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Abstract. The Long-term Gap-free High-resolution Air Pollutants concentration dataset (LGHAP) generated in our previous 

study provides spatially contiguous daily aerosol optical depth (AOD) and fine particulate matter (PM2.5) concentrations at a 

1-km grid resolution in China since 2000. This advancement empowered unprecedented assessments of regional aerosol 

variations and its influence on the environment, health, and climate over the past twenty years. However, there is a need to 

enhance such a high quality AOD and PM2.5 concentration dataset with new robust features and extended spatial coverage. In 

this study, we present version 2 of a global-scale LGHAP dataset (LGHAP v2), which was generated using an improved big 

Earth data analytics via a seamless integration of versatile data science, pattern recognition, and machine learning methods. 

Specifically, multimodal AODs and air quality measurements acquired from relevant satellites, ground monitoring stations, 

and numerical models were harmonized by harnessing the capability of random forest-based data-driven models. Subsequently, 

an improved tensor-flow-based AOD reconstruction algorithm was developed to weave the harmonized multisource AOD 

products together for filling data gaps in Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD retrievals 

from Terra. The results of the ablation experiments demonstrated better performance of the improved tensor-flow-based gap-

filling method in terms of both convergence speed and data accuracy. Ground-based validation results indicated good data 

accuracy of this global gap-free AOD dataset, with a correlation coefficient (R) of 0.85 and root mean square error (RMSE) 

of 0.14 compared to the worldwide AOD observations from AERONET, outperforming the purely reconstructed AODs (R = 

0.83, RMSE = 0.15) whereas slightly worse than raw MAIAC AOD retrievals (R = 0.88, RMSE = 0.11). For PM2.5 

concentration mapping, a novel deep-learning approach, termed as the scene-aware ensemble learning graph attention network 

(SCAGAT), was hereby applied. While accounting for the scene representativeness of data-driven models across regions, the 

SCAGAT algorithm performed better during spatial extrapolation, largely reducing modeling biases over regions with limited 

and/or even absent in situ PM2.5 concentration measurements. The validation results indicated that the gap-free PM2.5 

concentration estimates exhibit higher prediction accuracies, with an R of 0.95 and an RMSE of 5.7 μg m−3, compared to PM2.5 

concentration measurements obtained from previously holdout sites worldwide. Overall, while leveraging state-of-the-art 

methods in data science and artificial intelligence, a quality enhanced LGHAP v2 dataset was generated through big Earth data 

analytics by cohesively weaving together multimodal AODs and air quality measurements from diverse sources. The gap-free, 

high-resolution, and global coverage merits render the LGHAP v2 dataset an invaluable database to advance aerosol- and haze-

related studies, as well as to trigger multidisciplinary applications for environmental management, health-risk assessment, and 

climate change attribution. All gap-free AOD and PM2.5 concentration grids in the LGHAP v2 dataset, as well as the data user 
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guide and relevant visualization codes, are publicly accessible at https://zenodo.org/communities/ecnu_lghap (Bai et al., 

2023a). 

1 

1. Introduction 

Atmospheric aerosols, produced from either natural or anthropogenic emissions, have been proven to pose significant 

threats to human health, ambient environment, and climate (Up in the aerosol, 2022). The risks to public health from aerosol 

pollution are evident, with about 4.2 million deaths per year attributable to the exposure of fine aerosol particles, as stated by 

the World Health Organization (WHO, 2022). With increased aerosol loading, aerosols can significantly impair atmospheric 

visibility because of the hygroscopic effect, thereby reducing direct solar radiation on the Earth’s surface (Liu et al., 2020; 

Wang and Yang, 2014; Wild et al., 2021; Yang et al., 2016). In addition to the evident influence on air quality (Li et al., 2017), 

atmospheric aerosols also have an important and complex influence on regional, and even global climate (Anon, 2022; Guo et 

al., 2016, 2019; Li et al., 2019; Yang et al., 2020; Zhao et al., 2020). Therefore, accurate monitoring of the atmospheric aerosol 

loading is vital for improving our understanding of the human-driven ambient environment and exposure pathways in health-

risk assessment. 

Aerosol optical depth (AOD), a measure of aerosols distributed within an air column from the Earth’s surface to the top 

of the atmosphere, has been widely used as a key indicator of total atmospheric aerosol loading. Ground-based aerosol 

observing networks, such as the internationally collaborated Aerosol Robotic Network (AERONET), China Aerosol Remote 

Sensing Network (CARSNET), and Sun-Sky Radiometer Observation Network (SONET) have long served as the ground truth 

for AOD monitoring (Che et al., 2015; Giles et al., 2019; Li et al., 2018). However, the sparse distribution of aerosol monitoring 

stations poses a significant challenge in gaining a comprehensive understanding of the aerosol variations across the globe.  

Satellite-based AOD data bridge this gap by providing spatially resolved AOD retrievals with extensive spatial coverage. 

Over the past forty years, a variety of space-borne instruments, e.g., Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), 

Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and 

Polarization and Directionality of the Earth’s Reflectances (POLDER), were deployed onboard various satellite platforms and 

launched into space (Wei et al., 2020). These versatile instruments provide ample AOD and aerosol property measurements, 

enabling to map global AOD distribution with finer spatial resolutions. Nonetheless, satellite-based AOD retrievals often suffer 

from excessive data gaps because of extensive cloud cover and retrieval failures, significantly impairing the data application 

potential and resulting in large uncertainties when assessing the influence of aerosol on weather and climate. 

A variety of gap-filling methods were developed and applied to reconstruct the missing values in the remotely sensed 

satellite AOD images (Wei et al., 2020; Xiao et al., 2021). The simplest method is to fill in data gaps with valid observations 

from alternative data sources, e.g., filling in data gaps in MODIS AOD images from Terra with AOD observations from Aqua 

(Bai et al., 2019; Sogacheva et al., 2020) or fusing with AOD simulation outputs from numerical models (Xiao et al., 2021). 

Such a substitution method is straightforward and effective, particularly in an era with big Earth observation data. Nonetheless, 

cross-mission biases are always salient between satellite-based retrievals because of the significant differences in instrument 

properties and/or retrieval algorithms. Thus, bias correction is essential to reducing systematic biases (Bai et al., 2016b, 2016a), 

and methods such as linear regression and maximum likelihood estimation are often applied for this purpose (Bai et al., 2016a, 

2016b, 2019; Ma et al., 2016; Xu et al., 2015). More complex methods, like the Bayesian maximum entropy, were also applied 

to fuse AOD products even with varying spatial resolutions (Tang et al., 2016; Wei et al., 2021b). 

Another type of gap-filling method works, in principle, to recover missing information via dominant pattern recognition 

and reconstruction over space and time, and the Data INterpolating Empirical Orthogonal Functions (DINEOF) method is a 

representative one (Beckers and Rixen, 2003; Liu and Wang, 2019). Two similar methods were developed to fill data gaps in 
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the ground-measured PM2.5 concentration time series and geostationary satellite-sensed AOD images (Bai et al., 2020; Li et 

al., 2022b). Similarly, Zhang et al. (2022) developed a spatiotemporal fitting algorithm to fill gaps in the daily MODIS AOD 

product by predicting AOD values based on annual trends and spatial residues inferred from neighboring pixels. Nonetheless, 

filling data gaps with a single data source is always challenging, particularly for those with extensive missing values (e.g., 

satellite-based AOD). Learning missing values from external information, such as numerical AOD simulations (Li et al., 2020; 

Xiao et al., 2017) and meteorological factors (Bi et al., 2019), was proven an effective and feasible way to improve the spatial 

coverage of reconstructed AOD fields. 

Tensor-flow-based method, a more complex big data analytics framework, was developed to integrate six satellite-based 

AOD datasets, numerical aerosol diagnostics, and in situ air quality measurements , while a machine-learning method, i.e., 

random forest, was applied for downscaling and bias-correction purposes (Bai et al., 2022a). Harnessing multimodal data 

fusion and missing value reconstruction capabilities, a long-term gap-free high-resolution MODIS-like AOD dataset (LGHAP 

version 1), was successfully generated in China, with an overall data accuracy comparable to raw satellite retrievals, from 

which gap-free PM2.5 and PM10 concentrations were mapped on a daily basis. Despite the good performance, additional 

investigations have recently proven the critical importance of prior information on tensor-flow-based gap-filling, particularly 

over areas with substantial missing values (Bai et al., 2022a; Li et al., 2022a, 2022b). Moreover, the strategies of maintaining 

an invariant background filed and assigning equal weights to different AOD inputs may slow down the convergence speed and 

degrade the reconstruction accuracy. 

In this study, we present a new global scale LGHAP dataset, referred to as LGHAP v2 hereafter, which extends daily 

gap-free AOD and PM2.5 concentrations from China to worldwide at a 1-km grid resolution for the period of 2000 to 2021. To 

accommodate massive global Earth observations acquired from diverse sources, an improved big Earth data analytics approach 

was developed by harnessing several new algorithmic improvements to enhance the tensor-flow-based AOD gap filling. 

Moreover, a novel deep-learning method, namely, the SCene-Aware ensemble learning Graph ATtention network (SCAGAT), 

was applied to fulfill far-more accurate PM2.5 concentration mapping across the globe, particularly over regions with limited 

air quality monitoring stations. Benefiting from the customized algorithmic improvements and the innovative SCAGAT PM2.5 

concentration mapping approach, the LGHAP v2 dataset has not only an extended spatial coverage from China to worldwide 

but also improved data accuracy. As a publicly accessible and global long-term gap-free MODIS-like AOD and PM2.5 

concentration dataset, the LGHAP v2 servers as a promising data source to improve our understanding of global aerosol 

pollution dynamics and its adverse impacts on public health, ecosystems, weather, and climate. 

2. Data Sources 

Similar as our previous study, here we aim to synergistically integrate the big Earth data acquired from diverse sources 

to generate a global long-term gap-free AOD dataset with a daily 1-km resolution, from which spatially contiguous PM2.5 

concentration estimates can be then derived using a more robust and accurate data-driven approach. Table 1 describes the array 

of big Earth data employed in this study, including gridded AOD products from six polar orbiting satellites, numerically 

simulated MERRA-2 aerosol diagnostics, ten meteorological reanalysis fields, and datasets of in situ AOD and air pollutants 

concentrations measurements. Additionally, auxiliary parameters representing land use and land cover types, elevation, 

population density, as well as vegetation covers, were also employed as critical explanatory variables to harmonize 

discrepancies among multimodal heterogeneous aerosol datasets. Note the spatial and temporal resolution as well as the time 

period for each data product are different from that of the benchmark dataset, namely, the MAIAC AOD product, and a data 

homogenization method is therefore essential to account for such discrepancies to reduce possible bias propagation in the 

subsequent data fusion procedure.   
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Table 1. Summary of the diverse big Earth data used in this study to generate global gap-free AOD and PM2.5 concentrations at a daily and 

1-km resolution (LGHAP v2) from 2000 to 2021. 

Category Product Temporal Resolution Spatial 
Resolution 

Time 
Period 

AOD 

MCD19A2 (MAIAC) daily 1 km 2000–2021 

Terra/MISR daily 4.4 km 2000–2021 

NPP/VIIRS daily 5 km 2012–2021 

Envisat/AATSR daily 10 km 2000–2012 

PARASOL/POLDER daily 10 km 2005–2013 

SeaWiFS/OrbView-2 daily 10 km 2000–2010 

AERONET hourly N/A 2000–2021 

Meteorological  
factors 

Air temperature hourly 

0.25° 2000–2021 

U/V component of wind hourly 

Relative humidity hourly 

Surface pressure hourly 

Boundary layer height hourly 

Total column water vapor hourly 

Surface solar radiation downwards hourly 

Total precipitation hourly 

Instantaneous moisture flux hourly 

Visibility 3-hour N/A 2000–2021 
Air quality 

measurements PM2.5, PM10, NO2, SO2, CO hourly N/A 2000–2021 

Population WorldPop annual 1 km 2000–2020 

Land cover 
Impervious (GISA) annual 30 m 2000–2020 

MCD12Q1 annual 500 m 2000–2021 

NDVI MOD13A3 monthly 1 km 2000–2021 

Aerosol diagnostics MERRA-2 hourly 0.5° × 0.625° 2000–2021 

Elevation SRTM DEM N/A 90 m N/A 

2.1. Satellite-based AOD Products 

The AOD retrievals, derived from MODIS sensor on board Terra using the Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) algorithm (denoted as AODTerra afterwards), were hereby used as the benchmark for generating the global 

long-term gap-free AOD dataset, given their finer spatiotemporal resolution and longer temporal coverage (Lyapustin et al., 

2011, 2018; Mhawish et al., 2019). Previous studies have demonstrated the superior quality of AODTerra relative to other 

gridded AOD products (Chen et al., 2021; Martins et al., 2017; Qin et al., 2021) in regard to data accuracy and spatiotemporal 

completeness, even better than those retrieved with the well-known Dark Target and Deep Blue algorithms (Jiang et al., 2023; 

Liu et al., 2019). Figure S1 presents the spatial and temporal distribution of the coverage ratio of valid AODTerra from 2000 to 

2021 at each satellite footprint across the globe. 

Satellite-based AOD retrievals from a few key instruments other than MODIS were also applied to support gap filling of 

AODTerra and they include: (1)  VIIRS on board Suomi-NPP, (2) Multi-angle Imaging SpectroRadiometer (MISR, on board 

Terra), (3) Advanced Along-Track Scanning Radiometer (AATSR, on board Envisat), (4) POLDER on board PARASOL, and 

(5) SeaWIFS on board SeaStar. Meanwhile, MAIAC AOD data from MODIS on board Aqua were also applied as an important 
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complementary data source. Given their varied overpassing times and temporal spans, these multisensory AOD dataset can 

provide complementary observations to help reduce random errors during the AOD data reconstruction procedure because of 

the known prior knowledge. More details of these AOD products can be found in Bai et al. (2022a) and Wei et al. (2020). 

2.2. Ground-based AOD Observations and Air Quality Measurements 

2.2.1. AERONET AOD Observations 

Ground-based AOD observations from AERONET have long been used as the ground truth for validating AOD retrievals 

from other instruments, particularly diverse satellite-based AOD retrievals. In this study, AOD observations from AERONET 

during the study period were employed as an independent data source to validate the data accuracy of the global gap-filled 

AOD dataset. To guarantee an adequate number of AERONET AOD samples, the Level 1.5 AOD observations instead of 

Level 2.0 were applied, though the latter has stricter screening criteria for quality control. For spatial registration, each 

AERONET AOD observation was spatially collocated with mean AOD values over grids within a 5 × 5 km window size. 

Figure S2 presents the spatial distribution of the AERONET sites used in this study. 

2.2.2. Air Quality Measurements 

Concentrations of PM2.5 and other relevant air pollutants, like NO2, SO2, PM10, and CO, were acquired from a few 

environmental agencies and monitoring centers, such as the United States Environmental Protection Agency, European Air 

Quality Portal, China National Environmental Monitoring Centre, Canada National Air Pollution Surveillance, and Japan 

National Institute for Environmental Studies, to name a few. Moreover, air quality measurements acquired from the World’s 

Air Pollution Index, an open-source data hub, were included as well. Given potential differences in measuring principles and 

quality control criteria, we performed rigorous data cleaning measures to harmonize these multisource air quality 

measurements, including not only the removal of outliers but also an unification of time scales to daily average. Aiming to 

provide critical information to facilitate the AOD gap-filling, ground-based air quality measurements were used as an important 

proxy for regional in situ AOD prediction, largely because of the relatively dense distribution of air quality monitoring 

networks and the associations between aerosol loadings and regional air pollutant concentrations. 

Atmospheric visibility, a common air quality indicator highly associated with aerosol loadings, was acquired from 

worldwide meteorological monitoring stations and used to predict AOD over each monitoring site via data-driven modeling. 

Given the much denser distribution of ambient air quality and meteorological monitoring sites, as shown in Figure S2, a global 

virtual AOD monitoring network was in turn established, harnessing the associations between AOD and air quality relevant 

parameters. Such a virtual network provides us with an unparalleled opportunity to improve AOD gap-filling accuracy and 

efficiency, particularly over regions with massive data voids in satellite AOD imageries(Bai et al., 2022b; Li et al., 2022b). 

2.3. Numerical Simulations 

2.3.1. MERRA-2 Aerosol Diagnostics 

The Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) aerosol diagnostics, 

including total AOD and aerosol components like black carbon, organic carbon, dust, and sulfate aerosols, were employed to 

provide prior information to advance AOD gap-filling. As NASA’s latest reanalysis for the satellite era, MERRA-2 is 

generated using the new Earth system model, Goddard Earth Observing System version 5 (GEOS-5), providing global 

simulations of a variety of geophysical and chemical variables on the Earth’s surface. More details of the assimilation system 

and the data quality of MERRA-2 aerosol reanalysis can be found in Buchard et al. (2017) and Randles et al. (2017). By taking 
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AODTerra as the learning target, data-driven models were established to spatially downscale and bias-correct MERRA-2 AOD 

field, with meteorological, geographical, and socioeconomic factors used as covariates. This downscaled and bias-corrected 

MERRA-2 AOD field, given its spatially contiguous coverage, was then used as critical information to facilitate the gap-filling 

of AODTerra. 

2.3.2. ERA-5 Reanalysis 

As the latest atmospheric reanalysis produced by the European Center for Medium Weather Forecast, ERA-5 provides 

hourly estimates of a variety of atmospheric, terrestrial, oceanic, climatic, and meteorological variables. The data are provided 

for a 30 km grid resolution on the Earth’s surface, delineating the atmosphere layer using 137 levels from the surface up to a 

height of 80 km, covering the period from January 1940 to the present (Hersbach et al., 2020). Atmospheric parameters, 

including surface pressure, air temperature, relative humidity, wind speed, total column water, total precipitation, surface solar 

radiation downward, instantaneous moisture flux, and boundary layer height, were acquired from ERA-5 and used as important 

modeling covariates in both data harmonization and PM2.5 mapping models. A simple bilinear interpolation was applied to the 

ERA-5 reanalysis data to convert them to the AODTerra footprint resolution for spatial registration. 

2.4. Auxiliary Data 

Several socioeconomic and geographic factors were also applied as covariates to support  AOD gap filling and PM2.5 

concentration mapping. Specifically, gridded population data from WorldPop were used to indicate the spatial distribution of 

residents, serving as a critical proxy for anthropogenic air pollutants emission intensity. To characterize the land-use-dependent 

aerosol emissions, land cover types and the vegetation index derived from MODIS products, along with the coverage ratio of 

impervious surface calculated from the land use dataset generated by Huang et al. (2022),were also applied. The digital 

elevation data collected from the Shuttle Radar Topography Mission (SRTM) with a resolution of 1 arc-second were used to 

characterize the potential impact of topography on aerosol loadings. 

3. Methods 

3.1. Tensor-Flow-based AOD Reconstruction 

3.1.1. Overview of AOD Gap-Filling Method 

Deriving spatially contiguous PM2.5 concentrations from gap-filled AOD images has proven more promising for a better 

analysis of large-scale PM2.5 distribution (Bai et al., 2022b). In this study, the big Earth data analytics framework proposed in 

Bai et al. (2022a) was further adapted and improved for generating global gap-free AOD images to support various content-

based mapping. As shown in Figure 1, the improved big Earth data analytics framework also consists of three primary data 

manipulation procedures, including: 1) machine-learned multimodal data homogenization, 2) knowledge-reinforced AOD 

tensor compiling, and 3) tensor-flow-based AOD reconstruction, with algorithmic improvements primarily conducted in the 

latter two procedures. This improved big Earth data analytics approach empowered us to weave together multimodal AODs 

and versatile big Earth observations from diverse sources, via a synergy of state-of-the-art machine- learning and tensor 

completion methods. Because the technical flow of this big Earth data analytics framework was previously detailed in Bai et 

al. (2022b), we hereby only provided an overview of this method while describing more details of the newly developed 

algorithmic components in the following subsections. 
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Figure 1. A schematic illustration of the improved big Earth data analytics for generating the MODIS-like global gap-free AOD dataset. 

The overall architecture of this big Earth data analytics framework was summarized as follows. Multimodal AODs and 

relevant aerosol data acquired from different satellites, ground monitoring stations, and numerical models were first 

harmonized to resemble the baseline dataset of AODTerra, aiming to minimize both cross-sensor biases and spatial 

heterogeneities. This data homogenization process is vital for the tensor-flow-based AOD gap-filling, because the bias-

corrected and downscaled AOD estimates were critical inputs to form the AOD data cube. More details related to the 

multisource data homogenization were described in Text S1 in the supporting information. To fill data gaps in each individual 

AODTerra image, an AOD data cube was then constructed by aggregating harmonized multisensory AOD data on the same 

date, along with historical AODTerra images resembling similar spatial patterns over the same region. Because of the excessive 

nonrandom missing values in the AODTerra images, both the downscaled MERRA-2 AOD grids and AOD estimates derived 

from air quality and visibility measurements were used conjunctively to identify similar AODTerra images from the historical 

image series. The selected historical AODTerra images and bias corrected AOD images from other satellites on the same date 

were used individually as a slice of the tensor. Additionally, dispersed in situ AOD estimates and 5% of randomly selected 

downscaled MERRA-2 AOD data were directly overlaid onto the corresponding AODTerra grids without valid AOD retrievals. 
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These implementations helped improve the gap-filling accuracy and greatly boosted the convergence speed given the provision 

of prior knowledge. 

High order singular value decomposition (HOSVD), an orthogonal Tucker decomposition method, was applied to each 

well-compiled AOD data cube for tensor-flow-based pattern recognition and data completion. Data gaps within the input AOD 

tensor were first filled with the spatial average of each individual AOD image to initialize the tensor decomposition. The AOD 

tensor was then decomposed along each two-dimension slice independently, and a new tensor was subsequently reconstructed 

based on the principal modes via a low-rank approximation (i.e., generating an approximating matrix with reduced rank for 

compression). During this procedure, the AODTerra observations in the target image to be gap-filled were deemed hard data 

(i.e., true state and invariant throughout the tensor completion procedure) while multisensory AOD estimates and historical 

AODTerra images served as soft data (supporting information and updated by iterates till convergence). By iteratively adjusting 

the dimension-varied ranks, the data values over grids to be gap-filled were updated and tuned to optimize both spatial 

homogeneity and information entropy concurrently (Bai et al., 2020, 2022a). The tensor completion process continued till it 

reached an agreement (with a bias decay ratio < 0.1%) between the reconstructed values and the previously reserved AODTerra 

observations. 

3.1.2. Algorithmic Improvements 

To accommodate the massive data analytics for global-scale AOD gap-filling, three major algorithmic enhancement 

modules were incorporated to help improve reconstruction efficiency and accuracy, with particular focus on the optimization 

of data manipulation procedures in tensor-flow-based AOD gap-filling. Algorithm 1 presents the pseudo code of the optimized 

algorithm used for tensor-flow-based AOD reconstruction. 

Algorithm 1. The pseudo code of the optimized algorithm used for tensor-flow-based AOD reconstruction. 

Input: tensor 𝐀 ∈ 𝐑!!×!"×!# with 𝛀 = {(i, j, k): A#$%	is	observed}, threshold T&, T' 
Output: reconstructed entries 𝐀( = 𝐀∗(: , : , k*) ∈ 𝐑!!×!" 
1: Attention mechanism: ω% = Π(MI%, R%+ , R%,) 

2: Initialize A#$%∗ = >
ω% ∙ A#$%																		(i, j, k) ∈ 𝛀
∑ ∑ A#$%$# 																		(i, j, k) ∉ 𝛀 

3:  for r- =
&
-
N- to 1 step –2 do 

4: n& = n' = 0 
5:  while ε& > T& or (n& <

&
-
N& and n' <

&
-
N') do 

6:  n& = n& + 1, n' = n' + 1 
7:  r& =

.!!!
/0

, r' =
."!"
/0

 
8:    𝐀∗ = HOSVD(𝐀∗, rank = {r&, r', r-}): 
9:  𝐀∗ = S ×& 𝐔(2!) ×' 𝐔(2") ×- 𝐔(2#) 
10:  ε& = argmin

𝛀
&
'
‖𝐀 − 𝐀∗‖' 

11:  𝐀𝛀∗ = 𝐀𝛀 
12:  𝐀𝛀5

∗ =	ω&𝐀𝛀5
∗ +ω'𝐀𝛀5 ,  𝛀V  denotes background location 

13: end while 
14: if argmin

𝛀
&
'
‖𝐀 − 𝐀∗‖' < T' then 

15: break; 
16: end if 
17: end for 
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3.1.2.1. Attention-Reinforced AOD Tensor Construction 

In our previous study, both the target data (i.e., AODTerra image) and soft data (i.e., AOD estimates from other data sources 

and historical AODTerra images) were treated equally in the AOD tensor throughout the tensor decomposition and 

reconstruction process (Bai et al., 2022a). This indifferent data treatment strategy neglected the information abundance of soft 

data and the spatial similarity between the soft and target data, leading the reconstructed field more likely to resemble the 

dominant patterns learned from images with fewer data gaps, rather than those with spatial patterns similar to the target image. 

To account for this drawback, an attention mechanism was hereby introduced to assign different weights to each data slice in 

the input AOD tensor, aiming to improve the AOD reconstruction performance by learning from spatiotemporal features 

embedded in more relevant data fields instead of all the available data. 

As a widely used technique in deep-learning, the attention mechanism is a mimic of cognitive attention allowing the 

model to focus on specific parts of the input data, achieved by assigning higher weights to more crucial elements in ensemble 

learning. Regarding the tensor-flow-based AOD reconstruction task, data slices with a higher similarity to the target image 

and fewer data gaps are supposed to play more important roles than less similar ones with extensive data gaps during tensor 

completion. Three statistical metrics, including mutual information (Shannon, 1948), spatial coverage ratio of common 

observations (Rcommon) between soft data and hard data, and spatial coverage ratio of extra observations beyond common 

observations in soft data (Rextra), were calculated to determine the overall weight that should be assigned to each slice of data 

in the input AOD tensor. Specifically, mutual information was applied to characterize the mutual dependence between the 

target image and each slice of soft data, while common spatial coverage ratio was used to indicate the data amount for mutual 

information calculation, and extra spatial coverage ratio was employed to depict additional information content that can be 

provided by soft data. Equations (1–3) provide the formulas to calculate these three statistical metrics. 

𝑀𝐼(𝑋, 𝑌) =))𝑝(𝑥, 𝑦) log0
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)1																																																						(1)

!∈#$∈%

 

𝑅&'((') = Φ(𝑋, 𝑌) × 100%																																																																																(2) 

𝑅*!+,- = Φ:𝑋;, 𝑌< × 100%																																																																																(3) 

Note that 𝑋 and 𝑌 refer to common observations in soft and hard data, respectively. The 𝑋; denotes extra observations in soft 

data. 𝑝(𝑥, 𝑦) is the joint probability mass function of 𝑋 and 𝑌, while 𝑝(𝑥) and 𝑝(𝑦) are the marginal distribution mass 

function of 𝑋 and 𝑌, respectively. Additionally, Φ(𝑋, 𝑌) is the spatial coverage ratio of the common observations, and 

Φ:𝑋;, 𝑌< is the spatial coverage ratio of extra observations in the soft data. By multiplying these three normalized weights to 

the corresponding soft data, an attention-reinforced AOD tensor was constructed in turn, which was then used as the input 

data cube for tensor completion.  

3.1.2.2. Adaptive Prior Information Updating 

To facilitate the AOD gap-filling over regions with substantial data gaps, in our previous method, 5% random samples 

from the downscaled MERRA-2 AOD image (AODM2 hereafter) on the same date were used as prior information and directly 

overlaid onto grids without observational AOD (i.e., AODTerra and site-based AOD estimates from air quality and visibility 

measurements). Although this enabled to improve the convergence speed during tensor completion, the spatial patterns of the 

reconstructed field over regions with excessive data gaps were more likely to resemble the distribution of AODM2 because of 

this unchanged prior information. In this context, large modeling biases in AODM2 might be introduced into the final 

reconstruction fields. 
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In this study, we introduced an adaptive prior information updating scheme to mitigate potential bias propagation problem. 

The main principle is to force the AOD prior information in the input AOD tensor to update iteratively throughout the tensor 

completion process, rather than maintaining them as invariant observations. Specifically, random AODM2 samples were only 

used to initialize the tensor construction, while weighted averages of the prior information and the corresponding reconstructed 

values were then used as new prior information for the next iteration. Meanwhile, the weights assigned to the reconstructed 

fields were gradually increased by iteration till convergence. The goal was to improve the contribution of reconstruction fields 

learning from actual observations while reducing the influence of background field. The ablation experiments demonstrated 

the effectiveness of this scheme in improving the reconstruction performance over regions with limited observational data. 

3.1.2.3. Optimized Global Data Tile Partition and Rank Updating  

The high spatiotemporal resolution of AODTerra images presents a great challenge in performing global-scale AOD gap-

filling because of the huge computational burden. To improve computational efficiency and to make the computing workload 

manageable, the following algorithmic adjustments were implemented. First, the continental AODTerra data worldwide were 

divided into 480 data tiles, with AOD gap-filling performed over each tile independently. Through a set of gap-filling trials 

with varying tile sizes, a nominal tile size covering 700 ´ 700 pixels, refer to Figure S3 for the spatial distribution of the 

optimized data tiles, was finally applied to balance the computing workload and reconstruction accuracy. Moreover, a 50-pixel 

overlap on the boundary of each tile was enforced, and an inverse distance weighting scheme was applied to these overlapped 

pixels when mosaicking the gap-filled tiles, aiming to eliminate the boundary effects between tiles toward a smooth distribution 

of AOD across the globe.  

, Since the tensor’s decomposition and reconstruction processes in the tensor completion are driven by iteratively updated 

tensor ranks, an optimized rank updating strategy was hereby proposed to improve the learning efficiency. Specifically, the 

ranks were updated in an ascending order along with the first and second dimensions in the inner loops to enhance the spatial 

details of reconstructed AOD fields.  In contrast, the ranks were updated in a descending fashion along the third dimension in 

the outer loop to aggregate the target AODTerra image with the soft data in a low-rank approximation manner. This new rank 

updating strategy not only helps better resolve spatial details of AOD but also accelerate the convergence speed of tensor 

completion.  

3.2. Global PM2.5 Concentration Modeling 

The sparse and uneven distribution of ground-based air quality monitoring stations poses significant challenges to global 

PM2.5 concentration mapping, particularly over regions with fewer PM2.5 concentration measurements (e.g., Africa and South 

America in Figure S2). Nonetheless, how to reinforce the spatial representativeness of data-driven models to improve the 

spatial extrapolation accuracy is still elusive. In this study, a recently developed deep learning method, namely, the scene-

aware ensemble learning graph attention network (SCAGAT), was hereby applied to better estimate global PM2.5 

concentrations from gap-filled AOD imageries. Instead of establishing a single PM2.5 estimation model using all available data 

samples collected from worldwide monitoring stations, site-specific PM2.5 estimation models were first developed using 

random forest over each air quality monitoring station with adequate PM2.5 concentration measurements.  

For a given grid, raw PM2.5 concentration estimates were estimated from a set of independent site-specific PM2.5 

estimation models, of which should resemble similar geographic scene features as the given grid cell¾under the assumption 

that the relationship between AOD and PM2.5 is similar over regions with an analogue environmental background. Nine distinct 

factors covering geographic location, land cover types, climate zones, AOD levels, and population density were utilized to 

characterize the scene attributes of each grid cell. Subsequently, a graph attention network was used to aggregate raw PM2.5 
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concentration estimates derived from site-specific models to produce an ensemble estimate over the target grid cell. In the 

graph network, weights assigned to the adjacency matrix were determined in reference to the differences between nine different 

scene features, and the node bias was given as the testing accuracy of each site-specific PM2.5 prediction model. This innovative 

ensemble learning method enables us to better predict PM2.5 concentrations across the globe, particularly over regions with 

limited or even no in situ PM2.5 concentration measurements. Figure S4 depicts the workflow of the proposed SCAGAT model, 

and additional details were introduced in Text S2. For more detailed descriptions of this method, please refer to Li et al. (2024). 

4. Results 

4.1. Efficacy Assessment of Algorithmic Enhancement Modules 

Ablation experiments were first conducted to evaluate the accuracy improvement potential of each newly developed 

algorithmic enhancement module. Three case studies were simulated by masking actual AODTerra retrievals with randomly 

selected cloud masks on different dates, and the methods reinforced with different enhancement modules were then applied to 

reconstruct the previously holdout AOD values. For intercomparison, the AOD gap-filling framework developed in Bai et al. 

(2022a) was used as the benchmark method. As shown in Figure 2, the AOD distributions reconstructed using methods 

embedding attention mechanism and adaptive background information updating modules have smaller bias levels compared 

to  the benchmark method, which in turn justify the efficacy of these two new algorithmic enhancement modules. Given an 

equal weight of each slice of data in the input AOD tensor, the reconstructed data fields from the benchmark method were 

prone to resembling a mean state determined largely by the principal mode of the input tensor. In this context, peak values in 

the target image might be underestimated (or overestimated for low values) because of relatively few soft data resembling 

similar patterns in the input tensor (e.g., Figure 2c). 

By incorporating the attention mechanism, each slice of data in the raw AOD data cube was adaptively weighted, with 

greater weights given to those having broader spatial coverage and closer similarities to the target AODTerra image. This strategy 

is vital to reducing contributions from irrelevant data, particularly when encountering imbalanced data samples within the raw 

AOD data cube, i.e., more irrelevant data and fewer similar images. Moreover, the importance of the target image was 

maximized during the tensor completion procedure by assigning a 100% weight. Compared to the benchmark method, extreme 

values in raw AODTerra images were better reconstructed using the method embedding the attention mechanism. For instance, 

in Figure 2b, the benchmark method apparently overestimated low AOD values in the north, whereas such a discrepancy was 

largely mitigated using methods involving the attention mechanism. 

In contrast to the benchmark method which used an invariant background throughout the tensor completion process, an 

adaptive background updating scheme was incorporated here to accelerate the convergence speed and mitigate possible error 

propagation arising from numerical simulations to the final reconstruction fields. Compared to the benchmark method, as 

illustrated in Figure S5, the adaptive background updating module enabled to reduce the adverse impact of manually added 

outliers in raw background fields.  thereby avoiding large error propagation from background fields into the reconstructed 

AOD data. Although the better quality of the reconstructed fields derived from the improved methods demonstrates the efficacy 

of these two newly developed algorithmic enhancement modules, the benefits could be largely cancelled when confronting 

with images containing excessive data gaps (e.g., Figure 2c). The inherent reason could be attributed to few observational data 

in the target image for reference to leverage the attention mechanism to pinpoint similar AOD images from the historical data 

series. 
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Figure 2. Performance evaluation of different algorithmic enhancement modules on the reconstructed AOD distribution. Raw AODTerra 

denotes the actual AOD retrievals from Terra, while simulated AODTerra refers to partially masked AODTerra. The benchmark method is the 

AOD gap-filling approach proposed in Bai et al. (2022a). The latter three columns present the reconstructed fields using the enhanced 

benchmark methods. The R and bias denote correlation coefficient and deviations between the holdout observed and reconstructed AOD 

data, respectively. The percent numbers shown in the two left panels indicate a spatial coverage ratio of valid AOD retrievals over the 

selected scenes. 

In Figure 3, we evaluated the impact of the missing rate of the target image on the AOD gap-filling accuracy. By masking 

one truly observed AODTerra image with arbitrarily selected cloud masks, a series of target images under different missing rates, 

as shown in the top panel of Figure 3, were simulated for gap-filling trails. As shown, the reconstructed fields fairly agreed 

with the observed AOD fields, well resembling the actual AOD distribution over the outlined region, even in extreme situations 

with excessive data gaps, demonstrating an excellent performance of the proposed gap-filling method. As expected, the 

accuracy of the reconstruction fields decreased along with an increase in the missing rate. For instance, when the missing rate 

was greater than 80%, the low values in the upper left of the raw AODTerra image were not properly reconstructed, largely 

because of the limited prior knowledge in the target image for use when constructing the raw AOD tensor. This effect also 

highlights the crucial importance of prior information on the gap-filling accuracy. Therefore, increasing prior information is 

the most promising way to improve the gap-filling accuracy in particular for regions with substantial data gaps. 
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Figure 3. Impact of the missing rate on the AOD gap-filling accuracy. The numbers on the top indicate the percentage of removed AOD 

data in the raw AODTerra image. The second row shows the distribution of the gap-filled AOD with zoomed-in maps present in the third row. 

The bottom panel presents scatter plots between the observed and the reconstructed AOD. 

4.2. Data Accuracy of Global Gap-Free AOD in LGHAP v2 

The gap-free AOD grids in the LGHAP v2 were generated by filling in data gaps in AODTerra images  with reconstructed 

AOD estimates at each collocated footprint over land. In comparison to the independent AOD observations from AERONET, 

the data accuracy of the gap-free AOD in the LGHAP v2 was comprehensively evaluated across the globe. Figures 4a–c 

present the spatial distribution of the site-specific correlation coefficient (R), root mean square error (RMSE), and bias between 

AOD in the LGHAP v2 and AERONET observations, respectively. Regardless of the uneven distribution of ground-based 

aerosol observing stations and variations in data samples between sites, the ground validation results indicate a good agreement 

between the AOD in the LGHAP v2 and the AERONET observations, with site-specific R of 0.76±0.14 and RMSE of 

0.09±0.08 on a global scale. Note site-specific data accuracy metrics vary across regions, with larger biases mainly observed 

in the central and east Asia as well as in Africa—regions always suffering from high aerosol loadings. 

Figures 4d–i present scatter plots between the LGHAP v2 AOD and AERONET observations at six major continental 

regions. As shown, the reconstructed AOD estimates were prone to an underestimation of large AOD values (> 0.80) versus 

an overestimation of low values (< 0.2) across these six regions. This effect is particularly common in machine-learning, 

largely because of the imbalanced distribution of data values in the training samples (Johnson and Khoshgoftaar, 2019; Shi et 

al., 2022). Similar reason could be also applied for the tensor completion as the missed AOD extremes may not be accurately 

reconstructed to their nominal levels; instead, they tend to resemble a mean state that was determined by principal modes via 

a low-rank approximation.  
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Figure 4. Data accuracy of daily gap-free AOD grids in the LGHAP v2 dataset compared to AOD observations from AERONET across the 

globe during 2000–2021. Note the AERONET AOD observations were independent data and had been not used in the gap-filling process. 

To further verify the data accuracy of the imputed AOD estimates, we compared the gap-filled AODs in the LGHAP v2 

dataset with two major gridded products of AODTerra and AODM2. As shown in Table 2, the purely reconstructed AOD 

estimates have an R of 0.83 and an RMSE of 0.15 compared to the AERONET AOD observations at the global 

scale¾comparable to the data accuracy of AODM2 (R = 0.83, RMSE = 0.14) but lower than that of AODTerra (R = 0.88, RMSE 

= 0.11). Nevertheless, the imputed AOD estimates achieved comparable data accuracies to AODTerra in Africa (R = 0.80, 

RMSE = 0.20) and Australia (R = 0.62, RMSE = 0.08), largely because of the availability of abundant satellite-based AOD 

prior information (refer to the AOD coverage ratio shown in Figure S1) to facilitate AOD tensor completion. In contrast, the 

LGHAP v2 AOD estimates in Europe and Asia have poorer data accuracies relative to AODTerra, particularly in Eastern Asia. 

The possible reasons could be ascribed to extensive missing values, severe aerosol pollution levels, as well as significant spatial 

variations in aerosol loadings over these regions. Compared to AODTerra, the gap-filled AOD data tended to overestimate the 

AERONET AODs (17.59% versus 11.45% above the envelope of expected error), resulting in an even larger global mean 

AOD (0.19 versus 0.17), implying a greater number of large AOD values were reconstructed in the imputed AOD estimates. 

Moreover, the accuracy of LGHAP v2 AOD data outperforms that of the gap-filled AOD dataset (R2 = 0.6031 and RMSE = 

0.1350) generated by Guo et al. (2023), in which missing AODs in AODTerra were predicted using various proxy variables 

(e.g., meteorological factors and population density) via a random forest model.  

Table 2. An intercomparison of AOD data accuracy between satellite-based retrievals (raw MAIAC AOD), numerical aerosol diagnostics 

(downscaled MERRA-2 AOD), purely reconstructed data, and the final gap-free product (LGHAP v2 AOD), by comparing AOD 

observations from AERONET across the globe during 2000−2021. Note the term “Purely Reconstructed AOD” refers to the imputed AOD 

estimates, while “LGHAP v2” refers to the gap-filled AOD dataset combining both satellite-based retrievals and purely reconstructed 

data. The expected error (EE) envelope for AOD over land was defined as ± (1.5 × AODAERONET + 0.05). 

AOD Dataset Region Mean 
AOD 

Number of 
Monitors 

Number of 
Samples R RMSE Bias Below EE 

(%) 
Within EE 

(%) 
Above EE 

(%) 
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MAIAC  
(AODTerra) 

Global 0.17 1,335 402,886 0.88 0.11 0.02 13.95 74.59 11.45 

North America 0.11 433 112,438 0.83 0.08 –0.01 4.62 80.93 14.44 

South America 0.11 81 28,265 0.94 0.07 0.02 14.17 75.85 9.97 

Europe 0.11 208 96,715 0.80 0.06 0.02 11.29 82.22 6.49 

Asia 0.31 321 90,821 0.90 0.14 0.02 18.79 68.22 12.99 

Africa 0.21 110 48,877 0.81 0.19 0.06 31.45 57.11 11.44 

Australia 0.09 28 12,427 0.62 0.07 –0.01 6.16 75.34 18.49 

Downscaled  
MERRA-2 
(AODM2) 

Global 0.18 1,335 811,438 0.83 0.14 0.02 11.76 78.98 9.26 

North America 0.12 433 216,264 0.80 0.09 0.00 5.71 86.22 8.07 

South America 0.13 81 49,721 0.90 0.11 0.02 12.87 81.64 5.49 

Europe 0.13 208 177,125 0.79 0.07 0.01 8.54 86.07 5.39 

Asia 0.29 321 175,781 0.78 0.24 0.06 22.54 65.14 12.32 

Africa 0.24 110 88,374 0.85 0.15 0.02 16.13 67.59 16.28 

Australia 0.10 28 21,051 0.76 0.06 –0.02 2.44 83.60 13.96 

Purely 
Reconstructed  

AOD 

Global 0.21 1,335 449,452 0.83  0.15  0.01  12.21  65.52  22.27  

North America 0.16 433 129,716 0.80  0.10  –0.02  5.23  67.52  27.25  

South America 0.17 81 30,073 0.88  0.11  0.00  10.51  67.11  22.38  

Europe 0.16 208 107,961 0.73  0.09  0.00  9.63  73.63  16.74  

Asia 0.33 321 107,876 0.81  0.24  0.03  18.64  56.60  24.76  

Africa 0.27 110 31,568 0.80  0.20  0.06  29.57  53.88  16.55  

Australia 0.13 28 9,628 0.62  0.08  –0.03  4.60  64.62  30.77  

LGHAP v2 

Global 0.19 1,335 756,166 0.85 0.14 0.01 12.96 69.44 17.59 

North America 0.13 433 216,055 0.82 0.09 –0.01 4.86 73.12 22.02 

South America 0.14 81 49,707 0.90 0.10 0.01 12.57 71.08 16.34 

Europe 0.13 208 176,959 0.76 0.08 0.01 10.24 77.40 12.36 

Asia 0.32 321 175,728 0.83 0.21 0.03 19.08 61.40 19.52 

Africa 0.23 110 75,110 0.81 0.19 0.06 29.61 56.64 13.75 

Australia 0.11 28 21,048 0.63 0.08 –0.02 5.11 70.30 24.59 

 

In Figure 5, we compared temporal variations in AOD between the LGHAP v2 dataset and ground-based observations at 

six AERONET sites with long-term records. Compared to discrete AOD observations from AERONET, the gap-free AOD 

time series accurately reconstructed long-term variations of aerosol loading from 2000 to 2021 at these monitoring sites, with 

R ranging from 0.83 to 0.97 and RMSEs varying between 0.04 and 0.24. Note that the large RMSEs observed at the Alta 

Floresta and Beijing sites are more likely ascribed to the reconstruction failures of abnormal AOD peaks, largely because of 

very limited peak values for reference in the AOD tensor. Referring to histograms of AOD deviations between the LGHAP v2 

and AERONET observations, more than 80% of AOD biases fell within the range of −0.1 to 0.1, demonstrating a high accuracy 

of gap-filled AOD in the LGHAP v2 dataset. 
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Figure 5. Temporal variations in the monthly AOD over six AERONET sites with long-term AOD observations from 2000 to 2021. The 

panels on the right present histograms of AOD deviations between the LGHAP v2 and AERONET observations at each individual site.  

4.3. Data Accuracy of Global Gap-Free PM2.5 Concentrations in LGHAP v2 

Global gap-free PM2.5 concentration estimates were derived from gap-filled AOD images by taking advantage of the 

novel SCAGAT method that was specifically developed for global PM2.5 concentration mapping. Additional details of the 

SCAGAT method were provided in another study (Li et al., 2024), and here we focused on the data accuracy of the global 

gap-free PM2.5 concentration estimates. Figure 6 presents the validation accuracy of the daily gap-free PM2.5 concentration 

estimates by comparing them to the ground-based PM2.5 concentration records measured at 350 previously holdout sites. As 

indicated, by accounting for spatial representativeness of the prediction models during the spatial extrapolation, PM2.5 

concentration estimates derived from the SCAGAT model are in better agreement with ground-based PM2.5 concentration 

measurements, with an R of 0.91 and an RMSE of 9.587 µg m−3, surpassing the performance of our traditional machine-learned 

models (Bai et al., 2019, 2022a, 2023). Meanwhile, the data accuracy was further improved by correcting modeling biases 

using sparsely distributed in situ PM2.5 concentration measurements via optimal interpolation, resulting in an improvement in 

R to 0.95 and a decrease in RMSE to 5.7 µg m−3 (Figure 6b). As shown in Figure 6e, the PM2.5 concentration estimates over 

China in the LGHAP v2 have a higher data accuracy (R = 0.97, RMSE = 7.93 µg m−3) than those in LGHAP v1 (R = 0.95, 

RMSE = 12.03 µg m−3). Figures 6c–d present a site-based distribution of R and RMSE for the LGHAP v2 PM2.5 concentrations 

over each individual validation site. Compared to the United States of America and Europe, as depicted in Figures 6e–g, larger 

PM2.5 concentration biases were observed in China because of higher PM2.5 loadings therein. 
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Figure 6. Site-based validation accuracy of PM2.5 concentration estimates derived from gap-free AOD images using the proposed SCAGAT 

method. (a) Scatter plots between PM2.5 estimates derived from the SCAGAT model and the withheld PM2.5 concentration measurements. 

(b) Same as (a) but for gap-free PM2.5 estimates fusing ground measured PM2.5 concentration measurements. (c–d) Site-based correlation 

coefficient and RMSE for LGHAP v2 PM2.5 concentrations, respectively. (e–g) Histograms of LGHAP v2 PM2.5 concentration bias over 

China, United States, and Europe, respectively. Note the ground-based PM2.5 concentration data used here for validation were used neither 

in the model training nor in the data fusion procedures.  

Table 3 presents the data accuracy of the gap-free PM2.5 concentrations in the LGHAP v2 dataset during the period of 

2000−2021 over nations with sufficient records of ground-based PM2.5 concentration measurements. It indicates that the data 

accuracy of PM2.5 concentration estimates varied across regions, with R changing from 0.71 to 0.98 and RMSEs ranging 

between 1.15 and 32.69 µg m−3. Regardless of the substantial differences in the total number of data pairs, larger RMSEs are 

mainly observed in regions like Mongolia (32.69 µg m−3) and India (25.34 µg m−3), which often suffered from severe PM2.5 

pollution episodes. The spatially varying accuracy metrics highlight the great complexity in large-scale PM2.5 modeling, which 

also underscores the critical importance of accounting for spatial representativeness when applying models over other regions 

for data extrapolation. 

In Figure 7, we examined long-term variations in PM2.5 concentrations in four different cities from 2000 to 2021. A good 

agreement with the previously withheld PM2.5 concentration measurements demonstrated a high accuracy of the LGHAP v2 

PM2.5 concentration estimates. Compared to temporally discrete PM2.5 concentration records measured by ground monitors, 

the gap-free LGHAP v2 PM2.5 concentration time series enabled us to better understand the long-term variability of haze 
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pollutions across the globe. As shown, declining trends were observed in PM2.5 concentrations as early as in 2006 in New York 

(United States), whereas apparent reductions were mainly observed after 2012 in Jilin (China) and 2015 in Toyama (Japan). 

Overall, the gap-free and high accuracy merits render PM2.5 concentrations in the LGHAP v2 dataset reliable data sources for 

assessing long-term trends of haze pollutions across the globe. 

Table 3. The data accuracy of gap-free PM2.5 concentrations in the LGHAP v2 dataset compared to ground-based measurements in countries 

with sufficient PM2.5 records. The N denotes the total number of PM2.5 concentration data pairs for calculating R, RMSE, and bias. 

Country N  R RMSE 
(μg m−3) 

Bias 
(μg m−3)  Country N R RMSE 

(μg m−3) 
Bias 

(μg m−3) 

China 3,113,160 0.97 8.27 0.36  Iran 67,434 0.74 10.14 −0.09 
United 
States 2,048,983 0.84 3.34 0.06  Brazil 50,252 0.81 5.63 0.78 

Japan 1,810,436 0.96 1.82 0.07  Portugal 47,782 0.82 3.49 0.14 

Canada 1,206,176 0.89 2.12 0.05  Hungary 41,524 0.92 4.59 −0.17 

Korea 526,138 0.96 3.49 0.16  Sweden 40,839 0.91 1.61 −0.23 

France 502,555 0.96 2.25 0.13  Norway 40,001 0.86 2.45 −0.07 

Germany 472,103 0.97 1.94 0.04  Finland 38,884 0.93 1.15 −0.08 

Italy 371,888 0.93 5.23 0.04  South Africa 35,314 0.71 10.84 −2.91 
United 

Kingdom 309,181 0.94 1.95 0.11  Serbia 34,795 0.87 9.70 0.01 

Spain 297,202 0.87 2.63 0.23  New Zealand 26,654 0.73 3.63 0.20 
Czech 

Republic 209,274 0.97 3.38 0.24  Colombia 26,332 0.95 4.60 0.45 

Australia 208,772 0.72 3.70 −0.03  Ukraine 22,692 0.84 5.79 −0.08 

India 207,974 0.92 25.34 1.64  Bosnia-
Herzegovina 20,297 0.94 12.08 1.59 

Belgium 177,036 0.98 1.54 0.01  Greece 19,410 0.79 5.41 −0.10 

Poland 175,782 0.95 5.03 0.52  Croatia 17,926 0.90 5.82 −0.44 

Turkey 171,381 0.84 10.27 −0.99  Switzerland 14,719 0.75 3.98 −2.26 

Austria 131,186 0.97 2.28 −0.14  Russia 14,357 0.84 4.06 0.58 

Netherlands 119,047 0.97 1.72 −0.07  Estonia 13,793 0.91 1.48 0.19 

Mexico 112,379 0.80 11.42 0.45  Lithuania 13,405 0.87 4.49 0.07 

Chile 111,416 0.80 12.64 0.16  Ecuador 12,517 0.88 2.92 0.28 

Slovakia 104,892 0.95 3.77 0.18  Vietnam 12,480 0.78 12.94 0.63 

Thailand 82,206 0.89 13.21 1.25  Macedonia 10,416 0.92 10.81 2.17 

Israel 68,012 0.83 5.08 0.32  Mongolia 9,926 0.91 32.69 −0.17 

Figure 8 presents the temporal variations in the global annual mean PM2.5 concentration distribution from 2000 to 2021. 

As shown, the daily gap-free LGHAP v2 dataset seamlessly supports the derivation of comparable annual mean PM2.5 

concentration maps between years, and data gap related biases in raw AODTerra images were eliminated. Meanwhile, the 

quality-assured annual mean PM2.5 concentration maps enable us to easily pinpoint the hotspot regions suffering from severe 

haze pollutions and to analyze the long-term variability of global PM2.5 concentrations. Specifically, Mongolia, north India, 

eastern China, and central Africa were identified as four major regions with relatively high PM2.5 loadings, in particular north 

India, becoming a hotspot region suffering from more severe PM2.5 pollutions on the planet. Substantial PM2.5 reductions were 

observed in eastern China from 2014 onwards, with PM2.5 concentrations reduced to levels even comparable to countries in 

central Asia. 
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Figure 7. An intercomparison of temporal variations in monthly mean PM2.5 concentrations in four different cities between the LGHAP v2 

and collocated ground-based PM2.5 concentration measurements from 2000 to 2021.  
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Figure 8. Spatial distribution of the global annual mean PM2.5 concentrations derived from the LGHAP v2 dataset between 2000 and 2021. 

5. Discussion 

Spatially contiguous AOD and PM2.5 concentration grids are pivotal to regional air quality management, haze pollution 

exposure risk assessment, and aerosol radiative forcing diagnosis. By seamlessly gearing up state-of-the-art machine learning 

and tensor completion methods, a novel big Earth data analytics framework was developed to fulfill the generation of long-

term high-resolution AOD and PM2.5 concentration grids (LGHAP v1) in our previous study (Bai et al., 2022a). Specifically, 

multimodal AODs and relevant air quality data acquired from diverse satellites, numerical models, and ground monitoring 

stations were first harmonized using random forest models. Next, multisource AOD data flows were weaved neatly as the 

tensor inputs, with data gaps in daily MODIS AOD images properly reconstructed via low-rank tensor completion. Finally, 

gap-free PM2.5 concentration grids were mapped from gap-filled AOD images using a random forest model. This big data 

analytics framework provided an effective solution to integrate multimodal Earth observations from diverse sources to generate 

high-quality AOD and PM concentrations in China.  

In this study, aiming to generate global gap-free AOD and PM2.5 concentration grids, namely the LGHAP v2 dataset, the 

previous big Earth data analytics framework was adopted but enhanced with several new features, with particular focuses on 

accommodating the rocketing data size and global scale modeling demand other than reducing modeling biases. Specifically, 

an attention mechanism, inspired by deep-learning techniques, was hereby introduced to weight each data slice in the input 

tensor to account for the drawback induced by the equal weight strategy, with larger weights assigned to data slices with fewer 

data gaps and more similar to the target image. In other words, both the spatial coverage ratio of valid observations in each 

soft data and the mutual information between the target and soft data were considered simultaneously to weight each data slice 

in the AOD tensor. A weighted AOD tensor was then calculated for tensor completion, instead of using all the available 

information in the AOD tensor indifferently. Although the ablation experiments shown in Figure 2 have demonstrated the 

efficacy of this attention-reinforced tensor construction strategy, the underlying philosophy, in particular the relative 

importance of mutual information and extra spatial coverage, has been not yet fully justified and assessed.  

 An adaptive background field updating scheme was also introduced to iteratively update prior information in the target 

AOD images. Compared to the invariant prior information, adaptively updated prior information allowed for mitigating the 

influence of uncertainties in the prior information on the reconstruction accuracy, particularly large modeling biases from 

numerical simulations. Despite these algorithmic improvements, a slightly reduced data accuracy of gap-filled AODs in China 

from the LGAHP v2 dataset was observed compared to those in the LGHAP v1 dataset. Further investigations revealed this 

was mainly due to the relatively poor data accuracy of the downscaled AODM2 data because a global-scale versus regional 

downscaling model was applied. Nonetheless, benefiting from the adaptive background updating scheme, the modeling biases 

in AODM2 were effectively suppressed in the final reconstructed AOD fields, evidenced by larger biases of AODM2 (R = 0.77, 

RMSE = 0.36) versus smaller biases of the purely reconstructed AOD (R = 0.82, RMSE = 0.26).  

The global gap-free and high-resolution benefits render the LGHAP v2 dataset a promising data source to monitor global 

aerosol distribution and variations in space and time. As illustrated in Figure 9, aerosol-related environmental disturbance 

episodes, such as sandstorms, wildfires, and haze pollution events, can be well indicated by local rising AODs. More 

importantly, the gap-filled AOD dataset provides us with an unprecedented opportunity to monitor aerosol loadings and 

variations even under cloud cover, e.g., the haze pollution episodes over southern India and eastern China shown in Figures 

9d and 9e. This is largely benefited from the intelligent spatiotemporal pattern recognition, as well as the assimilation of air 

quality measurements from ground monitoring stations and numerical aerosol diagnostics. While this global air quality 

mapping approach greatly facilitates the surveillance and management of air pollution around the world, the LGHAP v2 dataset 
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would also significantly reduce uncertainties in the health-related aerosol exposure risk assessment results because of the gap-

free and high-resolution advantages. 

 
Figure 9. An illustration of AOD responses to wildfires, sandstorms, and haze pollution episodes across the globe, as characterized by gap-

free AOD in the LGHAP v2 dataset. The global map in the middle panel shows the spatial distribution of major land cover types in 2020. 

 
Figure 10．AOD trends over twelve regions of interest worldwide from 2000 to 2021 estimated from gap-free AODs in the LGHAP v2 

dataset. The top panel shows the spatial distribution of global AOD deviations between the first and second decade in the 2000s. Twelve 

diagrams in the bottom panel show the linear trend of mean AOD over the outlined region of interest at different starting times with varying 

time window sizes. 

Global AOD variation trends were carefully examined by taking advantage of the LGHAP v2 AOD dataset. Figure 10a 

presents the AOD deviations between the AOD averages during the first and the second decade in 2000s across the globe. As 



 

 22 

shown, substantial AOD increases in the twenty-first century primarily present over India and central Africa, with remarkable 

AOD decreases observed in the middle of South America. In North America, AOD increases were mainly observed in Canada 

and the western United States whereas AOD decreases were found in the eastern United States. Additionally, in reference to 

temporally varying AOD trends in regions A and B, evident AOD increasing trends were observed in the United States from 

2012 onwards, while significant decreasing trends in the eastern United States were entirely reversed after 2015. This effect 

could be partially attributed to more frequent and intensive wildfire emissions in north America during the second decade of 

the 2000s (Burke et al., 2023; Wei et al., 2021b). A similar effect was also observed in Europe, with an apparent slowdown in 

the AOD decreasing trend after 2010. 

Inverse effects were also observed in China but with totally different temporal transition patterns. As shown, statistically 

significant AOD increasing trends were observed in eastern and southern China in the first decade, with a slowdown starting 

around 2007, followed by a sudden reversion to decreasing trends after 2010. This was also the most significant AOD 

decreasing trend during the 2010s around the world. This observational evidence confirms the success of clean air action in 

improving air quality in China during recent decades (Bai et al., 2022a; Liang et al., 2020; Zhang et al., 2019). A similar 

temporal variation pattern was also observed in the Middle East but with relatively weak trends. In contrast, India was a hotspot 

area showing an increasing trend in AOD throughout the 2000s, despite a short period of increasing hiatus from 2013 to 2015. 

Global gap-free PM2.5 concentrations were derived based on gap-filled AOD grids by taking advantage of a novel 

SCAGAT model. Unlike many other data-driven models, the spatial representativeness was accounted for in the SCAGAT 

model, providing a unique solution to model PM2.5 concentrations over regions even without PM2.5 monitoring sites. Daily 

gap-free PM2.5 concentration grids favor the assessment of the pandemic’s influence on regional air quality. Figures 11a and 

11b present the spatial distribution of PM2.5 concentrations before and during the COVID-19 pandemic, respectively. 

Neglecting long-term variation trends in PM2.5 concentrations, the substantial PM2.5 decreases in middle and eastern China, as 

well as in central Europe, clearly indicate the positive effect of pandemic-related mobility restrictions on air quality 

improvement (by comparing PM2.5 concentration in 2019 and 2020 during the synchronous period). In contrast, PM2.5 

reductions were relatively small in the United States due to the lack of mobility restriction measures, with apparent PM2.5 

reductions observed mainly in regions like Chicago. Overall, the LGHAP v2 dataset enables us to better investigate global 

aerosol variations and assess PM2.5-related health exposure risks. 

 
Figure 11. Influence of the COVID-19 pandemic on PM2.5 concentrations in United States, Europe, and China. PM2.5 concentrations from 

LGHAP v2 were averaged over synchronous periods in 2019 and 2020 for intercomparison.  
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6. Data Availability 

The LGHAP v2 dataset provides global gap-free AOD and PM2.5 concentration grids from 2000 to 2021 with a daily 1-

km resolution. To facilitate the data sharing, each daily map was saved a single NetCDF file, and the data in each individual 

month were then archived as one zip file. Table 4 summarizes the permanent digital object identifiers for data in each calenda 

year from 2000 to 2021. All these datasets were publicly available at the LGHAP community link via 

https://zenodo.org/communities/ecnu_lghap (Bai et al., 2023a). The data user guide and visualization codes (Python, 

MATLAB, R, and IDL) were also provided to guide the users in retrieving data from the NetCDF files, which can be accessed 

at https://doi.org/10.5281/zenodo.10216396.  

Table 4. List of data links for AOD and PM2.5 concentration grids in the LGHAP v2 dataset for each individual year. 

Year LGHAP v2 AOD grids LGHAP v2 PM2.5 grids 

2000 https://doi.org/10.5281/zenodo.8281206 https://doi.org/10.5281/zenodo.8307595 
2001 https://doi.org/10.5281/zenodo.8281216 https://doi.org/10.5281/zenodo.8307597 
2002 https://doi.org/10.5281/zenodo.8281218 https://doi.org/10.5281/zenodo.8307599 
2003 https://doi.org/10.5281/zenodo.8281222 https://doi.org/10.5281/zenodo.8307601 
2004 https://doi.org/10.5281/zenodo.8281226 https://doi.org/10.5281/zenodo.8307605 
2005 https://doi.org/10.5281/zenodo.8281228 https://doi.org/10.5281/zenodo.8307607 
2006 https://doi.org/10.5281/zenodo.8287125 https://doi.org/10.5281/zenodo.8308225 
2007 https://doi.org/10.5281/zenodo.8287129 https://doi.org/10.5281/zenodo.8308227 
2008 https://doi.org/10.5281/zenodo.8287133 https://doi.org/10.5281/zenodo.8308231 
2009 https://doi.org/10.5281/zenodo.8287995 https://doi.org/10.5281/zenodo.8308233 
2010 https://doi.org/10.5281/zenodo.8288389 https://doi.org/10.5281/zenodo.8308237 
2011 https://doi.org/10.5281/zenodo.8288395 https://doi.org/10.5281/zenodo.8310586 
2012 https://doi.org/10.5281/zenodo.8288397 https://doi.org/10.5281/zenodo.8310590 
2013 https://doi.org/10.5281/zenodo.8287207 https://doi.org/10.5281/zenodo.8310702 
2014 https://doi.org/10.5281/zenodo.8288387 https://doi.org/10.5281/zenodo.8310704 
2015 https://doi.org/10.5281/zenodo.8289613 https://doi.org/10.5281/zenodo.8310706 
2016 https://doi.org/10.5281/zenodo.8289615 https://doi.org/10.5281/zenodo.8310708 
2017 https://doi.org/10.5281/zenodo.8294100 https://doi.org/10.5281/zenodo.8310711 
2018 https://doi.org/10.5281/zenodo.8301364 https://doi.org/10.5281/zenodo.8313603 
2019 https://doi.org/10.5281/zenodo.8301367 https://doi.org/10.5281/zenodo.8313611 
2020 https://doi.org/10.5281/zenodo.8301375 https://doi.org/10.5281/zenodo.8313613 
2021 https://doi.org/10.5281/zenodo.8301379 https://doi.org/10.5281/zenodo.8313615 

7. Conclusion 

In this study, the LGHAP v2 dataset, a heritage of the LGHAP, was generated to provide global gap-free AOD and PM2.5 

concentration grids with a daily 1-km resolution from 2000 to 2021, by leveraging an improved big Earth data analytics 

approach. The ground validation results confirm high accuracies of these two gap-free products, with AOD having an R of 

0.85 and an RMSE of 0.14 compared to the AERONET AOD observations, which are slightly worse than the original 

MCD19A2 product (R = 0.88 and RMSE = 0.11). Similarly, PM2.5 concentration estimates derived from gap-free AOD via 

the SCAGAT method show an agreement with the withheld ground-based PM2.5 measurements, achieving an R of 0.91 and an 

RMSE of 9.57 µg m−3, while the data accuracy was improved to an R of 0.95 and an RMSE of 5.7 µg m−3 with the fusion of 

ground-measured PM2.5 concentrations.  

Several new algorithmic enhancement modules were incorporated to the big data analytics framework to improve both 

the computing speed and the reconstruction accuracy. The ablation experiments demonstrated the effectiveness and advantages 

of the newly implemented attention mechanism to weigh each slice of soft data in the AOD tensor. Updating prior information 

in the target image after each tensor reconstruction iteration helped mitigate the risk of error propagation from numerical 

https://zenodo.org/communities/ecnu_lghap
https://doi.org/10.5281/zenodo.10216396
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aerosol diagnostics to the final reconstructed field and improve the convergence speed of tensor completion. Overall, this study 

provides a compelling illustration of big Earth data analytics to generate high-quality remote sensing datasets by synergistically 

integrating and assimilating multimodal data from diverse sources via machine-learning techniques. Additionally, this big data 

analytics approach could be also used for near-term gap-free AOD mapping by simply replacing numerical AOD reanalysis 

with forecasting fields (e.g., CAMS forecasts). 

This study also provides new insights on how to deal with the scale problem when developing large-scale environmental 

variable (e.g. PM2.5 concentration) mapping models. Instead of constructing a global model with all paired data samples, site-

specific PM2.5 prediction models were first established using a random forest model, and a graph attention network was then 

developed to establish an ensemble learning model to integrate multiple PM2.5 estimates derived from site-specific random 

forest models trained over sites with similar scene features as the target grid. By accounting for the scene similarity between 

geographic regions, the proposed deep-learning model attempted to address the scale problem in large-scale PM2.5 modeling 

practices. 

The LGHAP v2 dataset is publicly accessible using the aforementioned links. The gap-free and high-resolution dataset 

can be used as a reliable data source for assessing aerosol-climate interactions, as well as PM2.5 exposure risks and related 

health outcomes around the world. Researchers are also encouraged to use this dataset to evaluate the status and trends of 

urban aerosol pollutions across the globe to support the assessment of Sustainable Development Goals.  
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