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Abstract. The Long-term Gap-free High-resolution Air Pollutants concentration dataset (LGHAP) generated in our previous

study prevides—provides spatially contiguous daily aerosol optical depth (AOD) and_fine particulate matters (PM2sPMs)
concentration—data—s at a 1-km grid resolution in China since 2000. This advancement empowered sese-unprecedented
assessments of regional aerosol variations and #s-theirits influencesmpaets on the the-environment, health, and climate overin
the past few-twenty yearsyears. However, there is a need to #mpreve-enhance such a MOBIS-Hikegap-free-high reselution
quality AOD and PM2 s concentration dataset with new robust features and extended spatial coverage. In this study, we present

the-version 2 of-such a global-scale LGHAP dataset (LGHAP v2), whichthat was generated using an improved big earthEarth

data analytics appreach-via a seamless integration of distinet-versatile data science, pattern recognition, and deep-machine

learning methods. Specifically,
imageries;multimodal AODs and air quality measurements acquired from relevant satellites, ground monitoring stations, and
numerical models aeress-theglobe-throughout-the-past-two-decades-were firsthy-harmonized by harnessing the capability of
random forest-based data-driven models. FheaSubsequently, an improved tensor-flow-based AOD reconstruction algorithm

was developed to weave the harmonized multi-source AODs products together for gap—filling data gaps in Multi-Angle

Implementation of Atmospheric Correction (MAIAC) AOD retrievals from Terra. The results of the ablation experiments
demonstrated better performance of the improved tensor-flow-based gap--filling method has-a-better perfermanee-in terms of
both convergence speed and data accuracy. Ground-based validation results indicated a-good data accuracy of the-this global
gap-filed—free AOD dataset, with_a site-speeifie—correlation coefficient (R) R—of 0.85 and— root mean square error
(RMSE)YRMSE of 0.14 compared toagainst the worldwide AOD observations from AERONET, which—is—better

thanoutperformeding the purely reconstructed AODs (R =0.83, RMSE = 0.15) and-whereas slightly worse than theraw-raw

Multi-Ancle Implementationof Atmespherie Correetion {MAIAC)Y AOD retrievals fremTerra-(R_ = 0.88, RMSE = 0.11).
RegardineFor PMas concentration mapping, a/ novel deep-learning sredelapproach, termed as the ramed-as-the-scene-aware

ensemble learning graph attention network (SCAGAT), was developed-hereby applicdte-enhance-the-estimation-aceuracy-of
clebelboderpendie S cmopanniemiions socees the elobebeo el ene Peoe 0 O dote WhieBy oaininea-better——-- . hilc
enhanetngaccounting for the spatial-scene representativeness of data-driven models across regions, the SCAGAT algorithm

performed bettersuperierly-inbetter during spatial extrapolation, largely reducing modeling biases over regions with limited
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and/or even absent even—theugh—the-in situ PM2s concentration measurements—are—tHmited—or—absent. The sSite-speeifie
validation results indicated that the gap-free PM2.s concentration estimates exhibit higher prediction accuracies, with_an R of
0.95 and an RMSE of 5.7 pg m 3, compared toagainst the PMa2 s concentration measurements obtained from previousprierly
heldhold-out sites worldwide. Overall, swhile-while leveraging state-of-the-art methods in data science and artificial intelligence,
a quality-enhaneedquality —enhanced LGHAP v2 dataset was generated through big Eearth data analytics by cohesively
weaving_together multimodal AODs and air quality measurements from different-diverse sources-togethereohesively. The

gap-free, high-resolution, and global coverage merits render the LGHAP v2 dataset an invaluable data-base to advance aerosol-
and haze-related studies-and, as well as to trigger multidisciplinary applications for environmental management, health=--risk
assessment, and climate change aralysisattribution. All gap-free AOD and PMa.s concentration grids in the LGHAP v2 dataset,
as well as the data user guide and relevant visualization codes, are shared—online—publicly accessible at

https://zenodo.org/communities/ecnu_Ighap (Bai et al., 2023a).; with-a—datauser suide—and relevant—isualization—ecodes

1. Introduction

Atmospheric aerosols, produced from either natural or anthropogenic_emissions, have been proven to pose significant
threats to human health, ambient environment, and climate (Up in the aerosol, 2022). The risks to public health from aerosol
pollution are elearevident, with about 4.2 million deaths per year attributable to the exposure of fine aerosol particles, as stated
by the World Health Organization (WHO, 2022). With increased aerosol loading, aerosols can significantly impair atmospheric
visibility because ofduete the hygroscopic effect, thereby reducing direct solar radiation on the Earth’s surface (Liu et al.,
2020; Wang and Yang, 2014; Wild et al., 2021; Yang et al., 2016). In addition to the evident influenceimpaets on air quality
(Li et al., 2017), atmospheric aerosols also have an important and complex influence on regional, and even global climate
(Anon, 2022; Guo et al., 2016, 2019; Li et al., 2019; Yang et al., 2020; Zhao et al., 2020). Therefore, ar-accurate monitoring
of the atmospheric aerosol loading is vital for improving our understanding of the human-driven ambient environment and
exposure pathways in health=--risk assessment.

Aecrosol optical depth (AOD), a measure of aerosols distributed within an air column from the Earth’s surface to the top

of the atmosphere, has been widely used as a key indicator of total atmospheric aerosol loading. AOD-ebservationsfrom

sround—monite stations—havelongbeenrecognized-as—the—ground—truth—and-a—few—eGround-based aerosol observing
networks, e-g-such as; the internationally collaborated Aerosol Robotic Network (AERONET), China Aerosol Remote Sensing
Network (CARSNET), and Sun=-Sky Radiometer Observation Network (SONET); were-had-been—establishedto—provide

globaland/erregional-aeresolmeasurements-have long served as the ground truth for AOD monitoring (Che et al., 2015; Giles
et al., 2019; Li et al., 2018). However, the sparse distribution of greund-acrosol monitoring stations peseposes as significant

challenges inte gaining a better-comprehensive understanding of the aerosol variations across the globe.
Satellite-based AOD preduets-data wel-bridge thissueh—a gap by providing spatially—reselvedspatially resolved AOD

retrievals with a—vastextensive spatial coverage. Over the past forty years, A-a variety of space-borne instruments, e.g., Sea-

Vwiewing Wide Field-of-Vsiew Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible
Infrared Imaging Radiometer Suite (VIIRS), and Polarization and Directionality of the Earth>’*'s Reflectances (POLDER),
werchad-beer deployed onboard different-various satellite platforms and launched into space everthe-past-forty—years-(Wei
et al., 2020)._These versatile instruments provide ample AOD and aerosol property measurements, enabling ss-to map global
AOD distribution with finer spatial resolutions-in-ateng+ran. Nonetheless, sateltite-basedsatellite-based AOD retrievals often
suffer from excessive data gaps because ofdue-te extensive cloud covers and retrieval failures.s significantly impairing the

data application potential;
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AOD-produets-eould-as-well-as and resulting in large uncertainties when assessing the influence of aerosol+mpaets on weather

and climate.

A variety of gap-filling methods were developed and applied to reconstruct the missing values in the satellite-remotely
sensed satellite AOD images (Wei et al., 2020; Xiao et al., 2021). The simplest method is to fill in data gaps with valid
observations from ether-alternative data sources, e.g., filling in data gaps in MODIS AOD images from Terra with AOD
observations from Aqua (Bai et al., 2019; Sogacheva et al., 2020); or simph~te-fusinge with AOD simulation outputs from
numerical models (Xiao et al., 2021). Such a substitution method is straightforward and effective, particularly i in an

era with big Eearth observation data. Nonetheless, cross-mission biases are always salient ameng-between satellite-based

retrievals;

significant differences in beth-instruments_properties and/or retrieval algorithms. Thus, bBias correction is thus-essential to
reducing systematic biases (Bai et al., 2016b, 2016a)-, and and-dDistinetifferent-methods; such as linear regression and

maximum likelihood estimation; were-are often applied to-accountforaddre Somberenlnee snlon ol sl e La e

datafor this purpose-merging (Bai et al., 2016a, 2016b, 2019; Ma et al., 2016; Xu et al., 2015). More complex data—fusien

methods, like the Bayesian maximum entropy—(Fasg

products even with different-varying spatial resolutions (Tang et al., 2016; Wei et al., 2021b).

Another type of gap-filling methods works. in a-principle, to recover missing information via dominant pattern recognition
and reconstruction over space and time, and the data—Data interpelating—[Nterpolating empirieal-Empirical erthegenal
Orthogonal funetiens-Functions (DINEOF) method is a representative one (Beckers and Rixen, 2003; Liu and Wang, 2019).
Two similar methods were developed to fill- in—data gaps in the ground-measured PMzs concentration time series and
geostationary satellite-sensed AOD imageries (Bai et al., 2020; Li et al., 2022b). Similarly, Zhang et al. (2022) developed a
spatiotemporal fitting algorithm to gap—fHfill gaps in the daily MODIS AOD product—psimarity by predicting; with-AOD

values mainhy-predieted-based on annual trends and spatial residues inferred from neighboring pixels. Nonetheless, filling data

gaps are—hardly—to—be—properly—reconstructed——simply—based—enwith a single data source is always challenging

particularlyespeeialy for those with exeessive-extensive missing values (e.g., satellite-based AOD). Retrievingthe-missing
i reragingl earning missing values from diverseexternalfrom-diversified external dataproduetsinformation

.. HretaH i -such ase-g numerical AOD simulations (Li et

al., 2020; Xiao et al., 2017) and -even-meteorological factors (Bi et al., 2019), was proven te-be-an effective and feasible way

tofer improve theing spatial coverage of reconstructed AOD fields.
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Mleveraging—machine—learning—and+t1ensor-—eompletionflow-based methods, ie5—a more complex big data an;
framework, wereaswas-developed useddeveloped to integrateintegrate six satellite-based AOD datasets-and-, numerical aerosol
diagnostics, as-weH-asand in situ air quality measurements (Baietal-2022a)-, while a machine-learning method, i.e., random

alytics

forest, was applied for downscaling and bias-correction purposes (Bai et al., 2022a). Based-oenHarnessing multimodal data
fusion and missing value reconstruction capabilities-this-data-analyticsapproach, a long-term gap-free high-resolution MODIS-
like AOD and-PM-concentration—dataset (LGHAP version 1), was successfully yteldedgenerated overin China, withThe

comparable-an overall data accuracy comparable efrecenstructed AODswell-demenstrate-the-efficacy-of thisto raw satellite
retrievals, from which gap-free PM».s and PMio concentrations were mapped on a daily basis-gap-filling-appreach,yieldinga




ina. Despite the
good performance, —Despﬁ%th%geed—;%e&&t&w&e%&pe%fe%m&weaddﬁmnalk%%&d&&eﬂ&fwmﬁ investigations have
reeently recently proven that-the critical importance of prior information is—vitalferiron tensor-flow-based gap-filling

preecedure, partlcularlvespee}al-ly over areas with substantial missing Values—&nd—thﬁeeeﬂs%meﬂeﬂ—fesuﬁs—welﬂd—b%pmﬁﬁe
ienificantlarse : A (Bai et al., 2022a; Li et al., 2022a, 2022b).

Moreover, the strategies of maintaining an invariant background filed and assigning equal weights forto different AOD inputs

may net-enbyredueeslow down the convergence speed andbut degrade the reconstruction accuracy.

In this study, we present An

ancw global

scale LGHAP dataset, referred to as termed—as—[LGHAP v2_hereafter, hereafter ——was—hereby—generated—tewhich
furnishesextends previde—daily elebal-gap-free AOD and PMazs concentrations from China to worldwide at a 1-km grid
resolution as-efdatingbaektofor the period of 2000 to 2021. Tolrerderto accommodate massive global sassive-Eearth
observations acquired from diverse satellites; numerical- models;and-airquality moenitering statienssources, an improved big
Earth data analytics approach was developed by harnessing several new algorithmic improvements were-applied-to enhance
the tensor-flow-based AOD gap filling-approach. i i i

diagnestiesfields-Moreover, a novel deep--learning method—, namely, -named-as-the SCene-Aware ensemble learning Graph
ATtention network (SCAGAT)—, -was applied to fulfill far-more accurate glebal-PMas concentration mapping

across the globe, particularly over regions with limited air quality monitoring stations. While—bBBenefiting from the

customized algorithmic improvements and the revelinnovative SCAGAT PMas concentration mapping methedapproach, the
LGHAP v2 dataset has not only has—an net—enly—extended the—spatial coverage from China to werldwideslobal

sealeworldwide;elebal-beastingandbutalse but also -improved data accuracyfempafed—te—I:GH—A:P—vL %ﬂﬂﬂeﬁewledg%thﬂ}s

To-ourknowledee;As a the EGHAP v2is-the-first-publicly accessible and global long-term gap-free MODIS-like AOD and

PMas concentration datasetz, the LGHAP v2 servers as a promising data source to improve our understandingThis-resource
stands-—to of global aerosol pollution dynamics; sheddingtight-onand its their-adverse impacts on public health, ecosystems,
weather—patterns, and climate—chanee.

measurements:

2. Data Ssources

Tn-the-eurrentthisstadySimilar as our previous study, here we still-attemapt-aim to synergistically integrate the big Eearth
data acquired from diverse sources to generate a global long-term gap-free AOD dataset with a daily 1-km resolution:

Subsequently—from—whieh, from which sspatially contiguous PMz.s concentration estimates can be then derived usingby a

more robust_ and accurate data-driven approach-way-te-minimize-the gaps-and-maximize-the prediction-aceuracy. As-shownih
Table 1 #Hustratesdescribes; a-the large-arrayvariety of big Eearth data swere-hereby-employed in-data—preduetion this study,




including gridded AOD products from six polar orbiting satellites, as—wel-as-numerically simulated MERRA-2 AOD-and
aerosol diagnostics, eleven—ten meteorological reanalysis fields, and—six datasets of in situ AOD and air pollutantss
concentrations measurements. Additionally, auxiliary variables—parameters representing land use and land cover types,
elevation, and—population density,; as well as aand-vegetation indexcovers, were used—not—enly—te—helpincorperatedalso
employed as critical explanatory variables to harmonize-the discrepancies among multimodal heterogeneous acrosol datasets

prior-to-dataintegration. Note the spatial and temporal resolution as well as the time period for each data product are different

from that of the benchmark dataset, namely, the MAIAC AOD product, and a data homogenization method is therefore

essential to account for such discrepancies to reduce possible bias propagation in the subsequent data fusion procedure. -andbut

Table 1. Summary of the diverse big Earth data used in this study to-help generate a-global gap-free AOD dataset-and PM, 5 concentrations
at a daily/ and 1-km resolution (LGHAP v2) from 2000 to 2021.

Category DatasetProduct Temporal Resolution Resslz)ﬁglon PTei rl;z)ed
MCD19A2 (MAIAC) daily 1 km 20002021
Terra/MISR daily 4.4 km 20002021
NPP/VIIRS daily 5km 2012-2021
AOD Envisat/AATSR daily 10 km 20002012
PARASOL/POLDER daily 10 km 2005-2013
SeaWiFS/OrbView-2 daily 10 km 20002010
AERONET hourly N/A 2000-2021
Air temperature hourly
U/V component of wind hourly
Relative humidity hourly
Surface pressure hourly
Meteorological Boundary layer height hourly 0.25° 2000-2021
factors Total column water vapor hourly
Surface solar radiation downwards hourly
Total precipitation hourly
Instantaneous moisture flux hourly
Visibility 3-hour N/A 2000-2021
m?;;&lé?:ligts PM, 5, PM, NO2, SO, CO hourly N/A 2000-2021
Population WorldPop annual 1 km 2000-2020
Impervious (GISA) annual 30m 2000-2020
Land cover
MCD12Q1 annual 500 m 20002021
NDVI MODI13A3 monthly 1 km 20002021
Aerosol diagnostics MERRA-2 hourly 0.5° % 0.625° 2000-2021
Elevation SRTM DEM N/A 90 m N/A

2.1. Satellite-Bbbased AOD Pproducts



The AOD retrievals, derived from MODIS sensor ebservations-on board Terra (AODre)with-using the Multi-Angle
Implementation of Atmospheric Correction (MAIAC) algorithm_ (denoted as AODren afterwards), were—hereby

asedservedwere hereby used as the benchmark te-for generatinge the global long-term gap-free AOD dataset, given their finer

spatiotemporal resolution and longer temporal coverage (Lyapustin et al., 2011, 2018; Mhawish et al., 2019). Previous studies
have demonstrated_the a-bettersuperior quality of the-AODrena MAFAC-AOD-data-relative to other gridded AOD products
(Chen et al., 2021; Martins et al., 2017; Qin et al., 2021)-and in regard to;net-enly data accuracy andbutalse spatiotemporal
completeness, even better than those retrieved with the well-known Dark Target and Deep Blue algorithms (Jiang et al., 2023;
Liu et al., 2019). Figure S1 presents_the spatial and temporal distribution of the coverage ratio of valid AODrera from 2000 to
2021 at each satellite footprint across the globe.

Satellite-based AOD retrievals from a few key instruments other than MODIS were also applied to support gap filling of

AODrena and- tFhey include: (1) Visible Infrared-lmaging Radiemeter Suite{VIIRS; on board Suomi-NPP), (2) Multi-Aaangle
Imaging SpectroRadiometer (MISR, on board Terra), (3) Advanced Along-Track Scanning Radiometer (AATSR, on board

Envisat), (4) POLarization—and Directionality—ofthe Harth’s Refleetanee (POLDER; on board PARASOL), and (5) Sea-
ViewingWide Field-of ViewSenser{SeaWIFS; on board SeaStar). Meanwhile, MAIAC AOD data from MODIS on board

Aqua were also applied as the-an important complementary data-set source-to-suppert-gap—fithngofAODTer. Given their
varied the—different—overpassing times and temporal spans, these multisensory AOD dataset canpreduets provide
complementary observations to help reduce random errors swhen—during the AOD data reconstruction efrg—data—gaps—in
AOBreraprocedure because ofduwe—te the known inereased-prior knowledge. A—briefsummaryMore details of these AOD

preduets-datasetsproducts can be found in Bai et al. (2022a) and Wei et al. (2020).

2.2. Ground-Bbbased AOD Osbservations and Aair Qguality Mmeasurements

2.2.1. AERONET AOD Oebservations

Ground-based AOD observations from AERONET have long been used as the ground truth te-for validatinge AOD
retrievals from other instruments, particularlyespeeially diverse satellite-based AOD retrievals. In this study, AOD
observations from AERONET (aeross-the—globej-during the study period were employed as an independent data source to
validate the data accuracy of the global gap-filled AOD dataset. To guarantee an adequate number of AERONET AOD samples,
the Level 1.5 @nstead-efratherthantevel 2:0-A0D observations_instead of Level 2.0 were applied, though the latter has

stricter screening criteria for quality control. For spatial registration, each AERONET AOD observation was spatially

collocated with mean AOD values over grids within a 50 x 50 km window size. Figure S2 presents the spatial distribution of
the AERONET sites 4
observations-used in this study.

2.2.2. Air Qguality Mmeasurements

Concentrations of PMazs and other relevant air pollutants, like NO2, SO2, PMio, and CO, were acquired from a few
environmental agencies and‘er monitoring centers, such as the United States Environmental Protection Agency, European Air
Quality Portal, China National Environmental Monitoring Centre, Canada National Air Pollution Surveillance, and Japan
National Institute for Environmental Studies, to name a few. Moreover, air quality measurements acquired from the World’s
Air Pollution Index, an open-source data hub, were included as well. Fe—cuaranteeuniformityand comparability of these
sround-based-data—we conducted necessaryGiven potential differences in measuring principles and quality control criteria
preprocessine—towe performed rigorous data cleaning measures to standardizeharmonize these multisource air quality




measurements, as-well-asincluding not only the removal of outliers but also-converted-the time-seriesto an unification of time
scales to-a daily average-scale synchronized-withsatellite observationstaken-onthe same dates. The PMb sconcentrations-were
used—as—thelearningtargetforglobal PMo s—concentration—mapping—Aiming toat provideing critical prier-information to

facilitate the AOD gap-filling,-the ground-based air quality measurements were-alse used as an important proxy for regional

in situ AOD prediction, benefittingfrom-largely because of the relatively dense distribution of air quality monitoring networks

as-welasand expleited-the geed-associations between aerosol loadings and regional air pollutants concentrations.

Atmospheric visibility, a common air quality indicator-thatis highly associated with aerosol loadings, wasvwere acquired

from worldwide meteorological monitoring stations and used as—the—eriticalpredictor—likesimilarto—air—pollutants

ceneentrations—to predict AOD over each monitoring site via data-driven modeling. Given the much denser distribution of

ambient air quallty and meteorologlcal monltorlng sites, as shown in Figure S2 —fer—%h%sp&&&l—ésmbtmareﬁglebal—aﬂ—q&a{kty

2022 Lietal 20223 a global virtual AOD monitoring network was in turn established, harnessing the associations between

AOD and air quality relevant parameters.; FhisSuch a virtual network providesi#g us with an unparalleled opportunity to
improve AOD gap-filling accuracy and efficiency, particularlyespeeialy for-inover regions being-distarbed-bywith massive
data voids in satellite AOD data-voidsimageries-(Bai et al., 2022b; Li et al., 2022b).

2.3. Numerical Ssimulations

2.3.1. MERRA-2 Aaerosol Ddiagnostics

Despite-thecoarse-spatial resolutionand-large-modeling bias;tThe Modern-Era Retrospective Analysis for Research and
Applications; version 2 (MERRA-2) aerosol diagnostics, including total AOD and ehemieal-acrosol components like black

carbon, organic carbon, dust, and sulfate aerosols, were employed to provide prior information to advance AOD gap-filling.
As the NASA’s latest reanalysis for the satellite era, MERRA-2 is generated using the newly Earth system model,-ef Goddard
Earth Observing System; version 5 (GEOS-5), providing global simulations of a variety of geophysical and chemical variables
on the Earth’s surface. More detailsed-deseriptions— of the assimilation system and the data quality of MERRA-2 aerosol
reanalysis can be found in-theliteraturesueh-as Buchard et al. (2017) and Randles et al. (2017). By taking AODrerra #1te
aeeount-asa the learning target, data-driven models were established to spatially downscale and bias-correct MERRA-2 AOD

backereund-ficld-te-the tevel of AOD e, with with- MERRA 2 aeresel-diasnostiesas-well-as-meteorological, geographical,
and socioeconomic factors—used used as covariates. This lih%de“ﬂﬂea{mg—medekﬁe{—eﬂly—ﬁnpfeveq—%%pa&al—ye%}&smﬂ

o it—downscaled and
bias-corrected MERRA-2 AOD baeksreund-field, given its spatially contiguous coverage, the-dewnsealed-gap—free AOD-data

wereas then used as critical-prier information to facilitate the AOB-gap-filling of AODrem s inparticnlarly-everregionstacking

2.3.2. ERA-5 Rreanalysis

As the latest atmospheric reanalysis produced by the European Center for Medium Weather Forecast, ERA-5 provides
hourly estimates of a variety of atmospheric, terrestrial, oceanic, climatic, and meteorological variables. The data are provided
for a-at-abeut 30 km grid resolution on the Earth’s surface, reselvingdelineating the atmosphere layer using 137 levels from
the surface up to a height of 80 km, covering the period from January 1940 to the present (Hersbach et al., 2020). Atmospheric
parameters, including surface pressure, air temperature, relative humidity, wind speed, total column water, total precipitation,
surface solar radiation downward, instantaneous moisture flux, and boundary layer height, were retrieved-acquired from ERA-
5 and used as important modeling covariates;#et-ealy in both data harmonization medels-and-te-ealibrate-other AOD-and



relevant-dataproductsto-the tevel of AODTer butalse-and—in global PM2s mapping modelss.to-help-approximate nonlinear
asseeiations-betweenPMo sand-AOD- A simple bBilinear interpolation was applied to the-map ERA-S reanalysis data dewn

to_convert them to the AODrera footprint resolution for spatial registration.

2.4. Auxiliary Ddata

Several socioeconomic and geographic factors were also applied as covariates to support predietions-of AOD gap filling
and PMzs concentration predietionsmapping. Specifically, gGridded population data from WorldPop were used to indicate the

spatial distribution of residents, which—were—apphiedserving as a critical proxy effor anthropogenic fenair

pollutants emission intensity. To reselwe-characterize the land-—use-—dependent aerosol emissions, land cover types and the
vegetation index derived from MODIS-_retrieval-ebservations—products, along withas—wel-as the coverage ratio of—the
impervious surface calculated atthe AODre—footprintfrom the land use dataset generated by Huang et al. (2022).-were also

applied. The dBigital elevation data collected from the Shuttle Radar Topography Mission (SRTM) with a resolution of 1 arc-

second were used to characterize the potential impacts of topography on aerosol loadings.

3. Methods
3.1. Tensor-Fflow-based AOD Rreconstruction

3.1.1. Overview of AOD Ggap-Ffilling Miethod

Deriving spatially contiguous PMa2.s concentrations from gap-filled AOD images has been-proven more promising for a
better spatial-analysis of large-scale PMa s distribution (Bai et al., 2022b). In this study, the big Eearth data analytics framework
proposed in Bai et al. (2022a) was further adapted and improved for generating global gap-free AOD imageries to support
various content-based mapping. As shown in Figure 1, presents—the—workilew—of-the improved big Earth data analytics

framework ef-the bie

d-MOB e Ol e i Deneecaslealio

consists of three primary data manipulation procedures, including: 1) machine--learned multimodal data homogenization, 2)

knowledge-reinforced AOD tensor compiling, and 3) tensor-flow-based AOD reconstruction, with algorithmic improvements

primarily conducted in the latter two procedures. This improved big Eearth data analytics approach empowered us to weave

together multimodal AODs and versatile big Eearth observations from diversified-diverse sources.togetherneathy via a synergy

of state-of-the-art machine- learning and tensor completion methods. Because-Sinee the technical flow of this big Eearth data

analytics framework was elaberatedpreviously detailed-en wel-elaberated-in Bai et al. (2022b), we hereby only provided an
overview of this method while emphasizing-thenewlydescribing more details of the newly developed algorithmic components

in the following subsections.
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Figure 1. A schematic illustration of the ernhaneed-improved big earthEarth data analytics for generating the MODIS-like global gap-free
AOQOD dataset.

The overall architecture of this big Earth data analytics framework was summarized as follows. MREeveraginsrandom
ferest-basedregression—models;—multimodal AODs; and relevant aerosol data acquired from different satellites, ground

monitoring stations, and numerical models were firsthy harmonized to resemble the baseline dataset of AOD—frem—Terra

retrievals {AODrerra)ters, aiming to&t—ﬁet—eﬂl—y minimizeirg both cross-sensor blases—aﬂ%mg—&em—aﬂlgemhﬁﬁediﬁefeﬂee% and

spatial heterogeneities-a

Theis data homogenization process is vital for the tensor-flow-based AOD gap-filling, because the bias-corrected and
downscaled AOD estimates were critical inputs to form the AOD data cube. More details related to the multisource data

homogenization were described in Text S1 in the supporting information. The-AOD-data—eube—was-then—ereated-based-on

How-based-AODreconstruetion—To fill data gaps in each individual AODrera image, an AOD data cube was then constructed;

in-our-previous—egap-fithngframewerls by simply-aggregating harmonized multisensory AOD data on the same date, along

with historical AODrera images resembling similar spatial patterns over the same region. Because of theBue—te excessive

nonrandom missing values in the AODrera imagesies, both the downscaled MERRA-2 AOD grids and AOD estimates derived



from air quality and visibility measurements were used conjunctively to identify the-histeriealsimilar AODrera imageries with

a-stmtarspatial-distributionfrom the historical image series. The selected historical AODrera images and bias-eerreetedbias

corrected AOD images from other satellites on the same date were used individually ineerporated-as a slice of the tensor.
Additionally, dispersed in situ AOD estimates and 5% of therandomly selected AOB-estimatesfrom-the-downscaled MERRA-
2_AOD data were directly overlaid onto the corresponding AODrera grids where-without valid AOD retrievals—were—sot
presentabsent. These implementations net-enty-helped improve the gap-filling accuracy andbut-alse greatly boosted the

convergence speed given the provision of prior knowledge.

High order singular value decomposition (HOSVD), an orthogonal Tucker decomposition method, was finaty-applied to
each well-compiled AOD data cube for tensor-flow-based pattern recognition and-ternser data completion. Data gaps within
the input AOD tensor were firstly filled with the spatial average of each individual AOD image to iritiainitializete the tensor
decomposition. The AOD tensor was then decomposed along every-cach two-dimension efAOD-tenserslice independently,
and a new tensor was subsequently reconstructed based on the principal modes learned-alongeveryeach-two-dimensionslice
of-the-tenser-via a low-rank approximation (i.e., generating an approximating matrix with reduced rank for compression).
During thise—tenserrecenstruetion proeessprocedure, the AODrera Observations in the target image to be gap-filled were
deemed as-the-hard data (i.e., true state and invariant throughout the tensor completion procedure) while multisensory AOD
estimates and historical AODrera images were-tuisedserved as the-soft data (priersupporting information and updated by iterates
till convergence). By iteratively adjusting the dimension-varied ranks, the data values over grids to be gap-filled were updated
and tuned to optimize both spatial homogeneity and information entropy concurrently (Bai et al., 2020, 2022a). Fhis-The tensor
completion process continued till it reacheding an -geed-agreement (with a bias decay ratio < 0.1%) between the reconstructed

values and the previouslypriethy reserved AODrera Observations.

3.1.2. Algorithmic limprovements

To accommodate the massive data analytics for global-scale AOD gap-filling, twe-three major algorithmic enhancement

modules were incorporated to help improve-the reconstruction efficiency and accuracy, feeusing-with particular focus on the

aVa¥ab sl ] ad ald d N e ancn aVa¥atsl - on-pnroced e NA
O t c aS—ad O O O O c

improve-the-computingefficieney-in-tenser-completion—A-The-algorithm 1-belew presents the pseudo code of the optimized

algorithm used for tensor-flow-based AOD reconstruction.

Algorithm 1. The pseudo code of the optimized algorithm used for tensor-flow-based AOD reconstruction.
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Input: tensor A € RNN2"Na with @ = {(i, j, k): Ay is observeds}, threshold Ty, T,
Output: reconstructed entries A’ = A*(:, :, k) € RN1*Nz

1: Attention mechanism: wy, = [I(MI,, R§, R})
Wy * Aijk (1, j, k) EQ

2: Initialize Afy = {Zi 5 Ay G}k & Q

3: forr; = §N3 to 1 step —2 do
4 n,=n,=0
5 while ¢, > T, or (n; < §N1 and n, < ;NZ) do
6: n, =n;+1,n,=n,+1
N meNe
7 1= T2 = 75
8 A* = HOSVD(A*, rank = {r;,ry,r3}):
9 A*=S X4 u@) Xy u2) X3 us)
L1 .
10: £ =argrr}]1n5||A—A 112
11: o =Aq N
12: A = w;A5 + w,yAg, Q denotes background location
13: end while
14: ifargm&niHA—A’“H2 < T, then
15: break;
16: end if
17: end for

3.1.2.1. Attention-Rreinforced AOD Ttensor Ceonstruction

In our previous studytensercompletionframeweorkas shown-in Bai-et-al(2022a) bBoth the target data (i.e., AODrerra
image-to-be-gap-filled) as-wellasand soft data (i.e., AOD estimates from other data sources and historical AODrerra imageries)
in—the- AOD-tenser-were treated equally in the AOD tensor duringthroughout the tensor decomposition and reconstruction
process (Bai et al., 2022a)-in-eurprevious-tensorcompletionframeworkasshewninBaietal{2022a). ThiseSuehan indifferent
data treatment strategy-net-enty neglected the information abundance of soft data and but-alse-ignered-the spatial similarity ef
spatial-patterns-between the soft and target data, leading the reconstructed field more likely to resemble the dominant patterns
learned from imageries with fewer data gaps, rather than thoseimases with ——instead-efratherthan—images—with-higher
stnilarities—to-thetarget-dataspatial patterns similar to the target imagedata. To account for this drawback, an attention
mechanism was #mplemented-hereby introduced to weigh-assign different weights to each data slice efdata-in the input AOD

tensor, aiming toat improveirg the AOD reconstruction performance by learning from spatiotemporal features embedded in

more relevant data fields instead ofratherthan all the available data-.

As a widely used technique in deep--learning+eghnes, the attention mechanism is a mimic of cognitive attention allowing
the model to focus on specific parts of the input data, achieved by assigning higher weights to more crucial elements in
ensemble learning. Regarding the tensor-flow-based AOD reconstruction task, the-data slices with a higher similarity to the

target image and fewer data gaps are supposed to sheuld-play a-more important roles be-aececorded-moresignificances-than

these-less similar ones with extensive data gaps during tensor completion-. Three statistical metrics, ie<-including mutual
information (Shannon, 1948), spatial coverage ratio of common observations (Reommon) between each-soft data and hard data,
and spatial coverage ratio of extra observations beyond common observations in soft data (Rextra), were calculated to determine

the overall weight that should be assigned to each data-slice of data in the input AOD tensor. Specifically, mutual information

was applied to gaugecharacterize the mutual dependencye between the target image and each slice of soft datareference AOD

imaees., while cCommon spatial coverage ratio was used to guantifyindicate the rehabilitydata amount for—ef mutual

information calculation, whileand extra spatial coverage ratio indicates -was employed to depict additional information content
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that can be provided by reference AOD-imasessoft data. Equations (1-3) provideBelewgives the formulas to calculate these

three statistical metrics.

MI(X,Y) = ;;P(x, y) log <p(x)p(y)> v
Reommon = P(X,Y) X 100% @3]
Rextra = q)()?' Y) X 100% -

Note thatwhere X and Y refer to common observations in soft and hard data, respectively. The X denotes extra observations
in soft data..- p(x, y) is the joint probability mass function of X and Y, andwhile p(x) and p(y) are the marginal distribution
mass function of X and Y-, respectively. Additionally, ®(X,Y) is the spatial coverage ratio of the common observations, and
(I)(X , Y) is the spatial coverage ratio of extra observations in the soft data. By multiplying these three normalized weights to
the corresponding soft data, an attention-reinforced AOD tensor was constructed in turn, which was then used as the input

data cube for tensor completion.

3.1.2.2. Adaptive Pprior linformation Uupdating

To facilitate the AOD gap-filling over regions with abundant-substantial data gaps, in our previous method, the-5%
random samples from the downscaled MERRA-2 AOD image (AODwm:2 hereafter) on the same date were used as prior
information and directly placed-overlaid direetly-onto grids without observational AOD (i.e., AODtera and site-based AOD

estimates from air quality and visibility measurements). Although this empewered-usenabled to improved the convergence
speed during tensor completion, the spatial patterns of the reconstructed field over regions with excessive data gaps were more

likely to resemble the distribution of AODwm» sivendue—to-because of the—fixedthese —unchanged 5% baekeroundprior

information-values

(]

AODx-In thissueh-a context, large modeling biases in AODwm2 might be introduced into the final reeonstruetedreconstruction
fields.

In this study, we introduced an adaptive prior information updating scheme to-kelp mitigate potential bias propagation

fromAODMeproblem. Differingfrom-the strategy-used-in-ourprevieus-method;-tThe main principle is to force tfhe AOD prior

information in the input AOD tensor swas-alse—fereed-to update by-iteratiensvely throughout the tensor completion process,
rather than maintaining them_as invariant-as AODe-0bservations-threugheut-the-tensorcompletionproeess. Specifically,

random AODwm2 samples were only used to #itiate-initialize the tensor construction, while weighted averages of these prior

information and the corresponding reconstructed values were then used as new prior information for the next iteration.
Meanwhile,_the weights assigned to the reconstructed fields were gradually increased by iteration till convergence. The
wltimate—goalgoal was to improve the contribution of reeonstrueted-reconstruction fields learning from actual observations
while reducing the influence of AGDw2 background field. Additionally-TtheThe ablation experiments alse-demonstrated that
such—a—seheme—isthe effectiveness of this scheme in—mitigatingbias—propagation—from—AODw;largely improving the

reconstruction performance over regions with limited observational data.

3.1.2.3. Optimized Gglobal Ddata Ttile Ppartition and Rrank Uupdating

GiventThe high spatial-and-temperalspatiotemporal resolution of AODrtera imageries presents a; performingglobal-seale
AOD-gap-fillingisgreat-thus —ehallengingchallenge in performing global-scale AOD gap-filling because of thedue—te huge
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computational burdens. To improve-the computational efficiency and to make the computing workload manageable, the

following algorithmic imprevements-adjustments were tedimplemented. Firsthy, the continental glebal- AODrerra data ever
landmass-wereworldwide were divided into 480 data tiles, with AOD gap-filling performed over each data-tile independently.
The-size-ofa-tile-was-determined-empirically-after perfoermingThrough a set of gap-filling trials with different-varying tile
sizes, and-a nominal tile size efa-tite-covering 700 x_700 pixels, refer to Figure S3 for the spatial distribution of the optimized
data tiles,(eould-be-different-overcoastalregions) was finally applied to balance the computing workload and reconstruction
thelearning-accuracy—Figure-S3-presents-the spatial-distribution-of the-optimized-datatilesused--thisstudyforglobal AOD

gap-filline. Moreover, a 50-pixel overlap on the boundary of each tile was enforced, and an inverse distance weighting scheme

was finathapplied to these overlapped pixels -when mosaicking the gap-filled tiles, aiming to eliminate the boundary effects

between tiles toward a smooth distribution of AOD across the globe.

preeess, Since the tensor’s decomposition and reconstruction_processes in the tensor completion are driven by iteratively

apdating-updated tensor ranks—, aAn optimized rank updating strategy was alsehereby proposed to improve the learning
efficiency. ——e—pesmthenmsnintione Lolie e o ol L e Dl el elos sl e bl e Lo
the—ranks—between—iterations—Specifically, the ranks were updated in an ascending order along with the first and second
dimensions in the inner loops to enhance the spatial details of reconstructed AOD fields. In contrast, the ranks were updated
in a descending fashion along swith-the third dimension in the outer loop to aggregate the target AODrerra image with the soft

data in a low-rank approximation manner. This new rank updating strategy not only helps better resolve spatial details of AOD

but also accelerate the convergence speed of tensor completion.

3.2. Global PM:5 Ceoncentration moedelingModeling

The sparse and uneven distribution of ground-based air quality monitoring stations poses significant challenges to global

PMa2 5 concentration mapping, particularlyespeetatly over regions ef-with fewer PM2 s concentration measurements (e.g., Africa

and Ssouth America in Figure S2). AdditienallySeNonetheless,Adse; how to reinforce the seenespatial representativeness of

data-driven models when—to improve the spatial extrapelating—extrapolation accuracy them—everacross—extensivespatial
demainsee-is still elusive. As-anevelidealn this study, a recently developed deep learning method, namely, the scene-aware

ensemble learning graph attention network (SCAGAT), was hereby developed-and-applied to better estimate global PMz s

concentrations from gap-filled AOD imageries—by—aceountingfor-the spatial seenerepresentativeness—ofeachdata-drive

model. Instead ofRatherthan establishing a single gloebal-PMas estimation model using all available datapairsdata samples

collected from worldwide monitoring stations, site-specific PMa.s estimation models were firstly developed using a-random
forest over each air quality monitoring station with ferg—termadequate PMa2.s concentration measurements.

For a given grid, raw PMa.s concentration estimates were ther-estimated from a set of independent site-specific PMa.s
estimation models:, of which should resemble similar geographic scene features as the given grid cell—--under the assumption
that the relationship between AOD and PMz s is similar over regions with an analogue environmental background. Nine distinct
factors covering geedetie-geographic location, land cover types, climate zones, AOD levels, and population density were
utilized to characterize the scene attributes of each grid cell. Subsequently, a graph attention network was used to aggregate

these- raw PM2.s concentration estimates derived from site-specific models to betterprediettheproduce an ensemble PMas

ceneentration-estimate over the target grid cell.; In the graph network, W-with-weights assigned to the adjacency matrix were

determined in reference to the differences between nine different scene features, and the node bias was given as the testing

accuracy of each site-specific PMzs prediction model. Figture-S4-presents—depiets-the-werkilowof the propesed SCAGAT
model-forglobal PMo seoncentration-mapping—This nevel-innovative ensemble learning method enables us to better predict
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PM25 concentrations across the globe, particularlyespeeialy over regions with few—limited or even nose in situ PMzs

concentration measurements. Figure S4 depicts the workflow of the proposed SCAGAT model, and aAdditionalMere details

regardinget the SCAGAT-medel-were introduced in Text S2-as—part-ef-thesupplementaryinformation.. For more detailed
descriptions of this method, please refer to Li et al. (2024).

4. -Results

4.1. Efficacy Aassessment of Aalgorithmic Eenhancement Miodules

Ablation experiments were firstly conducted to evaluate the accuracy improvement potential of each newly developed
algorithmic enhancement modulee. Three case studies were simulated by masking actual AODrtem retrievals with randomly
selected cloud masks on different dates, and the methods reinforced with different enhancement modules were then applied to
reconstruct the previouslyprierty holdout AOD values. For inter-comparison, the AOD gap-filling framework developed in

Bai et al. (2022a) was used as the benchmark method. As shown in Figure 2, the AOD distributions reconstructed were

reeonstrueted-withusing—a methedsmethods embedding attention mechanism and adaptive background information updating
modules have smaller bias levels compared to than the benchmark method, which in turn justify the efficacy of these two new
algorithmic enhancement modules. Given an equal weight of each slice of data in the input AOD tensor, the reconstructed data
fields from the benchmark method were prone to resembling a mean state determined largely by the principal mode of the
input tensor. In this context, peak andtertew-values in the target image might be underestimated (or overestimated for low
values) #-because of relatively few soft data resembling similar patterns in the input tensor (e.g., Figure 2c).
With-the-invelvement-of theBy incorporating the attention mechanism, each slice of data in the raw AOD data cube was
adaptively weighted-adaptively, with larger-greater weights given to data—slieesthose net-enly-having larger-broader spatial
coverage and but-alse-closerwith similarities to the target AODrerra image. This strategy is vital to reducing contributions from
irrelevant data, particularlyespeeially when faetrg-encountering with-imunbalanced data samples #-within the raw AOD data
cube, i.e., more irrelevant data and fewer similar imageries. Moreover, the importance of the target image was maximized
during the tensor completion procedure by giving-assigning it-a 100% weight. Compared to the benchmark method, peak
andlertewextreme values in raw AODrera images were better reconstructed using-by the method embedding the attention

mechanism. For instance, in Figure 2b, the benchmark method apparently overestimated low AOD values in the north, in

whereas such an-effeeta discrepancy was largely mitigated
using methods involving the attention mechanism.
In contrast to the benchmark _method by—using which used an invariant background throughout the tensor completion

process, an adaptive background updating scheme was thus-apphied-incorporated here to net-enly-accelerate the convergence

speed andbut—alse mitigate possible error propagation_arising from numerical simulations to the final recenstrueted
reconstruction fields. Compared to the benchmark method, aAs illustrated in Figure S5, the enhaneed-methed—invelving
adaptive background updating module—indicated enabled to superior-detectionand-resolution-ofreduce the adverse impact of
manually added outliers in raw background fields.—eompared-to-the benchmark. comparedto-the benchmarlthe-manually
of-the-adaptive backgroundupdatingmodule; thusereby avoiding large error propagation from background fields into the
reconstructed AOD data. Although tFhe better quality of the reconstructed fields derived from_the improved methods wel
demonstrates the efficacy of these two newly developed algorithmic enhancement modules—, Nevertheless;as-seencompared

inFigure2e-the benefits efthese-two-enhancement-modules-werecould be largely cancelled when dealing-confronteding with

images with-containing excessive data gaps (c.g.. Figure 2¢5-). shewingonlyamarginalimprovementinaceuracy Haprovemen
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relativecompared-to-the benehmarkmethod-The inherent reason could be attributedable to few observational data in the target

image for reference to leverage the attention mechanism to pinpoint similar AOD images from the historical data series.

Simulated benchmark + attention + background + both
raw AOD..,,. AOD..,,. method mechanism updating modules

v
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Figure 2. Performance evaluation of different algorithmic enhancement modules on the reconstructed AOD distribution. Raw AODrers
denotes the actual AOD retrievals from Terra, while simulated AODrera refers to partially masked AODrera. The benchmark method is the
AOD gap-filling approach proposed in Bai et al. (2022a). The latter three columns present the reconstructed fields using the enhanced

benchmark methods. The R and bias denote correlation coefficient and deviations between the swithheldholdout observed and reconstructed

AOD data, respectively. The pPercent numbers shown in the two left panels indicate a spatial coverage ratio of valid AOD retrievals over

the selected scenes.

In Figure 3, we evaluated the impacts of the missing rate of the target image AGBrex—on the AOD gap-filling accuracy.

By masking raw-one truly observed AODrera retrievals-image with arbitrarily selected cloud masks, thea series of AODTera

target images under different missing rates, as shown in the top panel of Figure 3, were generated-simulated and-used-as-target

images—forfor gap-filling trails(-e—imagesas—shownin—the—top—panel—of Figure3). Theresults—showAs shown, —anthe
reconstructed fields fairly agreed withastrengseod-agreements—between the observed andreconstrueted-AOD fields, well

resembling the actual AOD distribution over the outlined region, even inever extreme situations with excessive data gaps,

demonstrating an excellent performance of the proposed gap-filling method. As expected, the reeonstraetion-accuracy of the
reconstruction fields decreased along with an increase in the missing rate. For instance, when the missing rate was greater than
80%, the low values in the upper left in-of the raw AODrera image were not properly reconstructed-when-the-missingrate-was
sreater-than-80%, largely because of the limited prior knowledge in the target image for use when constructing the raw AOD

tensor. This effect also hightighting-highlights the w#tal-crucial importance of prior information on the gap-filling accuracy.

Therefore, increasing prior information is the most promising way to improve the gap-filling accuracy #—gap—fithng; in
particular for these-areasregions with substantial data gaps.
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Figure 3. Impacts of the missing rate on the AOD gap-filling accuracy. The nNumbers on the top indicate the percentage of removed AOD
data in the raw AODrera image-ftep-panel). The second row shows the distribution of the gap-filled AOD with zoomed-—-in maps present in
the third row. The bottom panel_—presents scatter plots between the observed AOB—{withheldraw—datay-and the reconstructed AOD

4.2. Data aAaccuracy of Gglobal Ggap-Ffree AOD in LGHAP v2

The gap-free AOD grids dataset(in the LGHAP v2j wasere generated by filling in data gaps in AODrera images the

i with reconstructed AOD estimates at each collocated footprint over land.

In comparisonBy-eemparing againstto the independent AOD observations from AERONET, the data accuracy of the gap-free
AOD in the LGHAP v2 was comprehensively evaluated across the globe. Figures: 4a—c present athe spatial distribution of the
site-specific correlation coefficient (R), root mean square error (RMSE), and bias between thereconstructed reconstrueted
AOD in the LGHAP v2 and AOB-AERONET observations—frem—AERONET, respectively. Regardless of the uneven
distribution of ground-based acrosol menitering-observing stations and the-differenee-variations in data samples between sites,

the ground validation results indicate a good agreements between the AOD in the LGHAP v2 and the AERONET observations,
with an—average—ef-site-specific eerrelation—eeefficientR of 0.76+0.14 and RMSE of 0.09+0.08 at-theon a global scale.
Meanwhile-the resultsindieatethatNote site-specific data accuracy metrics exhibitnetablespatial-heteregeneities-vary across
the—gleberegions, with larger biases mainly observed in the central and east Asia as well as in Africa—regions
frequentlyalways—whieh-where-often sufferings from high aerosol loadings.

Figures- 4d—4i present scatter plots between the LGHAP v2gap-free AOD and AERONET observations at six major

continental regions. Fhe-distinet-aceuracy-metries-aerossregt

estimates were prone to_an underestimation of underestimate-large AOD ebservations—values (>_0.80) versus an—whereas

overestimatione of low values (< 0.2) across these six regions. ThisSuehan effect is particularly common in maehine-machine-

learning, largely because ofée—te the imbalanced distribution of data values in the training samples (Johnson andé&
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Khoshgoftaar, 2019; Shi et al., 2022). EikewiseSimilarky—the-inherent reason could be also applied fors for-the thiseffeetin

AT

inputtenser—ConsequentlyAsaresultthe missed AOD extremes-eewld may not be accuratelywere-hardbyte-be reconstructed
to their nominal levels;: ilnsteadRather, they tend the-reconstructed-values—were-inelined-to resemble a mean state that was

determined by principal modes via a low-rank approximation. -because-ofdue-to-the-imbalanced-data-distribution:
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Figure 4. Data accuracy of daily gap-free AOD grids in_the LGHAP v2 dataset comparedby—<cemparing againstto the-AOD observations
from AERONET across the globe during 2000-2021. Note the AERONET AOD observations were independent data frem-and had been not

used in the gap-filling process.

To further verify the data accuracy of the imputed AOD estimates, we-farther compared the data—aeeuracyef-gap-filled
AODs in the LGHAP v2 dataset with two major gridded products;+-e-_of sateHite-based MAIACAODretrievalsfromTerra
fAODTersMEBPIIA2} and downsealed MERRA2-AOD{(AODwM2). As shown in Table 2, the purely reconstructed AOD
estimates have ana R 0f 0.83 and an RMSE of 0.15 compared toagainst the AERONET AOD observations at the global scal

>

comparable to the data accuracy of AODwm2 (R = 0.83, RMSE = 0.14) but lower than that of AODrera (R = 0.88, RMSE =
0.11). Nevertheless, the imputed AOD estimates achieved comparable data accuracies toas AODrera in Africa (R_= 0.80,
RMSE = 0.20) and Australia (R = 0.62, RMSE = 0.08), largely because of the availability oféue+te abundant satellite-based
AOD prior informationretrievals-overthese-two-areas (refer to the AOD coverage ratio shown in Figure S1) to facilitate AOD
gap-filing—via-tensor completion. In contrast, the LGHAP v2imputed AOD estimates in Europe and Asia have poorer data
accuracies with-relative to AODrtem, particularlyespeeiatly in_Eastern Asia. The pPossible reasons—fer-this could be ascribed

to-netenky extensive missing values, severe aerosol pollution levels, as well as significant spatial variations in aerosol loadings
over these regions. Compared to AODTernnMAJACAOD, the gap-filled AOD data tended to overestimate the AERONET
AODs (17.59% versus 11.45% above the envelope of expected error), resulting in thean even larger global mean AOD walaes
(0.19yin-the EGHAP v2 dataset-thanin-the MATAC-AOD-{ versus 0.17)-, implying a greater number of large AOD values

were reconstructed in the imputed AOD estimates.
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acenraey-outperforms that of the gap-filled AOD dataset (R>= 0.6031 and RMSE = 0.1350) generated by Guo et al. (2023), in
which missing AODs in MEPIIA2-AODrer s MAIAC were predicted with-using versatde—various proxy variables (e.g.,

meteorological factors and population density) via_a random forest model.

Table 2. An intercomparison of AOD data accuracy between satellite-based retrievals (raw MAIAC AOD), numerical aerosol diagnostics
(downscaled MERRA-2 AOD), purely reconstructed data, and the final gap-free product (LGHAP v2 AOD), by comparing AOD
observations from AERONET across the globe during 2000—2021. Note the term “Purely Reconstructed AOD” refers to the imputed AOD
estimates, while “LGHAP v2” refers to the gap-filled AOD dataset combining both satellite-based retrievals and purely reconstructed
data. The expected error (EE) envelope for AOD over land was defined as £ (1.5 X AODagroner 1= 0.05).

. Mean Number of  Number of . Below EE Within EE ~ Above EE
AOD Dataset Region AOD Monitors Samples R RMSE Bias (%) (%) (%)
Global 0.17 1,335 402,886 0.88 0.11 0.02 13.95 74.59 11.45
North America 0.11 433 112,438 0.83 0.08 -0.01 4.62 80.93 14.44
South America 0.11 81 28,265 0.94 0.07 0.02 14.17 75.85 9.97
MAIAC

(AODrem) Europe 0.11 208 96,715 0.80 0.06 0.02 11.29 82.22 6.49
Asia 0.31 321 90,821 0.90 0.14 0.02 18.79 68.22 12.99
Africa 0.21 110 48,877 0.81 0.19 0.06 31.45 57.11 11.44
Australia 0.09 28 12,427 0.62 0.07 -0.01 6.16 75.34 18.49
Global 0.18 1,335 811,438 0.83 0.14 0.02 11.76 78.98 9.26
North America 0.12 433 216,264 0.80 0.09 0.00 5.71 86.22 8.07
South America 0.13 81 49,721 0.90 0.11 0.02 12.87 81.64 5.49

Downscaled
MERRA-2 Europe 0.13 208 177,125 0.79 0.07 0.01 8.54 86.07 5.39

(AODwm2) )
Asia 0.29 321 175,781 0.78 0.24 0.06 22.54 65.14 12.32
Africa 0.24 110 88,374 0.85 0.15 0.02 16.13 67.59 16.28
Australia 0.10 28 21,051 0.76 0.06 —-0.02 2.44 83.60 13.96
Global 0.21 1,335 449,452 0.83 0.15 0.01 12.21 65.52 22.27
North America 0.16 433 129,716 0.80 0.10 -0.02 5.23 67.52 27.25
South America 0.17 81 30,073 0.88 0.11 0.00 10.51 67.11 22.38
Purely
Reconstructed Europe 0.16 208 107,961 0.73 0.09 0.00 9.63 73.63 16.74
AOD

Asia 0.33 321 107,876 0.81 0.24 0.03 18.64 56.60 24.76
Africa 0.27 110 31,568 0.80 0.20 0.06 29.57 53.88 16.55
Australia 0.13 28 9,628 0.62 0.08 —-0.03 4.60 64.62 30.77
Global 0.19 1,335 756,166 0.85 0.14 0.01 12.96 69.44 17.59
North America 0.13 433 216,055 0.82 0.09 -0.01 4.86 73.12 22.02
South America 0.14 81 49,707 0.90 0.10 0.01 12.57 71.08 16.34

LGHAP v2
Europe 0.13 208 176,959 0.76 0.08 0.01 10.24 77.40 12.36
Asia 0.32 321 175,728 0.83 0.21 0.03 19.08 61.40 19.52
Africa 0.23 110 75,110 0.81 0.19 0.06 29.61 56.64 13.75
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Australia 0.11 28 21,048 0.63 0.08 -0.02 5.11 70.30 24.59

In Figure 5, we compared temporal variations in AOD between_the LGHAP v2_dataset and AERONET-ground-based
observations at six AERONET aeresel-observing—sites with long-term menitering—records. Compared to discrete AOD

observations from AERONET, the gap-free AOD time series_accurately weH-reconstructed long-term variations of aerosol
loading from 2000 to 2021 at these-six monitoring sites, with R ranging from 0.83_to =0.97 and RMSEs varying between 0.04
and 0.24. Note that tThe lEarger RMSEs_observed at the Alta Floresta and Beijing sites are more likely ascribed to the

reconstruction failures of extreme-abnormal AOD peaks, largely because of very limited peak values for reference in the AOD
tensor. Referring to histograms of AOD deviations between the LGHAP v2 and AERONET observations, more than 80% of
AOD biases fell within the range of werefound-to-vary-between—0.1 and-to 0.1, demonstrating a high accuracy of the-gap-
freefilled AOD in the LGHAP v2 dataset.
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Figure 5. Temporal variations in the monthly AOD over six AERONET sites with long-term AOD observations during-from 2000—to 2021.
The pPanels on the right present histograms of AOD deviations between the LGHAP v2 and AERONET observations at each individual

site.

4.3. Data Aaccuracy of Gglobal Ggap-Ffree PMzs Ceoncentrations in LGHAP v2

Global gap-free PM2.5 concentration estimates were then-derived from gap-filled AOD images by taking advantage of the
novel SCAGAT medelethod that was specifically developed te—falfitfulfillthefor global PM2s concentration mapping.
AdditionalMere details related—to—theperformanee—evaluation-of the SCAGAT medel-method were deseribed-provided in
another eempanton-study_(Li et al., 2024), and_here we-hereby focused on the data accuracy of the global gap-free PMzs
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concentration estimates. Figure 6 presents the validation accuracy of the daily gap-free PM2s concentration estimates by
comparing them againstto the ground-based PMz.s concentration records measured at 350 independent{previouslyprierhy
hoeld-out) meniteringsites. The—resultsAs indicated, by accounting for spatial representativeness of the prediction models

during the spatial extrapolation, that PMz.s5 concentration estimates derived from the SCAGAT model are inkave better better
agreements with ground-measured—-based PMa.s concentration measurementss-aeross-the-glebe, with an R =o0f 0.91 and an
RMSE =0f 9.587 pg m—>), eutperforming surpassing the performance of our traditional PMz smachine-learninged predietion
models wsariaesarnine o b pade pespensin s s s b s sesdladion e el doslpesbe soaiel e s lo o (Bai et

al., 2019, 2022a, 2023). Meanwhile

LGHAP v1 (R =095 RMSE =12.03 o m—>); neglecting a-different number-of validation-samples—tThe data accuracy was
further improved by correcting modelling biases using sparsely distributed in_-situ PM2s concentration measurements via
optimal interpolation, swhereresulting in an improvement inwith R #mproved-to 0.95 and_a reduetiendecrease in RMSE-was
reduced-down to 5.7 pg m>_(asshown-in Figure 6b). As shown in Figure 6e, by leveraging the SCAGAT modelthe PMa s
concentration estimates over China in the LGHAP v2 have a higher data accuracy (R = 0.97, RMSE = 7.93 ug m*) than those

in LGHAP v1 (R =0.95, RMSE = 12.03 pg m %), Figuress: 6¢c—6d present a site-based distribution of R and RMSE for the

LGHAP v2 PMa2 5 concentrations over each individual validation site. Compared to the United States of America and Europe,
as shewn-depicted in Figures- 6e—6g, larger PMa2.s concentration biases were mere-tikelyto-be-observed in Asia-China because

of dueto-thegtven-higher PMas loadings therein.
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Figure 6. Site-based validation accuracy of PM, s concentration estimates derived from gap-free AOD images using the proposed SeGATF
SCAGAT method.- (a) Scatter plots between PM, s estimates derived from the SeGAT-SCAGAT model and_the withheld greund-based
PM, 5 concentration measurements. (b) Same as Eisare—6(a) but for gap-free PM, 5 estimates fusing ground measured PM, 5 concentration
measurements. (c—d) Site-based correlation coefficient and RMSE for LGHAP v2 PM, 5 concentrations, respectively. (e—g) Histograms of
LGHAP v2 PM; 5 concentration bias over China, United States, and Europe, respectively. Note_the ground-based PM, s concentration data
used here for validation were-held-out-priorlyand-usedneitherwere asnetinvelvedin-used neither in the model training nor_in the data

fusion procedures.

Table 3 presents the data accuracy of the gap-free PM2s concentrations in the LGHAP v2 dataset during the period of
20002021 over nations with adeguate-sufficient records of ground-based measurements-efPMa.s concentration measurements

reeords. It indicates that the data accuracy of PMa.s concentration estimates varied across regions, with R changing from 0.71
to 0.98 and RMSEs ranging between 1.15 and 32.69 pug m>. Regardless of the substantial differences in the total number of
data pairs-aeressregions, larger RMSEs are mainly observed in regions like Mongolia (32.69 pg m>) and India (25.34 ug
m?), which swhere-often suffered from high-severe PMas loadingspollution episodes. The spatially varying accuracy metrics
betweenregions-net-onty-highlight the great complexity in large-scale PM2.s modeling—Fhis, which also ardbut-underscores
the critical importance of eensideringaccounting for spatial representativeness wia-data-drivenmedels-when applying models

over other regions for data extrapolation.

In Figure 7, we examined long-term variations in PM2.s concentrations in four different cities euring-from 2000—to 2021.
The-A good agreement between-the LGHAP v2 PMo s-coneentration-time-series—andwith the unseen{previously withheld)
eround-based-PM>5 concentration measurements confirmsthe sienificantdemonstrated a high accuracy of the LGHAP v2

PM,.s_concentration datasetestimates. Compared to temporally discrete PM2.s concentration records measured by ground

monitors, the gap-free LGHAP v2 PM2s concentration time series enabled us to examine-better understand the long-term

variability of haze pollutions across the globe—benefitingfrom—its—eiventhe gapfree—merit. Additionally—theagreement
B e L e

globe—As shown, declining trends #PM. s-coneentration-were observed in PMo s concentrations as early as in 2006 in New

York (United States), whereas apparent reductions were_mainly observed mainty—after 2012 in Jilin (China) and 2015 in

Toyama (Japan). Overall, the gap-free and high accuracy merits render PM».s concentrations in the LGHAP v2 dataset reliable

data sources for assessing long-term trends of haze pollutions across the globe.

Table 3. The dBata accuracy of gap-free PM, 5 concentrations in_the LGHAP v2 dataset by-compareding toagainst ground-based PM. s
coneentration-datameasurements in countries with adegquate-sufficient PM, 5 eonecentrationmeasurementsrecords. The N denotes the total

number of PM, 5 concentration data pairs for calculating R, RMSE, and bias.

Bias

RMSE RMSE Bias

Country N R 3 Country N 3 3
m _ m m

Mem™) o m) (ngm™)  (ngm™)

China 3,113,160 0.97 8.27 0.36 ITran 67.434 0.74 10.14 —-0.09
. INEHU 2,048,983 0.84 3.34 0.06 Brazil 50,252 0.81 5.63 0.78

nited States

Japan 1,810,436 0.96 1.82 0.07 Portugal 47,782 0.82 3.49 0.14
Canada 1,206,176 0.89 2.12 0.05 Hungary 41,524 0.92 4.59 -0.17
Korea 526,138 0.96 3.49 0.16 Sweden 40.839 0.91 1.61 -0.23
France 502,555 0.96 2.25 0.13 Norway 40,001 0.86 2.45 -0.07
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Germany 472,103 0.97 1.94 0.04 Finland 38.884 0.93 1.15 —0.08

Ttaly 371,888 0.93 523 0.04 South Africa 35314  0.71 10.84 291
biclnited 559181 .04 1.95 0.11 Serbia 34795 087 9.70 0.01
Kingdom
Spain 297.202 0.87 2.63 0.23 New Zealand 26,654  0.73 3.63 0.20
Czech 209274 097 3.38 0.24 Colombia 26332 0095 4.60 0.45
Republic
Australia 208,772 0.72 3.70 -0.03 Ukraine 22,692 0.84 579 —0.08
India 207,974 0.92 25.34 1.64 Bosnia- 20,297 0.94 12.08 1.59
Herzegovina
Belgium 177.036 0.98 1.54 0.01 Greece 19.410  0.79 5.41 ~0.10
Poland 175,782 0.95 5.03 0.52 Croatia 17,926 0.90 5.82 —0.44
Turkey 171,381 0.84 10.27 ~0.99 Switzerland 14,719  0.75 3.98 226
Austria 131,186 0.97 2.28 —0.14 Russia 14357  0.84 4.06 0.58
Netherlands 119,047 0.97 1.72 —0.07 Estonia 13,793 0.91 1.48 0.19
Mexico 112,379 0.80 11.42 0.45 Lithuania 13,405  0.87 4.49 0.07
Chile 111,416 0.80 12.64 0.16 Ecuador 12517 088 2.92 0.28
Slovakia 104,892 0.95 3.77 0.18 Vietnam 12,480 078 12.94 0.63
Thailand 82.206 0.89 13.21 1.25 Macedonia 10416  0.92 10.81 2.17
Israel 68,012 0.83 5.08 0.32 Mongolia 9,926 0.91 32.69 —0.17

Figure 8 presents_the temporal variations in the global annual mean PMa.s concentration_distribution from 2000 to 2021.
First-ef-allFirstAs shown, the daily gap-free merit—ofthe LGHAP v2 dataset-ean seamlessly supports the derivation of
comparable annual mean PM2 5 concentration maps between years, as-and data gap related biases in raw AODrera images were
eliminated-- -~ - e o o HeweverOntheotherhandt 00
the quality-assured annual mean PM2 5 concentration maps enable us net-enly-to casily pinpoint the hotspot regions suffering

from severe haze pollutions andbut-alse to examine-analyze the long-term variability of global PMa2.s concentrations-aeress-the
glebe. Specifically, As-shewn-Mongolia, north India, eastern China, and central Africa were identified as four major regions

with relatively high PM» s loadings, in particular north India, becoming a hotspot region suffering from more severe PMo s

pollutions on the planet. Substantial PMa s reductions were observed in eastern China sinee-from 2014 onwards, with PMas

concentrations reduced to-a levels even comparable to countries in central Asia: ;and-inturnhowevernorth-dndiawas—intarn
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Figure 7. An inter-comparison of temporal variations in monthly mean PM, s concentrations in four different cities between the LGHAP v2

and collocated ground-based PM; 5 concentration measurements euring-from 2000=_to 2021.
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Figure 8. Spatial distribution of the global annual mean PM, s concentrations derived usine-from the LGHAP v2 dataset frem-between 2000
te-and 2021.

5. Discussion

Spatially contiguous AOD and PMa.s concentration grids are pivotal to regional air quality management, haze pollution
exposure risk assessment, and aerosol radiative forcing diagnosis. By seamlessly gearing up state-of-the-art machine —learning
and tensor completion methods, a novel framework-etbig earthEarth data analytics framework was developed to fulfill the
generation of long-term high-resolution AOD and PMa.s concentration grids as-e£2000-in-China-(LGHAP vl1) in our previous
study (Bai et al., 2022a). MultimedalSpecifically, multimodal AODs and relatedevant air quality seasurements-data acquired

from diverse satellites, numerical models, and ground monitoring stations were firstly harmonized using random forest-based
data-driven models. Next, mMultisource AOD data flows were then-weaved neatly as the tensor inputs,; fremandwith whieh
data gaps in daily MODIS AOD imageries swere-properly reconstructed via low-rank tensor completion. Finally, gap-free PMa.s
concentration grids were mapped from gap-filled AOBs-AOD images using a random forest model-threugh-machinelearned
regression—meodels. This big data analytics framework provided an effective solution to integrate multimodal earthEarth
observations from diversestinet sources to generate high-quality AOD and PM concentrations data-produets-in China.;and-the

In this study, aiming to generate global gap-free AOD and PMb».5 concentration grids, namely the LGHAP v2 dataset, the
previous big earthEarth data analytics framework prepesed-in-ourprevious-study-was adopted but enhanced with several new

, with particular focuses on te-accommodatinge the

rocketlng data size and global scale modeling demand —aimineneteonby-to-impreve-the-computingefficieneyandother thanbut

alse-te reduee-reducing modeling biases. Specifically, an attention mechanism, inspired by deep-learning techniques, was

hereby introduced to weight each data slice in the input tensor to account for the drawback induced by Eikewise; HOSVD-was

petential-drawbaeleas-anthe equal weight efeach-datasheeinthe AOD-data-euberenderedstrategy, with; with-lEarger weights
were-assigned to data slices-that better resembleding with fewer data gaps and more similar to the actaal AOD-distributiontarget

image-en-the-target-date-with-mere-valid-ebservations. In such-areseareh-eontextother words, both the spatial coverage ratio
of valid observations in each soft data and the mutual information between the target and soft data swereusedserved-astwe

relevant-metrieswere considered simultaneously to help-determine-the-weight assigned-te-each data slice in the AOD tensor.
A welghted AOD tensor was then calculated %éused—&s—th%mptﬁ—tenser—é&@a—te%empel—g@tensor completion-preeess,
hainstead ofs using all the
available datainformation in the AOD tensor indifferently. As-demenstrated-by-Although the ablation experiments shown in
Figure 2-- have demonstrated the efficacy of the-AODfieldsreconstructedfrom—thethis attention-reinforced tensor better

te&ser—w&heut—app#ymg—@h%aﬁe&&eﬁ—meeh&msmconstmcnon strategy, the underlying philosophy, in particular the relative

importance of mutual information and extra spatial coverage, has been not yet fully justified and assessed.

Meanwhile-aAn adaptive background field updatmg scheme was also introduced to 1terat1vely update prior information

in the target AODzex= images—eus




Compared to the invariant prior information, adaptively updated prior information allowed for mitigating the influence of

uncertainties in the prior information on the reconstruction accuracy, particularly large modeling biases from numerical

simulations. Despite these algorithmic improvements, the-inter-comparison—resulis—even
indieated-a slightly reduced data accuracy of gap-filled AODs in China from the LGAHP v2 dataset was observed compared

to those in_ the LGHAP vl dataset. Further investigations revealed this was mainly due to thea relatively poor data accuracy of
the downscaled AODwm:2 data beeausesinee-abecause a global-scale versusratherthan regional downscaling model was applied
| . D i China, This, in turn. underscores the vital . . .

analyties:Nonetheless, benefiting from the adaptive background updatinge scheme, the modeling biases in AODwobaekereund

AODfields were effectively mitisatedsuppressed in the final reconstructed AOD fields, evidenced by larger biases of AODwm2
(R=0.77, RMSE = 0.36) versus smaller biases of the purely reconstructed AOD (R = 0.82, RMSE = 0.26).

As-illastrated-inFigure 9;-theThe global gap-free and high-resolution benefits -gap-filed AOD-grids-with-a-datly+-km
reselution-enableus-render the LGHAP v2 dataset a promising data source to better-monitor global aerosol distribution and

variations in space and time. Aeresel-As illustrated in Figure 9. aerosol-related environmental disturbance episodes, such as
sandstorms, wildfires, and haze pollution events, can be well indicated by local rising AODs-atthe—regional-seale. More
importantlysteritieally, the gap-filled AOD dataset provides us with an unprecedented opportunity to monitor aerosol loadings

and variations even under cloud covers, e.g., the haze pollution episodes over southern India and eastern China shown in
Figures 9d and 9e.; This is largely benefited -from-the the intelligent spatiotemporal pattern recognition-ane-learning, as well
as the assimilation of air quality measurements from ground monitoring stations and numerical aerosol diagnostics. While
thissueh-a global air quality mapping approach greatly facilitates the surveillance and management of air pollution around the

world, the high-resolationgap-free AOD-and PMo sconeentration LGHAP v2 dataset would also targely-significantly reduce
the vneertainty-uncertainties in the health-related aerosol exposure risk assessment results because of the gap-free and high-

resolution advantages.

1Crop mEImpervious Bl Forest [ Grass [JBarren [1Wat [Jlce/Snow

Figure 9. An illustration of AOD responses to wild-firewildfires, sand-stermsandstorms, and haze pollution episodes across the globe, as
characterized by gap-free AOD in_the LGHAP v2 dataset. The gGlobal map in the middle panel shows athe spatial distribution of-the major
land cover types in 2020.
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Figure 10. AOD trends over twelve regions of interest aeress-the-glebeworldwide from 2000 to 2021 estimated from gap-free AODs in the

LGHAP v2 dataset. The top panel shows a-the spatial distribution of global AOD deviations between the first and second decade in the
2000s. Twelve diagrams in the bottom panel show the linear trend of mean AOD over the outlined region of interest at different starting

times with varying time window sizes.

Global AOD variation trends were carefully examined byBy taking advantage of the LGHAP v2 AOD dataset;&lebal

AOD-variationtrends—were-earefully-examined. Figure- 10a presents the AOD deviations between the AOD averages during
the first and the second decade in 2000s across the globe. As shown, substantial AOD increases in the twenty-first24st century

present-primarily present over India+G)- and central Africa{1), with remarkable AOD decreases observed in the middle of
South America. In North America, AOD increases were mainly observed in Canada and the western United StatestS—+A)
whereas AOD decreases were found in the eastern United StatestS-85. Additionally.Alse; in referencereferring to temporally
varied-varying AOD trends in regions A and B, we-may-observe-evident AOD increasing trends_have-beenwere observed in

the United StatesHS fromsinee 2012 onwards, while the-significant decreasing trends in the eastern United StatestS were

even-tetallyentirely reversed after 2015. This effect could be partially linked-attributed to more frequent and intensive wildfire
emissions in north America #-during the second decade of the 2000s #rnerth-Ameriea(Burke et al., 2023; Wei et al., 2021b).

A sSimilar effect was also observed in Europe-(<), with an apparent slowdown in_the AOD decreasing trend after 2010.
IApparentinverse effects were also observed in China but with totally different temporal transition patterns. As shown,
statistically significant AOD increasing trends were observed in eastern {9)-and southern (£)-China in the first decade, whereas
inereasing-trends-started-to-slow-downsinee2007with a slowdown starting around 2007, ard-followed by a sudden reversione
to decreasing trends was-ebserved-after 2010. Mere-impeortantly-Tthis was also the most significant AOD decreasing trend s

during the 2010s around the world. Thisese observational evidences confirmsaffirm the great-success of clean air actions in

improving air quality in China during the-pastrecent decades (Bai et al., 2022a; Liang et al., 2020; Zhang et al., 2019). A

sSimilar temporal variation pattern was also observed in the Middle East 4H}-but with relatively weak trends. In contrast, India
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{G)was athe hotspot area showing an increasing trend in AOD throughout the 2000s, despite a short period of increasing hiatus
fromeuring 2013— to 2015.

Ta-this-studygGlobal gap-free PM2 s concentrations were derived en-the-basis-efbased on gap-filled AOD grids by taking
advantage of a novel SCAGAT deep—learning-model;—which—was—speeifically-developed-to-fulfilfulfill slobal global-seale

PM. sconcentration-mapping. DifferingfremUnlike many other data-driven modelingpraetieess, the spatial representativeness
ofdata—driven-medels-was accounted for by-in the SCAGAT model, providing a unique solution to model PM2.5 concentrations

over regions even without PMa2.s monitoring sites. The-availability-efdDaily gap-free PM2 s concentration grids alse-favors the

assessment of the pandemic’s influence-impaets on regional air quality. Figuress: 11a and 11bin-the-middlepanek; present
athe spatial distribution of PM2s concentrations before and during the COVID-19 pandemic, respectively. Neglecting long-
term variation trends in PMa.s concentrations, the substantial PMa2.s decreases in the-middle and eastern China, as well as in
central Europe, clearly indicate the positive effect of pandemie—pandemic-related mobility restrictions on air quality
improvement; (by comparing PMas concentration in 2019 and 2020 during the synchronous period). In contrast, PM2
reductions were relatively small in the United StatestS due to the lack of mobility restriction measures, with apparent PMz s
reductions observed mainly in regions like Chicago. Overall, the-avaiabilitrefthe LGHAP v2 dataset enables us to better
investigate global aerosol variations and-te assess-assess PMa s-s-related health_exposure risks-wia-expesure-assessment..

Feb 2019
Feb 2020

Feb 2019
Feb 2020

Feb 2019

Feb 2020
PM, s (ug m™)

10 20 30 40 50 60 70 80
Figure 11. Influencempaets of the COVID-19 pandemic on PM,s concentrations in United States, Europe, and China. Fhe-PM, s

concentrations from LGHAP v2 were averaged over-athe synchronous periods in 2019 and 2020 for inter-comparison.

6. Data Availability

The LGHAP v2 dataset provides global gap-free AOD and PMz.5 concentration grids from 2000 to 2021 with a daily 1-
km resolution. To facilitate the data sharing, each daily map was saved-as ene-a separateingle NetCDF file, and the data in

each individual month wasere then archived as a-one zip file.

in-one-yearwere-archived-as-one-single-dataset—Table 4 prevides-summarizes the permanent dlgltal obJect identifiers for data
in each individual-datasetcalenda year from 2000 to 2021. All these datasets were publicly available at the LGHAP community

link via https://zenodo.org/communities/ecnu_lghap (Bai et al., 2023a). The dPata user guide and visualization codes (Python,

MATLAB, R, and IDL) were also provided to guide the users inte retrievinge data from the NetCDF files, which can be
accessedible at https://doi.org/10.5281/zenodo.10216396.

Table 4. List of data links for AOD and PM, 5 concentration grids in the LGHAP v2 dataset for each individual year.

Year LGHAP v2 AOD grids LGHAP v2 PM; 5 grids
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https://zenodo.org/communities/ecnu_lghap
https://doi.org/10.5281/zenodo.10216396

2000

https://doi.org/10.5281/zenod0.8281206

https://doi.org/10.5281/zenod0.8307595

2001 https://doi.org/10.5281/zenodo.8281216 https://doi.org/10.5281/zenod0.8307597
2002 https://doi.org/10.5281/zenod0.8281218 https://doi.org/10.5281/zenod0.8307599
2003 https://doi.org/10.5281/zenod0.8281222 https://doi.org/10.5281/zenod0.8307601
2004 https://doi.org/10.5281/zenod0.8281226 https://doi.org/10.5281/zenod0.8307605
2005 https://doi.org/10.5281/zenod0.8281228 https://doi.org/10.5281/zenodo.8307607
2006 https://doi.org/10.5281/zenod0.8287125 https://doi.org/10.5281/zenod0.8308225
2007 https://doi.org/10.5281/zenodo.8287129 https://doi.org/10.5281/zenodo.8308227
2008 https://doi.org/10.5281/zenod0.8287133 https://doi.org/10.5281/zenodo0.8308231
2009 https://doi.org/10.5281/zenodo.8287995 https://doi.org/10.5281/zenodo.8308233
2010 https://doi.org/10.5281/zenodo.8288389 https://doi.org/10.5281/zenodo.8308237
2011 https://doi.org/10.5281/zenodo.8288395 https://doi.org/10.5281/zenodo.8310586
2012 https://doi.org/10.5281/zenodo.8288397 https://doi.org/10.5281/zenodo.8310590
2013 https://doi.org/10.5281/zenod0.8287207 https://doi.org/10.5281/zenodo.8310702
2014 https://doi.org/10.5281/zenodo.8288387 https://doi.org/10.5281/zenodo.8310704
2015 https://doi.org/10.5281/zenod0.8289613 https://doi.org/10.5281/zenodo.8310706
2016 https://doi.org/10.5281/zenod0.8289615 https://doi.org/10.5281/zenodo.8310708
2017 https://doi.org/10.5281/zenodo.8294100 https://doi.org/10.5281/zenodo.8310711
2018 https://doi.org/10.5281/zenodo.8301364 https://doi.org/10.5281/zenod0.8313603
2019 https://doi.org/10.5281/zenodo.8301367 https://doi.org/10.5281/zenodo.8313611
2020 https://doi.org/10.5281/zenodo.8301375 https://doi.org/10.5281/zenodo.8313613
2021 https://doi.org/10.5281/zenodo.8301379 https://doi.org/10.5281/zenodo0.8313615

7. Conclusion

In this study, the LGHAP v2 dataset, a heritage of the LGHAP-, —whichprevideslong-term—gap-free AOD-andPM
coneentration—grids—with—a—daily 1-kmresolution—in—China,—was generated to provide global gap-free AOD and PMazs
concentration grids with a daily 1-km resolution with-the-samereselutionfrom 2000 to 202 1{as-of2000daily-and Han)aeross
the-globe);-, by takingadvantage-ofleveraging an improved big earthEarth data analytics approach. The gGround validation
results demenstrate-confirm high accuracies of these two gap-free products, with AOD having a-eerrelationnan R of 0.85 and
an RMSE of 0.14 compared to_the AERONET AOD observations,; which are slightly worse than the original MCD19A2
product (R = 0.88 and RMSE = 0.11). Similarly, Fhe-sSite-based-validationresults-alse-indieate that the PM2.s concentration
estimates derived from gap-free AOD via the SCAGAT method show anageed agreement with_the withheldheld-eut ground-
based PM2.s measurements, with-achieving an R of 0.91 and an RMSE of 9.57 pg m>;-and Furthermeore;, while the data

accuracy was farther-improved to_an R of 0.95 and_an RMSE of 5.7 ug m™> with the fusion of ground-measured PM2s

were incorporated to the big data analytics appfe&c—kkframework to what-wasthatas-developedusedimprove both the computing
speed and the reconstruction accuracy
improvements. The ablation experiments weH-demonstrated the effectiveness and advantages of appl—ymg—w&mg—ti
newly implemented attention mechanism to weight each slice of soft data in_the AOD tensor-during-the-tensorecompletion
procedure. Adse;Additienalty-uUpdating prior information in the target image after each_tensor reconstruction iteration net

only-helpsed mitigate the prebabilityrisk of error propagation from numerical aerosol diagnostics to the final reconstructed
field-andbut-alse—while-alse and improveinges the convergence speed of tensor completion. MereeverOverall, this study

provides a geed-compelling illustration of big earthEarth data analytics to generate high-quality remote sensing datasets by
synergistically integrating and assimilating multimodal data from diverse sources via maehine-machine-learning techniques.

ThelastbutnotleFastinallyAdditionally, this big data analytics approach ean-could be also used for be-also-used-to-fulffulfill
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near-term gap-free AOD mapping by leveragingsimply replacing-by-simplyreplacing-aereselreanalysis-with numerical AOD
reanalysis with forecasting fieldss (e.g., CAMS AODB-forecasts).

This study also provides new insights on how to deal with the scalingeffeet-¢ problem when establishing-developing
large-large-scale PM2senvironmental variable (e.g. PMbs concentration) predietion-mapping models. Instead ofRatherthan
ereating-constructing a global model by-gatheringwith all paired data samples-inteo-one-a-single-trainingset, site-specific PMz s
prediction models were firstly established using_a random forest model;-and—+oHew-that, and a graph attention network was
then then applied-developed to establish an ensemble learningspatiakinterpelation model:- to integratinge multiple enthe-basts

of PM2 s estimates derived from site-specific random forest models trained over sites with similar scene features as the target
grid. By fullytakinsadvantage ofaccounting for the scene similarity efbetween distant-datasamplegeographic regions, the

proposed deep-learning methedodel effeetivelyattempted toBeeauseSinee—there—isno-need-to-establish-regional-estimation
eb—thissuwehwphitosophynotonb—improvesthe modebnoaecraeysnd oo the — ~  problem

in large--scale PM>.s modeling practices.

The LGHAP v2 dataset is publicly accessible usingfress the aforementioned links-given-abeve. The Given-the-merit-of

the-gap-free and high-resolution-erit-this dataset can be-used-to-deepen-ourunderstanding-ofbe used as a reliable data source
for assessing aereselacrosol-elimatie-climate effeetsinteractions, as well as PMa.s exposure risks and related health outcomes

at-theelobal sealearound the world. Alse;Additienally—therResearchers are also encouraged to use this dataset to better

evaluate the status and trends of urban aerosol pollutions across the globe to support the assessment of sustatnable-Sustainable

develepment Development geals-Goals-related-tourbanairqualityaerosstheglobe.
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