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Abstract: Open biomass burning (OBB) significantly affects regional and global air quality, climate change, and human health. 15 

It is susceptible to fire types, including forests, shrublands, grasslands, peatlands, and croplands burning. Global high–

resolution satellites can detect active fires, enabling a more accurate estimation of these emissions. In this study, we developed 

a global high–resolution (1×1 km) daily emission inventory associated with OBB emissions using the Chinese Fengyun–3D 

satellite’s global fire spot monitoring data, satellite and observational biomass data, vegetation index–derived spatiotemporal 

variable combustion efficiencies, and land–type–based emission factors. The average annual OBB emissions for 2020–2022 20 

were 2,586.88 Tg C, 8841.45 Tg CO2, 382.96 Tg CO, 15.83 Tg CH4, 18.42 Tg NOX, 4.07 Tg SO2, 18.68 Tg OC, 3.77 Tg BC, 

5.24 Tg NH3, 15.85 Tg NO2, 42.46 Tg PM2.5 and 56.03 Tg PM10. Specifically, taking carbon emissions as an example, the 

average annual OBB for 2020–2022 were 72.71 (Boreal North America; BONA), 165.7 (Temperate North America, TENA), 

34.1 (Central America; CEAM), 42.9 (Northern Hemisphere South America; NHSA), 520.5 (Southern Hemisphere South 

America; SHSA), 13 (Europe; EURO), 8.4 (Middle East; MIDE), 394.3 (Northern Hemisphere Africa; NHAF), 847 (Southern 25 

Hemisphere Africa; SHAF), 167.4 (Boreal Asia; BOAS), 27.9 (Central Asia; CEAS), 197.3 (Southeast Asia; SEAS), 13.2 

(Equatorial Asia; EQAS), and 82.4 (Australia and New Zealand; AUST) Tg. SHAF was identified as the region with the largest 

emissions. Notably, savanna grassland accounted for the lion’s share of total emissions, contributing to 46%, followed by 

woody savanna/shrubs at 33%. Moreover, notable seasonal variability characterizes the OBB carbon emissions, with marked 

increases observed in August and September (annual average 441.32 Tg C) compared to other months (annual average 170.42 30 

Tg C). This surge in carbon emissions is chiefly attributed to fires in the savanna grasslands, woody savanna/shrubs, and 

tropical forests of SHAF, SHSA, and NHAF. Fires in savanna grasslands were predominant in the NHAF, contributing to 77% 

of emissions during January–April, whereas in the SEAS, woody savanna/shrubs (52%) and tropical forests (23%) were the 
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primary sources. Our comprehensive high–resolution inventory of OBB emissions provides valuable insights for enhancing 

the accuracy of air quality modelling, atmospheric transport and biogeochemical cycle studies. 35 

1 Introduction 

Open biomass burning (OBB) releases significant amounts of trace gases (CO, NOX, NMVOC, SO2, and NH3), particulate 

matter (PM2.5, PM10), and greenhouse gases (CH4 and CO2), which are major sources of atmospheric pollutants (Mehmood et 

al., 2022) and have profound impacts on the global carbon cycle, climate change, and air quality, thus exerting a significant 

influence on the global environment and human health (Wu et al., 2022). Forest clearing, accidental fires, firewood burning, 40 

agricultural residue burning, peatland burning and straw burning are among the major fire types worldwide (van der Werf et 

al., 2017). These open burning activities severely impact air quality and ecosystems (Anon, 2017), with a high degree of 

sporadicity and spatiotemporal clustering (Liu et al., 2014; Murdiyarso and Lebel, 2007; Senande-Rivera et al., 2022). 

However, some regions worldwide are experiencing a notable increase in fire incidents (Richardson et al., 2022), such as, the 

Amazon rainforest fires (Pivello, 2011), Australian bushfires (Jegasothy et al., 2023), and wildfires in the United States (You 45 

and Xu, 2023), which are large–scale fire incidents that occur multiple times annually. Therefore, accurately estimating these 

emissions is crucial for devising effective environmental policies and better safeguarding people’s health and quality of life, 

providing significant support for a sustainable future. 

Previous studies have investigated numerous methods for estimating biomass burning emissions (Ito and Penner, 2004; 

Wiedinmyer et al., 2006). The burned area method demonstrated good accuracy in quantifying larger fire events, which is 50 

based on the burned area, the available biomass fuels burned in fields, the fuel-related combustion efficiency, and emission 

factors. For instance, Shi et al. (2020) estimated OBB emissions in tropical continents from 2001 to 2017. As well as other 

open-access databases, such as the Global Fire Emissions Database (GFED) and the Fire INventory from NCAR (FINN) (Jiang 

et al., 2012; van Wees et al., 2022). However, this method relies heavily on fire detection precision, particularly for small fires. 

Alternatively, a method based on the fire radiative power can effectively enhance the assessment of small fire events, thereby 55 

addressing this issue to a certain extent. For example, similar approaches have been employed in Fire Emissions and Energy 

Research (FEER) and the Global Fire Assimilation System (GFAS) (Di Giuseppe et al., 2017). However, this approach has a 

drawback in that it tends to overestimate emissions during localized fire events. Nonetheless, all these methods rely on MODIS 

active fire products. 

Equipped with the MERSI–2 instrument, the Fengyun–3D (FY–3D) satellite offers spatial resolutions of 250 and 1000 m at 60 

the nadir (Zhenzhen Yin, 2020), which, when compared to MODIS, significantly enhances its capacity to detect and analyze 

various phenomena, including fires, aerosols, and changes in land and ocean surfaces (Zheng et al., 2023). Furthermore, the 

Global Fire Monitoring (GFR) product with FY–3D employs optimized automatic identification algorithms for fire spots (Shan 

and Zheng, 2022), leading to an improved accuracy of fire point detection. This resulted in an impressive overall accuracy rate 

of 79.43% and an exclusion omission error accuracy of 88.50%, surpassing the capabilities of MODIS satellite products (Chen 65 
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et al., 2022; Xian et al., 2021), based on field–collected references throughout 2020 in China. The cross–verification between 

MODIS and FY–3D shows the highest consistency results (over 80%) in Africa and Asia, while America, Europe, and Oceania 

demonstrate consistency exceeding 70% (Chen et al., 2022). In July, August, and September, the number of fire spots was 

higher, with a mean consistency of over 85% between MODIS and FY–3D fire products (Chen et al., 2022). Although Landsat 

Fire and Thermal Anomaly (LFTA) product has finer spatial resolution, its lower temporal resolution typically allows global 70 

coverage only every 16 days, which does not allow for frequent detection of biomass burning activity. Therefore, employing 

the FY–3D GFR product and allocation approaches for small fires is expected to yield reliable estimates of OBB emissions. 

Fuel loading (F) represents the ground biomass of fire–affected pixels. Many studies treat F as a constant based on regional 

land cover types, neglecting the actual spatial and temporal variability (Wiedinmyer et al., 2011). Similarly, the combustion 

factor (CF), which represents the proportion of small biomass burned in a fire event, is typically assumed to be constant without 75 

considering the fuel status and humidity conditions (Pfeiffer et al., 2013). However, this approach leads to increased uncertainty 

in biomass estimation and poor quantification of the extent of combustion during fire events, thereby affecting the assessment 

of OBB emissions (Shi et al., 2020). To address these issues, this study employed observational and satellite–based 

aboveground biomass (AGB) and CF based on time series data of the vegetation index derived from satellite products. This 

CF considers moisture–related factors, enabling the calculation of the spatiotemporal variance in combustion efficiency across 80 

diverse land types. 

This study aimed to develop a high–resolution daily OBB emissions inventory (including carbon (C), carbon dioxide (CO2), 

carbon monoxide (CO), methane (CH4), nitrogen oxides (NOX), sulfur dioxide (SO2), particulate organic carbon (OC), 

particulate black carbon (BC), ammonia (NH3), nitrogen dioxide (NO2), PM2.5, PM10) and analyze the various types of fire 

events along with their emission patterns across 14 distinct regions. To estimate OBB emissions form forests, 85 

savannas/shrublands, grasslands, and peatlands, we utilized the updated FY–3D GFR product based on the continuous 

spatiotemporal dynamics of AGB, spatially and temporally variable combustion efficiencies, and emission factors specific to 

different land types. Our comprehensive high–resolution inventory of OBB emissions represents a valuable asset for 

applications in air quality modelling, atmospheric transport simulations, and biogeochemical cycling studies. This provides a 

robust framework for an in–depth understanding and analysis of the environmental implications of OBB on a global scale. 90 

2 Materials and Methods 

The global Emissions Inventory from Open Biomass Burning (GEIOBB) (1 km daily) was estimated using the burned area 

method based on the framework described by Widinmyer et al. (2006) and Shi et al. (2015). GEIOBB conducts of OBB 

emissions using burned areas retrieved from active fire data from the FY–3D satellite, available biomass from satellite and 

ground measurements, CF scaled by tree cover and NDVI (Normalized Difference Vegetation Index), and land cover–based 95 

emission factors. The GEIOBB is obtained by calculating the product of the above terms. 

𝐸𝑖(𝑥) = 𝐵(𝑥, 𝑡) ×  𝐹(𝑥) × 𝐶𝐹(𝑥) × 𝐸𝐹(𝑖), (1) 
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where Ei (g/m2) represents type i emissions at location x, which is equal to the product of the burning area B (m2) at time t and 

location x, biomass F (g C/m2) at location x, CF (expressed as a fraction), and the emission factor EF (g/kg) for type i pollutants.  

2.1 FY–3D global fire spot monitoring data based burned area (B) 100 

The Fengyun–3 series of satellites is a second–generation Chines polar–orbiting meteorological satellites. The FY–3D satellite 

is the fourth satellite of the FY–3 series of satellites. It is at an altitude of 836 km and was launched on November 15, 2017 

and published on may, 2020. (Li et al., 2017). FY–3D completes 14 orbital observations of the Earth’s surface at a global scale 

twice daily. The MERSI–2 instrument onboard with FY–3D was greatly improved from MERSI–1 with FY–3C, with high 

accuracy of onboard and lunar calibration capabilities. Compared to MODIS, FY–3D fire products have been optimized in 105 

terms of auxiliary parameters, fire identification and re–identification. Firstly, FY–3D introduces the adaptive threshold and 

eliminates the limitations by fixed thresholds of MODIS and VIIRS algorithms by automatic identification algorithms for fire 

spot detection (Chen et al., 2022). Secondly, FY–3D uses a re–identification index reflecting varying geographical latitude and 

underlying surfaces types, together with the effect by cloud, water, and bare land (Zheng et al., 2020). The integration of 

multiple influencing factors increases the accuracy of fire detection. For example, the influences of factory thermal anomalies 110 

and high reflectance of photovoltaic power plants are greatly removed. Finally, the far–infrared channel employed in FY–3D 

has a high resolution of 250 m, higher than MODIS with 1 km, resulting in higher accuracy in big fire detection (Zheng and 

Chen, 2020). Overall, the FY–3D GFR product achieves an accuracy of 94.0% globally, with accuracies of 94.6%, 94.1%, 

90.6%, 91.8%, and 92.7% in South–central Africa, East central South America, Siberia, Australia and Indochinese Peninsula 

(Chen et al., 2022), respectively. Specifically, due to the removal of underlying surface interference in China, the FY-3D 115 

achieves accuracies of 79.43% and 88.50% for accuracy and accuracy without omission, respectively, both of which are higher 

than the accuracies of 74.23% and 79.69% achieved by MODIS (Chen et al., 2022). 

Here, the location and timing of the fire events used in the GEIOBB were determined globally using the FY–3D GFR product 

(Chen et al., 2022). These processed fire event detection data were available from the Fengyun Satellite Remote Sensing Data 

Service Network of National Satellite Meteorological Centre (http://satellite.nsmc.org.cn/PortalSite/Default.aspx). These data 120 

offer daily fire detection at 1–km resolution, including the location, time, and confidence level of fire detection at a confidence 

level greater than 20% (Liu and Shi, 2023). Furthermore, multiple counts of the same fire may be made on a single day, leading 

to duplication of the data. To address this issue, we performed global identification and removed multiple detections of the 

same fire pixels daily. Specifically, we removed single daily fire detections within a 1 km2 radius of another fire detection. 

Thus, only one fire per 1 km2 of a hotspot can be counted per day and reset the next day. 125 

Table 1. Comparison of parameters related to MERSI–2, MODIS, and VIIRS. 

 
MERSI–2 

(FY–3D) 

MODIS 

(AQUA) 

VIIRS 

((NOAA–20)) 

Orbit altitude (km) 836 705 824 

http://satellite.nsmc.org.cn/PortalSite/Default.aspx
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Equator Crossing time 14:00 LT 13:30 LT 14:20 LT 

Swath (km) 2900 2330 3060 

Pixel resolution at nadir (km) 1 1 0.75/0.375 

Pixel resolution at the edge (km) >6 4 1.5/0.75 

ID MIR Band (s) 21 21/22 M–13/I–4 

Spectral range (µm) 3.973–4.128 
3.929–3.989 

3.940–4.001 

3.973–4.128 

3.550–3.930 

TMAX (SNR–NEΔT on orbit) 380 K (0.25) 
500 K (0.183) 

331 K (0.019) 
634 K (0.04) 

ID TIR Band (s) 24 31 M–15/I–5 

Spectral range (µm) 10.300–11.300 10.780–11.280 
10.263–11.263 

10.500–12.400 

TMAX (SNR–NEΔT on orbit) 330 K (0.4) 400 K (0.017) 343 K (0.03) 

 

2.2 Fuel loading (F) 

Previous studies on emission inventories based on wildfire areas were mostly used to assess F by defining different fire types 

in different areas (Wiedinmyer et al., 2011). The data generated by this method have some discontinuities, which may lead to 130 

large deviations at the boundaries of different areas, which is unreasonable and does not reflect the spatial distribution pattern 

of F. Ground observation data have advantages in terms of accuracy and reliability but are limited by the sparse distribution 

of observation stations, preventing comprehensive global coverage. In contrast, satellite data cover the entire globe and provide 

surface parameters worldwide, thereby enabling biomass estimation. However, its accuracy and usability are limited by factors, 

such as temporal and spatial resolution and cloud cover. Therefore, fusion of ground observations with satellite data is an 135 

effective solution. This fusion method combines the high accuracy of ground observation data with wide coverage of satellite 

data to produce reliable and precise global biomass products. Using this method, it is possible to overcome the limitations of 

a single data source, thereby enhancing the accuracy and reliability of biomass estimation. 

This study used multi–source data, including NDVI, tree cover (TC), and satellite and observational AGB, to assess terrestrial 

biomass, in which TC data were derived from the MOD44B product (DiMiceli et al., 2022) generated based on MODIS 140 

onboard the Terra satellite (https://lpdaac.usgs.gov/products/mod44bv061/), which provides a continuous global vegetation 

field at 250m resolution for each year from 2000 to the present. The NDVI data were obtained using the MODIS Combined 

16–Day NDVI fusion product available on the GEE platform. AGB shows a large linear correlation with TC and NDVI 

(Xingcheng et al., 2017), so we combined the global aboveground and belowground biomass carbon density maps for the 2010 

product (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763) provided by Spawn and Gibbs(2020), annual TC, and NDVI 145 

data, and obtained by linear stretching the fuel loading for other years. 

https://lpdaac.usgs.gov/products/mod44bv061/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763
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𝐹(𝑥, 𝑡) = (
𝑁𝐷𝑉𝐼𝑛𝑜𝑤

𝑁𝐷𝑉𝐼2010

+
𝑇𝐶𝑛𝑜𝑤

𝑇𝐶2010

) ∗ 𝐴𝐺𝐵 (2) 

Where NDVInow is the mean value of the month before a single fire event, NDVI2010 is the mean value of NDVI in 2020, TCnow 

is the tree cover in the year of the fire incident, TC2010 is the tree cover in 2020, and AGB is the Above Ground Biomass data 

in 2010. 150 

 

2.3 Combustion factor (CF) 

The CF is mainly defined as the percentage of fuel consumed during individual fire events, which primarily depends on the 

type of fuel and humidity conditions. Typically, CF is set as a constant, which may lead to biases in emission estimations and 

generate significant uncertainties. Although some studies have utilized TC to quantify CF and explain its spatial and temporal 155 

variations (Wiedinmyer et al., 2006; Qiu et al., 2016; Bray et al., 2018; Wu et al., 2018), prior research has mainly focused on 

areas with herbaceous vegetation cover, where TC ranges from 40% to 60%. They assumed that the CF remained consistent 

across other land types, such as farmlands, forests, and grasslands. 

A major influence on fire discharge in the framework is the surface condition at the location of the fire event. Different land 

types exhibit different biological qualities and correlations. In GEIOBB, we used International Geosphere–Biosphere 160 

Programme (IGBP) categorized data from MODIS land cover type (LCT) (Friedl and Sulla-Menashe, 2022) (MCD12Q1, 

https://lpdaac.usgs.gov/products/mcd12q1v061/), reclassified the original 17 classifications, and reclassified the results to 

reorganize the subsurface types into seven categories, including grasslands and savannas (V1), woody savannas or shrubs (V2), 

tropical forests (V3), temperate forests (V4), boreal forests (V5), temperate evergreen forests (V6), and crops (V7), to allow 

for better matching in subsequent assignments of biomass and related factors. In the GEIOBB, the CF of all fires in each grid 165 

cell were allocated as a function of TC, fire types, and NDVI (Ito and Penner, 2004). The CF calculations are segmented into 

four categories based on the reclassification results. Specifically, we amalgamated the reclassification outcomes of V3, V4, 

V5, and V6 into a forest type category, designated V1 and V2 as woodlands, and assigned V7 to crops (the specific 

classification method is elaborated in detail in Supplementary Information (SI) Table S1 and Section S1). 

For woodlands, the CF was highly correlated with TC(Ito and Penner, 2004): 170 

𝐶𝐹𝑤𝑜𝑜𝑑𝑙𝑎𝑛𝑑 = 𝐸𝑋𝑃(−0.013 × 𝑇𝐶). (3) 

For grasslands, we introduced the vegetation condition index (VCI) to determine the fuel moisture conditions, which were used 

to measure vegetation drought conditions. We incorporated the VCI to ascertain fuel moisture conditions, which served as a 

metric for assessing the contemporaneous conditions of vegetation. The VCI was computed using the NDVI with a time interval 

of 16 d at a spatial resolution of 1 km for the period 2020–2022(Ito and Penner, 2004). 175 

𝑣𝑐𝑖 =
𝑁𝐷𝑉𝐼𝑛𝑜𝑤 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

, (4) 

https://lpdaac.usgs.gov/products/mcd12q1v061/
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𝐶𝐹𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 = 𝑇𝐶 × (−2.13 × 𝑉𝐶𝐼 + 1.38) + (0.9 − 𝑇𝐶). (5) 

where NDVInow is the mean value of the month before a single fire event, NDVImax the maximum value of NDVI in the same 

period in the previous 3 years, and NDVImin is the minimum value of NDVI in the same period in the previous 3 years. 

For forests, we used moisture category factors (MCF) to measure forest moisture, conducted an analysis based on the 180 

partitioning provided (Ito and Penner, 2004), and discovered that it approximately conforms to the power function distribution 

characteristics in VCI. Subsequently, function fitting was executed (R2 = 0.94), through which we further determined CF. For 

grasslands, the VCI could be directly calculated and utilized. 

𝑀𝐶𝐹 = 0.1759 × 𝑒3.5181×𝑉𝐶𝐼 , (6) 

𝐶𝐹𝑓𝑜𝑟𝑒𝑠𝑡 = (1 − 𝑒−1)𝑀𝐶𝐹 . (7) 185 

Most fires on croplands are artificially active fires, which result in a full combustion process that is not designed for woody 

fuels. Therefore, we set the CF for crops to 0.98, the upper limit proposed by Wiedinmyer (2006). 

2.4 Emission factor (EF) 

EF denotes the amount of pollutants released per unit of fuel burned during burning. Here, EF in Tabel 2 was assigned 

according to the LCT (Akagi et al., 2011; van Leeuwen et al., 2014; Liu et al., 2017; Paton-Walsh et al., 2014; Urbanski, 2014; 190 

Fang et al., 2017). However, other EF measurements were also used when locally measured EF data were not available. The 

land types in all fire pixels were determined by reclassification of the LCT product. We used the IGBP LCT classification to 

assign each fire pixel to one of the land–use/land–cover classes. Here, owing to significant variations among the measured 

values, we took the average emission factor within each reclassification type for areas with multiple measurements. Finally, 

the EF for the following seven land types of other database were updated: grasslands and savannas, woody savanna or shrubs, 195 

tropical forest, temperate forest, boreal forest, temperate evergreen forest, and crop. 

Table 2. Emission factor (g/kg) of different species. 

Species 

Grasslands 

and 

Savannas 

Woody 

Savanna 

or Shrubs 

Tropical 

Forest 

Temperate 

Forest 

Boreal 

Forest 

Temperate 

Evergreen 

Forest 

Crop 

Maize Sugar Sugar Wheat 

C 488.31 489.41 491.77 468.31 478.88 493.18 687.09 323.35 368.04 429.17 

CO2 1,686a 1,681a 1,643a 1,510a 1,565b 1,623a 2,327c 1,130c 1,177c 1,470e 

CO 63.00a 67.00a 93.00a 122.00a 111.00b 112.00a 114.70c 34.70c 93.00c 60.00e 

CH4 2.00a 3.00a 5.10a 5.61a 6.00b 3.40a 4.40c  0.40c 9.59c 3.40e 

NOX 3.90a 3.65a 2.60a 1.04a 0.95b 1.96a 4.30c  2.60c 2.28c 3.30e 

SO2 0.90a 0.68a 0.40a 1.10a 1.00b 1.10a 0.44c 0.22c 0.18c 0.85e 

OC 2.60a 3.70a 4.70a 7.60a 7.80b 7.60a 2.25c  3.30c 2.99c 3.90d 

BC 0.37a 1.31a 0.52a 0.56a 0.20b 0.56a 0.78d  0.82d 0.52d 0.52d 

NH3 0.56a 1.20a 1.30a 2.47a 1.80b 1.17a 0.68c  1.00c 4.10c 0.37e 

NO2 3.22a 2.58a 3.60a 2.34a 0.63b 2.34a 2.99f 
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PM2.5 7.17a 7.10a 9.90a 15.00a 18.40b 17.90a 6.43f 

PM10 7.20a 11.4a 18.50a 16.97a 18.40b 18.40a 7.02f 

All the value of C were Calculated by CO2, CO, and CH4. 

a is average value from (Akagi et al., 2011). 

b is average from (Akagi et al., 2011) and (Urbanski, 2014). 200 

c is average from (Akagi et al., 2011; Fang et al., 2017; Liu et al., 2016; Santiago-De La Rosa et al., 2018; Stockwell et al., 

2015). 

d is from (Kanabkaew and Kim Oanh, 2011). 

e is from (Cao et al., 2008). 

f is from (Li et al., 2007). 205 

3 Results and Discussions 

3.1 Spatial map of OBB emission estimates 

We estimated global OBB emissions using GEIOBB, and the average annual OBB emissions for 2020–2022 were 2586.88 Tg 

C, 3.77 Tg BC, 15.83 Tg CH4, 382.96 Tg CO, 8841.45 Tg CO2, 5.24 Tg NH3, 15.85 Tg NO2, 18.42 Tg NOX, 18.68 Tg OC, 

56.03 Tg PM10, 42.46 Tg PM2.5, and 4.07 Tg SO2 (Table 3). Taking carbon as an example, the annual carbon emissions from 210 

OBB were estimated for the period of 2020–2022 (Figure 1) and the total OBB carbon emissions reached 7760.63 Tg C. The 

average annual carbon emissions during this period amounted to 2586.88 Tg. Overall, obvious spatial variations in the OBB 

carbon emissions were observed across Africa, and certain regions in the Americas and Asia. In America, elevated emissions 

were observed in central and northeastern Brazil, northern Bolivia, northern Paraguay, eastern Mexico, and much of Honduras. 

In Africa, substantial OBB emissions originated from Central Africa (excluding the Democratic Republic of the Congo), the 215 

northern regions of West Africa, and the southern regions of East Africa, where most 1 km×1 km grid cells exhibited annual 

average carbon emissions exceeding 50 g C/m². Elevated carbon emissions were found in Southeast Asia (the Indo–Chinese 

Peninsula), with significant emissions detected in western and eastern Myanmar, northern Laos, eastern Cambodia, southern 

Nepal, and parts of northern India. Notable carbon emissions were also observed in equatorial Asia, South Sumatra, South 

Kalimantan, and southern Papua New Guinea. 220 



9 

 

 

Figure 1: Spatial distribution of annual average of OBB carbon emissions (1 km×1 km) during 2020–2022. 

Table 3. Global OBB annual emissions and region–specific average annual emissions during 2020–2022 (Tg–Species/year). 

 C BC CH4 CO CO2 NH3 NO2 NOX OC PM10 PM2.5 SO2 

2020 2,861.05 4.09 17.39 423.12 9,777.79 5.76 17.58 20.37 20.64 61.59 47.18 4.54 

2021 2,991.16 4.52 18.22 439.67 10,226.55 6.11 18.17 21.36 21.64 64.76 48.89 4.70 

2022 1,908.42 2.69 11.87 283.09 6,520.04 3.87 11.82 13.53 13.74 41.76 31.31 2.97 

average 2,586.88 3.77 15.83 381.96 8,841.46 5.24 15.85 18.42 18.68 56.03 42.46 4.07 

BONA 72.71  0.16  0.49  10.92  248.08  0.18  0.36  0.49  0.63  1.80  1.29  0.11  

TENA 165.73  0.30  1.02  26.14  563.78  0.38  0.92  1.11  1.45  3.98  3.18  0.28  

CEAM 34.11  0.06  0.23  5.21  116.26  0.08  0.20  0.23  0.27  0.81  0.56  0.05  

NHSA 42.93  0.06  0.28  6.42  146.58  0.08  0.28  0.30  0.31  1.01  0.70  0.06  

SHSA 520.55  0.61  3.74  83.09  1,767.83  1.12  3.42  3.45  4.01  13.00  9.08  0.74  

EURO 13.02  0.02  0.09  2.02  44.33  0.03  0.08  0.09  0.09  0.26  0.22  0.02  

MIDE 8.37  0.01  0.06  1.28  28.54  0.02  0.05  0.06  0.05  0.15  0.13  0.01  

NHAF 394.25  0.41  2.05  54.58  1,354.19  0.62  2.56  2.99  2.39  7.01  6.01  0.66  

SHAF 847.03  1.28  4.52  116.23  2,910.72  1.52  5.17  6.40  5.55  16.48  12.82  1.38  

BOAS 167.35  0.31  0.98  23.57  573.90  0.35  0.93  1.22  1.22  3.53  2.68  0.27  

CEAS 27.93  0.04  0.21  4.55  94.68  0.08  0.17  0.19  0.20  0.56  0.47  0.04  

SEAS 197.29  0.37  1.54  32.49  668.10  0.55  1.16  1.26  1.71  5.24  3.50  0.28  

EQAS 13.20  0.03  0.10  2.04  44.94  0.03  0.08  0.09  0.11  0.36  0.22  0.02  
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AUST 82.38  0.11  0.52  13.41  279.54  0.19  0.48  0.54  0.70  1.83  1.59  0.15  

 

Additionally, we divided the world into 14 regions for analysis and discussion, the geographical regions is same as (van der 225 

Werf et al., 2017). As delineated by the reclassification in Figure 2(b), savanna grasslands have emerged as the predominant 

LCT worldwide, encompassing 53.30% of total coverage. This type primarily spans South America, most of Africa, and Asia. 

Following closely is woody savanna account for 19.74% of the global coverage. They are predominantly situated in Boreal 

Asia, Australia, selected areas of southern Africa, and parts of North America. The third most prevalent type was tropical 

forest, comprising 9.03%, with its main distribution in South America, notably within the Amazon Rainforest, regions adjacent 230 

to the African equator, and Southeast Asia. Other types, such as temperate forest, boreal forest, temperate evergreen forest, 

and crops, are less extensively spread and exhibit a more dispersed distribution. 

 

Figure 2 (a) Global geographic regions and its abbreviations. The acronyms on the figure represent the following: BONA: Boreal 

North America; TENA: Temperate North America; CEAM: Central America; NHSA: Northern Hemisphere South America; SHSA: 235 
Southern Hemisphere South America; EURO: Europe; MIDE: Middle East; NHAF: Northern Hemisphere Africa; SHAF: Southern 

Hemisphere Africa; BOAS: Boreal Asia; CEAS: Central Asia; SEAS: Southeast Asia; EQAS: Equatorial Asia; AUST: Australia 

and New Zealand;(b) Global land cover type reclassification. 

Then, this study quantified the global average annual OBB carbon emissions from different regions and fire types during 2020–

2022 (Table 4). Southern Hemisphere Africa (SHAF) was found to be the primary source of global OBB carbon emissions 240 

(847.04 Tg; 32.74%); this trend also holds true for other pollutants as well. Southern Hemisphere South America (SHSA) and 

Northern Hemisphere Africa (NHAF) ranked second and third, accounting for 20.12% (520.55 Tg) and 15.24% (394.26 Tg), 

respectively. The contributions of each fire type to the global OBB carbon emissions were then quantified. Savanna grasslands 

were the largest contributor (1209.12 Tg, 46.74%), followed by woody savanna/shrubs (854.71 Tg, 33.04%), tropical forest 

(313.32 Tg, 12.11%), temperate forest (92.65 Tg, 3.58%), crop (58.06 Tg, 2.24%), temperate evergreen forest (41.65 Tg, 245 

1.61%), and boreal forest (17.37Tg, 0.67%). According to GFED4.1s, the annual average carbon emissions from wildfires in 

SHAF, SHSA, and NHAF during 2020–2022 were 1271.63 Tg/year, accounting for approximately 64.55% of the global total 

OBB carbon emissions. Their research findings are similar to the results of this study, which recorded 1761.84 Tg, equivalent 

to 68.10% of the total. 
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Specifically, the contributions of the seven fire types to OBB carbon emissions varied dramatically across continents (van der 250 

Werf et al., 2010). In SHAF, the primary sources of OBB were savanna grasslands and woody savanna or shrubs, contributing 

465.85 (54.99%) and 324.08 Tg/year (38.26%), respectively, consistent with Nguyen et al. (2023). Unlike SHAF, OBB in 

SHSA primarily originated from savanna grasslands and tropical forests (Shi et al., 2015), contributing 225.86 (43.38%) and 

177.17 Tg/year (34.03%) to the region’s carbon emissions, respectively. This variation could be associated with the ecological 

and climatic conditions unique to each region (Sahu and Sheel, 2014; Santana et al., 2016). South America hosts the world’s 255 

largest rainforests and is known for its rich biodiversity and biomass (Fagua and Ramsey, 2019). However, they are severely 

threatened human–induced deforestation and forest fires (Chen et al., 2013). Studies indicate that forest fires and human 

activities, such as deforestation and land–use changes, are the main drivers of increased carbon emissions from OBB in this 

region (Nepstad et al., 1999; Cochrane and Laurance, 2002). In the NHAF, the predominant source of OBB was savanna 

grasslands (Roberts et al., 2009), contributing 76.14% to the region’s total biomass–burning carbon emissions, averaging 260 

300.21 Tg/year. This may be related to the arid climate and low forest cover in the region (Ichoku et al., 2016; De Sales et al., 

2016). Previous research has shown that climate change and human activities, such as grazing and agricultural expansion, are 

the major factors in this region (Scholes and Andreae, 2000; Flannigan et al., 2009). 

Table 4. Annual carbon emissions from global OBB in different regions during 2020–2022 (Unit: Tg/year). 

Different 

Region 

Savanna 

Grasslands 

Woody 

Savanna/Shrubs 

Tropical 

Forest 

Temperate 

Forest 

Boreal 

Forest 

Temperate 

Evergreen Forest 
Crop Total 

BONA 4.43  57.55  0.00  0.36  7.58  2.15  0.63  72.70  

TENA 41.20  83.89  0.00  5.71  0.00  30.85  4.07  165.72  

CEAM 8.62  17.47  4.57  2.33  0.00  0.02  1.11  34.12  

NHSA 19.12  11.08  12.23  0.28  0.00  0.00  0.22  42.93  

SHSA 225.86  76.69  177.17  27.49  0.00  0.37  12.98  520.56  

EURO 5.21  4.60  0.00  0.71  0.19  0.40  1.92  13.03  

MIDE 4.95  1.17  0.00  0.15  0.00  0.33  1.78  8.38  

NHAF 300.21  47.03  30.31  3.93  0.00  0.00  12.78  394.26  

SHAF 465.86  324.09  41.17  12.70  0.00  0.00  3.22  847.04  

BOAS 59.51  95.97  0.00  1.29  9.01  0.07  1.50  167.35  

CEAS 10.31  7.71  0.68  1.86  0.59  0.33  6.45  27.93  

SEAS 21.46  101.57  42.39  22.26  0.00  0.26  9.36  197.30  

EQAS 1.43  7.23  4.45  0.02  0.00  0.00  0.08  13.21  

AUST 40.95  18.66  0.35  13.57  0.00  6.86  1.97  82.36  

 265 

Fire events in savanna grasslands remain a major source for most pollutants generated by global OBB, whereas crops contribute 

relatively less (Figure 3). However, with respect to BC and NH3, fire events in woody savanna/shrubs have become the primary 

contributors (BC, 59.40%; NH3, 39.33%). Furthermore, when considering the different regions, the primary sources of 
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pollutants from OBB vary. For instance, fire events in woody savanna/shrubs were the primary sources in the BONA, SEAS, 

and EQAS regions, whereas crop–related fire events mainly occurred in the EURO, MIDE, CEAS, and SEAS regions. 270 

 

Figure 3: Cumulative percentage of annual OBB emissions for each land type in each region during 2020–2022. 

3.2 Temporal variations in OBB carbon emissions 

The monthly carbon emissions at both the global and regional levels are illustrated in Figure 4. Overall, global OBB carbon 

emissions experienced notable shifts, with considerable monthly variations from 2020 to 2022, and peak emissions were 275 

observed in Aug 2021 (729.37 Tg). Global OBB carbon emissions were 2,861.05 Tg in 2020, rising slightly to 2,991.15 Tg in 

2021, but showing a significant decline to 1,908.41 Tg in 2022. Monthly and seasonal variations in the OBB carbon emissions 

from each region exhibited substantial differences. Of the 14 regions, the annual contribution of SHAF, the largest global 

contributor of OBB carbon emissions (32.74%), increased by 2.70% per year, with the peak emission of 283.59 Tg occurring 

in August 2021. SHAF has emerged as a primary contributor to global OBB carbon emissions owing to its substantial biomass 280 

and escalating human activities. Abundant biomass, including dense vegetation and rich forest resources, provides ample fuel 

for carbon emissions that are exacerbated by intensifying human activities (Chen et al., 2017). In August, specific 

meteorological conditions, such as high temperatures and low humidity facilitated the increased combustibility of biomass, 

resulting in a peak in carbon emissions (Shea et al., 1996). Although the SHAF region consistently remained the largest 

contributor to global OBB carbon emissions during 2020–2022, its annual emissions remained relatively stable, with minor 285 
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fluctuations. Conversely, emissions from SHSA decreased at a rate of 105.22 Tg per year from 2020 to 2022, with peak 

monthly emissions over the 3 years reaching 184.63, 222.12, and 123.98, respectively, size and status of emissions consistent 

with Griffin et al. (2023). Annual C emissions in NHAF also declined, decreasing by 55.44 Tg over the 3 years, with its 

emissions accounting for the lowest percentage at 13.76% in 2021. 

Cumulatively, SHAF, SHSA, and NHAF represent almost 70% of the global OBB carbon emissions, a testament to the 290 

profound intertwining of their native ecosystems, land utilization, and climatic influences on biomass combustion (Roy et al., 

2022). Deeper exploration revealed that the SHAF, which is endowed with vast stretches of savannahs and grasslands, 

undergoes intermittent dry periods (Hoffmann and Jackson, 2000). This climatic pattern, combined with entrenched 

agricultural customs like slash–and–burn, renders the region prone to wildfires (Lourenco et al., 2022). In the SHSA, which 

covers significant portions of the Amazon rainforest, rampant deforestation often involves controlled burning (Kröger and 295 

Nygren, 2020). Unfortunately, these sometimes escalate beyond the control level, adding substantially to emissions figures 

(Eufemia et al., 2022). In contrast, the NHAF’s shifting land–use paradigms, coupled with increasingly recurrent droughts—

potentially a byproduct of global warming—intensify frequency of fires in the area (Machete and Dintwe, 2023). 

Examination of monthly emissions data revealed significant regional disparities. For example, every January, the NHAF, 

influenced by its monsoon cycles (Martin and Thorncroft, 2014), consistently emerges as the primary contributor to biomass 300 

carbon emissions, accounting for contributions of 50.74%, 81.16%, and 67.66% across the 3 years, as reported by Tsivlidou 

et al. (2022). By March, SEAS witnessed a surge in emissions, largely due to shifts in forestry practices (Shi et al., 2014), with 

contributions escalating to 50.82%, 57.78%, and 40.67% in subsequent years (Pletcher et al., 2022), respectively. The peak 

biomass carbon emissions in 2020 occurred in September, reaching 500.62 Tg. However, the peaks in 2021 and 2022 appeared 

sooner in August, with emissions of 729.37 Tg and 357.57 Tg, respectively. The 2021 ascent of BONA emissions might be 305 

linked to altered land–use guidelines or increased farming activities (Zerriffi et al., 2023) and the many wildfires that occurred 

(Hoffman et al., 2022), while California’s heightened investment in fire mitigation programs (Umunnakwe et al., 2022) and 

the U.S. Forest Service’s implementation of a decade–long strategy (Confronting the Wildfire Crisis, 2023) in 2022 have 

effectively curbed wildfire incidents in the Temperate North America (TENA) region. This shift in the perception of forest fire 

management has been instrumental in mitigating wildfire risk in the area. Nevertheless, it is important to acknowledge that the 310 

occurrence of wildfires varies over time (Bowman et al., 2017). 
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Figure 4: Global OBB carbon emissions in different regions during 2020–2022. 

Figure 5 shows the notable temporal fluctuations in global wildfire carbon emissions for different fire types throughout the 315 

study period from 2020 to 2022. Global combustion exhibited the highest carbon emissions in August and September. In 

September 2020, single–month emissions peaked at 500.62 Tg. However, in 2021 and 2022, the zenith of carbon emissions 

from fires occurred in August, registering at 729.37 and 357.57 Tg respectively. The smaller peaks observed in March should 

not be overlooked. Interestingly, although the timing of these emission peaks varied, their main contributing factors remained 

similar. In September, the daily carbon emission peaks from savanna grasslands, woody savanna/shrubs, and tropical forest 320 

regions were 7.54 (38%), 7.12 (37%), and 3.36 (31%), respectively. These sources constituted the primary contributors to the 

global biomass combustion carbon emissions from July to October. 

Spatial and temporal variations in global OBB emissions are pronounced because of the differences in ecosystems, climatic 

conditions, and human activities across different regions (Moritz et al., 2012; Ward et al., 2018). For instance, areas with 

expansive tropical grasslands, such as Sub–Saharan Africa and Australia, typically experience high levels of OBB emissions 325 

because of the prevalence of both natural and anthropogenic fire activities (Williams et al., 2019; Zheng et al., 2021). Moreover, 

many regions undergo cyclical OBB emission patterns, coinciding with the onset of the dry and wet seasons (Gautam et al., 

2013; Dury et al., 2011). The dry season, characterized by an increase in dry biomass and conducive weather conditions, often 

witnesses a surge in fire activity, resulting in elevated emission levels (Zhang et al., 2023b). These considerable spatial and 

temporal fluctuations in global OBB emissions mirror the diversity of ecosystems and climatic conditions across various 330 

geographic locations (Fagre et al., 2003), which are further influenced by human endeavours and natural fire regimes (Jones 

et al., 2022). 

In 2020 and 2021, significant wildfire events, such as the California wildfires and Australian forest fires, led to an escalation 

in carbon emissions from fires (Keeley and Syphard, 2021; Safford et al., 2022; Collins et al., 2021; Gallagher et al., 2021; 

Collins et al., 2022). However, a dual phenomenon was observed in 2022. The implementation of robust wildfire control 335 
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measures contributed to a reduction in emissions (Wollstein et al., 2022); however, an overall augmentation in annual 

precipitation led to a reduction in the degree of drought (Thackeray et al., 2022; Zhang et al., 2023a). Consequently, the annual 

OBB carbon emissions in 2022 were lower than those in the preceding years. 

 

Figure 5: Variations in total global OBB carbon emissions and carbon emissions in different fire types across various regions from 340 
2020 to 2022. 

Specifically, carbon emissions resulting from fire events were analysed in 14 global subregions from 2020 to 2022 (Figure 6). 

This analysis revealed the primary sources of carbon emissions from fires worldwide and provided insights into the main 

constituents of combustion in different regions. Emission patterns across different global regions vary both temporally and 

spatially. The top three major emitting regions were SHAF, SHSA, and NHAF, which were closely associated with global 345 

emission trends, representing the main source of the emission peak in August and the emission during the winter months. 

During 2020 to 2022, the OBB conditions in the SHAF, SHSA, and NHAF regions have been relatively stable, with daily peak 

values of 12.04 Tg, 9.81 Tg and 4.38 Tg respectively. For the SHAF and SHSA, burning activities were predominantly 

observed from July to September, which can be attributed to a combination of dry weather, strong winds, and specific 

meteorological conditions (Li et al., 2023; Eames et al., 2023). These factors collectively enhanced the combustibility of the 350 

biomass during this period, leading to an increased likelihood of burning. In the SHAF, emissions were primarily influenced 

by savanna grasslands (49%) and woody savanna/shrubs (47%). Similarly, in the SHSA, emissions were mainly affected by 

savanna grasslands (34%) and tropical forests (38%). While burning in the NHAF region is concentrated between November 

and January, primarily in January, this pattern is significantly influenced by the practice of slash–and–burn agriculture (Serrani 

et al., 2022), with savanna grasslands accounting for 77% of the contributing factors. 355 
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CEAM and SEAS exhibited similar wildfire patterns, primarily occurring in March, and a noticeable decrease in burning 

activity emissions from 2020 to 2022. The predominant fire type in the CEAM region was woody savanna/shrubs (50%), 

whereas in the SEAS region, it was mainly influenced by woody savanna/shrubs (50%) and tropical forest (25%). Overall, 

owing to similarities in factors, such as biomass fuel load and climate, the wildfire types in the CEAM and SEAS were quite 

alike. 360 

The BONA, TENA, EURO, MIDE, BOAS, and AUST share a common characteristic: OBB carbon emissions exhibit a high 

degree of randomness, indicating their primary influence on natural wildfire events. For instance, British Columbia, Canada, 

experienced a series of wildfires in July 2021 (Copes-Gerbitz et al., 2022), leading to peak carbon emissions for BONA in 

2021 (4.46 Tg). TENA, affected by a series of wildfires in the western United States in 2020 (Safford et al., 2022) and the 

ongoing wildfires in California in 2021 (Varga et al., 2022), showed elevated emissions in both years (2020, 6.12 Tg; 2021, 365 

3.76 Tg), with woody savanna/shrubs being the main fire event type. For the EURO, the apex of wildfires in 2021 was distinctly 

shaped by wildfires in Southern and Southeastern Europe (Tedim et al., 2022). The emissions were predominantly associated 

with fire type savanna grassland (48%). Moreover, in the BOAS region, wildfires were influenced by forest fires in Siberia 

(Ponomarev et al., 2022), where the principal fire type was woody savanna/shrubs (31%). Regarding AUST, in January 2020, 

a significant forest fire event occurred (Storey et al., 2023), resulting in peak emission of 4.48 Tg. The primary fire types were 370 

temperate forest (24%) and savanna grassland (18%). 

The situation of OBB in CEAS is intricate. In March, substantial OBB emissions resulted from agricultural practices, such as 

slash and burn cultivation and the burning of crop residues (Liu and Shi, 2023), with crops being the predominant fire event 

type (30%). In contrast, from August to November, OBB was mainly attributed to scorching weather and monsoon conditions 

(Shi et al., 2018), with savanna grasslands being the dominant type (28%). Recently, owing to improvements in agricultural 375 

management practices, there has been a noticeable decrease in OBB events of crop types. 
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Figure 6: Global OBB emissions for different fire types in different regions (averaged over a 15–day window) from 2020 to 2022. 

3.3 Cross–verification in different database 

In this study, we juxtaposed the global distribution of OBB carbon emissions as estimated in GEIOBB with data published in 380 

the GFAS, GFED, and FEER datasets for 2020–2022 (Figure 7). Overall, our assessments corresponded well with the GFAS, 

GFED, and FEER, Although there was an overestimation in high–latitude regions, the overall differences across large regions 

were minimal. For instance, we estimated the total carbon emissions in the BONA region to be 72.71 Tg, while the values 

from GFAS, GFED, and FEER were 61.21, 125.05, and 35.83 Tg, respectively. This variance can be attributed to the different 

resolutions (1 km×1 km, 0.1°×0.1°, 0.25°×0.25°, and 0.1°×0.1°) and different estimation methodologies employed. Both our 385 

study and the GFED adopted an estimation approach based on the burned area, whereas the GFAS and FEER formulated their 

inventories based on fire radiative energy. Consequently, our inventory yielded accurate assessment results and captured the 

spatial variation and heterogeneity of minor OBB emissions effectively, which could have been overlooked in coarse–scale 

analyses. Additionally, the GFED utilizes MODIS satellite data to calculate the available biomass fuel, whereas we leverage 

the higher precision and small fire quantification capability of FY–3D GFR data. Disparities between different satellite data 390 

and variations in parameter definitions during inventory formulation contribute to these differences. Moreover, we adopted 
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published local measurement–based emission factors and improved correlation coefficients for estimating OBB carbon 

emissions, which are more reliable and significantly enhance the local emission estimation accuracy. 

 

Figure 7: Comparison between this study and other emission inventories during 2020–2022 average emissions at 0.5° resolution. 395 

Specifically, in high emission regions, such as NHAF, NHSA, and CEAS, our estimation of OBB carbon emissions (multi–

year average 394.25, 42.93, and 27.93 Tg; monthly peak average 102.52, 11.86, and 6.24 Tg) aligned closely with those of 

GFED (multi–year average 342.31, 29.10, and 38.16 Tg; monthly peak average 97.58, 9.86, and 10.91 Tg) and GFAS (multi–

year average 288.81, 35.80, and 43.51 Tg; monthly peak average 70.65, 9.64, and 9.82 Tg), as illustrated in Figure 8. However, 

discrepancies were observed between MIDE and EQAS, with FINN notably overestimating carbon emissions from fires. This 400 

overestimation by FINN is attributed to its methodology (Wiedinmyer et al., 2011), which relies on a combination of emission 

factors, conversion rates, and fire radiative energy  values to estimate the emissions from agricultural residue burning. This 

contrasts with our approach, which bases estimates on the burned area and thus can accurately quantify carbon emissions from 

large fires and reduce uncertainty in fire data (Shi et al., 2020). Additionally, emission estimates during the periods by FINN, 

GFED, and GFAS were generated using data from the Terra and Aqua satellites, which captured data at 10:30 and 13:30 LT, 405 

respectively. Consequently, the burned area algorithm of the GFED cannot effectively detect small, short–lived agricultural 

fires, which owing to their intermittent nature, occur briefly between the intervals of satellite passes (Giglio et al., 2010). 

However, the use of FY–3D, which captures data at 14:00, was highly effective in capturing such events. 
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The AGB values used in this study were directly derived from a dataset generated by combining field and satellite observations 

(Avitabile et al., 2016). GFED, calculates this value through simulations using the biogeochemical CASA model. While GFED 410 

has adjusted turnover rates for herbaceous leaves and surface litter at the ecosystem level to match the observed AGB used in 

this study, the significant differences in the estimated AGB between biogeochemical model simulations and field 

measurements are noteworthy (van der Werf et al., 2017). Furthermore, a high–resolution emissions inventory of 1 × 1 km 

was developed. This inventory allows for the capture and description of spatial variations and heterogeneity in small–scale 

OBB emissions, providing detailed information on spatial discrepancies that may be missed by large and coarse grid pixels 415 

(Shi et al., 2019). 

 

Figure 8: Comparison of monthly emissions in different regions of this and other emission inventories. 

We compared and validated the accuracy of monthly OBB carbon emission estimates in 14 global subregions using three 

global OBB fire products: GFAS, GFED, and FEER. The Taylor diagram illustrates a high degree of consistency between 420 

these estimates and other inventories in terms of the standard deviation, correlation coefficient, and amplitude ratio (Figure 9). 

Overall, the results of this study were closer to the GFED and GFAS inventories, with the best agreement observed with the 

GFAS inventory. Our results show a correlation coefficient >0.70 (p < 0.01) in over 80% of the regions with the other three 

inventories, indicating a strong positive correlation and consistency in data trends between our study and the other three lists 
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in most regions. Furthermore, in the top three emission source regions, SHAF, SHSA, and NHAF, our correlation coefficients 425 

with the other three emission inventories were all >0.90, standard deviation ratios were <2.00, and normalized centered root 

mean square errors were <0.50. For example, compared with the other three inventories in the NHAF region, the correlation 

coefficients were all 0.97, with standard deviations of 0.93 (GFED), 0.66 (GFAS), and 1.24 (FEER). However, when compared 

with the FEER inventory, there were still disparities in the estimated results between the FEER inventory and this study. For 

instance, in low–emission regions, such as EQAS, NHSA, CEAM, and MIDE, the correlation coefficients ranged from 0.60 430 

to 0.95, with standard deviation exceeding 1.00. This was attributed to FEER’s use of the FRE–based approach and 

overestimation in quantifying small fire points (Ye et al., 2023).  

In summary, we demonstrated that the GEIOBB was a dataset with relatively high–quality estimates of global OBB emissions 

and performed well across all time periods and regions. Overall, a comparison with multiple inventories indicated that our 

GEIOBB model could effectively capture the spatial and temporal distribution characteristics of OBB at large scales. 435 

 

Figure 9: Normalized Taylor diagram plot of the comparison between GFED, GFAS, and FEER and this study with monthly OBB 

carbon emission. 

3.4 Advantages 

To create a more accurate and effective biomass combustion carbon emission inventory, our research introduced three 440 

significant improvements compared to other inventory products. (1) The input global fire spot monitoring data from FY–3D 

showed a higher accuracy than MODIS in monitoring active fires (Xian et al., 2021). The OBB emissions exhibited significant 

consistency with the satellite fire detection results. Existing OBB emission estimation inventories differ mainly in the 

optimization of relevant parameters and estimation methods; however, they all rely on MODIS fire detection results as their 

primary data source. Our experiment utilized data from FY–3D GFR, which provides higher precision and the capability to 445 

quantify small–scale fire points more accurately (Zhenzhen Yin, 2020) . Consequently, the accuracy of the OBB carbon 
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emissions assessment significantly improved. (2) Satellite and observational AGB resulted in less uncertainty than land cover 

based available biomass. Previous studies have used fixed values for AGB with regional and land cover–based partitioning. 

Our research employed AGB inventory data, which, in contrast to the traditional method of regional sub–surface value 

assignment, better represents spatial variation trends. Additionally, by incorporating dynamic adjustment methods, we 450 

mitigated the temporal distribution shortcomings inherent in AGB data. This approach significantly enhances the portrayal of 

global biomass distribution across both time and space dimensions; (3) Spatially and temporally variable CF scaled by several 

vegetation indices can reflect a more accurate fraction of burned biomass than the allocated constants based on fire types. We 

optimized the previous single fixed value or simple formula–based definitions of CF by incorporating numerous parameters 

to better represent vegetation combustion conditions. To address the varying fire conditions, we performed a detailed 455 

subdivision based on different fire types. This advancement over conventional methods of fixed–value assignment or unified 

fixed–value methods without substrate distinction, enables a more effective computation of burn factors for different types of 

fires, which can significantly enhance the delineation and understanding of burn factors in the biomass combustion process, 

paving the way for a more accurate carbon emission inventory. Through these notable improvements, our biomass combustion 

carbon emissions inventory is a robust tool that provides precise and insightful analyses instrumental for advancement in the 460 

field of biomass combustion carbon emissions assessment.  

3.5 Uncertainties 

There were relatively high uncertainties in the estimation of OBB emissions for the seven types; the uncertainties were 

associated with the burned area, F, CF, and EF. Although the FY–3D GFR dataset is reliable for most OBB events, its 

resolution of 1 km results in poor detection performance for small fire points (Zheng et al., 2023). The detected active fires 465 

were also underestimated due to cloud cover/thick smoke, with an omission error of approximately from 10%–30% (Schroeder 

et al., 2008; Roberts et al., 2009; Giglio et al., 2006). Additionally, the uncertainties in the AGB calculations developed by 

Spawn and Gibbs (2020) ranged from 20% to 80%. Specifically, for approximately 80% of the area, the AGB uncertainties 

were <30%, whereas in regions, such as Africa and South America, high uncertainties of 60%–70% were observed. The 

estimated CF shows uncertainties of approximately 20–30% based on empirical formulas (Zhang et al., 2008). The typical 470 

uncertainties for trace gas and aerosol emission factors for each land type, as compiled by Shi et al. (2015), ranged from 20% 

to 50%. Owing to the inherent uncertainties in all input parameters, after estimating the OBB emission inventories, we 

quantitatively assessed the estimation uncertainties of all emission species using 20,000 Monte Carlo simulations to calculate 

emission ranges with a 90% confidence interval. Based on this, the emission ranges for different species are as follows: 

1,168.02–4,120.83 Tg C, 2.31–5.48 Tg BC, 7.73–25.26 Tg CH4, 193.11–505.66 Tg CO, 2,994.71–14,153.75 Tg CO2, 3.31–475 

8.49 Tg of NH3, 7.92–26.08 Tg NO2, 12.70–26.87 Tg NOX, 8.37–29.35 Tg OC, 37.66–84.17 Tg PM10, 19.85–61.62 Tg PM2.5, 

and 1.67–6.69 Tg SO2. 
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4 Conclusion 

We developed a high–spatial–resolution (1 km×1 km grid) and daily inventory of global OBB emissions. Our inventory used 

the updated satellite–based burned area product (FY–3D GFR), observational and satellite–based AGB, and vegetation index–480 

based spatiotemporally variable combustion efficiency data to estimate global OBB carbon emissions.  

The estimated annual average OBB carbon emissions were 72.71 Tg of BONA, 165.72 Tg of TENA, 34.11 Tg of CEAM, 

42.93 Tg of NHSA, 520.54 Tg of SHSA, 13.02 Tg of EURO, 8.37 Tg of MIDE, 394.32 Tg of NHAF, 847.03 Tg of SHAF, 

167.35 Tg of BOAS, 27.93 Tg of CEAS, 197.29 Tg of SEAS, 13.20 Tg of EQAS, and 82.37 Tg of AUST. NHAF, as the 

primary contributor in January, accounted for 50.74%, 81.16%, and 67.66% in the three respective years. During the first peak 485 

of the years, March was mainly influenced by increased SEAS emissions (2020: 50.82%, 2021: 57.78%, and 2022: 40.67%). 

In 2020, the annual peak occurred in September at 500.62 Tg, while in 2021 and 2022, it shifted to August, reaching 729.37 

and 357.57 Tg, respectively. Peaks from savanna grasslands, woody savanna/shrubs, and tropical forest regions were 7.54 

(38%), 7.12 (37%), and 3.36 Tg (31%), respectively. 

We demonstrated that savanna grassland contributed the largest portion (46%) of total emissions, followed by woody 490 

savanna/shrubs (33%). Total OBB carbon emissions were the highest from SHAF, followed by SHSA, and NHAF. The fire 

types where fires occurred were predominantly savanna grasslands, woody savanna/shrubs, and tropical forest in the SHAF, 

SHSA, and NHAF, and woody savanna/shrubs in SEAS. Furthermore, our data indicate a pronounced seasonal trend in carbon 

emissions. Regions, such as the SHAF, SHSA, and TENA, played pivotal roles, accounting for the surge in global carbon 

emissions observed in August. 495 

Our high–spatial–resolution multi–species emission inventory and spatiotemporal characteristics analysis will provide 

scientific and reliable evidence for formulating carbon emission policies and assessing temporal emission variation. Effective 

control of the savanna grasslands fire in the SHAF, SHSA, and NHAF as well as tropical forest fires in the SHSA and woody 

savanna/shrubs fires in the SHAF can greatly reduce carbon emissions. Moreover, this carbon emissions inventory can be used 

for regional biogeochemical circulation, atmospheric chemical simulations, and environmental health impacts. The accuracy 500 

and depth of our findings further underscore the potential for combining our bottom–up approach with top–down satellite 

observational methods, paving the way for refinement in future studies. 
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