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Text S1.  Multisource data homogenization 15 

Given excessive missing values in satellite-based AOD retrievals, it is promising to improve the gap-filling accuracy by 16 
increasing data abundance via an integration of external observations. Benefiting from the powerful approximation capacity 17 
of machine learning algorithms (i.e., random forest in our study), a set of machine-learned regression models were established 18 
to generate MODIS-like AOD estimates from diverse data sources, aiming at providing critical prior information to facilitate 19 
AOD gap-filling, especially over regions with massive data voids. AODTerra observations were hereby deemed the response 20 
variable while AOD data from other satellites, MERRA-2 AOD simulations, even in-situ air quality measurements, were used 21 
respectively as the critical predictor other than meteorological and geographic factors for AOD prediction. The data 22 
homogenization models can be expressed as follows. 23 

𝐴𝑂𝐷!"##$~𝑅𝐹(𝐴𝑄,𝑀𝐸𝑇, 𝐴𝐸𝑅, 𝐿𝑈𝐿𝐶, 𝐷𝐸𝑀,𝑁𝐷𝑉𝐼, 𝑃𝑂𝑃,𝑚𝑜𝑛𝑡ℎ)                                      (1) 24 
where 𝐴𝑄 refers to AOD data other than 𝐴𝑂𝐷!"##$ and in situ air quality measurements such as atmospheric visibility and 25 
concentrations of major air pollutants that are indicative of regional air quality. 𝑀𝐸𝑇, 𝐴𝐸𝑅, 𝐿𝑈𝐿𝐶, 𝐷𝐸𝑀, 𝑁𝐷𝑉𝐼, 𝑃𝑂𝑃, and 26 
𝑚𝑜𝑛𝑡ℎ refer to meteorological variables, numerical aerosol simulations, land use and land cover, elevation, vegetation cover, 27 
population, and month identifier respectively.  28 

By taking advantage of these data-specific machine learning models, gridded AOD products from other satellites and 29 
numeric models were harmonized to resemble 𝐴𝑂𝐷!"##$ by correcting for both the scaling effect (varied spatial resolution) 30 
and cross-sensor biases. More importantly, virtual AOD observations were derived from in situ air quality measurements, 31 
providing additional AOD prior information to facilitate AOD gap-filling, especially over regions without satellite-based AOD 32 
retrievals. This homogenization approach greatly favors the assimilation of multisensory AODs and heterogenous air quality 33 
data (Bai et al., 2022a; Li et al., 2022a).  34 



 

 

Text S2. Scene-aware ensemble learning graph attention network (SeGAT) for global PM2.5 mapping 35 

To accommodate global big earth observation data and to account for spatial representativeness issue of model 36 
extrapolation, we developed a novel scene-aware ensemble learning graph attention network (SeGAT) model to fulfill global 37 
PM2.5 concentration mapping. The workflow of this method was illustrated in Figure S4. Differing from previous data-driven 38 
models which were established using either all available data (global model) or regional observations (regional model), the 39 
SeGAT model was dedicated to solving the scaling problem in large scale modeling practices (e.g., global PM2.5 modeling in 40 
this study), avoiding to answer the open questions at what scale the data-driven model should be established and/or how to 41 
determine the boundary size (city, province, national, and global) for selecting proper training samples. In the following, we 42 
briefly introduced the technical flows of the SeGAT model. 43 

Firstly, we proposed to establish PM2.5 estimation models at each individual monitoring site using random forest given its 44 
good approximation capacity. Specifically, ground measured PM2.5 concentrations were used as the learning target while the 45 
collocated AOD from the LGHAP v2 dataset were used as the proxy variable along with a set of explainable variables. The 46 
site-specific PM2.5 estimation models can be formulated as: 47 

𝑃𝑀%.'~𝑅𝐹(𝐴𝑂𝐷,𝑀𝐸𝑇, 𝐴𝐸𝑅, 𝐿𝑈𝐿𝐶, 𝐷𝐸𝑀,𝑁𝐷𝑉𝐼, 𝑃𝑂𝑃,𝑚𝑜𝑛𝑡ℎ)                                         (1) 48 
where AOD refers to the gap-free AOD grids from LGHAP v2 dataset. 𝑀𝐸𝑇, 𝐴𝐸𝑅, 𝐿𝑈𝐿𝐶, 𝐷𝐸𝑀, 𝑁𝐷𝑉𝐼, 𝑃𝑂𝑃, and 𝑚𝑜𝑛𝑡ℎ 49 
denote meteorological variables, numerical aerosol diagnostics, land use and land cover, elevation, vegetation index, 50 
population, and month of the year, respectively. Therefore, tens of thousands of regional PM2.5 concentration estimation models 51 
were established at the local scale across the globe. 52 

Secondly, an adjacency matrix was calculated between each footprint of gap-filled AODTerra and monitoring sites overlaid 53 
grids in reference to nine distinct features indicating the scene attribute of each grid cell, i.e., latitude, longitude, AOD, relative 54 
humidity, air temperature, NDVI, elevation, population, and land use and land cover ratio. Specifically, the high-dimension 55 
Euclidian distance was calculated between grids on the basis of these nine features after normalization. The assumption is that 56 
the nonlinear interactions between AOD and PM2.5 may comply with a similar relationship over scenes with comparable 57 
ambient environment. Therefore, PM2.5 concentration over one grid could be estimated from models trained over sites with 58 
scene features similar to this given grid.  59 

Thirdly, a graph attention network was then employed to integrate multiple PM2.5 estimates derived from a set of site-60 
specific models with similar scene features. Specifically, PM2.5 estimates from 32 models with similar scene features were 61 
used as the learning input, while the normalized attribute differences were used as the weights in the adjacency matrix and the 62 
testing accuracy of each random forest model was used as the node bias. During the graph network training, the model utilized 63 
attention operations to discern crucial associations between scene attributes, and the model was continuously optimized by 64 
adjusting graph structures and incorporating residual connections. A global pooling layer was then employed to amalgamate 65 
contextual data from all nodes. 66 

Distinct from other learning models, as a hybrid model, the proposed SeGAT model not only takes advantage of powerful 67 
approximation capacity of random forest but also accounts for spatial representativeness of each data-driven model. More 68 
importantly, the SeGAT model is capable of predicting PM2.5 concentration even over regions without monitoring sites.  69 



 

 

Table S1.Data accuracy of raw AOD datasets used for generating global gap-free LGHAP v2 AOD dataset by comparing 70 
against AOD observations from AERONET during 2000–2021.  71 

Dataset Region 
Mean 
AOD 

Number of 
monitors 

Number of 
samples 

R RMSE Bias 
Below 
EE (%) 

Within 
EE (%) 

Above 
EE (%) 

MCD19A2 (Aqua) 

Global 0.17 1335 341254 0.88 0.11 0.01 12.11 75.45 12.44 
North America 0.11 433 94531 0.87 0.07 -0.01 3.72 82.54 13.74 
South America 0.11 81 20537 0.93 0.07 0.00 9.46 77.61 12.93 

Europe 0.11 208 83773 0.81 0.06 0.02 10.69 83.42 5.90 
Asia 0.32 321 79146 0.90 0.14 0.00 15.53 67.80 16.67 

Africa 0.21 110 40867 0.78 0.19 0.05 29.20 56.75 14.05 
Australia 0.09 28 10272 0.79 0.06 -0.02 4.81 76.71 18.48 

VIIRS/NPP 

Global 0.19 1335 204573 0.90 0.11 -0.01 9.68 75.58 14.73 
North America 0.12 433 69371 0.86 0.12 -0.01 6.76 81.61 11.63 
South America 0.08 81 15326 0.81 0.07 0.03 18.93 75.61 5.46 

Europe 0.13 208 45874 0.82 0.06 -0.01 4.42 83.62 11.96 
Asia 0.38 321 42570 0.91 0.15 -0.02 11.88 67.43 20.69 

Africa 0.23 110 25183 0.89 0.13 0.00 17.00 61.47 21.53 
Australia 0.11 28 4409 0.58 0.11 -0.04 3.38 65.28 31.34 

MISR/Terra 

Global 0.19 1335 79125 0.87 0.11 0.00 5.24 81.72 13.04 
North America 0.13 433 20839 0.79 0.09 -0.02 1.76 82.12 16.13 
South America 0.13 81 4526 0.89 0.12 0.00 4.20 87.38 8.42 

Europe 0.14 208 18630 0.87 0.05 0.00 2.59 90.85 6.56 
Asia 0.31 321 15792 0.85 0.18 0.02 12.61 72.44 14.96 

Africa 0.25 110 10003 0.87 0.14 0.00 7.56 73.78 18.66 
Australia 0.11 28 2241 0.76 0.07 -0.03 1.56 73.05 25.39 

PARASOL/ 
POLDER 

Global 0.30 1335 72120 0.86 0.18 -0.08 4.02 54.12 41.87 
North America 0.21 433 15849 0.68 0.16 -0.10 1.54 45.09 53.37 
South America 0.25 81 3235 0.95 0.16 -0.08 1.58 54.37 44.05 

Europe 0.20 208 19960 0.72 0.12 -0.05 3.47 63.65 32.88 
Asia 0.51 321 17651 0.85 0.24 -0.11 6.10 46.07 47.83 

Africa 0.39 110 8108 0.83 0.20 -0.07 7.24 56.18 36.58 
Australia 0.10 28 2171 0.69 0.07 -0.03 1.89 71.44 26.67 

AATSR/ 
Envisat 

Global 0.19 1335 30870 0.83 0.11 0.00 10.05 76.91 13.04 
North America 0.12 433 7828 0.87 0.06 0.00 5.81 86.89 7.29 
South America 0.12 81 1578 0.75 0.10 0.01 14.32 71.55 14.13 

Europe 0.14 208 8139 0.84 0.06 0.01 9.23 85.17 5.60 
Asia 0.31 321 5358 0.79 0.15 0.00 14.73 64.11 21.16 

Africa 0.30 110 3672 0.79 0.20 0.00 18.57 61.55 19.88 
Australia 0.13 28 997 0.36 0.13 -0.05 4.01 61.79 34.20 

SeaWiFS/  
OrbView-2 

Global 0.21 1335 21643 0.88 0.12 0.00 12.34 70.64 17.02 
North America 0.12 433 4885 0.73 0.08 -0.02 5.69 75.78 18.53 
South America 0.17 81 1158 0.93 0.13 0.03 25.47 68.83 5.70 

Europe 0.16 208 3949 0.79 0.07 0.00 8.38 77.67 13.95 
Asia 0.32 321 3972 0.77 0.15 0.00 20.62 58.26 21.12 

Africa 0.34 110 3230 0.90 0.16 0.03 22.57 59.66 17.77 
Australia 0.07 28 717 0.34 0.09 0.00 11.30 73.92 14.78 

AOD estimates derived 
from air quality 

indicators 

Global 0.19 1335 203153 0.84 0.14 0.01 14.08 70.57 15.35 

North America 0.13 433 39913 0.78 0.11 -0.01 6.27 76.09 17.64 

South America 0.11 81 18282 0.81 0.10 0.02 17.27 71.44 11.29 

Europe 0.12 208 61389 0.71 0.07 0.01 10.47 81.32 8.21 

Asia 0.33 321 62283 0.84 0.19 0.03 20.41 61.96 17.62 

Africa 0.23 110 19041 0.72 0.19 0.00 19.67 50.11 30.21 

Australia 0.09 28 2245 0.67 0.07 -0.01 2.90 83.61 13.50 

72 



 

 

 73 

Figure S1.  Spatial and temporal variations in AOD data coverage from Terra across the globe during 2000 to 2020. 74 

  75 



 

 

 76 

Figure S2.  Spatial distribution of ground monitors providing AOD, PM, and atmospheric visibility used in this study across 77 

the globe. 78 
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 80 

Figure S3.  Spatial distribution of data tiles used for global-scale AOD gap-filling. 81 
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 83 
Figure S4. The flow chart of the scene-aware ensemble learning graph attention network (SCAGAT) model.   84 



 

 

 85 
Figure S5. Performance evaluation of the adaptive background information updating module on improving AOD 86 
reconstruction patterns. Intercomparisons were conducted between the benchmark method (the method developed in Bai et al. 87 
(2022) to generate LGHAP dataset in China) and the one embedding adaptive background information updating module. 88 
  89 
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