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Abstract. The Long-term Gap-free High-resolution Air Pollutants concentration dataset (LGHAP) generated in our previous 

study provides provides spatially contiguous daily aerosol optical depth (AOD) and fine particulate matters (PM2.5PMs) 

concentration data s at a 1-km grid resolution in China since 2000. This advancement empowered some unprecedented 

assessments of regional aerosol variations and its theirits influenceimpacts on the the environment, health, and climate overin 

the past few twenty yearsyears. However, there is a need to improve enhance such a MODIS-like gap-free high resolution 

quality AOD and PM2.5 concentration dataset with new robust features and extended spatial coverage. In this study, we present 

the version 2 of such a global-scale LGHAP dataset (LGHAP v2), whichthat was generated using an improved big earthEarth 

data analytics approach via a seamless integration of distinct versatile data science, pattern recognition, and deep-machine  

learning methods. Specifically, To better reconstruct the global AOD distribution from daily remotely sensed MODIS AOD 

imageries, multimodal AODs and air quality measurements acquired from relevant satellites, ground monitoring stations, and 

numerical models across the globe throughout the past two decades were firstly harmonized by harnessing the capability of 

random forest-based data-driven models. ThenSubsequently, an improved tensor-flow-based AOD reconstruction algorithm 

was developed to weave the harmonized multi-source AODs products together for gap -filling data gaps in Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) AOD retrievals from Terra. The results of the ablation experiments 

demonstrated better performance of the improved tensor-flow-based gap- filling method has a better performance in terms of 

both convergence speed and data accuracy. Ground-based validation results indicated a good data accuracy of the this global 

gap-filled free AOD dataset, with a site-specific correlation coefficient (R) R of 0.85 and  root mean square error 

(RMSE)RMSE of 0.14 compared toagainst the worldwide AOD observations from AERONET, which is better 

thanoutperformeding the purely reconstructed AODs (R = 0.83, RMSE = 0.15) and whereas slightly worse than theraw raw 

Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD retrievals from Terra (R = 0.88, RMSE = 0.11). 

RegardingFor PM2.5 concentration mapping, aA novel deep- learning modelapproach, termed as the named as the scene-aware 

ensemble learning graph attention network (SCAGAT), was developed hereby appliedto enhance the estimation accuracy of 

global better predict PM2.5 concentrations across the globethrough gap-free AOD data. WhileBy gaining a better ByWhile 

enhancingaccounting for the spatial scene representativeness of data-driven models across regions, the SCAGAT algorithm 

performed better superiorly inbetter during spatial extrapolation, largely reducing modeling biases over regions with limited 
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and/or even absent even though the in situ PM2.5 concentration measurements are limited or absent. The sSite-specific 

validation results indicated that the gap-free PM2.5 concentration estimates exhibit higher prediction accuracies, with an R of 

0.95 and an RMSE of 5.7 μg m−3, compared toagainst the PM2.5 concentration measurements obtained from previouspriorly 

heldhold-out sites worldwide. Overall, while while leveraging state-of-the-art methods in data science and artificial intelligence, 

a quality-enhancedquality  enhanced LGHAP v2 dataset was generated through big Eearth data analytics by cohesively 

weaving together multimodal AODs and air quality measurements from different diverse sources together cohesively. The 

gap-free, high-resolution, and global coverage merits render the LGHAP v2 dataset an invaluable data base to advance aerosol- 

and haze-related studies and, as well as to trigger multidisciplinary applications for environmental management, health−- risk 

assessment, and climate change analysisattribution. All gap-free AOD and PM2.5 concentration grids in the LGHAP v2 dataset, 

as well as the data user guide and relevant visualization codes, are shared online publicly accessible at 

https://zenodo.org/communities/ecnu_lghap (Bai et al., 2023a)., with a data user guide and relevant visualization codes 

available at https://doi.org/10.5281/zenodo.10216396.

1 

1. Introduction 

Atmospheric aerosols, produced from either natural or anthropogenic emissions, have been proven to pose significant 

threats to human health, ambient environment, and climate (Up in the aerosol, 2022). The risks to public health from aerosol 

pollution are clearevident, with about 4.2 million deaths per year attributable to the exposure of fine aerosol particles, as stated 

by the World Health Organization (WHO, 2022). With increased aerosol loading, aerosols can significantly impair atmospheric 

visibility because ofdue to the hygroscopic effect, thereby reducing direct solar radiation on the Earth’s surface (Liu et al., 

2020; Wang and Yang, 2014; Wild et al., 2021; Yang et al., 2016). In addition to the evident influenceimpacts on air quality 

(Li et al., 2017), atmospheric aerosols also have an important and complex influence on regional, and even global climate 

(Anon, 2022; Guo et al., 2016, 2019; Li et al., 2019; Yang et al., 2020; Zhao et al., 2020). Therefore, an accurate monitoring 

of the atmospheric aerosol loading is vital for improving our understanding of the human-driven ambient environment and 

exposure pathways in health−- risk assessment. 

Aerosol optical depth (AOD), a measure of aerosols distributed within an air column from the Earth’s surface to the top 

of the atmosphere, has been widely used as a key indicator of total atmospheric aerosol loading. AOD observations from 

ground monitoring stations have long been recognized as the ground truth, and a few gGround-based aerosol observing 

networks, e.g.such as, the internationally collaborated Aerosol Robotic Network (AERONET), China Aerosol Remote Sensing 

Network (CARSNET), and Sun−-Sky Radiometer Observation Network (SONET), were had been established to provide 

global and/or regional aerosol measurements have long served as the ground truth for AOD monitoring (Che et al., 2015; Giles 

et al., 2019; Li et al., 2018). However, the sparse distribution of ground aerosol monitoring stations poseposes as significant 

challenges into gaining a better comprehensive understanding of the aerosol variations across the globe.  

Satellite-based AOD products data well bridge thissuch a gap by providing spatially-resolvedspatially resolved AOD 

retrievals with a vastextensive spatial coverage. Over the past forty years, A a variety of space-borne instruments, e.g., Sea-

Vviewing Wide Field-of-Vview Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible 

Infrared Imaging Radiometer Suite (VIIRS), and Polarization and Directionality of the Earth’’’'s Reflectances (POLDER), 

werehad been deployed onboard different various satellite platforms and launched into space over the past forty  years (Wei 

et al., 2020). These versatile instruments provide ample AOD and aerosol property measurements, enabling us to map global 

AOD distribution with finer spatial resolutions in a long run. Nonetheless, satellite-basedsatellite-based AOD retrievals often 

suffer from excessive data gaps because ofdue to extensive cloud covers and retrieval failures,., significantly impairing the 

data application potential, of these spatially incomplete AOD imageries. Moreover, substantial data gaps in satellite-based 
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AOD products could as well as and resulting in large uncertainties when assessing the influence of aerosol impacts on weather 

and climate. 

A variety of gap-filling methods were developed and applied to reconstruct the missing values in the satellite remotely 

sensed satellite AOD images (Wei et al., 2020; Xiao et al., 2021). The simplest method is to fill in data gaps with valid 

observations from other alternative data sources, e.g., filling in data gaps in MODIS AOD images from Terra with AOD 

observations from Aqua (Bai et al., 2019; Sogacheva et al., 2020), or simply to fusinge with AOD simulation outputs from 

numerical models (Xiao et al., 2021). Such a substitution method is straightforward and effective, particularlyespecially in an 

era with big Eearth observation data. Nonetheless, cross-mission biases are always salient among between satellite-based 

retrievals, stemmingacquired from different various platforms and/or instruments, are always salient because of thedue to 

significant differences in both instruments properties and/or retrieval algorithms. Thus, bBias correction is thus essential to 

reducing systematic biases (Bai et al., 2016b, 2016a)., , and and dDistinctifferent methods, such as linear regression and 

maximum likelihood estimation, were are often applied to account foraddress cross-mission biases prior tobefore merging the 

datafor this purpose merging (Bai et al., 2016a, 2016b, 2019; Ma et al., 2016; Xu et al., 2015). More complex data fusion 

methods, like the Bayesian maximum entropy (Tang et al., 2016; Wei et al., 2021b), were also applied to fuse the AOD 

products even with different varying spatial resolutions (Tang et al., 2016; Wei et al., 2021b). 

Another type of gap-filling methods works, in a principle, to recover missing information via dominant pattern recognition 

and reconstruction over space and time, and the data Data interpolating INterpolating empirical Empirical orthogonal 

Orthogonal functions Functions (DINEOF) method is a representative one (Beckers and Rixen, 2003; Liu and Wang, 2019). 

Two similar methods were developed to fill  in data gaps in the ground-measured PM2.5 concentration time series and 

geostationary satellite-sensed AOD imageries (Bai et al., 2020; Li et al., 2022b). Similarly, Zhang et al. (2022) developed a 

spatiotemporal fitting algorithm to gap-fillfill gaps in the daily MODIS AOD product, primarily by predicting, with AOD 

values mainly predicted based on annual trends and spatial residues inferred from neighboring pixels. Nonetheless, filling data 

gaps are hardly to be properly reconstructed simply based onwith a single data source is always challenging, 

particularlyespecially for those with excessive extensive missing values (e.g., satellite-based AOD). Retrieving the missing 

AOD informationLeveragingLearning missing values from diverseexternal from diversified external data productsinformation, 

via various artificial intelligence learning algorithms, in artificial intelligence, such ase.g., numerical AOD simulations (Li et 

al., 2020; Xiao et al., 2017) and  even meteorological factors (Bi et al., 2019), was proven to be an effective and feasible way 

tofor improve theing spatial coverage of reconstructed AOD fields.  

 

Given the powerful approximation capacity, the mMachine- learning method is anothers have been widely applied used 

approach forto downscalinge and bias-correcting numerical AOD simulations to match satellite AOD footprints, while data 

gaps in satellite-based AOD imageries were then filled with downscaled data (He et al., 2023; Wei et al., 2021a);. Given the 

powerful approximation capacity, machine- learning methods were extensively used for bias correction in gap-filling problems 

over recent years (Bai et al., 2022b, 2023b; He et al., 2023; Wang et al., 2022; Wei et al., 2021a; Xiao et al., 2021). 

MLeveraging machine- learning and tTensor- completionflow-based methods, i.e., a more complex big data analytics 

framework, wereaswas developed useddeveloped to integrateintegrate six satellite-based AOD datasets and , numerical aerosol 

diagnostics, as well asand in situ air quality measurements (Bai et al., 2022a). , while a machine-learning method, i.e., random 

forest, was applied for downscaling and bias-correction purposes (Bai et al., 2022a). Based onHarnessing multimodal data 

fusion and missing value reconstruction capabilities this data analytics approach, a long-term gap-free high-resolution MODIS-

like AOD and PM concentration dataset (LGHAP version 1), was successfully yieldedgenerated overin China, withThe 

comparable an overall data accuracy comparable of reconstructed AODs well demonstrate the efficacy of thisto raw satellite 

retrievals, from which gap-free PM2.5 and PM10 concentrations were mapped on a daily basis gap-filling approach, yielding a 
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long-term gap-free high-resolution MODIS-like AOD and PM concentration dataset (LGHAP version 1) in China. Despite the 

good performance,  Despite the good reconstruction performanceadditionalRecent, additionalfurther investigations have 

recently recently proven that the critical importance of prior information is vital forinon tensor-flow-based gap-filling 

procedure, particularlyespecially over areas with substantial missing values, and the reconstruction results would be prone to 

significant large uncertainty with few valid observations in the input tensor (Bai et al., 2022a; Li et al., 2022a, 2022b). 

Moreover, the strategies of maintaining an invariant background filed and assigning equal weights for to different AOD inputs 

may not only reduceslow down the convergence speed andbut degrade the reconstruction accuracy. 

In this study, we present AnLeveraging an improved big Eearth data analytics approach has generated —¾, a new global 

scale LGHAP dataset, referred to as termed as LGHAP v2 hereafter, hereafter¾, was hereby generated towhich 

furnishesextends provide daily global gap-free AOD and PM2.5 concentrations from China to worldwide at a 1-km grid 

resolution as ofdating back tofor the period of 2000 to 2021. ToIn order to accommodate massive global massive Eearth 

observations acquired from diverse satellites, numerical models, and air quality monitoring stationssources, an improved big 

Earth data analytics approach was developed by harnessing several new algorithmic improvements were applied to enhance 

the tensor-flow-based AOD gap filling approach.  These improvements, includeing an attention-reinforced tensor construction 

strategy and, an adaptive background information updating scheme, an optimized global data tile partition and rank updating, 

all aimeding at improving convergence speed and mitigating modeling bias propagation in numerical reconstructed AOD 

diagnosticsfields. Moreover, a novel deep- learning method¾, namely,  named as the SCene-Aware ensemble learning Graph 

ATtention network (SCAGAT)¾,  was developed applied to fulfill far-more accurate global PM2.5 concentration mapping 

across the globe, particularly over regions with limited air quality monitoring stations. While bBBenefiting from the 

customized algorithmic improvements and the novel innovative SCAGAT PM2.5 concentration mapping methodapproach, the 

LGHAP v2 dataset has not only has an not only extended the spatial coverage from China to worldwideglobal 

scaleworldwide,global boastingandbut also but also  improved data accuracy compared to LGHAP v1. To our knowledge, this 

is the first publicly accessible and global long-term gap-free MODIS-like AOD and PM2.5 concentration dataset with a daily 

1-km resolution, which could be used to help deepen our understanding of global aerosol pollution variations as well as adverse 

impacts on public health and on the, ecosystem, weather, and climate. In the following sections 2 and 3, we providprovideed 

a more detailedcomprehensive description of the diversified data sources analyzed in this study, as well as the versatile artificial 

intelligent machine- learning and deep- learning methods used to manipulate big Eearth observational data. In the subsequent 

sections 4 and 5, tThe pPerformance of algorithmic improvements as well as, the data accuracy of the global gap-free AOD 

and PM2.5 concentration data, and the application potential of the LGHAP v2 dataset data were then comprehensively evaluated. 

To our knowledge,As a the LGHAP v2 is the first publicly accessible and global long-term gap-free MODIS-like AOD and 

PM2.5 concentration dataset., the LGHAP v2 servers as a promising data source to improve our understandingThis resource 

stands to of global aerosol pollution dynamics, shedding light onand its their adverse impacts on public health, ecosystems, 

weather patterns, and climate change. by comparing it toagainst the worldwide in -situ AOD and PM2.5 concentration 

measurements.  

2. Data Ssources 

In the currentthis studySimilar as our previous study, here we still attempt aim to synergistically integrate the big Eearth 

data acquired from diverse sources to generate a global long-term gap-free AOD dataset with a daily 1-km resolution. 

Subsequently,, from which, from which sspatially contiguous PM2.5 concentration estimates can be then derived usingby a 

more robust and accurate data-driven approach way to minimize the gaps and maximize the prediction accuracy. As shown in 

Table 1 illustratesdescribes, a the large arrayvariety of big Eearth data were hereby employed in data production this study, 
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including gridded AOD products from six polar orbiting satellites, as well as numerically simulated MERRA-2 AOD and 

aerosol diagnostics, eleven ten meteorological reanalysis fields, and six datasets of in situ AOD and air pollutantss 

concentrations measurements. Additionally, auxiliary variables parameters representing land use and land cover types, 

elevation, and population density,, as well as aand vegetation indexcovers, were used not only to helpincorporatedalso 

employed as critical explanatory variables to harmonize the discrepancies among multimodal heterogeneous aerosol datasets 

prior to data integration. Note the spatial and temporal resolution as well as the time period for each data product are different 

from that of the benchmark dataset, namely, the MAIAC AOD product, and a data homogenization method is therefore 

essential to account for such discrepancies to reduce possible bias propagation in the subsequent data fusion procedure.   andbut 

also to aid in the global PM2.5 concentration mapping. 

Table 1. Summary of the diverse big Earth data used in this study to help generate a global gap-free AOD dataset and PM2.5 concentrations 

at a daily/ and 1-km resolution (LGHAP v2) from 2000 to 2021. 

Category DatasetProduct Temporal Resolution Spatial 
Resolution 

Time 
Period 

AOD 

MCD19A2 (MAIAC) daily 1 km 2000–2021 

Terra/MISR daily 4.4 km 2000–2021 

NPP/VIIRS daily 5 km 2012–2021 

Envisat/AATSR daily 10 km 2000–2012 

PARASOL/POLDER daily 10 km 2005–2013 

SeaWiFS/OrbView-2 daily 10 km 2000–2010 

AERONET hourly N/A 2000–2021 

Meteorological  
factors 

Air temperature hourly 

0.25° 2000–2021 

U/V component of wind hourly 

Relative humidity hourly 

Surface pressure hourly 

Boundary layer height hourly 

Total column water vapor hourly 

Surface solar radiation downwards hourly 

Total precipitation hourly 

Instantaneous moisture flux hourly 

Visibility 3-hour N/A 2000–2021 
Air quality 

measurements PM2.5, PM10, NO2, SO2, CO hourly N/A 2000–2021 

Population WorldPop annual 1 km 2000–2020 

Land cover 
Impervious (GISA) annual 30 m 2000–2020 

MCD12Q1 annual 500 m 2000–2021 

NDVI MOD13A3 monthly 1 km 2000–2021 

Aerosol diagnostics MERRA-2 hourly 0.5° × 0.625° 2000–2021 

Elevation SRTM DEM N/A 90 m N/A 

 

2.1. Satellite-Bbbased AOD Pproducts 
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The AOD retrievals, derived from MODIS sensor observations on board Terra (AODTerra) with using the Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) algorithm (denoted as AODTerra afterwards), were hereby 

usedservedwere hereby used as the benchmark to for generatinge the global long-term gap-free AOD dataset, given their finer 

spatiotemporal resolution and longer temporal coverage (Lyapustin et al., 2011, 2018; Mhawish et al., 2019). Previous studies 

have demonstrated the a bettersuperior quality of the AODTerra MAIAC AOD data relative to other gridded AOD products 

(Chen et al., 2021; Martins et al., 2017; Qin et al., 2021) and in regard to, not only data accuracy andbut also spatiotemporal 

completeness, even better than those retrieved with the well-known Dark Target and Deep Blue algorithms (Jiang et al., 2023; 

Liu et al., 2019). Figure S1 presents the spatial and temporal distribution of the coverage ratio of valid AODTerra from 2000 to 

2021 at each satellite footprint across the globe. 

Satellite-based AOD retrievals from a few key instruments other than MODIS were also applied to support gap filling of 

AODTerra and. tThey include: (1)  Visible Infrared Imaging Radiometer Suite (VIIRS, on board Suomi-NPP), (2) Multi-Aaangle 

Imaging SpectroRadiometer (MISR, on board Terra), (3) Advanced Along-Track Scanning Radiometer (AATSR, on board 

Envisat), (4) POLarization and Directionality of the Earth’s Reflectance (POLDER, on board PARASOL), and (5) Sea-

Viewing Wide Field-of-View Sensor (SeaWIFS, on board SeaStar). Meanwhile, MAIAC AOD data from MODIS on board 

Aqua were also applied as the an important complementary data set source to support gap-filling of AODTerra. Given their 

varied the different overpassing times and temporal spans, these multisensory AOD dataset canproducts provide 

complementary observations to help reduce random errors when during the AOD data reconstruction ofng data gaps in 

AODTerraprocedure because ofdue to the known increased prior knowledge. A brief summaryMore details of these AOD 

products datasetsproducts can be found in Bai et al. (2022a) and Wei et al. (2020). 

2.2. Ground-Bbbased AOD Oobservations and Aair Qquality Mmeasurements 

2.2.1. AERONET AOD Oobservations 

Ground-based AOD observations from AERONET have long been used as the ground truth to for validatinge AOD 

retrievals from other instruments, particularlyespecially diverse satellite-based AOD retrievals. In this study, AOD 

observations from AERONET (across the globe) during the study period were employed as an independent data source to 

validate the data accuracy of the global gap-filled AOD dataset. To guarantee an adequate number of AERONET AOD samples, 

the Level 1.5 (instead ofrather than Level 2.0) AOD observations instead of Level 2.0 were applied, though the latter has 

stricter screening criteria for quality control. For spatial registration, each AERONET AOD observation was spatially 

collocated with mean AOD values over grids within a 50 × 50 km window size. Figure S2 presents the spatial distribution of 

the AERONET sites and the air quality monitoring stations that provideing the pivotal AOD and PM2.5 concentration 

observations used in this study. 

2.2.2. Air Qquality Mmeasurements 

Concentrations of PM2.5 and other relevant air pollutants, like NO2, SO2, PM10, and CO, were acquired from a few 

environmental agencies and/or monitoring centers, such as the United States Environmental Protection Agency, European Air 

Quality Portal, China National Environmental Monitoring Centre, Canada National Air Pollution Surveillance, and Japan 

National Institute for Environmental Studies, to name a few. Moreover, air quality measurements acquired from the World’s 

Air Pollution Index, an open-source data hub, were included as well. To guarantee uniformity and comparability of these 

ground-based data, we conducted necessaryGiven potential differences in measuring principles and quality control criteria,  

preprocessing towe performed rigorous data cleaning measures to standardizeharmonize these multisource air quality 
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measurements, as well asincluding not only the removal of outliers but also converted the time-series to an unification of time 

scales to a daily average scale synchronized with satellite observations taken on the same dates. The PM2.5 concentrations were 

used as the learning target for global PM2.5 concentration mapping. Aiming toat provideing critical prior information to 

facilitate the AOD gap-filling, the ground-based air quality measurements were also used as an important proxy for regional 

in situ AOD prediction, benefitting from largely because of the relatively dense distribution of air quality monitoring networks  

as well asand exploited the good associations between aerosol loadings and regional air pollutants concentrations.  

Atmospheric visibility, a common air quality indicator that is highly associated with aerosol loadings, waswere acquired 

from worldwide meteorological monitoring stations and used as the critical predictor¾ likesimilar to air pollutants 

concentrations¾ to predict AOD over each monitoring site via data-driven modeling. Given the much denser distribution of 

ambient air quality and meteorological monitoring sites, as shown in Figure S2, for the spatial distribution of global air quality 

and meteorological monitoring sites used in this study, as well as the good accuracy of site-based AOD predictions (Bai et al., 

2022b; Li et al., 2022b), a global virtual AOD monitoring network was in turn established, harnessing the associations between 

AOD and air quality relevant parameters., ThisSuch a virtual network providesing us with an unparalleled opportunity to 

improve AOD gap-filling accuracy and efficiency, particularlyespecially for inover regions being disturbed bywith massive 

data voids in satellite AOD data voidsimageries (Bai et al., 2022b; Li et al., 2022b).  

2.3. Numerical Ssimulations 

2.3.1. MERRA-2 Aaerosol Ddiagnostics 

Despite the coarse spatial resolution and large modeling bias, tThe Modern-Era Retrospective Analysis for Research and 

Applications, version 2 (MERRA-2) aerosol diagnostics, including total AOD and chemical aerosol components like black 

carbon, organic carbon, dust, and sulfate aerosols, were employed to provide prior information to advance AOD gap-filling. 

As the NASA’s latest reanalysis for the satellite era, MERRA-2 is generated using the newly Earth system model, of Goddard 

Earth Observing System, version 5 (GEOS-5), providing global simulations of a variety of geophysical and chemical variables 

on the Earth’s surface. More detailsed descriptions  of the assimilation system and the data quality of MERRA-2 aerosol 

reanalysis can be found in the literature, such as Buchard et al. (2017) and Randles et al. (2017). By taking AODTerra into 

account as a the learning target, data-driven models were established to spatially downscale and bias-correct MERRA-2 AOD 

background field to the level of AODTerra, with with MERRA-2 aerosol diagnostics as well as meteorological, geographical, 

and socioeconomic factors used used as covariates. This The downscaling model not only improves the spatial resolution 

andbut also corrects large modeling biases in MERRA-2 AOD. Given the global complete coverage merit, downscaled and 

bias-corrected MERRA-2 AOD background field, given its spatially contiguous coverage, the downscaled gap-free AOD data 

wereas then used as critical prior information to facilitate the AOD gap-filling of AODTerra., in particularly over regions lacking 

observational AOD.  

2.3.2. ERA-5 Rreanalysis 

As the latest atmospheric reanalysis produced by the European Center for Medium Weather Forecast, ERA-5 provides 

hourly estimates of a variety of atmospheric, terrestrial, oceanic, climatic, and meteorological variables. The data are provided 

for a at about 30 km grid resolution on the Earth’s surface, resolvingdelineating the atmosphere layer using 137 levels from 

the surface up to a height of 80 km, covering the period from January 1940 to the present (Hersbach et al., 2020). Atmospheric 

parameters, including surface pressure, air temperature, relative humidity, wind speed, total column water, total precipitation, 

surface solar radiation downward, instantaneous moisture flux, and boundary layer height, were retrieved acquired from ERA-

5 and used as important modeling covariates, not only in both data harmonization models and to calibrate other AOD and 
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relevant data products to the level of AODTerra, but also and, in global PM2.5 mapping modelss., to help approximate nonlinear 

associations between PM2.5 and AOD. A simple bBilinear interpolation was applied to the map ERA-5 reanalysis data down 

to convert them to the AODTerra footprint resolution for spatial registration. 

 

2.4. Auxiliary Ddata 

Several socioeconomic and geographic factors were also applied as covariates to support predictions of AOD gap filling 

and PM2.5 concentration predictionsmapping. Specifically, gGridded population data from WorldPop were used to indicate the 

spatial distribution of residents, which were appliedserving as a critical proxy offor anthropogenic aerosol pollutionair 

pollutants emission intensity. To resolve characterize the land- use- dependent aerosol emissions, land cover types and the 

vegetation index derived from MODIS  retrieval observations products, along withas well as the coverage ratio of the 

impervious surface calculated at the AODTerra footprintfrom the land use dataset generated by Huang et al. (2022), were also 

applied. The dDigital elevation data collected from the Shuttle Radar Topography Mission (SRTM) with a resolution of 1 arc-

second were used to characterize the potential impacts of topography on aerosol loadings. 

3. Methods 

3.1. Tensor-Fflow-based AOD Rreconstruction 

3.1.1. Overview of AOD Ggap-Ffilling Mmethod 

Deriving spatially contiguous PM2.5 concentrations from gap-filled AOD images has been proven more promising for a 

better spatial analysis of large-scale PM2.5 distribution (Bai et al., 2022b). In this study, the big Eearth data analytics framework 

proposed in Bai et al. (2022a) was further adapted and improved for generating global gap-free AOD imageries to support 

various content-based mapping. As shown in Figure 1, presents the workflow of the improved big Earth data analytics 

framework of the big Eearth data analytics for generating global gap-filled MODIS-like AOD maps. This framework also 

consists of three primary data manipulation procedures, including: 1) machine- learned multimodal data homogenization, 2) 

knowledge-reinforced AOD tensor compiling, and 3) tensor-flow-based AOD reconstruction, with algorithmic improvements 

primarily conducted in the latter two procedures. This improved big Eearth data analytics approach empowered us to weave 

together multimodal AODs and versatile big Eearth observations from diversified diverse sources, together neatly via a synergy 

of state-of-the-art machine- learning and tensor completion methods. Because Since the technical flow of this big Eearth data 

analytics framework was elaboratedpreviously detailed on well elaborated in Bai et al. (2022b), we hereby only provided an 

overview of this method while emphasizing the newlydescribing more details of the newly developed algorithmic components 

in the following subsections. 
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Figure 1. A schematic illustration of the enhanced improved big earthEarth data analytics for generating the MODIS-like global gap-free 

AOD dataset. 

The overall architecture of this big Earth data analytics framework was summarized as follows. MRLeveraging random 

forest-based regression models, multimodal AODs, and relevant aerosol data acquired from different satellites, ground 

monitoring stations, and numerical models were firstly harmonized to resemble the baseline dataset of AOD from Terra 

retrievals (AODTerra)Terra, aiming toat not only minimizeing both cross-sensor biases arising from algorithmic differences and 

spatial heterogeneities and tobut also accounting for spatial heterogeneities because ofdue to different spatial resolutions. This 

Theis data homogenization process is vital for the tensor-flow-based AOD gap-filling, because the bias-corrected and 

downscaled AOD estimates were critical inputs to form the AOD data cube. More details related to the multisource data 

homogenization were described in Text S1 in the supporting information. The AOD data cube was then created based on 

homogenized data at each individual data tile. A proper AOD data cube compiling is undoubtedly essential for the tensor-

flow-based AOD reconstruction. To fill data gaps in each individual AODTerra image, an AOD data cube was then constructed, 

in our previous gap-filling framework, by simply aggregating harmonized multisensory AOD data on the same date, along 

with historical AODTerra images resembling similar spatial patterns over the same region. Because of theDue to excessive 

nonrandom missing values in the AODTerra imageries, both the downscaled MERRA-2 AOD grids and AOD estimates derived 
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from air quality and visibility measurements were used conjunctively to identify the historical similar AODTerra imageries with 

a similar spatial distributionfrom the historical image series. The selected historical AODTerra images and bias-correctedbias 

corrected AOD images from other satellites on the same date were used individually incorporated as a slice of the tensor. 

Additionally, dispersed in situ AOD estimates and 5% of the randomly selected AOD estimates from the downscaled MERRA-

2 AOD data were directly overlaid onto the corresponding AODTerra grids where without valid AOD retrievals were not 

presentabsent. These implementations not only helped improve the gap-filling accuracy andbut also greatly boosted the 

convergence speed given the provision of prior knowledge. 

High order singular value decomposition (HOSVD), an orthogonal Tucker decomposition method, was finally applied to 

each well-compiled AOD data cube for tensor-flow-based pattern recognition and tensor data completion. Data gaps within 

the input AOD tensor were firstly filled with the spatial average of each individual AOD image to initiainitializete the tensor 

decomposition. The AOD tensor was then decomposed along every each two-dimension of AOD tensorslice independently, 

and a new tensor was subsequently reconstructed based on the principal modes learned along every each two-dimension slice 

of the tensor via a low-rank approximation (i.e., generating an approximating matrix with reduced rank for compression). 

During thise tensor reconstruction processprocedure, the AODTerra observations in the target image to be gap-filled were 

deemed as the hard data (i.e., true state and invariant throughout the tensor completion procedure) while multisensory AOD 

estimates and historical AODTerra images were usedserved as the soft data (prior supporting information and updated by iterates 

till convergence). By iteratively adjusting the dimension-varied ranks, the data values over grids to be gap-filled were updated 

and tuned to optimize both spatial homogeneity and information entropy concurrently (Bai et al., 2020, 2022a). This The tensor 

completion process continued till it reacheding an  good agreement (with a bias decay ratio < 0.1%) between the reconstructed 

values and the previouslypriorly reserved AODTerra observations. 

 

3.1.2. Algorithmic Iimprovements 

To accommodate the massive data analytics for global-scale AOD gap-filling, two three major algorithmic enhancement 

modules were incorporated to help improve the reconstruction efficiency and accuracy, focusing with particular focus on the 

optimizationing of data manipulation procedures in tensor-flow-based AOD gap- filling. Instead ofRather than treating each 

slice of data in the raw AOD data cube equally, an attention mechanism was introduced to optimize the AOD tensor compiling, 

aiming at underscoring the importance of those AOD imageries with fewer data gaps while more closely resembling the target 

AODTerra imagery during tensor-flow-based AOD reconstruction. Meanwhile, an adaptive prior information updating scheme 

was implemented to help mitigate the propagation of large modelingmodelling biases in numerical AOD diagnostics to the 

final reconstructed fields during the tensor reconstruction procedure. Moreover, the rank updating strategy was optimized to 

improve the computing efficiency in tensor completion. A The algorithm 1 below presents the pseudo code of the optimized 

algorithm used for tensor-flow-based AOD reconstruction. 

Algorithm 1. The pseudo code of the optimized algorithm used for tensor-flow-based AOD reconstruction. 
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Input: tensor 𝐀 ∈ 𝐑!!×!"×!# with 𝛀 = {(i, j, k): A#$%	is	observed}, threshold T&, T' 
Output: reconstructed entries 𝐀( = 𝐀∗(: , : , k*) ∈ 𝐑!!×!" 
1: Attention mechanism: ω% = Π(MI%, R%+ , R%,) 

2: Initialize A#$%∗ = >
ω% ∙ A#$%																		(i, j, k) ∈ 𝛀
∑ ∑ A#$%$# 																		(i, j, k) ∉ 𝛀 

3:  for r- =
&
-
N- to 1 step –2 do 

4: n& = n' = 0 
5:  while ε& > T& or (n& <

&
-
N& and n' <

&
-
N') do 

6:  n& = n& + 1, n' = n' + 1 
7:  r& =

.!!!
/0

, r' =
."!"
/0

 
8:    𝐀∗ = HOSVD(𝐀∗, rank = {r&, r', r-}): 
9:  𝐀∗ = S ×& 𝐔(2!) ×' 𝐔(2") ×- 𝐔(2#) 
10:  ε& = argmin

𝛀
&
'
‖𝐀 − 𝐀∗‖' 

11:  𝐀𝛀∗ = 𝐀𝛀 
12:  𝐀𝛀5

∗ =	ω&𝐀𝛀5
∗ +ω'𝐀𝛀5 ,  𝛀V  denotes background location 

13: end while 
14: if argmin

𝛀
&
'
‖𝐀 − 𝐀∗‖' < T' then 

15: break; 
16: end if 
17: end for 

 

3.1.2.1. Attention-Rreinforced AOD Ttensor Cconstruction 

In our previous studytensor completion framework as shown in Bai et al. (2022a), bBoth the target data (i.e., AODTerra 

image to be gap-filled) as well asand soft data (i.e., AOD estimates from other data sources and historical AODTerra imageries) 

in the AOD tensor were treated equally in the AOD tensor duringthroughout the tensor decomposition and reconstruction 

process (Bai et al., 2022a) in our previous tensor completion framework as shown in Bai et al. (2022a). ThiseSuch an indifferent 

data treatment strategy not only neglected the information abundance of soft data and but also ignored the spatial similarity of 

spatial patterns between the soft and target data, leading the reconstructed field more likely to resemble the dominant patterns 

learned from imageries with fewer data gaps, rather than thoseimages with ¾, instead ofrather than images with higher 

similarities¾ to the target dataspatial patterns similar to the target imagedata. To account for this drawback, an attention 

mechanism was implemented hereby introduced to weigh assign different weights to each data slice of data in the input AOD 

tensor, aiming toat improveing the AOD reconstruction performance by learning from spatiotemporal features embedded in 

more relevant data fields instead ofrather than all the available data . 

As a widely used technique in deep- learning regimes, the attention mechanism is a mimic of cognitive attention allowing 

the model to focus on specific parts of the input data, achieved by assigning higher weights to more crucial elements in 

ensemble learning. Regarding the tensor-flow-based AOD reconstruction task, the data slices with a higher similarity to the 

target image and fewer data gaps are supposed to should play a more important roles be accorded more significances than 

those less similar ones with extensive data gaps during tensor completion.. Three statistical metrics, i.e., including mutual 

information (Shannon, 1948), spatial coverage ratio of common observations (Rcommon) between each soft data and hard data, 

and spatial coverage ratio of extra observations beyond common observations in soft data (Rextra), were calculated to determine 

the overall weight that should be assigned to each data slice of data in the input AOD tensor. Specifically, mutual information 

was applied to gaugecharacterize the mutual dependencye between the target image and each slice of soft data reference AOD 

images., while cCommon spatial coverage ratio was used to quantifyindicate the reliabilitydata amount for of mutual 

information calculation, whileand extra spatial coverage ratio indicates  was employed to depict additional information content 
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that can be provided by reference AOD imagessoft data. Equations (1–3) provideBelow gives the formulas to calculate these 

three statistical metrics. 

𝑀𝐼(𝑋, 𝑌) =))𝑝(𝑥, 𝑦) log0
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)1																																																						(1)

!∈#$∈%

 

𝑅&'((') = Φ(𝑋, 𝑌) × 100%																																																																																(2) 

𝑅*!+,- = Φ:𝑋;, 𝑌< × 100%																																																																																(3) 

Note thatwhere 𝑋 and 𝑌 refer to common observations in soft and hard data, respectively. The 𝑋; denotes extra observations 

in soft data.,. 𝑝(𝑥, 𝑦) is the joint probability mass function of 𝑋 and 𝑌, andwhile 𝑝(𝑥) and 𝑝(𝑦) are the marginal distribution 

mass function of 𝑋 and 𝑌 , respectively. Additionally, Φ(𝑋, 𝑌) is the spatial coverage ratio of the common observations, and 

Φ:𝑋;, 𝑌< is the spatial coverage ratio of extra observations in the soft data. By multiplying these three normalized weights to 

the corresponding soft data, an attention-reinforced AOD tensor was constructed in turn, which was then used as the input 

data cube for tensor completion.  

3.1.2.2. Adaptive Pprior Iinformation Uupdating 

To facilitate the AOD gap-filling over regions with abundant substantial data gaps, in our previous method, the 5% 

random samples from the downscaled MERRA-2 AOD image (AODM2 hereafter) on the same date were used as prior 

information and directly placed overlaid directly onto grids without observational AOD (i.e., AODTerra and site-based AOD 

estimates from air quality and visibility measurements). Although this empowered usenabled to improved the convergence 

speed during tensor completion, the spatial patterns of the reconstructed field over regions with excessive data gaps were more 

likely to resemble the distribution of AODM2 givendue to because of the  fixedthese  unchanged 5% backgroundprior 

information values in the target AOD imagean equal weight of the soft and hard data. In other words, sparse observational 

AODs derived from air quality measurements played a relatively weak role in tensor completion when confronteding with 

AODM2. In thissuch a context, large modeling biases in AODM2 might be introduced into the final reconstructed reconstruction 

fields. 

In this study, we introduced an adaptive prior information updating scheme to help mitigate potential bias propagation 

from AODM2problem. Differing from the strategy used in our previous method, tThe main principle is to force tThe AOD prior 

information in the input AOD tensor was also forced to update by iterationsvely throughout the tensor completion process, 

rather than maintaining them as invariant as AODTerra observations throughout the tensor completion process. Specifically, 

random AODM2 samples were only used to initiate initialize the tensor construction, while weighted averages of these prior 

information and the corresponding reconstructed values were then used as new prior information for the next iteration. 

Meanwhile, the weights assigned to the reconstructed fields were gradually increased by iteration till convergence. The 

ultimate goalgoal was to improve the contribution of reconstructed reconstruction fields learning from actual observations 

while reducing the influence of AODM2 background field. Additionally, TtheThe ablation experiments also demonstrated that 

such a scheme isthe effectiveness of this scheme in mitigating bias propagation from AODM2, largely improving the 

reconstruction performance over regions with limited observational data. 

3.1.2.3. Optimized Gglobal Ddata Ttile Ppartition and Rrank Uupdating  

Given tThe high spatial and temporalspatiotemporal resolution of AODTerra imageries presents a, performing global-scale 

AOD gap-filling isgreat thus  challenging challenge in performing global-scale AOD gap-filling because of thedue to huge 
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computational burdens. To improve the computational efficiency and to make the computing workload manageable, the 

following algorithmic improvements adjustments were appliedimplemented. Firstly, the continental global AODTerra data over 

landmass wereworldwide were divided into 480 data tiles, with AOD gap-filling performed over each data tile independently. 

The size of a tile was determined empirically after performingThrough a set of gap-filling trials with different varying tile 

sizes, and a nominal tile size of a tile covering 700 ´ 700 pixels, refer to Figure S3 for the spatial distribution of the optimized 

data tiles, (could be different over coastal regions) was finally applied to balance the computing workload and reconstruction 

the learning accuracy. Figure S3 presents the spatial distribution of the optimized data tiles used in this study for global AOD 

gap-filling. Moreover, a 50-pixel overlap on the boundary of each tile was enforced, and an inverse distance weighting scheme 

was finally applied to these overlapped pixels  when mosaicking the gap-filled tiles, aiming to eliminate the boundary effects 

between tiles toward a smooth distribution of AOD across the globe.  

An optimized rank updating strategy was also proposed to improve the learning efficiency. In the tensor completion 

process, Since the tensor’s decomposition and reconstruction processes in the tensor completion are driven by iteratively 

updating updated tensor ranks. , aAn optimized rank updating strategy was alsohereby proposed to improve the learning 

efficiency. To improve the computational efficiency of global AOD gap-filling, we developed an optimized strategy to update 

the ranks between iterations. Specifically, the ranks were updated in an ascending order along with the first and second 

dimensions in the inner loops to enhance the spatial details of reconstructed AOD fields.  In contrast, the ranks were updated 

in a descending fashion along with the third dimension in the outer loop to aggregate the target AODTerra image with the soft 

data in a low-rank approximation manner. This new rank updating strategy not only helps better resolve spatial details of AOD 

but also accelerate the convergence speed of tensor completion.  

3.2. Global PM2.5 Cconcentration modelingModeling 

The sparse and uneven distribution of ground-based air quality monitoring stations poses significant challenges to global 

PM2.5 concentration mapping, particularlyespecially over regions of with fewer PM2.5 concentration measurements (e.g., Africa 

and Ssouth America in Figure S2). AdditionallySoNonetheless,Also, how to reinforce the scenespatial representativeness of 

data-driven models when to improve the spatial extrapolating extrapolation accuracy them overacross extensive spatial 

domainsce is still elusive. As a novel ideaIn this study, a recently developed deep learning method, namely, the scene-aware 

ensemble learning graph attention network (SCAGAT), was hereby developed and applied to better estimate global PM2.5 

concentrations from gap-filled AOD imageries by accounting for the spatial scene representativeness of each data-driven 

model. Instead ofRather than establishing a single global PM2.5 estimation model using all available data pairsdata samples 

collected from worldwide monitoring stations, site-specific PM2.5 estimation models were firstly developed using a random 

forest over each air quality monitoring station with long-termadequate PM2.5 concentration measurements.  

For a given grid, raw PM2.5 concentration estimates were then estimated from a set of independent site-specific PM2.5 

estimation models., of which should resemble similar geographic scene features as the given grid cell¾, , under the assumption 

that the relationship between AOD and PM2.5 is similar over regions with an analogue environmental background. Nine distinct 

factors covering geodetic geographic location, land cover types, climate zones, AOD levels, and population density were 

utilized to characterize the scene attributes of each grid cell. Subsequently, a graph attention network was used to aggregate 

these  raw PM2.5 concentration estimates derived from site-specific models to better predict theproduce an ensemble PM2.5 

concentration estimate over the target grid cell., In the graph network, Wwith weights assigned to the adjacency matrix were 

determined in reference to the differences between nine different scene features, and the node bias was given as the testing 

accuracy of each site-specific PM2.5 prediction model. Figure S4 presents depicts the workflow of the proposed SCAGAT 

model for global PM2.5 concentration mapping. This novel innovative ensemble learning method enables us to better predict 
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PM2.5 concentrations across the globe, particularlyespecially over regions with few limited or even none in situ PM2.5 

concentration measurements. Figure S4 depicts the workflow of the proposed SCAGAT model, and aAdditionalMore details 

regardingof the SCAGAT model were introduced in Text S2 as part of the supplementary information.. For more detailed 

descriptions of this method, please refer to Li et al. (2024). 

4.  Results 

4.1. Efficacy Aassessment of Aalgorithmic Eenhancement Mmodules 

Ablation experiments were firstly conducted to evaluate the accuracy improvement potential of each newly developed 

algorithmic enhancement modulee. Three case studies were simulated by masking actual AODTerra retrievals with randomly 

selected cloud masks on different dates, and the methods reinforced with different enhancement modules were then applied to 

reconstruct the previouslypriorly holdout AOD values. For inter-comparison, the AOD gap-filling framework developed in 

Bai et al. (2022a) was used as the benchmark method. As shown in Figure 2, the AOD distributions reconstructed were 

reconstructed withusing a methodsmethods embedding attention mechanism and adaptive background information updating 

modules have smaller bias levels compared to than the benchmark method, which in turn justify the efficacy of these two new 

algorithmic enhancement modules. Given an equal weight of each slice of data in the input AOD tensor, the reconstructed data 

fields from the benchmark method were prone to resembling a mean state determined largely by the principal mode of the 

input tensor. In this context, peak and/or low values in the target image might be underestimated (or overestimated for low 

values) if because of relatively few soft data resembling similar patterns in the input tensor (e.g., Figure 2c). 

With the involvement of theBy incorporating the attention mechanism, each slice of data in the raw AOD data cube was 

adaptively weighted adaptively, with larger greater weights given to data slicesthose not only having larger broader spatial 

coverage and but also closerwith similarities to the target AODTerra image. This strategy is vital to reducing contributions from 

irrelevant data, particularlyespecially when facing encountering with imunbalanced data samples in within the raw AOD data 

cube, i.e., more irrelevant data and fewer similar imageries. Moreover, the importance of the target image was maximized 

during the tensor completion procedure by giving assigning it a 100% weight. Compared to the benchmark method, peak 

and/or lowextreme values in raw AODTerra images were better reconstructed using by the method embedding the attention 

mechanism. For instance, in Figure 2b, the benchmark method apparently overestimated low AOD values in the north, in 

Figure 2b were apparently overestimated by the benchmark method, whereas such an effecta discrepancy was largely mitigated 

using methods involving the attention mechanism. 

In contrast to the benchmark method by using which used an invariant background throughout the tensor completion 

process, an adaptive background updating scheme was thus applied incorporated here to not only accelerate the convergence 

speed andbut also mitigate possible error propagation arising from numerical simulations to the final reconstructed 

reconstruction fields. Compared to the benchmark method, aAs illustrated in Figure S5, the enhanced method, involving 

adaptive background updating module, indicated enabled to superior detection and resolution ofreduce the adverse impact of 

manually added outliers in raw background fields, compared to the benchmark. compared to the benchmark, the manually 

added outliers in raw background fields were better detected and reconciled by the improved method owing to the involvement 

of the adaptive background updating module, thusereby avoiding large error propagation from background fields into the 

reconstructed AOD data. Although tThe better quality of the reconstructed fields derived from the improved methods well 

demonstrates the efficacy of these two newly developed algorithmic enhancement modules. , Nevertheless, as seencompared 

in Figure 2c, the benefits of these two enhancement modules werecould be largely cancelled when dealing confronteding with 

images with containing excessive data gaps (e.g., Figure 2c, ). showing only a marginal improvement in accuracy improvement 
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relativecompared to the benchmark method. The inherent reason could be attributedable to few observational data in the target 

image for reference to leverage the attention mechanism to pinpoint similar AOD images from the historical data series. 

 
Figure 2. Performance evaluation of different algorithmic enhancement modules on the reconstructed AOD distribution. Raw AODTerra 

denotes the actual AOD retrievals from Terra, while simulated AODTerra refers to partially masked AODTerra. The benchmark method is the 

AOD gap-filling approach proposed in Bai et al. (2022a). The latter three columns present the reconstructed fields using the enhanced 

benchmark methods. The R and bias denote correlation coefficient and deviations between the withheldholdout observed and reconstructed 

AOD data, respectively. The pPercent numbers shown in the two left panels indicate a spatial coverage ratio of valid AOD retrievals over 

the selected scenes. 

In Figure 3, we evaluated the impacts of the missing rate of the target image AODTerra on the AOD gap-filling accuracy. 

By masking raw one truly observed AODTerra retrievals image with arbitrarily selected cloud masks, thea series of AODTerra 

target images under different missing rates, as shown in the top panel of Figure 3, were generated simulated and used as target 

images forfor gap-filling trails(i.e., imagesas shown in the top panel of Figure 3). The results showAs shown,  anthe 

reconstructed fields fairly agreed witha stronggood agreements between the observed and reconstructed AOD fields, well 

resembling the actual AOD distribution over the outlined region, even inover extreme situations with excessive data gaps, 

demonstrating an excellent performance of the proposed gap-filling method. As expected, the reconstruction accuracy of the 

reconstruction fields decreased along with an increase in the missing rate. For instance, when the missing rate was greater than 

80%, the low values in the upper left in of the raw AODTerra image were not properly reconstructed when the missing rate was 

greater than 80%, largely because of the limited prior knowledge in the target image for use when constructing the raw AOD 

tensor. This effect also highlighting highlights the vital crucial importance of prior information on the gap-filling accuracy. 

Therefore, increasing prior information is the most promising way to improve the gap-filling accuracy in gap-filling, in 

particular for those areasregions with substantial data gaps. 
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Figure 3. Impacts of the missing rate on the AOD gap-filling accuracy. The nNumbers on the top indicate the percentage of removed AOD 

data in the raw AODTerra image (top panel). The second row shows the distribution of the gap-filled AOD with zoomed- in maps present in 

the third row. The bottom panel  presents scatter plots between the observed AOD (withheld raw data) and the reconstructed AOD 

reconstructed from different inputs. 

4.2. Data aAaccuracy of Gglobal Ggap-Ffree AOD in LGHAP v2 

The gap-free AOD grids dataset (in the LGHAP v2) wasere generated by filling in data gaps in AODTerra images the 

satellite-based MAIAC AOD retrievals (MCD19A2) with reconstructed AOD estimates at each collocated footprint over land. 

In comparisonBy comparing againstto the independent AOD observations from AERONET, the data accuracy of the gap-free 

AOD in the LGHAP v2 was comprehensively evaluated across the globe. Figures. 4a–c present athe spatial distribution of the 

site-specific correlation coefficient (R), root mean square error (RMSE), and bias between the reconstructed reconstructed 

AOD in the LGHAP v2 and AOD AERONET observations from AERONET, respectively. Regardless of the uneven 

distribution of ground-based aerosol monitoring observing stations and the difference variations in data samples between sites, 

the ground validation results indicate a good agreements between the AOD in the LGHAP v2 and the AERONET observations, 

with an average of site-specific correlation coefficientR of 0.76±0.14 and RMSE of 0.09±0.08 at theon a global scale. 

Meanwhile, the results indicate thatNote site-specific data accuracy metrics exhibit notable spatial heterogeneities vary across 

the globeregions, with larger biases mainly observed in the central and east Asia as well as in Africa—regions 

frequentlyalways, which where often sufferings from high aerosol loadings. 

Figures. 4d–4i present scatter plots between the LGHAP v2gap-free AOD and AERONET observations at six major 

continental regions. The distinct accuracy metrics across regions also indicate significant spatial heterogeneities in the AOD 

data accuracy. When compared againstto the AOD observations from AERONET, tAs shown, tThe reconstructed AOD 

estimates were prone to an underestimation of underestimate large AOD observations values (> 0.80) versus an whereas 

overestimatione of low values (< 0.2) across these six regions. ThisSuch an effect is particularly common in machine machine-

learning, largely because ofdue to the imbalanced distribution of data values in the training samples (Johnson and& 
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Khoshgoftaar, 2019; Shi et al., 2022). LikewiseSimilarly, the inherent reason could be also applied fors for the this effect in 

tensor completion might be identical, which could be largely attributable to as the principle of low-rank approximation to 

fulfilfulfillrequired for tensor reconstruction and the imbalanced (i.e., few extremes) AOD values (i.e., few extremes) in the 

input tensor. ConsequentlyAs a result, the missed AOD extremes could may not be accuratelywere hardly to be reconstructed 

to their nominal levels;. iInsteadRather, they tend the reconstructed values were inclined to resemble a mean state that was 

determined by principal modes via a low-rank approximation.  because ofdue to the imbalanced data distribution. 

 
Figure 4. Data accuracy of daily gap-free AOD grids in the LGHAP v2 dataset comparedby comparing againstto the AOD observations 

from AERONET across the globe during 2000–2021. Note the AERONET AOD observations were independent data from and had been not 

used in the gap-filling process. 

To further verify the data accuracy of the imputed AOD estimates, we further compared the data accuracy of gap-filled 

AODs in the LGHAP v2 dataset with two major gridded products, i.e., of satellite-based MAIAC AOD retrievals from Terra 

(AODTerraMCD19A2) and downscaled MERRA-2 AOD (AODM2). As shown in Table 2, the purely reconstructed AOD 

estimates have ana R of 0.83 and an RMSE of 0.15 compared toagainst the AERONET AOD observations at the global scale¾, 

comparable to the data accuracy of AODM2 (R = 0.83, RMSE = 0.14) but lower than that of AODTerra (R = 0.88, RMSE = 

0.11). Nevertheless, the imputed AOD estimates achieved comparable data accuracies toas AODTerra in Africa (R = 0.80, 

RMSE = 0.20) and Australia (R = 0.62, RMSE = 0.08), largely because of the availability ofdue to abundant satellite-based 

AOD prior informationretrievals over these two areas (refer to the AOD coverage ratio shown in Figure S1) to facilitate AOD 

gap-filling via tensor completion. In contrast, the LGHAP v2imputed AOD estimates in Europe and Asia have poorer data 

accuracies with relative to AODTerra, particularlyespecially in Eastern Asia. The pPossible reasons for this could be ascribed 

to not only extensive missing values, severe aerosol pollution levels, as well as significant spatial variations in aerosol loadings 

over these regions. Compared to AODTerraMAIAC AOD, the gap-filled AOD data tended to overestimate the AERONET 

AODs (17.59% versus 11.45% above the envelope of expected error), resulting in thean even larger global mean AOD values 

(0.19) in the LGHAP v2 dataset than in the MAIAC AOD ( versus 0.17)., implying a greater number of large AOD values 

were reconstructed in the imputed AOD estimates.  



 

 18 

Moreover, the accuracy of The gap-free AOD dataset (LGHAP v2) was generated by filling in data gaps in the satellite-

based AOD retrievals (MCD19A2) with reconstructed AOD estimates at each collocated footprint over land. The gGround 

validation results indicate that the gap-filled AOD data in LGHAP v2 are in a good agreement with the AERONET AOD 

observations, with an R of 0.85 and an RMSE of 0.14 across the globe (Table 2)¾, slightly worse than that of raw MCD19A2 

(R = 0.88 and RMSE = 0.11) but higher than that of AODM2 (R = 0.83 and RMSE = 0.14). This dataLGHAP v2 AOD data 

accuracy outperforms that of the gap-filled AOD dataset (R2 = 0.6031 and RMSE = 0.1350) generated by Guo et al. (2023), in 

which missing AODs in MCD19A2 AODTerraMAIAC were predicted with using versatile various proxy variables (e.g., 

meteorological factors and population density) via a random forest model.  

Table 2. An intercomparison of AOD data accuracy between satellite-based retrievals (raw MAIAC AOD), numerical aerosol diagnostics 

(downscaled MERRA-2 AOD), purely reconstructed data, and the final gap-free product (LGHAP v2 AOD), by comparing AOD 

observations from AERONET across the globe during 2000−2021. Note the term “Purely Reconstructed AOD” refers to the imputed AOD 

estimates, while “LGHAP v2” refers to the gap-filled AOD dataset combining both satellite-based retrievals and purely reconstructed 

data. The expected error (EE) envelope for AOD over land was defined as ± (1.5 × AODAERONET +± 0.05). 

AOD Dataset Region Mean 
AOD 

Number of 
Monitors 

Number of 
Samples R RMSE Bias Below EE 

(%) 
Within EE 

(%) 
Above EE 

(%) 

MAIAC  
(AODTerra) 

Global 0.17 1,335 402,886 0.88 0.11 0.02 13.95 74.59 11.45 

North America 0.11 433 112,438 0.83 0.08 –0.01 4.62 80.93 14.44 

South America 0.11 81 28,265 0.94 0.07 0.02 14.17 75.85 9.97 

Europe 0.11 208 96,715 0.80 0.06 0.02 11.29 82.22 6.49 

Asia 0.31 321 90,821 0.90 0.14 0.02 18.79 68.22 12.99 

Africa 0.21 110 48,877 0.81 0.19 0.06 31.45 57.11 11.44 

Australia 0.09 28 12,427 0.62 0.07 –0.01 6.16 75.34 18.49 

Downscaled  
MERRA-2 
(AODM2) 

Global 0.18 1,335 811,438 0.83 0.14 0.02 11.76 78.98 9.26 

North America 0.12 433 216,264 0.80 0.09 0.00 5.71 86.22 8.07 

South America 0.13 81 49,721 0.90 0.11 0.02 12.87 81.64 5.49 

Europe 0.13 208 177,125 0.79 0.07 0.01 8.54 86.07 5.39 

Asia 0.29 321 175,781 0.78 0.24 0.06 22.54 65.14 12.32 

Africa 0.24 110 88,374 0.85 0.15 0.02 16.13 67.59 16.28 

Australia 0.10 28 21,051 0.76 0.06 –0.02 2.44 83.60 13.96 

Purely 
Reconstructed  

AOD 

Global 0.21 1,335 449,452 0.83  0.15  0.01  12.21  65.52  22.27  

North America 0.16 433 129,716 0.80  0.10  –0.02  5.23  67.52  27.25  

South America 0.17 81 30,073 0.88  0.11  0.00  10.51  67.11  22.38  

Europe 0.16 208 107,961 0.73  0.09  0.00  9.63  73.63  16.74  

Asia 0.33 321 107,876 0.81  0.24  0.03  18.64  56.60  24.76  

Africa 0.27 110 31,568 0.80  0.20  0.06  29.57  53.88  16.55  

Australia 0.13 28 9,628 0.62  0.08  –0.03  4.60  64.62  30.77  

LGHAP v2 

Global 0.19 1,335 756,166 0.85 0.14 0.01 12.96 69.44 17.59 

North America 0.13 433 216,055 0.82 0.09 –0.01 4.86 73.12 22.02 

South America 0.14 81 49,707 0.90 0.10 0.01 12.57 71.08 16.34 

Europe 0.13 208 176,959 0.76 0.08 0.01 10.24 77.40 12.36 

Asia 0.32 321 175,728 0.83 0.21 0.03 19.08 61.40 19.52 

Africa 0.23 110 75,110 0.81 0.19 0.06 29.61 56.64 13.75 
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Australia 0.11 28 21,048 0.63 0.08 –0.02 5.11 70.30 24.59 

 

In Figure 5, we compared temporal variations in AOD between the LGHAP v2 dataset and AERONET ground-based 

observations at six AERONET aerosol observing sites with long-term monitoring records. Compared to discrete AOD 

observations from AERONET, the gap-free AOD time series accurately well reconstructed long-term variations of aerosol 

loading from 2000 to 2021 at these six monitoring sites, with R ranging from 0.83 to −0.97 and RMSEs varying between 0.04 

and 0.24. Note that tThe lLarger RMSEs observed at the Alta Floresta and Beijing sites are more likely ascribed to the 

reconstruction failures of extreme abnormal AOD peaks, largely because of very limited peak values for reference in the AOD 

tensor. Referring to histograms of AOD deviations between the LGHAP v2 and AERONET observations, more than 80% of 

AOD biases fell within the range of were found to vary between −0.1 and to 0.1, demonstrating a high accuracy of the gap-

free filled AOD in the LGHAP v2 dataset. 

 

 
Figure 5. Temporal variations in the monthly AOD over six AERONET sites with long-term AOD observations during from 2000– to 2021. 

The pPanels on the right present histograms of AOD deviations between the LGHAP v2 and AERONET observations at each individual 

site.  

4.3. Data Aaccuracy of Gglobal Ggap-Ffree PM2.5 Cconcentrations in LGHAP v2 

Global gap-free PM2.5 concentration estimates were then derived from gap-filled AOD images by taking advantage of the 

novel SCAGAT modelethod that was specifically developed to fulfilfulfill thefor global PM2.5 concentration mapping. 

AdditionalMore details related to the performance evaluation of the SCAGAT model method were described provided in 

another companion study (Li et al., 2024), and here we hereby focused on the data accuracy of the global gap-free PM2.5 
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concentration estimates. Figure 6 presents the validation accuracy of the daily gap-free PM2.5 concentration estimates by 

comparing them againstto the ground-based PM2.5 concentration records measured at 350 independent (previouslypriorly 

hoeld-out) monitoring sites. The resultsAs indicated, by accounting for spatial representativeness of the prediction models 

during the spatial extrapolation, that PM2.5 concentration estimates derived from the SCAGAT model are inhave better better 

agreements with ground measured -based PM2.5 concentration measurementss across the globe (, with an R = of 0.91 and an 

RMSE = of 9.587 µg m−-3), outperforming surpassing the performance of our traditional PM2.5machine-learninged prediction 

models without accounting for the spatial representativeness of the prediction models during the spatial extrapolation (Bai et 

al., 2019, 2022a, 2023). Meanwhile, As shown in Figure 6e, by taking advantage of the SCAGAT model, the PM2.5 

concentration estimates over China in LGHAP v2 have a higher data accuracy (R = 0.97, RMSE = 7.93 µg m−3) than those in 

LGHAP v1 (R = 0.95, RMSE = 12.03 µg m−3), neglecting a different number of validation samples. tThe data accuracy was 

further improved by correcting modelling biases using sparsely distributed in -situ PM2.5 concentration measurements via 

optimal interpolation, whereresulting in an improvement inwith R improved to 0.95 and a reductiondecrease in RMSE was 

reduced down to 5.7 µg m−3 (as shown in Figure 6b). As shown in Figure 6e, by leveraging the SCAGAT model, the PM2.5 

concentration estimates over China in the LGHAP v2 have a higher data accuracy (R = 0.97, RMSE = 7.93 µg m−3) than those 

in LGHAP v1 (R = 0.95, RMSE = 12.03 µg m−3), . Figuress. 6c–6d present a site-based distribution of R and RMSE for the 

LGHAP v2 PM2.5 concentrations over each individual validation site. Compared to the United States of America and Europe, 

as shown depicted in Figures. 6e–6g, larger PM2.5 concentration biases were more likely to be observed in Asia China because 

of due to thegiven higher PM2.5 loadings therein. 
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Figure 6. Site-based validation accuracy of PM2.5 concentration estimates derived from gap-free AOD images using the proposed SeGAT 

SCAGAT method.. (a) Scatter plots between PM2.5 estimates derived from the SeGAT SCAGAT model and the withheld ground-based 

PM2.5 concentration measurements. (b) Same as Figure. 6(a) but for gap-free PM2.5 estimates fusing ground measured PM2.5 concentration 

measurements. (c–d) Site-based correlation coefficient and RMSE for LGHAP v2 PM2.5 concentrations, respectively. (e–g) Histograms of 

LGHAP v2 PM2.5 concentration bias over China, United States, and Europe, respectively. Note the ground-based PM2.5 concentration data 

used here for validation were held out priorly and used neitherwere as not involved in used neither in the model training nor in the data 

fusion procedures.  

Table 3 presents the data accuracy of the gap-free PM2.5 concentrations in the LGHAP v2 dataset during the period of 

2000−2021 over nations with adequate sufficient records of ground-based measurements of PM2.5 concentration measurements 

records. It indicates that the data accuracy of PM2.5 concentration estimates varied across regions, with R changing from 0.71 

to 0.98 and RMSEs ranging between 1.15 and 32.69 µg m−3. Regardless of the substantial differences in the total number of 

data pairs across regions, larger RMSEs are mainly observed in regions like Mongolia (32.69 µg m−3) and India (25.34 µg 

m−3), which where often suffered from high severe PM2.5 loadingspollution episodes. The spatially varying accuracy metrics 

between regions not only highlight the great complexity in large-scale PM2.5 modeling.  This, which also andbut underscores 

the critical importance of consideringaccounting for spatial representativeness via data-driven models, when applying models 

over other regions for data extrapolation. 

In Figure 7, we examined long-term variations in PM2.5 concentrations in four different cities during from 2000– to 2021. 

The A good agreement between the LGHAP v2 PM2.5 concentration time series andwith the unseen (previously withheld) 

ground-based PM2.5 concentration measurements confirms the significantdemonstrated a high accuracy of the LGHAP v2 

PM2.5 concentration datasetestimates. Compared to temporally discrete PM2.5 concentration records measured by ground 

monitors, the gap-free LGHAP v2 PM2.5 concentration time series enabled us to examine better understand the long-term 

variability of haze pollutions across the globe, benefiting from its given the gap-free merit. Additionally, the agreement 

between the LGHAP v2 PM2.5 concentration time series and the unseen (previously withheld) ground-based PM2.5 

concentration measurements confirm the significant accuracy of the LGHAP v2 PM2.5 concentration dataset. Therefore, this 

gap-free PM2.5 concentration dataset can be used with confidence when assessing long-term trends of haze pollution across the 

globe. As shown, declining trends in PM2.5 concentration were observed in PM2.5 concentrations as early as in 2006 in New 

York (United States), whereas apparent reductions were mainly observed mainly after 2012 in Jilin (China) and 2015 in 

Toyama (Japan). Overall, the gap-free and high accuracy merits render PM2.5 concentrations in the LGHAP v2 dataset reliable 

data sources for assessing long-term trends of haze pollutions across the globe. 

 

Table 3. The dData accuracy of gap-free PM2.5 concentrations in the LGHAP v2 dataset by compareding toagainst ground-based PM2.5 

concentration datameasurements in countries with adequate sufficient PM2.5 concentration measurementsrecords. The N denotes the total 

number of PM2.5 concentration data pairs for calculating R, RMSE, and bias. 

Country N  R RMSE 
(μg m−3) 

Bias 
 

(μg m−3) 
 Country N R RMSE 

(μg m−3) 
Bias 

(μg m−3) 

China 3,113,160 0.97 8.27 0.36  Iran 67,434 0.74 10.14 −0.09 
USA[NC1]U
nited States 2,048,983 0.84 3.34 0.06  Brazil 50,252 0.81 5.63 0.78 

Japan 1,810,436 0.96 1.82 0.07  Portugal 47,782 0.82 3.49 0.14 

Canada 1,206,176 0.89 2.12 0.05  Hungary 41,524 0.92 4.59 −0.17 

Korea 526,138 0.96 3.49 0.16  Sweden 40,839 0.91 1.61 −0.23 

France 502,555 0.96 2.25 0.13  Norway 40,001 0.86 2.45 −0.07 
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Germany 472,103 0.97 1.94 0.04  Finland 38,884 0.93 1.15 −0.08 

Italy 371,888 0.93 5.23 0.04  South Africa 35,314 0.71 10.84 −2.91 
UKUnited 
Kingdom 309,181 0.94 1.95 0.11  Serbia 34,795 0.87 9.70 0.01 

Spain 297,202 0.87 2.63 0.23  New Zealand 26,654 0.73 3.63 0.20 
Czech 

Republic 209,274 0.97 3.38 0.24  Colombia 26,332 0.95 4.60 0.45 

Australia 208,772 0.72 3.70 −0.03  Ukraine 22,692 0.84 5.79 −0.08 

India 207,974 0.92 25.34 1.64  Bosnia-
Herzegovina 20,297 0.94 12.08 1.59 

Belgium 177,036 0.98 1.54 0.01  Greece 19,410 0.79 5.41 −0.10 

Poland 175,782 0.95 5.03 0.52  Croatia 17,926 0.90 5.82 −0.44 

Turkey 171,381 0.84 10.27 −0.99  Switzerland 14,719 0.75 3.98 −2.26 

Austria 131,186 0.97 2.28 −0.14  Russia 14,357 0.84 4.06 0.58 

Netherlands 119,047 0.97 1.72 −0.07  Estonia 13,793 0.91 1.48 0.19 

Mexico 112,379 0.80 11.42 0.45  Lithuania 13,405 0.87 4.49 0.07 

Chile 111,416 0.80 12.64 0.16  Ecuador 12,517 0.88 2.92 0.28 

Slovakia 104,892 0.95 3.77 0.18  Vietnam 12,480 0.78 12.94 0.63 

Thailand 82,206 0.89 13.21 1.25  Macedonia 10,416 0.92 10.81 2.17 

Israel 68,012 0.83 5.08 0.32  Mongolia 9,926 0.91 32.69 −0.17 

Figure 8 presents the temporal variations in the global annual mean PM2.5 concentration distribution from 2000 to 2021. 

First of allFirstAs shown, the daily gap-free merit of the LGHAP v2 dataset can seamlessly supports the derivation of 

comparable annual mean PM2.5 concentration maps between years, as and data gap related biases in raw AODTerra images were 

eliminated because ofdue to the usage of daily gap-free PM2.5 concentration data.. HoweverOn the other hand, tMeanwhile, 

the quality-assured annual mean PM2.5 concentration maps enable us not only to easily pinpoint the hotspot regions suffering 

from severe haze pollutions andbut also to examine analyze the long-term variability of global PM2.5 concentrations across the 

globe. Specifically, As shown, Mongolia, north India, eastern China, and central Africa were identified as four major regions 

with relatively high PM2.5 loadings, in particular north India, becoming a hotspot region suffering from more severe PM2.5 

pollutions on the planet. Substantial PM2.5 reductions were observed in eastern China since from 2014 onwards, with PM2.5 

concentrations reduced to a levels even comparable to countries in central Asia;., and in turnhowever, north India was  in turn 

athe hotspot region experiencingsuffering from more severer PM2.5 pollutions on the planet.  
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Figure 7. An inter-comparison of temporal variations in monthly mean PM2.5 concentrations in four different cities between the LGHAP v2 

and collocated ground-based PM2.5 concentration measurements during from 2000− to 2021.  
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Figure 8. Spatial distribution of the global annual mean PM2.5 concentrations derived using from the LGHAP v2 dataset from between 2000 

to and 2021. 

 

5. Discussion 

Spatially contiguous AOD and PM2.5 concentration grids are pivotal to regional air quality management, haze pollution 

exposure risk assessment, and aerosol radiative forcing diagnosis. By seamlessly gearing up state-of-the-art machine - learning 

and tensor completion methods, a novel framework of big earthEarth data analytics framework was developed to fulfill the 

generation of long-term high-resolution AOD and PM2.5 concentration grids as of 2000 in China (LGHAP v1) in our previous 

study (Bai et al., 2022a).  MultimodalSpecifically, multimodal AODs and relatedevant air quality measurements data acquired 

from diverse satellites, numerical models, and ground monitoring stations were firstly harmonized using random forest-based 

data-driven models. Next, mMultisource AOD data flows were then weaved neatly as the tensor inputs,, from andwith which 

data gaps in daily MODIS AOD imageries were properly reconstructed via low-rank tensor completion. Finally, gap-free PM2.5 

concentration grids were mapped from gap-filled AODs AOD images using a random forest model through machine-learned 

regression models. This big data analytics framework provided an effective solution to integrate multimodal earthEarth 

observations from diversestinct sources to generate high-quality AOD and PM concentrations data products in China., and the 

good data accuracies of these two gap-free datasets also well demonstrated the efficacy of this framework.  

In this study, aiming to generate global gap-free AOD and PM2.5 concentration grids, namely the LGHAP v2 dataset, the 

previous big earthEarth data analytics framework proposed in our previous study was adopted but enhanced with several new 

featuresto generate global gap-free AOD and PM2.5 concentration grids, i.e., the LGHAP v2 dataset. Similarly, HOSVD was 

applied as the core method for tensor completion to fulfill the AOD gap-filling. Despite similar data manipulation procedures, 

sSeveral new algorithmic enhancement modules were also implemented , with particular focuses on to accommodatinge the 

rocketing data size and global scale modeling demand , aiming , not only to improve the computing efficiency andother thanbut 

also to reduce reducing modeling biases. Specifically, an attention mechanism, inspired by deep-learning techniques, was 

hereby introduced to weight each data slice in the input tensor to account for the drawback induced by Likewise, HOSVD was 

applied as the core method for tensor completion to fulfilfulfill the AOD gap-filling. Nonetheless, previous results indicated a 

potential drawback as anthe equal weight of each data slice in the AOD data cube renderedstrategy, with, with llLarger weights 

were assigned to data slices that better resembleding with fewer data gaps and more similar to the actual AOD distributiontarget 

image on the target date with more valid observations. In such a research contextother words, both the spatial coverage ratio 

of valid observations in each soft data and the mutual information between the target and soft data were usedserved as two 

relevant metricswere considered simultaneously to help determine the weight assigned to each data slice in the AOD tensor. 

A weighted AOD tensor was then calculated and used as the input tensor data to compel guide for tensor completion process, 

prioritizing focuseding on data slices more similar tolikeclosely resembled the target image rather thainstead ofn using all the 

available datainformation in the AOD tensor indifferently. As demonstrated by Although the ablation experiments shown in 

Figure 2,  have demonstrated the efficacy of the AOD fields reconstructed from thethis attention-reinforced tensor better 

resembled the actual AOD distributions in the target MODISt AODTerra images than those derived from the raw original AOD 

tensor without applying the attention mechanismconstruction strategy, the underlying philosophy, in particular the relative 

importance of mutual information and extra spatial coverage, has been not yet fully justified and assessed.  

 Meanwhile, aAn adaptive background field updating scheme was also introduced to iteratively update prior information 

in the target AODTerra images during each iteration of tensor decomposition and reconstruction., and theThe ultimate 

goalobjectivegoal was to mitigate the influence of prior information on the reconstruction accuracy, particularly reducing the 
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probability risk of  possible propagation of large modelling biases from backgroundin AODM2 to the reconstructed AOD fields. . 

Compared to the invariant prior information, adaptively updated prior information allowed for mitigating the influence of 

uncertainties in the prior information on the reconstruction accuracy, particularly large modeling biases from numerical 

enabled us to not only improve thed reconstruction efficiency andbut also significantly reduced the probability of large error 

propagation from numerical AOD simulations. Despite these algorithmic improvements, the inter-comparison results even 

indicated a slightly reduced data accuracy of gap-filled AODs in China from the LGAHP v2 dataset was observed compared 

to those in the LGHAP v1 dataset. Further investigations revealed this was mainly due to thea relatively poor data accuracy of 

the downscaled AODM2 data becausesince abecause a global-scale versusrather than regional downscaling model was applied 

to harmonize AODM2 in China. This, in turn, underscores the vital importance of data cleaning procedures on reducing the bias 

levels of each supplementary data to manage the total error budget in the final analyzed data fields when performing big data 

analytics.Nonetheless, benefiting from the adaptive background updatinge scheme, the modeling biases in AODM2background 

AOD fields were effectively mitigatedsuppressed in the final reconstructed AOD fields, evidenced by larger biases of AODM2 

(R = 0.77, RMSE = 0.36) versus smaller biases of the purely reconstructed AOD (R = 0.82, RMSE = 0.26).   

As illustrated in Figure 9, theThe global gap-free and high-resolution benefits  gap-filled AOD grids with a daily 1-km 

resolution enable us render the LGHAP v2 dataset a promising data source to better monitor global aerosol distribution and 

variations in space and time. Aerosol As illustrated in Figure 9, aerosol-related environmental disturbance episodes, such as 

sandstorms, wildfires, and haze pollution events, can be well indicated by local rising AODs at the regional scale. More 

importantlyst critically, the gap-filled AOD dataset provides us with an unprecedented opportunity to monitor aerosol loadings 

and variations even under cloud covers, e.g., the haze pollution episodes over southern India and eastern China shown in 

Figures 9d and 9e., This is largely benefited  from the the intelligent spatiotemporal pattern recognition and learning, as well 

as the assimilation of air quality measurements from ground monitoring stations and numerical aerosol diagnostics. While 

thissuch a global air quality mapping approach greatly facilitates the surveillance and management of air pollution around the 

world, the high-resolution gap-free AOD and PM2.5 concentrationLGHAP v2 dataset would also largely significantly reduce 

the uncertainty uncertainties in the health-related aerosol exposure risk assessment results because of the gap-free and high-

resolution advantages. 

 
Figure 9. An illustration of AOD responses to wild firewildfires, sand stormsandstorms, and haze pollution episodes across the globe, as 

characterized by gap-free AOD in the LGHAP v2 dataset. The gGlobal map in the middle panel shows athe spatial distribution of the major 

land cover types in 2020. 
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Figure 10．AOD trends over twelve regions of interest across the globeworldwide from 2000 to 2021 estimated from gap-free AODs in the 

LGHAP v2 dataset. The top panel shows a the spatial distribution of global AOD deviations between the first and second decade in the 

2000s. Twelve diagrams in the bottom panel show the linear trend of mean AOD over the outlined region of interest at different starting 

times with varying time window sizes. 

Global AOD variation trends were carefully examined byBy taking advantage of the LGHAP v2 AOD dataset, global 

AOD variation trends were carefully examined. Figure. 10a presents the AOD deviations between the AOD averages during 

the first and the second decade in 2000s across the globe. As shown, substantial AOD increases in the twenty-first21st century 

present primarily present over India (G)  and central Africa (I), with remarkable AOD decreases observed in the middle of 

South America. In North America, AOD increases were mainly observed in Canada and the western United StatesUS (A)   

whereas AOD decreases were found in the eastern United StatesUS (B). Additionally,Also, in referencereferring to temporally 

varied varying AOD trends in regions A and B, we may observe evident AOD increasing trends have beenwere observed in 

the United StatesUS fromsince 2012 onwards, while the significant decreasing trends in the eastern United StatesUS were 

even totallyentirely reversed after 2015. This effect could be partially linked attributed to more frequent and intensive wildfire 

emissions in north America in during the second decade of the 2000s in north America (Burke et al., 2023; Wei et al., 2021b). 

A sSimilar effect was also observed in Europe (C), with an apparent slowdown in the AOD decreasing trend after 2010. 

IApparent inverse effects were also observed in China but with totally different temporal transition patterns. As shown, 

statistically significant AOD increasing trends were observed in eastern (D) and southern (E) China in the first decade, whereas 

increasing trends started to slow down since 2007with a slowdown starting around 2007, and followed by a sudden reversione 

to decreasing trends was observed after 2010. More importantly, Tthis was also the most significant AOD decreasing trend in 

during the 2010s around the world. Thisese observational evidences confirmsaffirm the great success of clean air actions in 

improving air quality in China during the pastrecent decades (Bai et al., 2022a; Liang et al., 2020; Zhang et al., 2019). A 

sSimilar temporal variation pattern was also observed in the Middle East  (H) but with relatively weak trends. In contrast, India 
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(G) was athe hotspot area showing an increasing trend in AOD throughout the 2000s, despite a short period of increasing hiatus 

fromduring 2013– to 2015. 

In this study, gGlobal gap-free PM2.5 concentrations were derived on the basis ofbased on gap-filled AOD grids by taking 

advantage of a novel SCAGAT deep- learning model, which was specifically developed to fulfilfulfill global global-scale 

PM2.5 concentration mapping. Differing fromUnlike many other data-driven modeling practicess, the spatial representativeness 

of data-driven models was accounted for by in the SCAGAT model, providing a unique solution to model PM2.5 concentrations 

over regions even without PM2.5 monitoring sites. The availability of dDaily gap-free PM2.5 concentration grids also favors the 

assessment of the pandemic’s influence impacts on regional air quality. Figuress. 11a and 11b, in the middle panel, present 

athe spatial distribution of PM2.5 concentrations before and during the COVID-19 pandemic, respectively. Neglecting long-

term variation trends in PM2.5 concentrations, the substantial PM2.5 decreases in the middle and eastern China, as well as in 

central Europe, clearly indicate the positive effect of pandemic pandemic-related mobility restrictions on air quality 

improvement, (by comparing PM2.5 concentration in 2019 and 2020 during the synchronous period). In contrast, PM2.5 

reductions were relatively small in the United StatesUS due to the lack of mobility restriction measures, with apparent PM2.5 

reductions observed mainly in regions like Chicago. Overall, the availability of the LGHAP v2 dataset enables us to better 

investigate global aerosol variations and to assess assess PM2.5 5-related health exposure risks via exposure assessment.. 

 
Figure 11. Influencempacts of the COVID-19 pandemic on PM2.5 concentrations in United States, Europe, and China. The PM2.5 

concentrations from LGHAP v2 were averaged over athe synchronous periods in 2019 and 2020 for inter-comparison.  

6. Data Availability 

The LGHAP v2 dataset provides global gap-free AOD and PM2.5 concentration grids from 2000 to 2021 with a daily 1-

km resolution. To facilitate the data sharing, each daily map was saved as one a separateingle NetCDF file, and the data in 

each individual month wasere then archived as a one zip file. Because ofDue to the data storage limitations, one year of data 

in one year were archived as one single dataset. Table 4 provides summarizes the permanent digital object identifiers for data 

in each individual  datasetcalenda year from 2000 to 2021. All these datasets were publicly available at the LGHAP community 

link via https://zenodo.org/communities/ecnu_lghap (Bai et al., 2023a). The dData user guide and visualization codes (Python, 

MATLAB, R, and IDL) were also provided to guide the users into retrievinge data from the NetCDF files, which can be 

accessedible at https://doi.org/10.5281/zenodo.10216396.   

Table 4. List of data links for AOD and PM2.5 concentration grids in the LGHAP v2 dataset for each individual year. 

Year LGHAP v2 AOD grids LGHAP v2 PM2.5 grids 

https://zenodo.org/communities/ecnu_lghap
https://doi.org/10.5281/zenodo.10216396
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2000 https://doi.org/10.5281/zenodo.8281206 https://doi.org/10.5281/zenodo.8307595 
2001 https://doi.org/10.5281/zenodo.8281216 https://doi.org/10.5281/zenodo.8307597 
2002 https://doi.org/10.5281/zenodo.8281218 https://doi.org/10.5281/zenodo.8307599 
2003 https://doi.org/10.5281/zenodo.8281222 https://doi.org/10.5281/zenodo.8307601 
2004 https://doi.org/10.5281/zenodo.8281226 https://doi.org/10.5281/zenodo.8307605 
2005 https://doi.org/10.5281/zenodo.8281228 https://doi.org/10.5281/zenodo.8307607 
2006 https://doi.org/10.5281/zenodo.8287125 https://doi.org/10.5281/zenodo.8308225 
2007 https://doi.org/10.5281/zenodo.8287129 https://doi.org/10.5281/zenodo.8308227 
2008 https://doi.org/10.5281/zenodo.8287133 https://doi.org/10.5281/zenodo.8308231 
2009 https://doi.org/10.5281/zenodo.8287995 https://doi.org/10.5281/zenodo.8308233 
2010 https://doi.org/10.5281/zenodo.8288389 https://doi.org/10.5281/zenodo.8308237 
2011 https://doi.org/10.5281/zenodo.8288395 https://doi.org/10.5281/zenodo.8310586 
2012 https://doi.org/10.5281/zenodo.8288397 https://doi.org/10.5281/zenodo.8310590 
2013 https://doi.org/10.5281/zenodo.8287207 https://doi.org/10.5281/zenodo.8310702 
2014 https://doi.org/10.5281/zenodo.8288387 https://doi.org/10.5281/zenodo.8310704 
2015 https://doi.org/10.5281/zenodo.8289613 https://doi.org/10.5281/zenodo.8310706 
2016 https://doi.org/10.5281/zenodo.8289615 https://doi.org/10.5281/zenodo.8310708 
2017 https://doi.org/10.5281/zenodo.8294100 https://doi.org/10.5281/zenodo.8310711 
2018 https://doi.org/10.5281/zenodo.8301364 https://doi.org/10.5281/zenodo.8313603 
2019 https://doi.org/10.5281/zenodo.8301367 https://doi.org/10.5281/zenodo.8313611 
2020 https://doi.org/10.5281/zenodo.8301375 https://doi.org/10.5281/zenodo.8313613 
2021 https://doi.org/10.5281/zenodo.8301379 https://doi.org/10.5281/zenodo.8313615 

7. Conclusion 

In this study, the LGHAP v2 dataset, a heritage of the LGHAP ,  which provides long-term gap-free AOD and PM 

concentration grids with a daily 1-km resolution in China, was generated to provide global gap-free AOD and PM2.5 

concentration grids with a daily 1-km resolution with the same resolutionfrom 2000 to 2021 (as of 2000daily and 1km) across 

the globe), , by taking advantage ofleveraging an improved big earthEarth data analytics approach. The gGround validation 

results demonstrate confirm high accuracies of these two gap-free products, with AOD having a correlationnan R of 0.85 and 

an RMSE of 0.14 compared to the AERONET AOD observations,, which are slightly worse than the original MCD19A2 

product (R = 0.88 and RMSE = 0.11). Similarly, The sSite-based validation results also indicate that the PM2.5 concentration 

estimates derived from gap-free AOD via the SCAGAT method show ana good agreement with the withheldheld-out ground-

based PM2.5 measurements, with achieving an R of 0.91 and an RMSE of 9.57 µg m−3., and Furthermore,, while the data 

accuracy was further improved to an R of 0.95 and an RMSE of 5.7 µg m−3 with the fusion of ground-measured PM2.5 

measurementsconcentrations. To our knowledge, this is the first two-decade-longtwenty-year global gap-free AOD and PM2.5 

concentration dataset with such a high resolution. 

The dData gaps in satellite-based AOD images were filled using a similar Several new algorithmic enhancement modules 

were incorporated to the big data analytics approach framework to what wasthat as developedusedimprove both the computing 

speed and the reconstruction accuracy to for generatinge the LGHAP dataset in China, albeitbut with several new algorithmic 

improvements. The ablation experiments well demonstrated the effectiveness and advantages of applying incorporating the 

newly implemented attention mechanism to weight each slice of soft data in the AOD tensor during the tensor completion 

procedure. Also,Additionally, uUpdating prior information in the target image after each tensor reconstruction iteration not 

only helpsed mitigate the probability risk of error propagation from numerical aerosol diagnostics to the final reconstructed 

field andbut also , while also and improveinges the convergence speed of tensor completion. MoreoverOverall, this study 

provides a good compelling illustration of big earthEarth data analytics to generate high-quality remote sensing datasets by 

synergistically integrating and assimilating multimodal data from diverse sources via machine machine-learning techniques. 

The last but not leFastinallyAdditionally, this big data analytics approach can could be also used for be also used to fulfilfulfill 
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near-term gap-free AOD mapping by leveragingsimply replacing by simply replacing aerosol reanalysis with numerical AOD 

reanalysis with forecasting fieldss (e.g., CAMS AOD forecasts). 

This study also provides new insights on how to deal with the scaling effect e problem when establishing developing 

large large-scale PM2.5environmental variable (e.g. PM2.5 concentration) prediction mapping models. Instead ofRather than 

creating constructing a global model by gatheringwith all paired data samples into one a single training set, site-specific PM2.5 

prediction models were firstly established using a random forest model, and. Follow that, and a graph attention network was 

then then applied developed to establish an ensemble learningspatial interpolation model,  to integratinge multiple on the basis 

of PM2.5 estimates derived from site-specific random forest models trained over sites with similar scene features as the target 

grid. By fully taking advantage ofaccounting for the scene similarity ofbetween distant data samplegeographic regions, the 

proposed deep-learning methododel effectivelyattempted toBecauseSince there is no need to establish regional estimation 

models, thissuch a philosophy not only improves the modeling accuracy andbut also solveaddresss the scaling scale problem 

in large- scale PM2.5 modeling practices. 

The LGHAP v2 dataset is publicly accessible usingfrom the aforementioned links given above. The Given the merit of 

the gap-free and high-resolution merit, this dataset can be used to deepen our understanding ofbe used as a reliable data source 

for assessing aerosol aerosol-climatic climate effectsinteractions, as well as PM2.5 exposure risks and related health outcomes 

at the global scalearound the world. Also,Additionally, the rResearchers are also encouraged to use this dataset to better 

evaluate the status and trends of urban aerosol pollutions across the globe to support the assessment of sustainable Sustainable 

development Development goals Goals related to urban air quality across the globe.  
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