Reprocessing of XBT profiles from the Ligurian and Tyrrhenian seas over the time period 1999-2019 with full metadata upgrade

Simona Simoncelli¹, Franco Reseghetti², Claudia Fratianni¹, Lijing Cheng³,⁴, Giancarlo Raiteri²

¹ Istituto Nazionale di Geofisica e Vulcanologia (INGV), Viale Berti Pichat 6/2, 40127 Bologna, Italy;
² ENEA, S. Teresa Marine Research Centre, 19032 Pozzuolo di Lerici, Italy;
³ International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China;
⁴ Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China;

Correspondence to: Simona Simoncelli (simona.simoncelli@ingv.it)

Abstract
The advent of open science and the United Nations Decade of Ocean Science for Sustainable Development are revolutionizing the ocean data sharing landscape for an efficient and transparent ocean information and knowledge generation. This blue revolution raised awareness on the importance of metadata and community standards to actionate interoperability of the digital assets (data and services) and guarantee that data driven science preserve provenance, lineage and quality information for its replicability. Historical data are frequently not compliant with these criteria, lacking metadata information that was not retained crucial at the time of the data generation and further ingestion into marine data infrastructures. The present data review is an example attempt to fill this gap through a thorough data reprocessing starting from the original raw data and operational log sheets. The data gathered using XBT (eXpendable BathyThermograph) probes during several monitoring activities in the Tyrrhenian and Ligurian Seas between 1999 and 2019 have been first formatted and standardized according to the latest community best practices and all available metadata have been inserted, including calibration information never applied. Secondly, a new automatic Quality Control (QC) procedure has been developed and a new interpolation scheme applied. The reprocessed (REP) dataset has been compared to the present data version, available from SeaDataNet data access portal through the saved query Url https://cdi.seadatanet.org/search/welcome.php?query=1866&query_code={4E510DE6-CB22-47D5-B221-7275100CAB7F}, processed according to the pioneering work of Manzella et al. (2003) conducted in the framework of the EU Mediterranean Forecasting System Pilot Project (Pinardi et al., 2003). The maximum discrepancy among the REP and SDN data versions resides always within the surface layer (REP profiles are warmer than SDN ones) until 150 m depth, generally when the thermocline settles (from May to November). The overall bias and root mean square difference are equal to 0.002 ºC and 0.041 ºC, respectively. Such differences are mainly due to the new interpolation technique (Barker and McDougall, 2020), the lack of filtering and the application of the calibration correction in the REP dataset.

The REP dataset (Reseghetti et al., 2023; https://doi.org/10.13127/rep_xtb_1999_2019) is available and accessible through the INGV ERDDAP server (http://oceano.bo.ingv.it/erddap/index.html), which allows machine to machine data access in compliance with the FAIR (Findable, Interoperable, Accessible, Reusable) principles (Wilkinson et al., 2016).
1 Introduction

The open science paradigm boosted the sharing of data through different pathways determining the generation of different versions of the same datasets. This might depend on the timeliness of data delivery, either in Near Real Time (NRT) or Delayed Mode (DM), the data center managing the dataset, the data assembly center or the marine data infrastructure collating it. The awareness of the importance of a complete metadata description is increasing among the scientific community since it allows interoperability, traceability of the data lifecycle, transparency and replicability of the knowledge generation process. In particular, some key information is crucial in climate science because it allows to re-analyze historical data, quantifying and reducing uncertainties, which are used to derive accurate scientific knowledge (Simoncelli et al., 2022).

The data provider should define the overall quality assurance strategy along with the data lifecycle to guarantee the availability of the best data product, which implies the possibility of reprocessing the dataset according to the state-of-the-art Quality Control (QC) procedures and standards. Data driven research should use the most extensive datasets with complete metadata information passed through a trustworthy QC procedure. These are also basic requirements to guarantee data reusability once the data are made openly accessible. The complete set of metadata assures transparency of the data provenance and avoids the circulation of multiple versions.

The integration in global databases of data not compliant with these principles emerged recently for measurements gathered in the last century, when the importance of storing data with complete ancillary information was not yet clear. A striking example is provided by the XBT (eXpendable BathyThermograph) probes, the oceanographic instruments that recorded the largest number of temperature profiles in the ocean from the 1970s to the 1990s (Meyssignac et al., 2019). The complete metadata information is crucial for quality control, data reprocessing (Cheng et al., 2014; 2018; Goni et al., 2019) and integration with other data types to estimate key ocean monitoring indicators, such as the trend of global ocean heat content (Cheng et al., 2020; 2021; 2022), one of the most important climate change indicators. According to the literature (Cheng et al., 2016 and 2017; Parks et al., 2022), the crucial metadata information that must be associated with XBT data includes probe type and manufacturer, fall rate equation, launch height, and recording system. This information was not mandatory for the data ingestion in the main marine data infrastructure, thus most historical data miss it. For example, 50% of XBT profiles in the World Ocean Database (WOD) have no information about manufacturer or probe type, necessitating the application of intelligent metadata techniques to complement it (Palmer et al., 2018; Leahy et al., 2018; Haddad et al., 2022).

This data review originated from the recognition that the present version of historical XBTs from the Ligurian and Tyrrenian Seas, available through some main marine data infrastructures, SeaDataNet (https://www.seadatanet.org/), World Ocean Database (https://www.ncei.noaa.gov/products/world-ocean-database), Copernicus Marine Service (CMS, https://marine.copernicus.eu/), might differ and have incomplete metadata description. Our objective was to recover the raw data together with the full metadata description and secure them to the future generation of scientists for their further use. This awareness raised contemporary to the evolution of open science and FAIR (Findable, Accessible, Interoperable and Reusable) data management principles, which motivated us to adopt the latest community standards, Quality Control (QC)
procedures, and to implement an ERDDAP server as data dissemination strategy. ERDDAP is an open source environmental data server software developed by NOAA and used throughout the ocean observing community (Pinardi et al. 2019; Tanhua et al. 2019) which allows us to become a node of the present data digital ecosystem, in line with one of the expected societal outcomes (“transparent and accessible” ocean) of the UN Decade of Ocean Science 2021-2030 (Ryabinin et al., 2019; Simoncelli et al., 2022).

The paper describes the reprocessing of temperature profiles from expendable probes recorded between 1999 and 2019 in the Ligurian and Tyrrhenian seas, most of them from ro-pax (Roll-on/roll-off Passengers) vessels operating between the Italian ports of Genova and Palermo within the Ships Of Opportunity Program (SOOP) of the Global Ocean Observing System (GOOS), currently identified as MX04 line. Additional XBT data were collected through ancillary monitoring surveys with commercial and research vessels. The dataset contains some XCTD profiles (less than 1%) too. The reprocessed dataset (REP) is obtained from the original raw XBT profiles (the readable output of the DAQs). A correction based on the DAQ calibration (when available) is applied to each temperature recorded value but also provided as separate information, to allow the user to eventually subtract it. Automated QC tests specifically tuned for western Mediterranean basins based on the latest documented QC procedures and best practices to assign a Quality Flag are applied, followed by interpolation of raw profiles at a 1 m in depth. All available information collected during data-taking has been added in the metadata section, according to the SeaDataNet (SDN) standards (https://www.seadatanet.org/Standards) and IQuOD (International Quality-controlled Ocean Database, https://www.iquod.org/index.html) recommendations.

The REP data product allows the user to select from the original profiles to the validated and interpolated ones, filtering on the basis of the required quality level, selecting the Quality Flags (QF) associated with both the raw and the interpolated data. Furthermore, the dataset is accessible through the ERDDAP data server (http://oceano.bo.ingv.it/erddap/index.html) installed at INGV which provides a simple and consistent way to download it in several common file formats.

This study was conducted in the framework of the MACMAP (Multidisciplinary Analysis of Climate change indicators in the Mediterranean And Polar regions) project (https://progetti.ingv.it/progetti-dipartimentali/ambiente/macmap) funded by INGV (https://ror.org/00qps9a02) (2020-2024) in technical collaboration with ENEA and Grandi Navi Veloci (GNV) shipping company. In fact, the reprocessing of the historical XBTs was preparatory to the automatic validation, management and publication of new XBT data gathered on the MX04 line from September 2021, after two years interruption of the monitoring activity.

The paper is organized as follows: Section 2 describes the main characteristics of an XBT system; Section 3 describes the original dataset and the monitoring activities that sustained it; Section 4 describes the methodology applied for the automatic QC and the correction derived from calibration; Section 5 is about the results; Section 6 summarizes the main results and draws conclusions; Section 7 describes the REP dataset findability and accessibility.
2 The XBT system, its accuracy, resolution and uncertainties

In the early 1960s American engineers, who thereafter founded the Sippican Co. (now part of the Lockheed Martin Co., hereinafter Sippican), developed the first version of today’s XBT probes following to a US Navy call for a seawater temperature (T) profiler for military applications. Within a few years Sippican optimized the original probe and marketed different XBT types with specifications suitable for variable depths and ship speed. XBTs became very popular within the oceanographic community (Flierl and Robinson, 1977) allowing the gathering of T profiles through the use of commercial vessels and not just research vessels.

The XBT system consists of: an expendable ballistic probe falling into seawater; a device (DAQ) that records an electrical signal and converts it into usable numerical data (in combination with a computer unit) and the connection between the falling probe and the DAQ (e.g. Goni et al., 2019 and Parks et al., 2022). The sensing component is an NTC thermistor (mounted inside the ballistic probe), that changes its resistance according to seawater T flowing through the central hole of the probe zinc nose where it is located. Its thermal time constant \(\tau \) (time needed to detect 63\% of a thermal step signal) is in the range 0.080 - 0.130 s (so that five-tau rule indicates a time of about 0.5 s to almost fully detect a step temperature change). Technical characteristics required by Sippican for the used NTC thermistor (whose features and performances remained unchanged since the early 1960s) put limits on high accuracy measurements with XBT probes.

Another essential component is the thin double copper wire which is part of the acquisition circuit and which is unwound by two spools simultaneously (clockwise in the ship and counterclockwise in the falling probe), a technique which decouples the XBT vertical falling motion through the seawater from the translational motion of the ship. The non-uniform application of the insulating substance on the wire and its defective winding on one of the spools are the cause of a significant part of faulty or prematurely interrupted acquisitions.

XBT probes do not house any pressure sensor and the depth associated with a temperature measurement is not measured directly but estimated by a phenomenological Fall Rate Equation (FRE) provided by the manufacturer with coefficients that depend on the probe type and which are valid for the world ocean. The software transforms a time series of resistance values provided by the DAQ into a series of depth - T values using first a resistance-to-temperature conversion relationship (identical for all XBT types because it is specific for the thermistor used, see Appendix A) and thus applying the coefficients of a FRE specific to each probe. Sippican has preset conservative values for the recording time in its acquisition software but these values can be freely modified in order to use all the wire wound on the probe spools. The first column of Table 1 shows the nominal values and the maximum recorded depth in the same areas for each specific probe type. Each component of an XBT system contributes to the overall measurement accuracy on depth and T values. According to Anderson (1980): “Sippican specifies the system with a stated worst case temperature accuracy \(\pm 0.2 \, ^\circ C \,(\pm 0.1 \, ^\circ C \text{for the probe and } \pm 0.1 \, ^\circ C \text{for a properly maintained and calibrated recorder})... \text{ and depth accuracy at } \pm 15 \text{ feet (4.6 m) or } \pm 2\%, \text{ whichever is larger}”. Recently the IQuOD group (Cowley et al., 2021) released a summary of uncertainties on T and depth values of different oceanographic devices, and the reported value for XBTs is in the range 0.1-0.2 °C and slightly depending on the manufacturer and the manufacturing date.
In Bordone et al. (2020) it was found that the XBT measurements in the Mediterranean below 100 m compared to those of almost contemporaneous and co-located Argo profilers (in order to have a practically unchanged measurand) are warmer by about 0.05 °C and with a value of 0.10°C as the standard uncertainty of XBT measurements after correction obtained by comparing them with Argo profiles and which was later used in the QC as the SD for the XBT values.

The first part of the XBT fall is critical and hard to describe: a probe needs a few seconds from when it hits the sea surface to make its motion stable (a few tens of meters, given its falling speed of about 6 m s$^{-1}$, Bringas and Goni, 2015). For this reason, careful data validation in the near surface layer and where the seasonal thermocline occurs (i.e. depths shallower than 100 m in the analyzed basin of the Mediterranean Sea), is crucial. Below the thermocline, or in the surface layer in the cold periods (due to homogeneous temperature values), the nominal poor depth accuracy for XBT data does not affect the whole quality too much.

The depth resolution depends both on DAQ sampling rate and FRE of the XBT probe. All DAQ models used in this dataset work at 10 Hz (i.e. a sample every 0.1 s, a time interval nearly coincident with the time constant of the NTC thermistor) so that the depth resolution depends on specific FRE with actual values close to 0.6 m.

The T reading resolution is usually 0.01 °C when using the standard Sippican software while 0.001 °C is the standard output for Devil/Quoll DAQs and some old Sippican software versions. Throughout the work, three decimal digits are always used for T values (both raw and interpolated) and the derived quantities (i.e. vertical gradient). The computer clock (always updated to the UTC value shortly before the start/after the end of operations) provides the time coordinate of each profile. The differences recorded with respect to the standard UTC time have always been close to 1 s, which corresponds to the instrument sensitivity, in a time interval of one day.

Sippican’s manuals released over the years (e.g. Sippican 1968, 1980, 1991, 2006, 2010 and 2014) and reports (e.g. Sy, 1991; Cook and Sy, 2001; Sy and Wright, 2001; Parks et al., 2022) well describe the best practices for XBT use. The checking of the XBT system with a test canister before and after data collection as well as the complete description of the system characteristics in the metadata is binding for subsequent optimal use of the measurements. The evaluation of the performances of the XBT system during data collection is a needed step to improve the quality. When strip chart recorders were used, a preliminary and accurate calibration of the acquisition unit with a test canister (an integral component of an XBT system, tester hereafter) was mandatory (e.g. Sippican, 1968 and 1980; Plessey-Sippican, 1975) but this good practice has been frequently disregarded over the years. This operational procedure has been applied only since July 2010 to the monitoring activity along the MX04 line and to few other subsets of profiles. Based on the improvements described by Reseghetti et al. (2018), a specific correction has been developed and is a key component of the information never used in previous data versions and unlocked in the REP dataset (section 4.3).

As for the XCTD-1 probes, there are some differences compared to the XBTs in terms of resolution and accuracy, and a completely different recording circuitry. The manufacturer (the Japanese company TSK) claims an accuracy of 0.02 °C on temperature (a factor of five better than XBTs) and a resolution of 0.01 °C while the estimated uncertainty on the depth is the same as for the XBT probes (i.e. 4.6 m or 2%, whichever
is greater). The sampling frequency is 25 Hz (i.e. a reading of the thermistor resistance value every 0.04 s), and, thanks to a falling speed which is just over half that of the XBT probes, the depth resolution for the model XCTD-1 is of about 0.14 m.

3 The dataset

3757 temperature profiles, collected from September 1999 to September 2019 in operations managed by ENEA (S. Teresa Marine Research Centre, STE thereafter) mainly through the use of commercial ships, are included in the REP dataset. They come from XBT probes, plus a few dozen of XCTDs. Figure 1 shows the XBT profiles temporal and spatial distribution, highlighting their sparseness, mainly influenced by the irregular monitoring activity and data concentration along the MX04 Genova-Palermo line. The vertical data distribution (Figure 1c) is also non-homogeneous due to the local bathymetry, the use of different probe types and the ship speed, which may affect the duration of the data acquisition.

Table 1 shows some of the characteristics of the expendable probes used in this dataset, the FRE coefficients applied to calculate the depth and the weight of the various components of each probe (ZAMAK nose, body and spool in plastic and copper wire, including the total quantity that can unwind from the on-board spool) in order to evaluate the overall quantity of material abandoned at sea caused by the launch of these probes. We

Figure 1 (a) temporal distribution of the REP (reprocessed) XBT profiles; (b) geographical location; (c) vertical distribution in layers of 50 m of depth.
have no information regarding the various components of the XCTD-1 probes but their nose is made of plastic material. Sippican is the manufacturer of all the used XBT probes as well as the XCTD-1 probes are manufactured by TSK - Tsurumi Seiki Co. and marketed in Italy by Sippican.

The profiles were gathered during the following monitoring activities:
1. SOOP monitoring on the Genova-Palermo MX04 line, which provides the greatest contribution both in terms of campaigns (1999-2000, 2004-2006, 2010-2019) and quantity of profiles;
2. SOOP monitoring in collaboration with CSIRO (an Australian Government Agency), from 2007 to 2011;
3. Sporadic additional SOOP monitoring by ENEA-STE in the Mediterranean (2012-2014);
4. An agreement between ENEA and IIM (Italian Hydrographic Institute of the Navy), (2006 - 2019);

The main characteristics of the vessels and the instrumentation used for the data collection are summarized in Appendix B.

Table 1 Characteristics of the different probes used: nominal depth suggested (and guaranteed) by Sippican and experienced maximum depth in the Mediterranean; maximum ship speed suggested by Sippican for an optimal drop; coefficients of Fall Rate Equation $D(t) = At - Bt^2$ used for depth calculation (provided by the manufacturer or by IGOSS, Hanawa et al., 1995); amount of ZAMAK, copper and plastic for each probe type; number of probes originally considered and those actually included in the dataset.

<table>
<thead>
<tr>
<th>Probe type</th>
<th>Rated depth (max depth) (m)</th>
<th>Maximum ship speed (knots)</th>
<th>Coeff. A (ms$^{-2}$)</th>
<th>Coeff. B (ms$^{-2}$)</th>
<th>ZAMAK (kg) ± 0.001</th>
<th>Plastic (kg) ± 0.001</th>
<th>Copper (kg) ± 0.002</th>
<th>Original no. profiles</th>
<th>REP dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>460 (583)</td>
<td>30</td>
<td>6.691</td>
<td>0.00225</td>
<td>0.613</td>
<td>0.052</td>
<td>0.202</td>
<td>1486</td>
<td>1426</td>
</tr>
<tr>
<td>T5</td>
<td>1830 (2272)</td>
<td>6</td>
<td>6.828</td>
<td>0.00182</td>
<td>0.613</td>
<td>0.125</td>
<td>0.357</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>T5/20</td>
<td>1830 (2248)</td>
<td>20</td>
<td>6.828</td>
<td>0.00182</td>
<td>0.613</td>
<td>0.125</td>
<td>0.726</td>
<td>197</td>
<td>187</td>
</tr>
<tr>
<td>T6</td>
<td>460 (588)</td>
<td>15</td>
<td>6.691</td>
<td>0.00225</td>
<td>0.613</td>
<td>0.052</td>
<td>0.158</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>T7</td>
<td>760 (977)</td>
<td>15</td>
<td>6.691</td>
<td>0.00225</td>
<td>0.576</td>
<td>0.052</td>
<td>0.240</td>
<td>66</td>
<td>60</td>
</tr>
<tr>
<td>DB</td>
<td>760 (962)</td>
<td>20</td>
<td>6.691</td>
<td>0.00225</td>
<td>0.576</td>
<td>0.052</td>
<td>0.294</td>
<td>1828</td>
<td>1747</td>
</tr>
<tr>
<td>T10</td>
<td>200 (292)</td>
<td>10</td>
<td>6.301</td>
<td>0.00216</td>
<td>0.613</td>
<td>0.052</td>
<td>0.098</td>
<td>175</td>
<td>172</td>
</tr>
<tr>
<td>XCTD-1</td>
<td>1100 (1100)</td>
<td>12</td>
<td>3.425432</td>
<td>0.00047</td>
<td>None</td>
<td>NA</td>
<td>0.440</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

The first SOOP in the Mediterranean Sea (September 1999 - December 2000) started in the framework of the European Mediterranean Forecasting System Pilot Project (MFSPP, Pinardi et al., 2003; Manzella et al., 2003; Pinardi and Coppini, 2010) under INGV coordination to support the development of operational oceanography forecasting activities through the NRT provision of ocean observations. XBT profiles were collected along transects crossing the Mediterranean Sea designed to monitor the variability of the main circulation features.
(e.g. Fusco et al., 2003; Zodiatis et al., 2005; Millot and Taupier-Letage, 2005a and 2005b). The MX04 line is the only line still active on seasonal basis, thanks to the MACMAP project, using GNV ro-pax (Roll-on/roll-off Passengers) ferries which connect daily (just under 20 hours sailing at about 22 knots) Genova (44.40° N, 8.91° E) to Palermo (38.13° N, 13.36° E).

Starting from September 1999, 20 campaigns were carried out, in collaboration between CNR-ISMAR and ENEA-STE, with initial monthly monitoring frequency, then every 15 days (December 1999 - May 2000), and again monthly frequency until December 2000. T4 probes (with some T6 probes) were launched at fixed intervals of time (every 30 minutes), corresponding to a sampling distance of about 11 nm. A Sippican MK12 card inserted into the motherboard of a desktop running Windows 98 IIE and with the software set to stop acquisition at 460 m depth was used. All the campaigns were carried out using the MV "Excelsior", its route was always the same and almost coincident with track 44 of the altimetric satellites (Vignudelli et al., 2003).

After a hiatus of more than 3 years and a campaign in May 2004 to check slightly different operational procedures, monitoring along the MX04 line resumed on a monthly basis from September 2004 to December 2005 (July and August excluded), with two additional cruises in May and October 2006, for a total of 17 campaigns within the EU MFS-Toward Environmental Prediction project (MFS-TEP, Manzella et al. 2007; Pinardi and Coppini, 2010). The ships (always GNV vessels) followed a route with marginal differences compared to the previous one due to the introduction of nature conservation limitations in the Tuscan archipelago. In November 2004, February and December 2005 the route was significantly different due to bad weather and sea conditions. The campaigns were planned to travel as close as possible to the passage date of the Jason-1 altimetric satellite along track 44. T4 and DB XBT probes were usually deployed (with a few XCTD-1 and some T6) and the sampling distance was variable from 8 to 12 nm. After a few months, the DAQ (a Sippican MK21 ISA) showed a small degradation and an evident "noise" appeared in the recorded profiles even with excellent operating conditions. Unlike MFS-PP, the acquisition software was set to use all the wire available on the probe spool (i.e. 600 m for T4 and 1000 m for DB probes).

Monitoring on MX04 resumed in July 2010, managed directly by ENEA-STE and until January 2013 was widely variable both in terms of frequency and sampling distance (due to the uncertainty in the supply of XBT probes). A regular sampling scheme was then adopted with a launch every 10° of latitude (corresponding to 11-12 nm depending on the ship's course), excluding the archipelago of Toscana, with five to six annual repetitions, following the same path as in 2004-2006 (excluding February 2013 and April 2014 because of bad weather and sea conditions). From June 2015, the ships moved to a more westerly route in the northern part of the transect crossing the Corsica Channel (this allows monitoring of the water exchange between the Tyrrhenian Sea and the Ligurian Sea) to rejoin the previous one around at latitude 39°N. The number of drops at fixed positions increased to thirty-seven, mainly DB probes while other XBT types were used in particular areas due to the reduced bathymetry (T10) or with interesting deep thermal structures (T5/20).

A short SOOP activity in collaboration with CSIRO was completed between December 2007 and March 2011 (19 campaigns) using containerships from Hapag Lloyd (namely “Canberra Express”, “Stadt Weimar” and “Wellington Express”) and CMA CGM (“CMA CGM Charcot”) shipping companies, operating between
Northern European ports and Australia. These campaigns were characterized by irregular frequency throughout the year, a very high launching platform (at least 25 m over the sea level or more) and a sampling distance between 20 and 35 nm. XBT launches began near the Egadi Islands (west of Sicilia) and terminated in the Corsica Channel, following a path halfway between the MX04 transect and the island of Sardegna. CSIRO installed a Turo Devil DAQ on each vessel while ENEA-STE only provided the DB probes. Some additional XBT profiles (mainly DB type) were gathered in the Ligurian Sea between May 2012 and March 2014 on board the GNV ship "Excellent" (in 5 campaigns) and in 2014 two different cruises using a Sippican MK21 USB onboard the container ship “Daniel A” from the Turkish shipping company ARKAS. From 2006 to 2019, 10 campaigns were carried out in collaboration between ENEA and IIM, using the ships "Ammiraglio Magnaghi", "Aretusa" and "Galatea", collecting a total of about 200 profiles using different XBT types, deployed from different heights and using different DAQs. Finally, an operational collaboration between ENEA-STE and CNR-ISMAR allowed to carry out 29 campaigns between 2000 and 2017 using vessels managed by the CNR (mainly RV "Urania", but also RV "Minerva Uno" and "Ibis"), gathering several hundred profiles with different XBT probe types deployed from different heights and recorded using four different Sippican DAQ units.

4 Methodology

Specific QC procedures for XBT profiles in the Mediterranean Sea were first developed by Manzella et al. (2003) within the MFS-PP project and later improved in Manzella et al. (2007). Temperature observations in the Mediterranean Sea, due to its thermohaline circulation, water masses characteristics and large temperature variability, might present peculiar features like thermal inversions or zero thermal gradient in areas of deep water formation, thus necessitating regional tuning of QC tests. The prior QC procedures included: detection of profile’s end, gross range check, position control, elimination of spikes, interpolation at 1 m intervals, Gaussian smoothing, general malfunctioning control, comparison with climatology and final visual check by operator. Some additional constraints were applied: elimination of the initial part of each profile (the first acceptable value is at 4 m depth, following the standard international procedure), allowed temperature values within the 10-30 °C interval, maximum temperature inversion of 4.5 °C in the 0-200 m layer, 1.5 °C below 200 m, and 3 °Cm⁻¹ as maximum thermal gradient. This QC has not been applied to the data released in NRT through the GTS (Global Telecommunication System, https://community.wmo.int/en/activity-areas/global-telecommunication-system-gts) but only to the data made available in DM through the SDN infrastructure (available through the relative saved query from the SDN CDI data access portal at https://cdi.seadatanet.org/search/welcome.php?query=1866&query_code={4E510DE6-CB22-47D5-B221-7275100CAB7F}). The raw data for the GTS dissemination were provided to NOAA and in the early 2000s the profiles were also heavily sub-sampled due to the low bit rate satellite system provided by Argos, the basic GTS data transmission system (Manzella et al., 2003). These different dissemination channels contributed to the existence of several versions of the same profile in different blue data infrastructures (i.e. WOD, SDN).
A new automated QC procedure, written in Python and structured as a package, has been implemented in the framework of the MACMAP project starting from the original raw XBT profiles, considering the scientific progress made in the field in the last two decades and the full metadata information available. The aim was twofold: first to secure the best version and most complete dataset for further use to the scientific community; secondly to implement an automated QC workflow for the seasonal XBT campaigns started in September 2021 thanks to the MACMAP project. This also allowed to refine and standardize the quality assurance procedures on board of the vessels to record all ancillary information in a pre-defined format and minimize the impact of different operators on the data quality. The calibration correction, detailed in section 4.3, has been added, when available, to the raw data before the QC analysis. However it is provided as a separate variable associated with each XBT profile and the user can eventually remove it. None of the original profiles has been eliminated but integrated with quality indexes, with the exception of those repeated during data taking and those less than 50 m deep due to problems during acquisition. A final visual check has also been performed using ODV software (R. Schlitzer, Ocean Data View, https://odv.awi.de/, 2023) which highlighted the presence of anomalous behavior in some T profiles that the implemented automatic QC tests could not detect. Some examples will be discussed in Section 5 (Figure 10). The REP dataset has been written in ODV format and imported as ODV collection, which contains interpolated temperature profiles and corresponding quality flags of each profile, together with spatio-temporal details, profile name and ship name. This visual check suggested assigning to each profile a general QF, choosing between these two options: 1) excellent indicating all QC done and 2) mixed indicating some problems, with comments to warn the user about the anomalous features.

4.1 Basic automated Quality Control procedure

The XBT raw profiles have been QCed using a sequence of independent tests, checking for invalid information on geographic characteristics and for known signatures of spurious measurements. Results of each test are recorded by inserting the relative flag to the corresponding measurement according to the scheme shown in Table 2, while Figure 2 provides an example of the QC tests applied to a profile.

The independent QC tests are described hereafter.

Position on land check

The profile position should be located at sea, thus latitude and longitude of each profile is checked against gridded GEBCO bathymetry (GEBCO Compilation Group, 2022) on a 15 arc-second interval grid to determine if it is located on land or not: if the “height” is negative it is lower than sea level, and it is flagged as GOOD, otherwise is flagged as BAD.

Depth check

The depth values of each XBT profile are compared to the last good depth value provided by the operator. Depth values are flagged as GOOD if they are shallower than it otherwise they are flagged as BAD. The corresponding local bottom depth extracted from GEBCO and the nominal rated depth by the manufacturer are not used but annotated in the metadata to facilitate further analysis by expert users.
Table 2 Summary of the automated QC tests and the assigned exit values to each measurement within a profile.

<table>
<thead>
<tr>
<th>Test #</th>
<th>Check</th>
<th>Description</th>
<th>Exit value</th>
<th>Exit value description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Position control</td>
<td>Function to detect incorrect longitude and latitude values</td>
<td>49/52</td>
<td>49 profile is at sea; 52 profile is on land.</td>
</tr>
<tr>
<td>2</td>
<td>Depth</td>
<td>Function to detect depth values out of extreme depths. The reference depth is the depth indicated by the operator.</td>
<td>49/52</td>
<td>49 depth is below reference depth values; 52 depth is above reference depth values</td>
</tr>
<tr>
<td>3</td>
<td>Gross range check</td>
<td>Function to detect T values out of ranges in Table 3</td>
<td>49/52</td>
<td>49: T inside the range; 52: T is out of range</td>
</tr>
<tr>
<td>4</td>
<td>Surface</td>
<td>Function to flag the first 4 meters considering an std=0.1 and its growing</td>
<td>49-52</td>
<td>49: Good; 50: Probably Good; 51: Probably bad; 52: Bad</td>
</tr>
<tr>
<td>5</td>
<td>vertical gradient</td>
<td>Function to detect stuck values, decreasing and increasing values according to gradient value and considering only the values that passed the previous checks</td>
<td>56-58</td>
<td>56: stuck value; 57: negative gradient out of threshold; 57#: negative gradient out of threshold in successive iteration (#); 58: positive gradient out of threshold; 58#: positive gradient out of threshold in successive iteration (#)</td>
</tr>
<tr>
<td>6</td>
<td>wire break/stretch</td>
<td>Function based on vertical gradient check to identify wire break on shipside or on probe-side</td>
<td>61</td>
<td>61: wire break/stretch</td>
</tr>
<tr>
<td>7</td>
<td>Spike detection</td>
<td>Function to detect spike considering the median, media and thresholds s_k in Table 4</td>
<td>59</td>
<td>59: spike if $</td>
</tr>
<tr>
<td>8</td>
<td>High Frequency spiking</td>
<td>Function to identify feature in the profile like critical drops</td>
<td>60</td>
<td>60: critical drop</td>
</tr>
</tbody>
</table>

Gross range check
It applies a gross filter on observed temperature considering T thresholds that vary on 5 vertical layers, as reported in Table 3. T thresholds have been defined analyzing the seasonal T distribution in 4 sub-regions displayed in Figure 3: 1) the Ligurian Sea; 2) the Northern Tyrrhenian Sea; 3) the South-West Tyrrhenian Sea; 4) the South-East Tyrrhenian Sea. The domain subdivision is based on the mean circulation features at 15 m and 350 m depth, computed from the Mediterranean Sea reanalysis (Simoncelli et al., 2014) data over the time period 1999-2018 (Figure 3). A detailed description of the circulation is out of scope here but its main features are detailed in Pinardi et al. (2015) and von Schuckmann et al. (2016, section 3.1).

Surface check
The XBT measurements close to the sea surface are usually considered unreliable and thus excluded from further analysis (e.g. Bailey et al., 1994; Cowley and Krummel, 2022), due to reaching stability in motion and thermal adaptation to the surrounding environment. It is preferred that the user is provided all the original measurements by adding a test that analyzes the measurements in the surface layer and annotating the resulting quality information in the ancillary variables or quality flags. The proposed test chooses as reference the value recorded at time $t = 0.6$ s (the first value currently considered acceptable), calculates the differences between this value and shallower measurements and classifies them using the standard uncertainty on temperature attributable to an XBT probe (0.10 °C) as a metric. In detail, the temperature differences $T(t_{0.6})-T(t_i)$, with $0.0 \leq t_i \leq 0.5$ s are calculated and the QF is assigned as follows:
GOOD if $|T(0.6) - T(ti)| \leq 1*\text{std}$;

PROBABLY GOOD if $1*\text{std} < |T(0.6) - T(ti)| \leq 2*\text{std}$;

PROBABLY BAD if $2*\text{std} < |T(0.6) - T(ti)| \leq 3*\text{std}$;

BAD if $|T(0.6) - T(ti)| > 3*\text{std}$.

The flag GOOD means a value indistinguishable from the record at $t = 0.6$ s while PROBABLY GOOD defines an excellent compatibility. The PROBABLY BAD and BAD flags simply indicate a difference greater than the established threshold with respect to the reference value at $t = 0.6$ s.

Inversion and gradient checks

This test is performed to detect unrealistic T oscillations with abrupt T reversals or unusually large T gradients.

The vertical gradient is defined as the difference between vertically adjacent measurements, $T_z = (T_2 - T_1)/(Z_2 - Z_1)$, where T_2 and T_1 are temperatures at depths Z_2 and Z_1, with level 2 being deeper than level 1. This test is applied three times iteratively discarding values that failed the test in the next iteration. The acceptable T gradient ranges (Table 3) have been defined through a statistical analysis in 5 vertical layers and 4 sub-regions (Figure 3) through an approach that blends expert decisions with statistical support. Due to the spatial (horizontal and vertical) and temporal sparseness of the data, the 0.01% and 99.99% quantiles have been computed in the 5 layers considering: 1) the whole dataset; 2) the 4 sub regions; 3) the entire domain but for 4 seasons. The thresholds are the absolute minimum 0.01% quantile and maximum 99.99% quantile deriving from the three cases. The thresholds of the two deepest levels are from case 1, the upper layer uses values from case 2 and the second and third layers use the results of case 3.

Table 3 Temperature and thermal gradient thresholds defined in 5 layers.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Temperature (°C)</th>
<th>Vertical Gradient (°C m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100 m</td>
<td>12.000</td>
<td>30.000</td>
</tr>
<tr>
<td></td>
<td>-3.400</td>
<td>0.613</td>
</tr>
<tr>
<td>100-250 m</td>
<td>12.500</td>
<td>17.900</td>
</tr>
<tr>
<td></td>
<td>-0.317</td>
<td>0.244</td>
</tr>
<tr>
<td>250-450 m</td>
<td>12.700</td>
<td>15.500</td>
</tr>
<tr>
<td></td>
<td>-0.156</td>
<td>0.170</td>
</tr>
<tr>
<td>450-1000 m</td>
<td>13.100</td>
<td>14.800</td>
</tr>
<tr>
<td></td>
<td>-0.133</td>
<td>0.137</td>
</tr>
<tr>
<td>1000-2300 m</td>
<td>13.100</td>
<td>14.000</td>
</tr>
<tr>
<td></td>
<td>-0.094</td>
<td>0.090</td>
</tr>
</tbody>
</table>

Wire break/stretch

Results of inversion and gradient checks are used to identify sharp variations toward negative values, indicating that the copper wire breaks on shipside, or toward high values (close to 35 °C or more), when the wire breaks on probe-side where there is often a progressive increase in temperature values rather than a step transition to full scale.
Spike detection

This test looks for single value spikes and it checks T measurements for large differences between adjacent values. A spike is detected by computing the median value (Med_k) in a 5 points interval (3 m approximately) with the profile value at the central point of the interval (T_k). The spike is detected and the consequent flag is applied if T_k is not equal to Med_k and the difference (s_k) between T_k and the mean (Ave_k) in the chosen interval is greater than a threshold value.

$$
Med_k = median(T_{k-2}:T_{k+2}) \\
Ave_k = mean(T_{k-2}:T_{k+2}) \\
s_k = T_k - Ave_k, c_k = T_k - Med_k \neq 0
$$

The spike threshold values have been defined for the entire region in 5 vertical layers as the 99.9% quantile of the s_k distribution and they are reported in Table 4. Figure 3a shows the probability distribution of s_k values with c_k not equal to zero in 5 layers. s_k distribution is characterized by large values above 80 m that diminish with depth, as the temperature variability does. The s_k scatter plot (Figure 3b) shows its values along the water column, with the red dots highlighting the values over the selected thresholds.

Table 4 Spike detection threshold defined in 5 vertical layers.

<table>
<thead>
<tr>
<th>Layer</th>
<th>spike threshold (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-80 m</td>
<td>0.236</td>
</tr>
<tr>
<td>80-200 m</td>
<td>0.085</td>
</tr>
<tr>
<td>200-450 m</td>
<td>0.054</td>
</tr>
<tr>
<td>450-900 m</td>
<td>0.050</td>
</tr>
<tr>
<td>900-2300 m</td>
<td>0.022</td>
</tr>
</tbody>
</table>

High Frequency Noise

It helps to identify critical T drops in the profile (such as large T differences over a large depth) by checking continual spiking over a wide range of depths (Cowley and Krummel, 2022). In case of continual spikes, values before and after a chosen interval (4 m approximately, i.e. 7 points) are tested considering the same acceptable range of T inversion and gradient as in the inversion and gradient checks and flagged as bad if they are out of the ranges.
Figure 2. Example of the quality flags generated by the automatic QC tests (Table 2) applied to a temperature profile. The raw profile is at the top left and the final interpolated profile is at the bottom right.
Figure 3 Maps of the mean circulation computed from the Mediterranean Sea reanalysis dataset (Simoncelli et al., 2014) at (a) 15 m and (b) 350 m.

Figure 4 (a) Distribution in terms of probability of the spike threshold (s_k) in 5 layers with a zoom probability below 0.1%. (b) Vertical distribution of the spike threshold with indication in red the values above the 99.99% quantile.
4.2 Mapping QC test outcome to standard Quality Flags

Each basic QC test assigns a corresponding exit value or label to each original depth and T record (Table 3) within the vertical profile and their mapping to QFs is necessary to allow the user to filter the original data according to the quality requirements for the intended use. The QFs adopted, whose labels and corresponding definition are reported in Table 5, have been selected from the SDN Common Vocabulary (IOC, 2013; IOC, 2019; https://www.seadatanet.org/Standards/Common-Vocabularies). The QF (Table 5) associated with each original T measurement or depth value summarizes the results of the performed automatic tests and it is stored in the dedicated ancillary variable (TEMPET01_FLAGS_QC or DEPTH_FLAGS_QC).

<table>
<thead>
<tr>
<th>id</th>
<th>label</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>good value</td>
<td>Good quality data value that is not part of any identified malfunction and has been verified as consistent with real phenomena during the quality control process</td>
</tr>
<tr>
<td>2</td>
<td>probably good value</td>
<td>Data value that is probably consistent with real phenomena but this is unconfirmed or data value forming part of a malfunction that is considered too small to affect the overall quality of the data object of which it is a part</td>
</tr>
<tr>
<td>3</td>
<td>probably bad value</td>
<td>Data value recognised as unusual during quality control that forms part of a feature that is probably inconsistent with real phenomena</td>
</tr>
<tr>
<td>4</td>
<td>bad value</td>
<td>An obviously erroneous data value</td>
</tr>
<tr>
<td>8</td>
<td>interpolated value</td>
<td>This value has been derived by interpolation from other values in the data object.</td>
</tr>
</tbody>
</table>

The general rule adopted for both depth and T QF is the following:
- GOOD (QF=1) where all the tests pass;
- BAD (QF=4) where at least one of the checks fails.

For T, we decided to use a higher level of detail, introducing also “probably good” (QF=2) and “probably bad” (QF=3) flags, when it’s needed, since surface and inversion/gradient tests can provide more information on profile behavior. After applying general rule for GOOD and BAD flags, we consider the flags coming from the two mentioned tests and we update the flags as follows:
- PROBABLY GOOD (QF=2) if the surface test returns a “probably good” flag;
- PROBABLY BAD (QF=3) if the surface and/or the inversion test returns a “probably bad” flag.

Only measurements that have associated T and depth QFs equal to 1 or 2 have been used for the interpolation at each meter depth. A relative QF associated to the interpolated profile has also been generated in order to label (“interpolated value”, QF=8) when there is a gap of more than 5 consecutive points in the original profile, which coincides with the number of points used to detect spikes (~3 m).
4.3 Calibration of the XBT system and correction

As previously highlighted, checking with a tester provides an assessment of the efficiency of an XBT system. For example, Reseghetti et al. (2018) showed a notable improvement in the accuracy of XBT values compared to measurements from a reference instrument (a CTD) in dedicated field tests when tester control correction was applied.

The testers used here (built with high-performance resistors) have two reference temperatures (see Appendix A for details). Once a tester is connected to an XBT system in a simulated drop, the tester's measurement reading indicates how the XBT system's reading differs from nominal values at both temperatures. These differences, which can be constant or variable over the time interval of data acquisition, can then be used to correct the values of the XBT profiles.

The performance of the XBT system used was verified only for some subsets of the REP dataset. Since July 2010, a two-point tester has been used during cruises on the MX04 line with an initial check immediately before the first drop and a final one after the last profile. Additional checks were performed whenever computers or DAQ had failures. The differences measured at the reference temperatures at the start/end of each MX04 cruise are shown in Figure 5a, while their drift during a cruise is in Figure 5b. It is well evident that the values vary marginally and slightly over the time, but only in September 2013 (cruise 14) and June 2014 (cruise 18) large anomalies occurred for unknown reasons.

4.3.1 Correction Algorithm

The measurements with a tester are used to correct the T values of each XBT profile of a campaign under the assumption that the difference between the initial and final tester readings at reference temperatures varies linearly over time from the beginning to the end of the campaign. The reference values are obtained by calculating the average resistance value over the last 30 consecutive recorded values at each temperature in...
the simulated drop (i.e. 3 seconds of acquisition, with a sampling frequency of 10 Hz) and then converted into T values (for details, see Appendix A). The differences between the nominal temperatures and the read values are linearly interpolated as a function of the time elapsed since the first launch to calculate their hypothetical value in correspondence with the k-th XBT probe during the campaign. In case of a single-point tester, a constant correction k-th is added to each value of the XBT profile k-th; while in case of two-point tester, the i-th correction is obtained by a further linear interpolation, based on the differences at upper and lower temperatures of this tester.

Notation:

- N is the number of XBT probes deployed during the campaign;
- T_c and T_r nominal upper and lower temperature on the tester;
- $\Delta T_{\text{c},i}$, $\Delta T_{\text{r},i}$ initial and final temperature difference at the value T_c;
- $\Delta T_{\text{c},k}$, $\Delta T_{\text{r},k}$ initial and final temperature difference at the value T_r;
- t_i, t_f initial and final time of the XBT drops (usually, t_i is set to 0);
- t_0 time elapsed from the initial check with the tester, which is assumed to be coincident with the first XBT drop ($1 \leq k \leq N$);
- $T_{\text{c},k}$ and $T_{\text{r},k}$ theoretical upper and lower temperature that the tester should read at the k-th drop.

These last values can be calculated as

$$T_{\text{c},k} = T_{\text{c},i} + \Delta T_{\text{c},k}$$
$$T_{\text{r},k} = T_{\text{r},i} + \Delta T_{\text{r},k}$$

where the estimated difference at upper and lower reference T corresponding at the k drop are:

$$\Delta T_{\text{c},k} = -\left[\Delta T_{\text{c},i} + \left(\frac{\Delta T_{\text{c},f} - \Delta T_{\text{c},i}}{t_f - t_i}\right)(t_k - t_i)\right]$$
$$\Delta T_{\text{r},k} = -\left[\Delta T_{\text{r},i} + \left(\frac{\Delta T_{\text{r},f} - \Delta T_{\text{r},i}}{t_f - t_i}\right)(t_k - t_i)\right]$$

The so calculated contributions are combined in the correction term for the specific k-th XBT:

$$\Delta T_{\text{corr},k} = \left(\frac{\Delta T_{\text{c},k} - \Delta T_{\text{r},k}}{T_{\text{c}} - T_{\text{r}}}\right)(T_{\text{read},k} - T_{\text{r}}) + \Delta T_{\text{r},k}$$

and then added the original value $T_{\text{read},k}$ recorded by the DAQ:

$$T_{\text{corr},k} = T_{\text{read},k} + \Delta T_{\text{corr},k}$$

$T_{\text{corr},k}$ is thus the value that best represents the actual seawater temperature measured by the k-th XBT probe assuming that the calculated correction (based on the initial and final measurements provided by the tester) is the best way to describe how the XBT system operates when the k-th probe was crossing the water column and measuring. Obviously, $\Delta T_{\text{corr},k}$ cannot say anything about the quality of the measurement due to the characteristics of the k-th probe ("hot" or "cold" probe, or possible troubles during the acquisition).

When the calibration is available, the correction calculated in this way has been applied to the raw data prior to the QC analysis but it is also provided as a separate variable so that the user might decide to remove it. This correction must absolutely not be applied to the profiles from XCTD-I probes because their acquisition circuit works in a completely different way and the shipboard DAQ simply acts as a data receiver and does not play an active role in the measurement.
4.4 Vertical Interpolation

Three interpolation methods were tested: linear (LI), RR (Reiniger and Ross, 1968) and MR-PCHIP (Barker and McDougall, 2020). The goal is to select the most conservative method, i.e. the one that provides the closest interpolated T values to the original reading. The original measurements of each XBT profile were subsampled, discarding half of the measurements then used as control values against the newly interpolated ones to calculate differences and Root Mean Square Differences (RMSD) and therefore evaluate the best interpolation method for our dataset.

Original values have been interpolated with the three methods on the control depth levels and the resulting T estimates have been compared with the measured ones. Figure 6 shows an example of an observed profile with highlighted control levels (magenta), the interpolated profile with the three considered methods and the relative differences (interpolated-original). Figure 6a presents an example of the large T differences that occur between interpolated and measured values (0.4 °C or -0.2 °C) along the thermocline at about 35 m. Figure 6b shows a step-like profile below 600 m depth where the differences are very small, less than 0.02 °C, but they can slightly increase and differ among the three methods where T vertical gradients occur.

Mean bias and RMSD have been computed in vertical bins (766) of 3 m thickness and the obtained metrics profiles are displayed in Figure 7, associated with their relative vertical data distributions. These metrics have been computed for the whole dataset and for two separate time periods: from June to November (when the thermocline is well developed) and from December to May (when the water column is more homogeneous).

The mean bias in Figure 7 presents values in the range (-0.001, +0.001) °C, the interval halves from December to May whereas it practically doubles (-0.002, +0.001) °C from June to November. The maximum RMSD when considering all profiles is about 0.04 °C, it halves from December to May while it is close to 0.06 °C from June to November. Except for the “mixed” plot, the maximum RMSD values are associated with LI and RR methods but we note that RMSD < 0.01 °C for the three methods below 100 m depth.

The total RMSD on the entire water column has been summarized in Table 6 for the three time periods and the surface layer above 100 m. In fact, the total bias estimated is zero for the three methods and the three time periods, while the total RMSD is 0.011 °C for LI, 0.011 °C for RR and 0.010 °C for MR-PCHIP, while in the surface layer the values are 0.023 °C, 0.021 °C and 0.019 °C respectively. The maximum RMSD values usually occur during the stratified period (Jun-Nov) with values equal to 0.013 °C for LI, 0.012 °C for RR and 0.011 °C for MR-PCHIP, that in the surface layer become 0.030 °C, 0.027 °C and 0.023 °C, respectively.

The computed metrics in vertical bins present very small values, much lower than the nominal accuracy associated with the measurements of an XBT system (0.2 °C). However, the absolute differences in the surface layer when the thermocline settles can be larger than 0.2 °C as in Figure 6. The MR-PCHIP interpolation always presents the smallest error for the analyzed dataset (Table 6) with respect to the reference values, thus it has been applied to the REP dataset.
Figure 6 Temperature profiles in the surface layer 1-100 m (a) and in the deep layer 600-1800 m (b): (left) magenta dots represent the control records; (middle) interpolated temperature values with linear LI (linear), RR (Reiniger and Ross, 1968) and MR-PCHIP (Barker and McDougall, 2020); (right) differences between the interpolated and measured T values.

Table 6 Summary of the computed metrics from the three interpolation methods: linear (LI), RR and MR-PCHIP

<table>
<thead>
<tr>
<th></th>
<th>RMSD [°C]</th>
<th>LI</th>
<th>RR</th>
<th>MR-PCHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.011</td>
<td>0.011</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>0-100 m</td>
<td>0.023</td>
<td>0.021</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Dec-May</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>0-100 m</td>
<td>0.014</td>
<td>0.014</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Jun-Nov</td>
<td>0.013</td>
<td>0.012</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>0-100 m</td>
<td>0.030</td>
<td>0.027</td>
<td>0.023</td>
<td></td>
</tr>
</tbody>
</table>
Figure 7 Profile of mean bias (left) and RMSD (middle) computed from profiles interpolated on selected depths and compared to the corresponding measured values considering the three methods: linear (LI), Mr-PCHIP (MR) and Reniger and Ross (RR). Three different time spans are shown: (top) the whole dataset; (middle) from December to May; (bottom) from June to November. (right) Vertical data distribution in 3 m bins.
5. Results

The application of a series of QC algorithms to detect erroneous values is not capable of catching all of them. According to Good et al. (2023) any automatic QC test produces a percentage of True Positives (TP, correctly detected erroneous data) and False Positives (FP, incorrectly detected erroneous data) and the general aim would be to maximize the TP (correct flagging) rate and minimize the FP (incorrect flagging) rate. The new automatic QC procedure has been deeply tuned by visual check to reach an optimal TP/FP rate. In specific, efforts have been made to tune the vertical gradient and spike thresholds, tuned by quantiles analysis, to maximize the detection of erroneous data and minimize to flag as BAD data the GOOD ones. This was particularly tricky for the vertical gradient test which detected 121 profiles with out of bounds values, but 28 of them appeared FPs (FP/TP rate of 23%) from visual check. In fact, the strong seasonal stratification of the Mediterranean Sea and the presence of several water masses in different water layers might cause the incorrect flagging as BAD of GOOD data, as shown in Figure 8b,d. This makes the vertical gradient test non-optimal for the Mediterranean Basin with a high FP rate, thus a very small percentage associated with the quantiles have been selected to minimize this.

The spikes test instead is much more effective (331 profiles with detected spikes of which 11 are FPs), providing a low FP/TP rate (3.3%). Figure 9 shows example profiles with true spikes (a) and wrong spikes (b), mainly marked at the start of the thermocline. However, some profiles present anomalous features that automatic QC procedure could not detect. The decision was to add a flag associated with the whole profile indicating the depth range where unrecoverable problems happened or began. The indispensable premise is the knowledge of the main physical characteristics of the water masses present in the analyzed region. In fact, the very small value of the Rossby radius (≤ 11.5 km irregardless of the season) and the occurrence of repeated and well-documented thermal inversions must always be considered when the quality of the T profiles is analyzed. Step-like structures (“staircases”) are also typical of the southern Tyrrhenian Sea, explained usually in terms of the double diffusion process (Meccia et al. 2016; Durante et al., 2021).

Sometimes, the meteorological conditions and a non-accurate knowledge of the bathymetry can make the expert validation of XBT profiles difficult, but their extreme variability can also be ascribed to multiple instrumental and operational factors. In every XBT drop, the correct unwinding of the wire from both spools, adequate and complete protection of the insulating substance along its entire length are essential to guarantee good quality of the recorded data. For example, most profiles from XBTs launched from ships traveling at low speed (i.e. v < 15 knots) are generally less affected by significant electrical disturbances, even in the presence of non-zero wind. Unfortunately, the ships used on the MX04 line (from which most of the REP profiles belong) have a standard speed close to 22 knots and this makes the acquisition conditions vulnerable. The XBT profiles from containerships also have a lower quality due to the usually very high launch position (h > 25 m), which also makes the probe depth in the initial measurements provided by software questionable (Bringas and Goni, 2015). An XBT, during acquisition, due to the electric current present in the copper wire, acts as an antenna sensitive to all electromagnetic phenomena occurring in the atmosphere in a region close to the...
launching position and on the ship. The occurrence of atmospheric events (thunderstorms with lightning), even at a relative distance from the ship, can have a non-negligible impact on the "cleanliness" of the recorded signal, same as the proximity to on-board instrumentation producing significant electromagnetic fields and whose operation is random. The physical parameter measured by the XBT system is the electrical resistance, which has two components: one is from the wire and the other from the NTC thermistor which falls through the water column. Gusts of wind combined with turbulence produced by the ship hull can produce "whiplash" on the copper wire and badly influence the shape of the profiles collected with particularly unfavorable wind conditions.

Figure 8 Examples of temperature gradient flags applied to different XBT profiles: (a) true positive vertical gradient anomaly in the surface layer; (b) true positive vertical gradient anomaly in the surface layer; (c) true positive vertical gradient anomaly in the bottom layer; (d) false positive vertical gradient anomaly in the bottom layer.
Figure 9 Examples of spikes detected in two different XBT profiles: (a) true spikes; (b) false spike at the start of a steep thermocline. The orange dots in the right panels of (a) and (b) indicate the estimated value of the \(s_k \) parameter having \(c_k \) not equal to zero.

A difficult task has been how to identify these external influences that induce “oscillations” in the shape of \(T \) profile, as in the examples of Figure 10 c-d-e, and how to annotate it in the metadata. Some other anomalous "thermal structures", compared to what is expected in a certain period, region and depth layer are shown in Figure 10 a-b and f (anomaly around 400 m depth in the blue profile and at 550 m in the green one). The "visual check" carried out by the expert allows in some cases to highlight notable deviations in the shape and/or values of a profile compared to adjacent ones. The probability of having the same type of "anomalous" structure recorded by two adjacent XBT probes in time and space is considered negligible, favoring the occurrence of something "physical" instead of non-optimal functioning of a specific probe. Sometimes the initial “BAD” attribution to anomalous structures was subsequently reviewed by the comparison with adjacent profiles that present something similar.

5.1 Validation with SeaDataNet version

A significant part of the XBT profiles included in this dataset have been systematically disseminated through the SDN infrastructure and can be accessed from the data access portal through the saved query URL

https://cdi.seadatanet.org/search/welcome.php?query=1866&query_code={4E510DE6-CB22-47D5-B221-7275100CAB7F}). Alternatively, they can be found in the Mediterranean aggregated dataset product (Simoncelli et al., 2020a) in which they are integrated with other data types (CTDs, bottles, MBTs, profiling floats). This data product has been further validated in the framework of the SeaDataCloud project (https://www.seadatanet.org/About-us/SeaDataCloud), as described in Simoncelli et al. (2020b).
The SDN XBT dataset, extracted from Simoncelli et al. (2020a) is considered here as a benchmark to highlight the main effects of the proposed data reprocessing. Bias and RMSD profiles have been computed from 3104 matching profiles with a vertical data distribution shown in Figure 11. Since SDN profiles do not have the calibration correction, we have computed the separate metrics with and without the correction applied. The black dots represent all matching profiles, green dots represent the profiles without correction and the red dots have the correction applied.

Figure 10 Examples of profiles with critical features. Remark: the axes ranges are different and selected to highlight some peculiar structure. The name of the selected profile(s) is shown in the legend.

The maximum discrepancy among the two data versions resides always within the surface layer until 150 m depth. The maximum bias and RMSD reach approximately 0.05 °C and 0.2 °C respectively, which might imply potential significant changes in downstream applications. The bias is larger (~0.06 °C) when estimated from profiles without correction and slightly smaller (~0.04 °C) from non-corrected profiles, while the largest
RMSD derives from profiles with the correction applied, indicating that the correction slightly increases on average the REP temperature values and consequently the positive bias.

The REP profiles are warmer than SDN ones in the surface layer and below 900 m, while between 150 m and 800 m both metrics are small and quite constant. The overall mean bias and RMSD are equal to 0.002 °C and 0.041 °C, respectively. The sharp reduction in the number of observations available below about 900 m depth could affect the shape of both BIAS and RMSD profiles.

Such differences are mainly due to the new interpolation technique, the lack of filtering, the application of the calibration correction in the REP dataset, and in very few cases, the use in SDN of wrong FRE coefficients or the incorrect probe type assignment which can produce a change of the depth values.

Figure 11 Comparison between the reprocessed (REP) and the corresponding SeaDataNet (SDN) profiles at each meter depth: (a) Bias mean profile; (b) RMSD profile and (c) cumulative vertical data distribution which shows the relative contribution of profiles with calibration an profiles without calibration to the total.

Figure 12 shows an example of matching REP and SDN profile and the relative differences at each meter of depth (a) with a zoom in the surface (b) and bottom layers (c), where the largest differences occur. During the stratified period, the largest differences reside in the thermocline and can exceed 1.5 °C, while in the bottom layer the frequent step-like shape of the profile, due to double diffusion processes (Meccia et al. 2016; Durante at al., 2021), explains the positive average bias in Figure 11a.

In the SDN dataset, the interpolation of raw profiles at each meter depth has been combined with the application of a Gaussian filter to reduce possible noise (Manzella et al., 2003 and 2007). Consequently, a general smoothing of T profiles is observed, which is appreciable to remove/reduce unrealistic high frequency oscillations, if needed, but it also affects the values of the whole profile. The main effect is that the shape of thermal structures is smoothed out, more or less evidently depending on the recorded T gradient.
Figure 12 Example of a reprocessed (REP) profile and the corresponding SeaDataNet (SDN) one: (a) whole profiles on the left and relative difference profile on the right; (b) zoom in the surface layer 0-150 m (c) zoom in the bottom layer 500-800 m.

6. Summary and Conclusions

This work presents the reprocessing of XBT profiles in the Ligurian and Tyrrhenian Seas over the time period 1999-2019. The added value of this analysis is the availability of the original raw data and all the metadata from the operational manual notes. This allowed us to create the most complete dataset possible with metadata accompanying each individual T profile. The surface measurements have been added with quality indication and a correction from calibration has been applied, when available, to T values (generally in the range 0.01-0.02 °C), representing the best estimate of the thermal offset due to the operating XBT system characteristics.

A new automatic QC procedure and a new vertical interpolation (Barker and McDougall, 2020) have been implemented without the application of any filter that: on one side, removes unrealistic high frequency oscillations, and on the other, it smooths out the thermal structure of the T profiles with main impact on the surface layer during stratified conditions. The adoption of a Gaussian filter from Manzella et al. (2003, 2007) was justified by the purpose of assimilating XBT profiles in the Mediterranean Forecasting System that in the early 2000s was characterized by a much lower resolution compared to the present numerical model capabilities. The REP dataset gives researchers the most complete information for its re-use for different applications (assimilation in ocean and climate models, process and climate studies). It can also be used to test new QC algorithms or the order on which to apply them to further improve the data quality.

The adoption of FAIR data management principles through the use of SeaDataNet standards and the dissemination strategy based on the ERDDAP server implementation are additional values of this effort, allowing its machine to machine access.

XBTs are a 60-year-old technology. Though the quality of their measurements might not fit the purpose of all applications and they leave debris in the ocean, “XBTs provide the simplest and most cost-efficient solution for frequently obtaining temperature profiles along fixed transects of the upper ocean” (Parks et al., 2022) using ships of opportunity. Moreover, the XBT measurements along the MX04 track were for some periods
among the few measurements recorded in the Tyrrhenian and Ligurian Seas. Despite the limitations of the XBT characteristics, they constituted the simplest way to verify the physical state of the upper layer of those basins. It is therefore very important to provide those profiles with the best quality and usability indications. For this reason, the MX04 line has been re-established in the framework of the MACMAP project after a two-year break on a seasonal base for climate monitoring.

In recent years, the use of XBTs has also been criticized because all probe components fall to the seabed. Given the current MACMAP sampling strategy with 37 launches in a fixed and determined position, the quantity of material abandoned at sea for each campaign can be easily estimated (about 22 kg of ZAMAK, just over 2 kg of plastic and about 11 kg of copper wire). If the XBT probes were made with other materials (e.g. iron "nose" and biodegradable plastic components), it would certainly be better. However, in a cost-benefit balance, the environmental impact due to the collection of profiles included in this dataset is exceeded by the scientific results. The use of XBTs allows the planning of monitoring surveys with only 24-36 hours advance notice, along a specific path including coastal areas, using merchant vessels. The MX04 transect has provided a series of tomographic-like "thermal images" along essentially the same path since September 1999, monitoring the area over the years and the occurrence of transient events and their evolution to be analyzed. Finally, the deployment of the XBT probes described here did not contribute to additional emissions of CO2 and other atmospheric pollutants, because only commercial vessels were used and in the case of research vessels, the launch of the XBT probes was ancillary to the primary activities for which the campaign was planned.

7. Data Availability and FAIRness

The management of the REP dataset has been conceived since the beginning to be compliant with the FAIR (Findable, Interoperable, Accessible, Reusable) data management principles (Wilkinson et al., 2016) and the open science paradigm. The REP dataset (Reseghetti et al., 2023; https://doi.org/10.13127/rep_xbt_1999_2019) is available and accessible through INGV (Bologna) ERDDAP server (http://oceano.bo.ingv.it/erddap/index.html), which allows machine to machine data access and gives to the users the possibility to select among several download formats. The raw data with complete metadata description and the interpolated data after data QC are released together with all the processing information in order to facilitate data reuse. The format and the standards adopted for the dissemination of the REP dataset are described in detail in Appendix C. The ODV collection of the REP interpolated dataset, used for the visual check, is also available on request.

Author contribution

SS conceptualized the work, FR curated the original data (collecting a significant portion of it), CF developed the QC software, under the methodology supervision of SS, FR and LC. GR prepared the correction from the calibration of DAQs. CF manages and curates the reprocessed dataset. SS, FR and CF prepared the manuscript with contributions from GR and LC.
Competing interests
S. Simoncelli is a member of the editorial board of the journal. Co-authors declare that they have no conflict of interest.

Acknowledgements
We thank all people/institutions/companies involved in the data taking:

- The Italian shipping company GNV (Grandi Navi Veloci), a very special partner that has allowed the monitoring activity since September 1999: in particular Marco Fasciolo, Dr. Mattia Canevari, the captains, the officers and all the crews for their precious collaboration;
- Persons involved in data collection on the MX04 line, namely M. Borghini, F. Dell’Amico, C. Galli, E. Lazzoni (CNR-ISMAR), M. Morgigni and A. Baldi (ENEA);
- CNR-ISMAR-Lerici for the very long collaboration that has allowed the acquisition of numerous XBT profiles from research vessels, in particular the crew and technicians of the RV Urania;
- The international shipping companies Hapag Lloyd, CMA CGM and Arkas, their managers and crews for their valuable collaboration;
- Responsible officers ashore and on board, crews and technicians of ships belonging to IIM, in particular CF Maurizio Demarte and Dr. Luca Repetti.
- Australian government agency CSIRO for its kind cooperation by sharing their instrumentation in the 2007-2011 data collection on container ships, notably Dr. Ann Thresher, Dr. Lisa Krummel and Dr. Rebecca Cowley;
- The Federal Research Laboratory NOAA-AOML of Miami (FL), in particular Dr. Gustavo Goni and Dr. Francis Bringas, for the supply of the XBT probes used during some MX04 campaigns and for the support in carrying out the operational activities;
- Stefano Latorre (INFN, Milan), key person in the development and implementation of the testers and their periodic calibration;
- One of the authors (FR) for having supplied his own instrumentation and XBT probes for carrying out oceanographic campaigns since 2008.

A very special thanks to Giuseppe M. Manzella, who created the SOOP program in the Mediterranean Sea and coordinated it until 2013. He supported this paper, providing useful comments.

We acknowledge Marjahn Finlayson for reviewing the English, and Mario Locati (head of the INGV data management office) for his continuous support. This work has been developed in the framework of the MACMAP project, funded by Istituto Nazionale di Geofisica e Vulcanologia (Environment Department), and coordinated by Antonio Guarnieri that we thank.
Appendix A

Characteristics of test canisters

While in the laboratory, it is easy to have environmental conditions constant and under control for measurements, in the field, this is only an aspiration of the operators. Furthermore, repeated operation in conditions of high temperature, humidity and salinity certainly does not facilitate the proper functioning of the electronic instrumentation. The DAQ in an XBT system should read (within the uncertainties of the measurements) the nominal value of a resistance showing no changes in its reading over time because it is an essential component to get good quality XBT measurements. The use of a tester with high quality resistors is the preferred method to verify this. Between 2007 and 2010, two testers were built using very high precision resistors (model KOA-Speer RN73r1jttt1002b10) combined in such a way as to achieve corresponding T values similar to the extreme ones measured in the marine regions under investigation. The resistance values of both testers were checked each year with a Wavetek Datron 1281 8.5 digits multi-meter in a laboratory of the INFN (Italian National Institute of Nuclear Physics) in Milan (room temperature always in the range 20-24 °C during measurements). The reading remained stable (within 0.1 Ohm) over the period 2008-2019 for the former and 2010-2015 for the latter.

Table A1 - The resistance values measured in the control tests with the corresponding temperature values calculated by a Hoge_2 equation for the two testers used in the XBT data acquisition campaigns since 2010.

<table>
<thead>
<tr>
<th>Model</th>
<th>Resistance 1 (Ohm)</th>
<th>Temperature 1 (°C)</th>
<th>Resistance 2 (Ohm)</th>
<th>Temperature 2 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test canister 1</td>
<td>4631.0 ± 0.1</td>
<td>26.758 ± 0.001</td>
<td>8960.1 ± 0.1</td>
<td>12.197 ± 0.001</td>
</tr>
<tr>
<td>Test canister 2</td>
<td>4397.2 ± 0.1</td>
<td>27.956 ± 0.001</td>
<td>8725.3 ± 0.1</td>
<td>12.759 ± 0.001</td>
</tr>
</tbody>
</table>

The resistance R values shown in Table A1 are then converted to T by applying the Hoge_2 R to T equation (Sippican, 1991 and 2010; Hoge, 1988; Chen, 2009; Liu et al., 2018) with the following coefficients:

\[
A = 1.2901230e-3 \\
B = 2.3322529e-4 \\
C = 4.5791293e-7 \\
D = 7.1625593e-8
\]

This equation and the associated coefficients remained unchanged since the 1990s for all the DAQs used.
Table B1 - Some details of instrumentation and operating conditions during the collection of the XBT profiles included in the REP dataset for all the ships participating the measurements.

<table>
<thead>
<tr>
<th>Ship Name</th>
<th>Call Sign/IMO No.</th>
<th>Number of Campaigns</th>
<th>Years of Activity</th>
<th>DAQ used</th>
<th>Height launch (m)</th>
<th>Range of ship speed (knots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelsior</td>
<td>IBEX 9184419</td>
<td>20</td>
<td>1999-2000 2012-2018</td>
<td>MK12 MK21 USB MK21 Ethernet</td>
<td>10±0.5</td>
<td>20-24</td>
</tr>
<tr>
<td>Excellent</td>
<td>IBBE 9143441</td>
<td>1</td>
<td>2004 2012-2014</td>
<td>MK21 ISA MK21 USB</td>
<td>10±0.5</td>
<td>19-24</td>
</tr>
<tr>
<td>Splendid</td>
<td>IBAS 9015747</td>
<td>1</td>
<td>2011</td>
<td>MK21 USB</td>
<td>10±0.5</td>
<td>20-22</td>
</tr>
<tr>
<td>La Superba</td>
<td>ICGK 9214276</td>
<td>14</td>
<td>2004-2006 2010-2016 2011 2016-2017</td>
<td>MK21 ISA TURO QUOLL MK21 USB MK21 Ethernet</td>
<td>11±0.5</td>
<td>21-28</td>
</tr>
<tr>
<td>La Suprema</td>
<td>IBIL 9214288</td>
<td>2</td>
<td>2004 2013-2016 2016-2019</td>
<td>MK21 ISA MK21 USB MK21 Ethernet</td>
<td>11±0.5</td>
<td>21-28</td>
</tr>
<tr>
<td>Wellington Express</td>
<td>DFCX2 9224051</td>
<td>5</td>
<td>2007-2008</td>
<td>TURO DEVIL</td>
<td>25±1.0</td>
<td>14-20</td>
</tr>
<tr>
<td>Canberra Express</td>
<td>DFW2 9224049</td>
<td>1</td>
<td>2008</td>
<td>TURO DEVIL</td>
<td>25±1.0</td>
<td>14-20</td>
</tr>
<tr>
<td>Stadt Weimar</td>
<td>DCHO 9320051</td>
<td>8</td>
<td>2009-2010</td>
<td>TURO DEVIL</td>
<td>27±1.0</td>
<td>14-20</td>
</tr>
<tr>
<td>CMA CGM Charcot</td>
<td>A8HE4 9232773</td>
<td>5</td>
<td>2009-2011</td>
<td>TURO DEVIL</td>
<td>25±1.0</td>
<td>14-20</td>
</tr>
<tr>
<td>Daniel A</td>
<td>TCLA 9238064</td>
<td>2</td>
<td>2014</td>
<td>MK21 USB</td>
<td>8±0.5</td>
<td>14-17</td>
</tr>
<tr>
<td>Ammiraglio Magnaghi</td>
<td>RCGA 8642751</td>
<td>3</td>
<td>2008-2013 2011 2019</td>
<td>MK12 MK21 USB TURO QUOLL (3 – 6) ±0.5</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>Aretusa</td>
<td>IABA</td>
<td>1</td>
<td>2006 2017-2018</td>
<td>MK12 MK21 USB</td>
<td>(4 – 5) ±0.5</td>
<td>1-10</td>
</tr>
<tr>
<td>Galatea</td>
<td>IABC</td>
<td>1</td>
<td>2013</td>
<td>MK12</td>
<td>(4 – 5) ±0.5</td>
<td>1-10</td>
</tr>
<tr>
<td>Urania</td>
<td>IGNU 9013220</td>
<td>12</td>
<td>2000-2009 2005-2014</td>
<td>MK12 MK21 USB</td>
<td>(3 – 12) ±0.5</td>
<td>0-11</td>
</tr>
<tr>
<td>Minerva 1</td>
<td>IZVM 9262077</td>
<td>1</td>
<td>2015 2016</td>
<td>MK21 USB MK21 Ethernet</td>
<td>(3 – 8) ±0.5</td>
<td>0-11</td>
</tr>
<tr>
<td>Ibis</td>
<td>--</td>
<td>1</td>
<td>2019</td>
<td>MK21 Ethernet</td>
<td>3 ±0.5</td>
<td>0-10</td>
</tr>
</tbody>
</table>
Appendix C

Format and standards

The data format adopted to archive the REP dataset is the netCDF (Network Common Data Form). It is self-describing since it includes the metadata that describe both data and data structures. The NetCDF implementation is based on the community-supported Climate and Forecasts (CF) specification (CF1.6 profile for point data) and it adopts the SeaDataNet (SDN) vocabularies (https://www.seadatanet.org/Standards/Common-Vocabularies). The reference SDN parameter codes (P01 terms, https://vocab.seadatanet.org/v_bodc_vocab_v2/search.asp?lib=P01) and the associated standard units (P06 terms https://vocab.seadatanet.org/v_bodc_vocab_v2/search.asp?lib=P06) are used in order to ensure the proper interpretation of values by both humans and machines and to allow data interoperability in terms of manipulation, distribution and long-term reuse.

Each XBT NetCDF file contains:

- **dimensions** that provide information on the size of the variables (a.k.a. “parameters”);
- **coordinate variables** that orient the data in time and space;
- **geophysical variables** that contain the actual measurements;
- **ancillary variables** that contain the quality information (Quality Flags, QFs) values;
- **additional variables** that include some of the variables being part of SDN extensions to CF;
- **global metadata fields** that refer to the whole file, not just to one variable (a.k.a. “global attributes”).

C.1 Dimensions

The pattern followed by SDN for “profiles” data type is to have an ‘INSTANCE’ unlimited dimension plus a maximum number of z coordinate levels (MAXZ). We included also string size dimension STRING for text arrays and added test size dimensions referring respectively to test QFs on temperature (TST_T) and depth (TST_D) values and the maximum number of z coordinate levels for the data re-sampled at a 1 m interval, after the Quality Check (QC) is applied (MAX_INT).

C.2 Coordinate variables

NetCDF coordinates are a special subset of variables which orient the data in time and space. They are:

- **LONGITUDE** for x;
- **LATITUDE** for y;
- **TIME** for t;
- **DEPTH** for z.

C.3 Geophysical variables

Each file contains:
● full resolution raw Temperature (T) data corrected via calibration based on tester check (when available) and,
● interpolated data at each meter depth

Calibration values are provided in a separate variable as well, so that experts can trace back the raw (uncalibrated) profile if needed.

For each coordinate and geophysical variable four mandatory parameter attributes are included, as defined in Lowry et al. (2019):

1. `sdn_parameter_urn`: this is the URN for the parameter description taken from the P01 vocabulary;
2. `sdn_parameter_name`: this is the plain language label (Entryterm) for the parameter taken from the P01 vocabulary at the time of the data creation;
3. `sdn_uom_urn`: this is the URN for the parameter units of measurement taken from the P06 vocabulary;
4. `sdn_uom_name`: this is the plain language label (Entryterm) for the parameter taken from the P06 vocabulary at the time of data file creation.

Moreover, since some of the coordinate variable names could be ambiguous, particularly for the z-coordinate, we adopt the standard name (P07 vocabulary, https://vocab.seadatanet.org/v_bodc_vocab_v2/search.asp?lib=P07), not mandatory in CF but widely used, which significantly enhances interoperability.

C.4 Ancillary variables

In order to report data quality information on a point by point basis, every measurement is tagged with a single-byte encoded label referred to as a ‘flag’. The flag variables are mandatory for all coordinate and geophysical variables to which they relate through ‘ancillary_variables’ in the parent variable set to the name of ancillary variable attribute (Lowry et al., 2019). The flags are encoded using the SDN L20 vocabulary (https://vocab.seadatanet.org/v_bodc_vocab_v2/search.asp?lib=L20) and each ancillary variable carries attributes ‘flag_values’ and ‘flag_meanings’, which provide a list of possible values and their meanings.

For coordinate variables, the ancillary variables are the following:

- `TIME_SEADATANET_QC`: it is the ancillary variable referring to TIME parent variable;
- `POSITION_SEADATANET_QC`: Longitude and latitude flag variables are combined into a single flag for ‘position’, following OceanSITES (2020) practice.

For depth coordinate, there are three different ancillary variables:

- `DEPTH_TEST_QC`: it contains flags coming from the application of depth check test;
- `DEPTH_FLAGS_QC`: it contains flags associated with each original depth value and summarizes the results of the performed depth test check mapped on SDN L20 vocabulary;
- `DEPTH_INT_SEADATANET_QC`: it contains flags associated with the interpolated profile.
For temperature geophysical variable, the ancillary variables, similarly to depth coordinate, are the following:

- **TEMPET01_TEST_QC**: it contains flags coming from the application of independent temperature check tests;
- **TEMPET01_FLAGS_QC**: it contains flags associated with each original temperature value and summarizes the results of the performed independent temperature test checks mapped on SDN L20 vocabulary;
- **TEMPET01_INT_SEADATANE_T_QC**: it contains flags associated with the temperature interpolated profile.

C.5 Additional variables

In addition to attributes, some variables from the SDN extension have been adopted:

1. **SDN_CRUISE**: an array containing the name of project which funded the cruise;
2. **SDN_EDMO_CODE**: an integer array containing keys identifying the organization in the European Directory of Marine Organizations (EDMO, https://www.seadatanet.org/Metadata/EDMO-Organisations)
3. **SDN_BOT_DEPTH**: a floating point array holding bathymetric water depth in meters where the sample was collected or measurement was made. We considered the local bottom depth extracted from the GEBCO Compilation Group (2021).

Moreover, in order to preserve and keep track of metadata associated with each profile in the dissemination through ERDDAP, other variables have been adopted:

4. **cruise_id**: an array containing the name of the project which funded the cruise plus the year and the month of the cruise;
5. **profile_id**: an array referring to the sequence of the profile during the corresponding cruise.

C.6 Global metadata fields

The global attribute section of the NetCDF file describes its content overall. All attributes should be human-readable and contain meaningful information for data discovery and re-use. Most importantly, all available discovery metadata to the SDN mandatory attributes have been introduced following recommendations of the XBT community. Moreover, several studies (Cheng et al., 2014; 2016; 2018; Goni et al., 2019) highlighted the dependency of the biases on probe type, time (due to variations in the manufacturing process) and changes in the recording systems (Tan et al., 2021). For these reasons, the following information has been inserted in the XBT metadata description: probe type with serial number, manufacturer, manufacturing date, FRE coefficients used to calculate the depth, launch height, DAQ model and recorder version (Cheng et al., 2016). Ship speed, wind speed, and probe mass (available since 2018) have been added to this metadata section. When available, mass of the XBT probe, wind speed and ship speed are other useful information included in this metadata section.
The above mentioned information has been kept and made available through the ERDDAP by an `url_metadata` variable associated to the entire dataset, which contains details specific to each profile.
References

Sippican Corp.: Instructions for installation, operation and maintenance of Sippican expendable bathythermograph system - M300, R-467B, 100 pp, 1968.

Lockheed Martin Sippican (Sippican) Inc.: MK21 Ethernet Surface 1U DAQ - Bathymetograph data acquisition system, installation and operation manual, P/N 352186, Rev. D, 47 pp, 2014.

