER, although there was an overestimation in high-latitude regions, the overall differences across large regions 

were minimal. For instance, we estimated the total carbon emissions in the BONA region to be 72.71 Tg, while the values 

from GFAS, GFED, and FEER were 61.21, 125.05, and 35.83 Tg, respectively. This variance can be attributed to the different 

resolutions (1 km×1 km, 0.1°×0.1°, 0.25°×0.25°, and 0.1°×0.1°) and different estimation methodologies employed. Both our 410 

study and the GFED adopted an estimation approach based on the burned area, whereas the GFAS and FEER formulated their 

inventories based on fire radiative energy. Consequently, our inventory yielded accurate assessment results and captured the 

spatial variation and heterogeneity of minor OBB emissions effectively, which could have been overlooked in coarse-scale 

analyses. Additionally, the GFED utilizes MODIS satellite data to calculate the available biomass fuel, whereas we leverage 

the higher precision and small fire quantification capability of FY-3D GFR data. Disparities between different satellite data 415 

and variations in parameter definitions during inventory formulation contribute to these differences. Moreover, we adopted 
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published local measurement-based emission factors and improved correlation coefficients for estimating OBB carbon 

emissions, which are more reliable and significantly enhance the local emission estimation accuracy. 

 

Figure 7: Comparison between this study and other emission inventories during 2020–2022 average emissions at 0.5° resolution. 420 

Specifically, in high emission regions (Figure 8), such as NHAF, NHSA, and CEAS, our estimation of OBB carbon emissions 

(multi-year average 394.25, 42.93, and 27.93 Tg; monthly peak average 102.52, 11.86, and 6.24 Tg) aligned closely with those 

of GFED (multi-year average 342.31, 29.10, and 38.16 Tg; monthly peak average 97.58, 9.86, and 10.91 Tg) and GFAS (multi-

year average 288.81, 35.80, and 43.51 Tg; monthly peak average 70.65, 9.64, and 9.82 Tg). However, discrepancies were 

observed between MIDE and EQAS, with FINN notably overestimating carbon emissions from fires. This overestimation by 425 

FINN is attributed to its methodology (Wiedinmyer et al., 2011), which relies on a combination of emission factors, conversion 

rates, and fire radiative energy  values to estimate the emissions from agricultural residue burning. This contrasts with our 

approach, which bases estimates on the burned area and thus can accurately quantify carbon emissions from large fires and 

reduce uncertainty in fire data (Shi et al., 2020). Additionally, emission estimates during the periods by FINN, GFED, and 

GFAS were generated using data from the Terra and Aqua satellites, which captured data at 10:30 and 13:30 LT, respectively. 430 

Consequently, the burned area algorithm of the GFED cannot effectively detect small, short-lived agricultural fires, which 

owing to their intermittent nature, occur briefly between the intervals of satellite passes (Giglio et al., 2010). However, the use 

of FY-3D, which captures data at 14:00, was highly effective in capturing such events. While, the average annual estimated 
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OBB emissions exceed those reported by GFED by 617.14 Tg C/year. These discrepancies are probably related to small-scale 

fire events. For instance, the largest difference is observed in the SHAF region, exceeding by 248.01 Tg C/year, followed by 435 

SHSA (190.28 Tg C/year) and SEAS (103.92 Tg C/year). In the SHAF region, compared to MODIS active fire, FY-3D GFR 

detects more small fire points (Figure S2, Figure S3 (a), Figure S3 (b)), which are isolated within 5-kilometer resolution pixels. 

However, in this area, the majority of fire events are large-scale incidents, which means that although small fires are more 

numerous, they contribute minimally to the total emissions. Furthermore, fire events in SHSA (Figure S3 (c), Figure S3 (d)) 

and SEAS (Figure S3 (e), Figure S3 (f)) are primarily triggered by human activities, consisting of small-scale incidents that 440 

are significantly linked to the overall emissions. In contrast, areas frequently affected by large-scale fire events show relatively 

smaller discrepancies, such as TENA (99.05 Tg C/year), NHAF (51.94 Tg C/year), and other regions including NHSA, AUST, 

CEAM, MIDE, EURO, and EQAS (all under 15.00 Tg C/year). 

The AGB values used in this study were directly derived from a dataset generated by combining field and satellite observations 

(Avitabile et al., 2016). GFED, calculates this value through simulations using the biogeochemical CASA model. While GFED 445 

has adjusted turnover rates for herbaceous leaves and surface litter at the ecosystem level to match the observed AGB used in 

this study, the significant differences in the estimated AGB between biogeochemical model simulations and field 

measurements are noteworthy (van der Werf et al., 2017). Furthermore, a high-resolution emissions inventory of 1 × 1 km was 

developed. This inventory allows for the capture and description of spatial variations and heterogeneity in small-scale OBB 

emissions, providing detailed information on spatial discrepancies that may be missed by large and coarse grid pixels (Shi et 450 

al., 2019). 
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Figure 8: Comparison of monthly emissions in different regions of this and other emission inventories. 

We compared and validated the accuracy of monthly OBB carbon emission estimates in 14 global subregions using three 

global OBB fire products: GFAS, GFED, and FEER (Figure 9). The Taylor diagram illustrates a high degree of consistency 455 

between these estimates and other inventories in terms of the standard deviation, correlation coefficient, and amplitude ratio. 

Overall, the results of this study were closer to the GFED and GFAS inventories, with the best agreement observed with the 

GFAS inventory. Our results show a correlation coefficient >0.70 (p < 0.01) in over 80% of the regions with the other three 

inventories, indicating a strong positive correlation and consistency in data trends between our study and the other three lists 

in most regions. Furthermore, in the top three emission source regions, SHAF, SHSA, and NHAF, our correlation coefficients 460 

with the other three emission inventories were all >0.90, standard deviation ratios were <2.00, and normalized centered root 

mean square errors were <0.50. For example, compared with the other three inventories in the NHAF region, the correlation 

coefficients were all 0.97, with standard deviations of 0.93 (GFED), 0.66 (GFAS), and 1.24 (FEER). However, when compared 

with the FEER inventory, there were still disparities in the estimated results between the FEER inventory and this study. For 

instance, in low-emission regions, such as EQAS, NHSA, CEAM, and MIDE, the correlation coefficients ranged from 0.60 to 465 

0.95, with standard deviation exceeding 1.00. This was attributed to FEER’s use of the FRE-based approach and overestimation 

in quantifying small fire points (Ye et al., 2023).  
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In summary, we demonstrated that the GEIOBB was a dataset with relatively high-quality estimates of global OBB emissions 

and performed well across all time periods and regions. Overall, a comparison with multiple inventories indicated that our 

GEIOBB model could effectively capture the spatial and temporal distribution characteristics of OBB at large scales. 470 

 

Figure 9: Normalized Taylor diagram plot of the comparison between GFED, GFAS, and FEER and this study with monthly OBB 

carbon emission. 

3.4 Advantages 

To create a more accurate and effective biomass combustion carbon emission inventory, our research introduced three 475 

significant improvements compared to other inventory products. (1) The input global fire spot monitoring data from FY-3D 

showed a higher accuracy than MODIS in monitoring active fires (Xian et al., 2021). The OBB emissions exhibited significant 

consistency with the satellite fire detection results. Existing OBB emission estimation inventories differ mainly in the 

optimization of relevant parameters and estimation methods; however, they all rely on MODIS fire detection results as their 

primary data source. Our experiment utilized data from FY-3D GFR, which provides higher precision and the capability to 480 

quantify small-scale fire points more accurately (Yin et al., 2020) . Consequently, the accuracy of the OBB carbon emissions 

assessment significantly improved. (2) Satellite and observational AGB resulted in less uncertainty than land cover based 

available biomass. Previous studies have used fixed values for AGB with regional and land cover-based partitioning. Our 

research employed AGB inventory data, which, in contrast to the traditional method of regional sub-surface value assignment, 

better represents spatial variation trends. Additionally, by incorporating dynamic adjustment methods, we mitigated the 485 

temporal distribution shortcomings inherent in AGB data. This approach significantly enhances the portrayal of global biomass 

distribution across both time and space dimensions; (3) Spatially and temporally variable CF scaled by several vegetation 

indices can reflect a more accurate fraction of burned biomass than the allocated constants based on fire types. We optimized 

the previous single fixed value or simple formula-based definitions of CF by incorporating numerous parameters to better 
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represent vegetation combustion conditions. To address the varying fire conditions, we performed a detailed subdivision based 490 

on different fire types. This advancement over conventional methods of fixed-value assignment or unified fixed-value methods 

without substrate distinction, enables a more effective computation of burn factors for different types of fires, which can 

significantly enhance the delineation and understanding of burn factors in the biomass combustion process, paving the way for 

a more accurate carbon emission inventory. Through these notable improvements, our biomass combustion carbon emissions 

inventory is a robust tool that provides precise and insightful analyses instrumental for advancement in the field of biomass 495 

combustion carbon emissions assessment.  

3.5 Uncertainties 

There were relatively high uncertainties in the estimation of OBB emissions for the seven types; the uncertainties were 

associated with the burned area, F, CF, and EF. Although the FY-3D GFR dataset is reliable for most OBB events, its resolution 

of 1 km results in poor detection performance for small fire points (Zheng et al., 2023). The detected active fires were also 500 

underestimated due to cloud cover/thick smoke, with an omission error of approximately from 10%–30% (Giglio et al., 2006; 

Schroeder et al., 2008; Roberts et al., 2009). Additionally, the uncertainties in the AGB calculations developed by Spawn and 

Gibbs (2020) ranged from 20% to 80%. Specifically, for approximately 80% of the area, the AGB uncertainties were <30%, 

whereas in regions, such as Africa and South America, high uncertainties of 60%–70% were observed. The estimated CF 

shows uncertainties of approximately 20–30% based on empirical formulas (Zhang et al., 2008). The typical uncertainties for 505 

trace gas and aerosol emission factors for each land type, as compiled by Shi et al. (2015), ranged from 20% to 50%. Owing 

to the inherent uncertainties in all input parameters, after estimating the OBB emission inventories, we quantitatively assessed 

the estimation uncertainties of all emission species using 20,000 Monte Carlo simulations to calculate emission ranges with a 

90% confidence interval. Based on this, the emission ranges for different species are as follows: 1,168.02–4,120.83 Tg C, 

2.31–5.48 Tg BC, 7.73–25.26 Tg CH4, 193.11–505.66 Tg CO, 2,994.71–14,153.75 Tg CO2, 3.31–8.49 Tg of NH3, 7.92–26.08 510 

Tg NO2, 12.70–26.87 Tg NOX, 8.37–29.35 Tg OC, 37.66–84.17 Tg PM10, 19.85–61.62 Tg PM2.5, and 1.67–6.69 Tg SO2. 

4 Conclusion 

We developed a high-spatial-resolution (1 km×1 km grid) and daily inventory of global OBB emissions. Our inventory used 

the updated satellite-based burned area product (FY-3D GFR), observational and satellite-based AGB, and vegetation index-

based spatiotemporally variable combustion efficiency data to estimate global OBB carbon emissions. The average annual 515 

estimated OBB emissions for 2020–2022 were 2,586.88 Tg C, 8841.45 Tg CO2, 382.96 Tg CO, 15.83 Tg CH4, 18.42 Tg NOX, 

4.07 Tg SO2, 18.68 Tg OC, 3.77 Tg BC, 5.24 Tg NH3, 15.85 Tg NO2, 42.46 Tg PM2.5 and 56.03 Tg PM10. 

Taking carbon emission as an example, the average annual estimated OBB emissions were 72.71 Tg of BONA, 165.72 Tg of 

TENA, 34.11 Tg of CEAM, 42.93 Tg of NHSA, 520.54 Tg of SHSA, 13.02 Tg of EURO, 8.37 Tg of MIDE, 394.32 Tg of 

NHAF, 847.03 Tg of SHAF, 167.35 Tg of BOAS, 27.93 Tg of CEAS, 197.29 Tg of SEAS, 13.20 Tg of EQAS, and 82.37 Tg 520 
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of AUST. NHAF, as the primary contributor in January, accounted for 50.74%, 81.16%, and 67.66% in the three respective 

years. During the first peak of the years, March was mainly influenced by increased SEAS emissions (2020: 50.82%, 2021: 

57.78%, and 2022: 40.67%). In 2020, the annual peak occurred in September at 500.62 Tg, while in 2021 and 2022, it shifted 

to August, reaching 729.37 and 357.57 Tg, respectively. Peaks from savanna grasslands, woody savanna/shrubs, and tropical 

forest regions were 7.54 (38.37%), 7.12 (37.42%), and 3.36 Tg (31.01%), respectively. 525 

We demonstrated that savanna grassland contributed the largest portion (46.74%) of total emissions, followed by woody 

savanna/shrubs (33.04%) and tropical forest (12.11%). Total OBB carbon emissions were the highest from SHAF, followed 

by SHSA, and NHAF. The fire types where fires occurred were predominantly savanna grasslands, woody savanna/shrubs, 

and tropical forest in the SHAF, SHSA, and NHAF, and woody savanna/shrubs in SEAS. Furthermore, our data indicate a 

pronounced seasonal trend in carbon emissions. Regions, such as the SHAF, SHSA, and TENA, played pivotal roles, 530 

accounting for the surge in global carbon emissions observed in August. 

Our high-spatial-resolution multi-species emission inventory and spatiotemporal characteristics analysis will provide scientific 

and reliable evidence for formulating carbon emission policies and assessing temporal emission variation. Effective control of 

the savanna grasslands fire in the SHAF, SHSA, and NHAF as well as tropical forest fires in the SHSA and woody 

savanna/shrubs fires in the SHAF can greatly reduce carbon emissions. Moreover, this carbon emissions inventory can be used 535 

for regional biogeochemical circulation, atmospheric chemical simulations, and environmental health impacts. The accuracy 

and depth of our findings further underscore the potential for combining our bottom-up approach with top-down satellite 

observational methods, paving the way for refinement in future studies. 
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