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Abstract. The global ocean oxygen concentrations have declined in the past decades, posing threats 18 

to marine life and human society. High-quality and bias-free observations are crucial to 19 

understanding the ocean oxygen changes and assessing their impact. Here, we propose a new 20 

automated quality control (QC) procedure for ocean profile oxygen data. This procedure consists of 21 

a suite of ten quality checks, with outlier rejection thresholds being defined based on underlying 22 

statistics of the data. The procedure is applied to three main instrumentation types: bottle casts, 23 

CTD (Conductivity-Temperature-Depth) casts, and Argo profiling floats. Application of the quality 24 

control procedure to several manually quality-controlled datasets of good quality suggests the 25 

ability of the scheme to successfully identify outliers in the data. Collocated quality-controlled 26 

oxygen profiles obtained by means of the Winkler titration method are used as unbiased references 27 

to estimate possible residual biases in the oxygen sensor data. The residual bias is found to be 28 

negligible for electrochemical sensors typically used on CTD casts. We explain this as the 29 

consequence of adjusting to the concurrent sample Winkler data. Our analysis finds a prevailing 30 

negative residual bias with the magnitude of several µmol kg-1 for the delayed-mode quality-31 

controlled and adjusted profiles from Argo floats varying among the data subsets adjusted by 32 

different Argo Data Assembly Centers (DACs). The respective overall DAC- and sensor-specific 33 

corrections are suggested. We also find the bias dependence on pressure, a feature common both to 34 

AANDERAA optodes and SBE-43-series sensors. Applying the new QC procedure and bias 35 

adjustments resulted in a new global ocean oxygen dataset from 1920 to 2023 with consistent data 36 

quality across bottle samples, CTD casts, and Argo floats. The adjusted Argo profile data is 37 

available at the Marine Science Data Center of the Chinese Academy of Sciences (Gouretski et al., 38 

2023, http://dx.doi.org/10.12157/IOCAS.20231208.001) 39 

 40 

1 Introduction 41 

Progressive warming caused by the human-induced increase of the greenhouse gases in the 42 

Earth’s atmosphere leads to the decline of the dissolved oxygen concentration in the global ocean 43 

because of the reduction in oxygen solubility, the increase in stratification, which hampers the 44 

exchange between the surface layer and the ocean interior, and the accompanying change of ocean 45 

circulation (Keeling et al., 2010; Gruber et al., 2011; Deutsch et al., 2011; Praetorius et al., 2015; 46 

Oschlies et al., 2018). Another factor related to human activities is the increasing input of nutrients 47 

from agriculture and wastewater in the coastal regions (Oschlies et al., 2018; Breitburg et al., 2018). 48 

Nutrients facilitate the growth of phytoplankton and microbes subsequently decrease oxygen levels 49 

after the phytoplankton dies (Breitburg et al., 2018; Pitcher et al., 2021).  50 
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Recognizing the crucial role of dissolved oxygen for marine aerobic organisms, oceanographers 51 

started to measure oxygen in the late 19th century using the chemical method developed by Winkler 52 

(1888).  Since then, Winkler titration has been a standard method used on oceanographic ships and 53 

in laboratories (Langdon, 2010), and the technique has an accuracy estimated to be 0.1% or ±0.3 54 

μmol kg-1 (Carpenter, 1965). 55 

With the rapid technological progress during the 1960-70s and the development of the 56 

electronic CTD (Conductivity-Temperature-Depth) profilers, the first electrochemical sensors 57 

appeared, providing the possibility for continuous oxygen profiling, which is not possible with the 58 

Winkler method restricted by water samples from several depth levels. Electrochemical sensors are 59 

based on a Clark polarographic membrane (Clark et al., 1953). Oxygen concentration outside the 60 

membrane and oxygen diffusion through the membrane determine the sensor response. 61 

Electrochemical Clark-type sensors possess a very fast time response (<1 s), with an initial accuracy 62 

of 2% of oxygen saturation and precision of about 1 µmol kg-1 (Coppola et al., 2013). However, 63 

sensor drift due to fouling and electrolyte consumption over time requires periodic calibration. The 64 

first type of sensors applied on Biogeochemical Argo profiling floats (BGC floats) were Clark-type 65 

electrodes (Riser and Johnson, 2008).  66 

Optical oxygen sensors called “optodes” are based on the principle of fluorescence quenching 67 

of a fluorescent indicator embedded in a sensing foil (Körtzinger et al., 2005, Tengberg et al., 2006). 68 

The optode sensors appeared soon after the first implementation of the Clark-type sensors on Argo 69 

floats (Gruber et al., 2010). Compared to electrochemical sensors, optodes are characterized by 70 

long-term stability and high precision with the disadvantage of a slower response time (Gregoire et 71 

al., 2021). During the initial period of several years, both Clarke-type and optode sensors were used 72 

on Argo floats (Claustre et al., 2020).  However, drift and initial calibration issues with 73 

electrochemical sensors have led to the increased implementation of optodes on Argo floats 74 

(Claustre et al., 2020), for which calibration using simultaneous water samples is not possible. From 75 

the beginning of the BGC-Argo float implementation until March 2024, there have been more than 76 

2100 Profiling biogeochemical (BGC) Argo floats that provide ocean oxygen observations with 77 

unprecedented temporal and spatial resolutions in this century (Johnson et al. 2017; Roemmich et 78 

al. 2019).  79 

Different techniques have been applied in the past to collect ocean oxygen data, and the total 80 

number of oxygen profile data from all instrument types within the World Ocean Database (Boyer 81 

et al., 2018) reached a total of more than 1.2 million by 2023. However, there are a lot of data 82 

quality issues in the historical oxygen database due to many reasons, including instrumental errors, 83 

data collection failure, data processing errors, improper sample storage, unit conversion and others. 84 
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Furthermore, as different instruments have different data quality, merging several instrumentation 85 

types into an integrated database requires proof of data consistency. 86 

These quality issues impede the various applications of oxygen data, for instance, investigating 87 

how much oxygen the ocean has lost in the past decades (Levin et al., 2018; Gregoire et al., 2021). 88 

Previous assessments indicate the decline of open ocean full-depth O2 content of 0.3–2% since the 89 

1960s, with an upper 1000 m O2 content decrease of 0.5–3.3% (0.2–1.2 μmol kg−1 dec-1) during 90 

1970–2010 (Bindoff et al. 2019). The maximum estimate is at least 6 times larger than the 91 

minimum one, suggesting substantial uncertainty in quantifying the open ocean oxygen changes, 92 

which is a grand challenge for the accurate assessment of deoxygenation (Helm et al. 2011; Long et 93 

al. 2016; Ito et al. 2017; Schmidtko et al. 2017; Breitburg et al. 2018; Sharp et al. 2023). 94 

Furthermore, there is a mismatch between observed and modelled trends in dissolved upper-ocean 95 

oxygen over the last 50 years (Stramma et al. 2012). Uncertainties and differences between 96 

estimates are at least partly attributed to the oxygen data quality issues and inconsistency introduced 97 

by different instrument types (e.g. different precision, instrument-specific errors/biases) (Gregoire et 98 

al., 2021). For example, some BGC-Argo data conduct in-air oxygen measurements, which can be 99 

used to correct potential systematic errors, while in other cases, a climatology is used (i.e. World 100 

Ocean Atlas) as a reference (Bittig and Körtzinger, 2015; Gregoire et al., 2021). Therefore, a 101 

consistent and thorough assessment of oxygen data quality, including uniform data quality control 102 

for all instruments and instrumental bias assessments/corrections, is critical to providing a 103 

homogeneous ocean oxygen database for various follow-on applications, including quantification of 104 

the trend of ocean deoxygenation. 105 

The paper aims to provide a quality-controlled (QC-ed), consistent global oxygen dataset for 106 

the entire period 1920-2023. To achieve this goal, a novel automated QC procedure for ocean 107 

oxygen profiles was developed. We implement this QC procedure in the global archive and analyze 108 

and describe the quality of oxygen data obtained by different instrumentation types. The 109 

performance of the quality control procedure is assessed using subsets of high-quality hydrographic 110 

data and the QC-ed BGC Argo float profiles. Finally, we use bottle sample data obtained through 111 

the Winkler method as a reference to assess oxygen biases for ship-based CTD and BGC Argo 112 

oxygen profiles.  113 

The rest of the paper is organized as follows. The data and methods employed in the study are 114 

presented in Section 2. The data QC procedure is introduced in Section 3, with the data quality 115 

assessment presented in Section 4. The results of benchmarking the automated QC procedure using 116 

manually controlled datasets are shown in Section 5. Assessment of the residual bias for Argo and 117 

CTD profiles is conducted in Section 6. The impacts of QC and bias adjustment on estimating 118 
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oxygen climatology and its changes (including annual cycle and long-term changes) are 119 

investigated in Section 7. The results of the study are summarized and discussed in Section 8. Data 120 

and code availability are described in Sections 9 and 10, respectively. 121 

 122 

2      Global archive of dissolved oxygen profiles 123 

The original oxygen profile data at observed levels are sourced from two large depositories: 1) 124 

World Ocean Database (WOD) (as of January 2023) and 2) oxygen profiles from the Argo Global 125 

Data Assembly Center (GDAC) (ARGO, 2000). World Ocean Database (Boyer et al., 2018) 126 

represents the largest depository of the dissolved oxygen profile data. For the current study, we used 127 

ship-based WOD oxygen data coming from two main instrumentation types: 1) Ocean Station Data 128 

(OSD) and 2) high-resolution CTD profiles. OSD instrumentation group is represented by bottle 129 

casts with oxygen determined by the Winkler method. CTD profiles are obtained mainly through 130 

the electrochemical sensors. For the Argo float data from GDACs, both raw (unadjusted) and 131 

adjusted and QC-ed data are available with the latter used for the current study. 132 

The OSD profiles are most abundant between the 1960s to 2000s, CTD profiles between the 133 

1990s to 2010s, and Argo profiles dominate after 2010 (Fig. 1).  The geographical distribution of 134 

oxygen profiles is inhomogeneous (Fig. 2), with OSD profiles exhibiting almost global coverage 135 

compared to CTD and Argo, with dense sampling typical for the near-coastal areas and a sparser 136 

sampling in the central parts of the oceans (Fig. 2a). The CTD profiles are most abundant in the 137 

North Atlantic Ocean and are represented by a sparse net of transoceanic sections in the central 138 

parts of the main ocean basins, leaving large data gaps, especially in the central regions of Pacific, 139 

Indian, and Southern oceans (Fig. 2b).  The total number of profiles from all three groups exceeds 140 

1.2 million for the time period 1920 to 2023, so manual QC of the global oxygen dataset is nearly 141 

impossible.   142 

 143 
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Figure 1. Yearly number of oxygen profiles from the World Ocean Database (OSD and CTD 

profiles) and national DACs (Argo) from 1920 to 2023. 

 

 144 

Amounts of oxygen profiles disseminated by ten national Argo DACs and used for the current 145 

study are given in Table 1. The most considerable contribution comes from two DACs: the Atlantic 146 

Oceanographic and Meteorological Laboratory (AOML) and the French CORIOLIS Center 147 

(Coriolis). Together, these two DACs contribute 71% of all oxygen profiles. The global sampling by 148 

Argo floats is characterized by big gaps in the tropical belt of the World Ocean (Fig. 2c) and in the 149 

marginal seas with shallow bottom depths. 150 

The DACs report oxygen data along with quality flags set after the QC procedure performed by 151 

each DAC. The spatial distribution of the profiles from each DAC is shown in Fig. 3. Only the 152 

AOML dataset is characterized by a more or less global coverage. The profiles from the second 153 

large Coriolis dataset are concentrated mostly in the Atlantic and Southern oceans. Other DACs are 154 

characterized by a regional scope: Japan Meteorological Agency (JMA) data come from the Pacific 155 

Ocean east of Japan, profiles from the Commonwealth Scientific and Industrial Research 156 

Organization (CSIRO) cover the Southern Ocean, China Second Institute of Oceanography (CSIO) 157 

mainly provides Argo profiles from the subtropical and tropical western Pacific Ocean, Argo 158 

profiles from the British Oceanographic Data Centre (BODC) are located in the Atlantic Ocean. 159 

Profiles from the Korea Ocean Research and Development Institute (KORDI) and from Korea 160 

Meteorological Administration (KMA), the smallest two datasets, are located in the southern part of 161 

the Sea of Japan. 162 
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 163 

3   Data quality control  164 

Quality evaluation of hydrographic data typically consists of two parts: data QC for random 165 

errors and evaluation of systematic errors or biases. These two issues are often treated separately 166 

but represent the entire QC procedure. A unified QC procedure has yet to be suggested for the 167 

global archive of oxygen profile data, and oxygen-related studies often rely on WOD (Garcia et al., 168 

2018), Argo (Thierry et al., 2021) and Bushnell et al. (2015) QC procedures. The efforts undertaken 169 

under the International Quality-Controlled Ocean Database (IQuOD) initiative (Cowley, 2021) 170 

resulted in a comprehensive study where different quality control procedures for temperature 171 

profiles were compared and evaluated (Good et al., 2022). As shown in the previous section, the 172 

characteristic feature of the global oxygen data archive is its heterogeneity. In the early years, a 173 

relatively small amount of data permitted expert quality control, but for the actual global archive, 174 

automated quality control procedures (AutoQC) are required.  175 
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Figure 2.  Number of profiles (N) in 1°×1° latitude/longitude squares for OSD (a), CTD (b), 

and Argo (c) data. 

 176 

The AutoQC procedure aims to identify and flag outliers, which represent observations 177 

significantly deviating from the majority of other data in the population. Monhor and Takemoto 178 

(2005) noted that there is no rigid mathematical definition of an outlier. The outliers do not 179 

necessarily represent erroneous measurements and can occur due to the natural variability of the 180 

measured variable. A QC procedure defines outliers using a set of thresholds, which are based on 181 
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physical laws (for instance, the maximum solubility of gases in the water) or have to be defined 182 

based on the statistical properties of the data population. 183 

In this paper, we introduce a novel QC procedure capable of conducting quality assessment of 184 

data from different instrumentation types. The procedure is applied to the observed level data and 185 

does not require additional quality checks for profiles interpolated at a predefined set of levels. This 186 

second level of QC is an attribute of the WOD QC system (Garcia et al., 2018). To increase the 187 

reliability in detecting erroneous data, a set of quality-checks is applied to each profile. The larger 188 

the number of failed distinct quality checks, the higher the probability that the flagged observation 189 

represents a data outlier. Based on the available QC schemes for oceanographic data (most of them 190 

were developed for temperature and/or salinity profiles), quality checks can be subdivided into the 191 

following groups: 192 

Group-1.   Check of location, date and bottom depth of the profile. 193 

Group-2.   Check of profile attributes (maximum sampled depth, number of levels, variables 194 

measured) specific to each  instrumentation type. 195 

Group-3.   Range check, e.g., comparison of observations at each level against minimum/maximum 196 

value thresholds, which are set for the entire ocean or oceanic basin (global ranges) or for the 197 

particular location and depth. 198 

Group-4.   Check of the profile shape, which is characterized by the vertical gradient of the 199 

measured variable at observed levels, by the number of local extrema, and by the presence of 200 

spikes. 201 

 202 

It should be noted that QC procedures often assume Gaussian distribution law, and outliers are 203 

defined in terms of multiple times the standard deviation from the mean value (Z-score method). 204 

For instance, the WOD standard deviation check is based on this assumption (Garcia et al., 2018; 205 

Boyer et al., 2018). However, distributions of oceanographic parameters are typically skewed, and 206 

the assumption of Gaussian distribution leads to false data rejection. Tukey (1977) introduced a so-207 

called box-plot method, which makes no assumption about the distribution law and is often used for 208 

outlier detection. Hubert and Vandervieren (2008) developed the adjusted Tukey’s boxplot method 209 

for skewed distribution with fences depending on skewness. Following this approach, Gouretski 210 

(2018) and Tan et al. (2023) applied QC checks, taking into account the skewness of temperature 211 

distribution. In the current study we use the Hubert and Vandervieren (2008) adjusted boxplot 212 

method as modified by Adil and Irshad (2015). 213 

 214 

Table 1.  Argo oxygen profiles from different national DACs. 215 
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N National Data Assembly Center Code Name Number of 

Argo 

profiles 

Number of Argo 

profiles 

collocated with 

Winkler profiles 

Percent of Argo 

profiles having 

collocations with 

Winkler profiles 

1 Atlantic Oceanographic and 

Meteorological Laboratory, US 

AOML 89059 32396 41.08 

2 CORIOLIS data Center, France Coriolis 63220 33233 65.09 

3 Commonwealth Scientific and 

Industrial Research Organization, 

Australia 

CSIRO 19183 3302  23.75 

4 Japan Meteorological Agency, Japan JMA 15981 11233 82.90 

5 Indian National Centre for Ocean 

Information Services, India 

INCOIS 9901 2069 33.09 

6 Second Institute of Oceanography, 

Ministry of Natural Resources, China 

CSIO 6455 3921 68.98 

7 Marine Environmental Data Service, 

Canada 

MEDS 4605 14.04 50.50 

8 British Oceanographic Data Center, 

UK 

BODC 3533 1905 61.57 

9 Korea Ocean Research and 

Development Institute, Korea 

KORDI 2239 0 0 

10 Korea Meteorological Administration, 

Korea 

KMA 93 0 0 

 216 

Developing the QC procedure, consisting of a suite of distinct checks, we assume that oxygen 217 

data obtained by the reference Winkler method are superior in quality compared to the sensor data. 218 

As noted by Golterman (1983), the principle of the Winkler method has been unchanged since its 219 

introduction, with the method still providing the most precise determination of dissolved oxygen.  220 

There is a total of ten distinct quality checks, which are introduced in sections 3.1 to 3.9. The outlier 221 

statistics are shown in the respective supplements (Fig. S1-Fig. S10), both for the year/depth bins 222 

and within 2°×4° geographical boxes and for randomly selected oxygen profiles affected by the 223 

respective check. 224 

 225 
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 226 
Figure 3. The number (N) of Argo oxygen profiles in 1°×1° spatial boxes for the datasets from 227 

different DACs. The name abbreviation of each DAC is also presented in each panel. 228 

 229 

3.1     Geographical Location Check 230 

A comparison of the deepest sampled level with the local ocean bottom depth may be used for 231 

the identification of erroneous geographical locations. We use GEBCO 0.5-minute resolution digital 232 
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bathymetry map to define thresholds for this check. For each profile, the range between minimum 233 

and maximum GEBCO bottom depth within the 111 km radius is calculated. If the difference 234 

between the deepest profile measurement depth and the local GEBCO depth exceeds the above 235 

depth range, the geographical coordinates of the profile are considered to be in error and data at all 236 

levels are flagged.  According to Table 2, about 0.5% of OSD and CTD profiles fail this check, 237 

compared to only 0.08% for Argo profiles. For each data type, the spatial distribution of profiles 238 

failing this test exhibits a rather random pattern (Fig. S1). The highest percentage of OSD outlier 239 

profiles are found for the time period before 1946, probably due to less accurate navigation methods 240 

during the war (Fig. S1b). CTD profiles exhibit higher outlier scores above 400 m between 200-241 

2014 linked to several cruises. Only 0.077% of DAC QC-ed Argo profiles fail this check (Fig. S1g-242 

i). 243 

 244 

3.2      Global oxygen range check 245 

The test is applied to identify observations that are grossly in error (the so-called ‘blunders’). 246 

These data correspond to the cases of the total instrumentation fault or crude errors introduced 247 

during the data recording or formatting. The overall minimum/maximum oxygen ranges are defined 248 

based on the entire archive of the OSD profiles. These overall ranges are set for depth levels and 249 

temperature surfaces because the maximum oxygen solubility depends on temperature. For the 250 

construction of overall limits, we use the normalized frequency histograms (Fig. 4). The 251 

depth/oxygen histograms are constructed similarly with normalization at each depth level (Fig. 4b). 252 

The normalization is done to account for varying numbers of oxygen observations with depth and 253 

temperature. The relative frequencies serve as the guidance to produce the overall oxygen minimum 254 

and maximum limits, which approximately correspond to the relative frequency of 0.05 (indicated 255 

by the green lines). The spatial distribution of the OSD and CTD profiles with levels failing this 256 

check broadly corresponds to the sampling density (Fig. S2a, d and Fig. S3a, d), whereas flagged 257 

Argo profiles can be rather linked to distinct floats (Fig. S2g, Fig. S3d). The CTD data are 258 

characterized by the largest fraction of profiles affected by this check (Fig. S2e, Fig. S3e).  259 

 260 
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 261 

Figure 4. Normalized oxygen histograms used to define overall oxygen ranges versus 

temperature (a) and versus depth (b). Minimum and maximum overall oxygen limits are 

shown by solid green lines. For each temperature/oxygen bin in (a), the number of oxygen 

observations is divided by the number of observations in the most populated bin for the same 

temperature. The depth/oxygen histograms (b) are constructed similarly with normalization 

at each depth level. 

 262 

3.3      Maximum oxygen solubility check 263 

According to Henry’s law, the quantity of an ideal gas that dissolves in a definite volume of 264 

liquid is directly proportional to the partial pressure of the gas. It is also known that gas solubility in 265 

the water typically decreases with increasing temperature. The histograms of observed oxygen 266 

concentration (Cobs) versus maximum oxygen solubility (Cmax) calculated using reported 267 

temperature and salinity at different ocean layers depict a close relationship between the mode of 268 

observed oxygen distribution and the maximum solubility (Fig. 5a-d). The histograms also show 269 

that the distribution mode for the upper-most layer 0-100 m (Fig. 5a) follows the line Cobs = Cmax 270 

progressively deviating to lower Cmax values when Cobs > 300 µmol kg-1, suggesting an oxygen 271 

super-saturation. That is because in the photic layer of the ocean oxygen is produced by 272 

phytoplankton through photosynthesis, and oxygen super-saturation can evolve. Oxygen production 273 

due to photosynthesis leads to the formation of small bubbles (10-70 micron) with increasing 274 

oxygen super-saturation accompanied by a higher number of bubbles and their shift towards large 275 

sizes (Marks, 2008). In the deeper layers (Fig. 5b-d), the number of cases with super-saturation 276 

decreases because of the reduced photosynthesis, so the temperature and pressure effects dominate. 277 
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According to the histograms (Fig. 5a-d), supersaturation is frequently observed in the upper layers. 278 

The percentage of supersaturated values decreases from about 45 % in the near-surface layer to less 279 

than 1.0 % below the 200 m level (Fig. 5e, red).  280 

 281 

 

Figure 5. Super-saturation check: (a-d) normalized frequency histograms for maximum 

solubility versus reported dissolved oxygen value for different layers. The bin size is 10 µmol 

kg-1. For each maximum solubility level, the frequencies for each bin are normalized by the 

number of the values in the most populated bin in order to account for variations in the 

number of profiles. (e) percentage of supersaturated oxygen values over all observed oxygen 

values (red) and the threshold for the super-saturation check, represented by the percentage 

relative to the maximum solubility (blue). 

 282 

In order to set the threshold percentage for super-saturation, we calculated histograms of super-283 

saturation values for each 1-meter depth level of the upper 500 m layer. The threshold percentage of 284 

super-saturation (Fig. 5e, blue line) corresponds to the 99th quantile. The threshold value 285 

approaches 100% near the depth of 200m, therefore, below 200 m all supersaturated oxygen values 286 

are flagged. Locations of profiles with at least one observed level failing this check are shown in 287 

Fig. S4a, d, g. The distribution of profiles broadly corresponds to the spatial sampling density. The 288 

OSD outliers are more numerous in the early years before 1955 probably pointing to less accurate 289 

measurements during that time period. The check reveals a much higher percentage of CTD outliers 290 

throughout the water column for several years before 2000 (Fig. S4b) compared to other 291 

instrumentation types. Argo floats are characterized by the low outlier percentage for this quality 292 

check with a higher percentage found for deep Argo floats between 2017-2018 below 2000m (Fig. 293 

S4h). 294 
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 295 

3.4     Stuck value check 296 

Malfunctioning of sensors often results in stuck values when the same oxygen concentration is 297 

reported for all or most of the observed levels. To identify such profiles, we calculated oxygen 298 

standard deviations for each oxygen profile to build histograms (Fig. 6) for each instrumentation 299 

type. Only profiles with at least seven oxygen levels are considered. Unlike the OSD and Argo data, 300 

for which the frequency of profiles drops for low standard deviation values, the CTD profiles are 301 

characterized by a distinct peak for the lowest standard deviation values (Fig. 6c). Accordingly, 302 

based on the histograms (Fig. 6b, c), we set the thresholds of 3 µmol kg-1 and 1 µmol kg-1 and for 303 

CTD and Argo profiles, respectively. No lowest value thresholds are applied for OSD profiles, as 304 

stuck values are only characteristics of the electronic sensors. The geographical distribution of 305 

profiles failing this check is given in Fig. S5 a, d. The check is applied only to the CTD and Argo 306 

sensor data and reveals a high percentage of outliers for CTD profiles, especially after 2000 (Fig. 307 

S5b). Argo profiles which fail the check are not numerous and are located mostly in the Northern 308 

Hemisphere (Fig. S5d). 309 

 310 

 311 

Figure 6. Oxygen profile standard deviation for OSD (a), Argo (b), and CTD (c) 

instrumentation types. Only profiles with at least seven levels of oxygen data are considered. 

Red vertical lines show the respective threshold values for Argo and CTD profiles. 

 312 

3.5      Multiple extrema check 313 

Multiple extrema check aims to identify profiles whose shape significantly deviates from the 314 

majority of profiles. For each profile with at least 7 observed levels (black dots), the number of 315 

local extrema and their magnitudes (denoted as Mn in Fig. 7a, defined as oxygen difference 316 

between two adjacent oxygen measurements) are calculated. Then, the normalized frequency 317 
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histograms of oxygen profiles for different combinations of the number of oxygen extrema and of 318 

the extremum magnitude are calculated for three instrumentation types separately (Fig. 7b-d).  The 319 

larger the extremum magnitude, the less frequent the corresponding profiles. Physically, an oxygen 320 

profile at a location is not likely to exhibit both too large and too frequent oscillations of oxygen 321 

concentrations. Thus, the profiles with many/big extrema are likely erroneous. The histogram for 322 

Argo profiles differs from those for OSD and CTD because it is based on profiles already validated 323 

by the respective DACs. The multiple extrema check thresholds (black lines in Fig. 7b-d) are 324 

defined using the histograms as the guidance. The lines crudely correspond to the normalized 325 

frequency of 0.01 for OSD and CTD and 0.05 for Argo profiles. The geographical distribution of 326 

profiles failing the check is given in Fig. S6a, d, g. Argo profiles failing the check can be linked to 327 

distinct floats (Fig. S6g). The OSD profiles exhibit a higher outlier percentage for the years 1990-328 

2002. The highest rejection rate for the CTD profiles is typical for the years before 2000 (Fig. S6b, 329 

e).  330 

 

Figure 7. (a) Schematics for the multiple extrema check. Black dots represent the observed 

values, and the local extrema is defined by M, whereas extremum magnitudes are shown with 

blue lines. (b-d) Normalized frequency histograms for multiple extrema checks for OSD (b), 

CTD (c), and Argo (d). The area to the right of the black line corresponds to oxygen profiles 

failing the multiple extrema check. 

 331 

3.6  Spike check 332 

Spikes are the values at levels that strongly deviate from the values at the nearest levels above 333 

and below. For each observed level k, the test value s = s1 – s2 is calculated, where s1 =|pk –0.5 (pk-1-334 

pk+1)|,  s2=|0.5 (pk+1  -  pk-1)| and p denotes the oxygen value. The observation is identified as outliers 335 

when the test value s exceeds a threshold value. Due to the larger oxygen variability in the upper 336 
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layers, we set depth-dependent spike thresholds, which are defined for nine depth layers using 337 

accumulated histograms for the test value s (Fig. 8a, b for 0-100m, 400-600m as examples). The 338 

threshold profile is defined by the 95% frequency at each layer (Fig. 8c). The 95% value is chosen 339 

empirically but can be tuned when additional QC-ed benchmark datasets become available. 340 

Examples of profiles which failed this check are shown in Fig. 7S. Data from all instrument types 341 

are characterized by a rather homogeneous temporal and spatial distribution of outliers. 342 

 343 

Figure 8. Spike check value histograms (see text for details) for the layer 0-100m (a) and 400-

600m (b); spike check value threshold versus depth (c). 

 

3.7     Local climatological oxygen range check 344 

Local climatological oxygen range check is one of the most effective QC modules for 345 

identifying outliers compared to other checks because the minimum/maximum thresholds are 346 

constrained by the local water mass characteristics. For each 1°×1° latitude/longitude grid point, we 347 

calculate min/max thresholds, accounting for the skewness of the data. For calculating 348 

climatological ranges, we take the ergodic hypothesis in which the average over time is considered 349 

to be equal to the average over the data ensemble within a certain spatial influence radius. Taking 350 

into account the skewness of statistical distribution when defining climatological ranges for 351 

oceanographic parameters was first suggested by Gouretski (2018), who applied Tukey’s box plot 352 

method modified for the case of skewed distributions (Hubert and Vandervieren, 2008; Adil and 353 

Irshad, 2015). In this method lower (Lf) and upper (Lu) fences are calculated according to formula 354 

(1): 355 

 356 

[Lf  Uf] = [ Q1 – 1.5*IQR*exp(-SK*|MC|)   Q3 + 1.5*IQR*exp(SK*|MC|) ],     (1) 357 

 358 
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where Q1, Q3 are quartiles, Q2 is sample median, SK is skewness. MC denotes medcouple, which 359 

is defined as MC = median h(xi,xj), where xi<<Q2<< xj;   and the kernel function h(xi,xj) = [(xj-Q2)-360 

(Q2-xi)]/(xj-xi)  (Hubert and Vandervieren, 2008). 361 

The local oxygen ranges are constructed using both the OSD and Argo oxygen profiles. The 362 

OSD data used to derive the local threshold have undergone the preliminary QC (checks for global 363 

oxygen range, spikes, stuck value, multiple extrema), aiming to remove crude outliers to reduce 364 

their impact on the local thresholds. This approach is similar to the two-stage thresholding 365 

suggested by Yang et al. (2019). The Argo oxygen profiles underwent quality control at the 366 

respective DAC centers. 367 

The local minimum and maximum thresholds were calculated at 1°×1° grids at a set of 65 depth 368 

levels corresponding to the levels implemented for the World Ocean Circulation Experiment/Argo 369 

Global Hydrographic Climatology (Gouretski, 2018) using formula (1). Examples of the threshold 370 

spatial distribution are presented for two depth levels: 98 meters (level typically located below the 371 

seasonal thermocline, Fig. 9a-c) and 1050 m (level typically located below the main thermocline, 372 

Fig.9 d-f). The most striking features are the areas with low minimum oxygen values (oxygen 373 

minimum zones, Fig. 9 a, b) in the East Pacific, Arabian Sea, Bay of Bengal, Black Sea, and Baltic 374 

Sea. The oxygen range map for level 98 m (Fig. 9c) shows that the areas with the widest local 375 

ranges coincide with minimum oxygen zones. The local range map for the 98 m level also depicts 376 

wider ranges in several highly dynamic regions of the Gulf Stream, Malvinas current, and the area 377 

north of the Antarctic coast (Fig. 9c). During the QC, gridded minimum and maximum local oxygen 378 

values are interpolated to the observed levels at profile locations. The geographical distribution of 379 

profiles failing the check is given in Fig. S8a, d, g, indicating a rather uniform temporal and spatial 380 

distribution. A decrease with time of the outlier percentage for OSD data is clearly seen. For CTD 381 

data the outlier percentage is high for all levels and years except for the years after 2020. Argo 382 

profiles failing the check in many cases can be linked to the data from particular floats (Fig. S8g).  383 

 384 

3.8      Local climatological oxygen gradient range check 385 

The oxygen vertical gradient check aims to identify pairs of levels for which the vertical 386 

oxygen gradient exceeds a certain threshold. Threshold values for the vertical gradient (Fig. 9 g-l) 387 

are calculated using formula (1), similar to the local oxygen ranges. Due to the nonlinearity of 388 

oxygen profiles, vertical gradient values depend on the profile’s vertical resolution, e.g. from the 389 

gap between two neighbors’ observed levels. Respectively, oxygen thresholds have been calculated 390 
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for several depth gaps between 10m and 100m, as Tan et al. (2023) did for the QC of temperature 391 

profiles. 392 

        For level 98 m, the spatial distribution of the oxygen gradient range (Fig. 9i) is similar to the 393 

spatial pattern of the oxygen range (Fig. 9c), with the largest ranges located in the oxygen minimum 394 

zones, reflecting the highest oxygen variability in these areas. The region below the main 395 

thermocline (Fig. 9j-l) is characterized by a much smaller range compared to the 98m level (Fig. 396 

9g-i). The geographical distribution of profiles failing the check is given in Fig. S9a, d, g, 397 

indicating a rather uniform temporal and spatial distribution broadly corresponding to the sampling 398 

density. For CTD data the lowest outlier percentage is observed after 2000 (Fig. S9e).  399 

 

Figure 9. Upper six panels: maps of the lower (a), the upper (b) climatological oxygen 

threshold, and of the oxygen range (c) for the 98m depth level; d-f) same but for the 1050 m 

depth level. Lower six panels:  maps of the lower (g), the upper (h) the climatological oxygen 

vertical gradient threshold, and of the oxygen vertical gradient range (i) for 98 m depth level; 

j-l) same but for the 1050 m depth level. 
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3.9      Excessive flagged level percentage check 400 

After applying all previous quality checks, the percentage of flagged levels for each oxygen 401 

profile is calculated to produce histograms in Fig. 10. A threshold is set based on these histograms 402 

to decide on the quality of the entire profile: we set 20%, 15%, and 30% thresholds for OSD, Argo, 403 

and CTD profiles, respectively. If the threshold is exceeded, the entire profile is flagged, and it is 404 

suggested that it not be used in future analyses. Both the OSD and Argo datasets are characterized 405 

by a low number of profiles with a high percentage of flagged data. In contrast, for the CTD group 406 

the histogram (Fig. 10c) exhibits a thick and long tail with a significant fraction of profiles having a 407 

high percentage of flagged levels.  408 

The geographical distribution of profiles failing the check is given in Fig. S10a, d, g, indicating 409 

a rather uniform temporal and spatial pattern. A decrease of the outlier percentage with time for 410 

OSD data is seen after about 2005 (Fig. S10b). For CTD data the outlier percentage is high for all 411 

years except 2021. Argo profiles failing the check in many cases can be linked to distinct floats 412 

(Fig. S10g).  413 

 

Figure 10. Percentage of oxygen profiles versus percentage of rejected levels per profile for 

OSD (a), Argo (b), and CTD (c) instrument types. 

 

4  Evaluation of the QC procedure 414 

Table 2 and Figure 11 summarize the rejection rates for all ten quality checks for the three 415 

instrumentation types separately. The Argo oxygen profiles have the lowest overall rejection rate of 416 

4.8%, with Winkler data quality ranking second best (12.0% outliers). The difference might likely 417 

originate from 1) Winkler profiles covering a century-long period of observations, with a poor data 418 
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quality in the earlier decades; 2) the analyzed Argo oxygen data are represented by adjusted 419 

profiles, which have been already quality-controlled. 420 

 421 

Figure 11. (a-c) Percent of measurements flagged by distinct quality checks for three 

instrumentation types; (d-f) percent of profiles with at least one measurement flagged. For the 

description of checks see Table 2. The black bar at the number 11 corresponds to the total 

percent of flagged data (a-c) and to the percent of profiles flagged by at least one quality check 

(d-f). 

 422 

The CTD oxygen profiles have the highest percentage of outliers (overall rejection rate of 423 

80.0%). The significant part of CTD oxygen outliers is attributed to the stuck value check, which 424 

searches for profiles with identical or very similar oxygen values at all observed (reported) levels 425 

(Fig, 11a, check-5). Most of these profiles also fail the local climatological range check. We note 426 

that these profiles have also been identified as outliers during the compilation of the WOA18 427 

(Garcia et al., 2018) and WOA23 (Garcia et al., 2023) atlases of dissolved oxygen and have not 428 

impacted climatological oxygen distributions presented in these atlases. 429 

As introduced above, the local climatological range check (Check-8 in Table 2) represents the 430 

most important quality check and results in the highest percentage of flagged observations and 431 
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profiles. For OSD, about 17.5% of profiles have at least one measurement flagged by this check. 432 

For Argo and CTD profiles, these values are 18.1% and 61.5%, respectively. 433 

Figure 12 shows the percentage of flagged measurement versus time and depth and within one-434 

degree latitude/longitude boxes for three main instrumentation types. The OSD group exhibits a 435 

graduate decrease of outlier percentages with time at all depths (Fig. 12a), indicating the gradual 436 

improvement of data quality with time, especially after the early 1990s, which coincides with the 437 

beginning of the extensive observational activities during the World Ocean Circulation Experiment 438 

(WOCE). The global spatial pattern of outliers (Fig. 12b) is characterized by outlier percentages 439 

lower than 5% in most 1° grid cells, with only a few areas exhibiting higher percentages, which can 440 

be linked to some particular cruises or observational programs.  441 

Oxygen data from Argo floats (Fig. 12c, d) are characterized by a low percentage of outliers 442 

reflecting the impact of the QC and data adjustments already conducted at DAC centers. We also 443 

find no clear time trend in outlier scores. There is an indication of higher outlier percentages in the 444 

layer below 1500 m before 2020 (Fig. 12c). Strong spatial contrasts in the percentage of Argo 445 

outliers (Fig. 12d) in most cases can be linked to particular Argo floats. 446 

Unlike the OSD Winkler data, CTD oxygen profiles do not suggest a time trend in data quality 447 

(Fig. 12e).  Compared to both OSD and Argo, ship-based CTD oxygen profiles are characterized by 448 

a much higher outlier percentage. This is explained through a significant fraction of CTD profiles 449 

failing the stuck value check, local climatological range check, and excessive flagged level 450 

percentage check (Table 2). The CTD outlier profiles are evenly distributed over the oceans (Fig. 451 

12f). Figure 12g, h shows outlier distributions for the profiles which passed both the stuck value 452 

and the multiple extrema checks. In this case, most cruise lines (Fig. 12h) are characterized by a 453 

low outlier percentage, with data quality issues related to a smaller subset of cruises. Finally, we 454 

find that the CTD data since 2018 (Fig. 12g) exhibit very low outlier scores comparable to those of 455 

OSD and Argo float profiles. 456 
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Figure 12.  Percentage of flagged observations in year/depth bins (a) and in 1° 

latitude/longitude boxes (b) for OSD oxygen profiles; (c) and (d) same but for Argo oxygen 

profiles; (e) and (f) same but for CTD oxygen profiles; (g) and (h) same but for CTD oxygen 

profiles which passed multiple extrema and stuck value quality checks. 

 

Table 2. Outlier score statistics for different instrumentation types 457 

                    OSD                      CTD                   ARGO 

No. Quality Check % flagged  

observations 

% flagged 

profiles 

% flagged  

observations. 

% flagged 

profiles 

% flagged 

observations 

% flagged 

profiles 

1 Location check 0.422 0.478 0.710 0.521 0.086 0.077 
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2 Global Oxygen 

Range at depth 

levels 

0.411 1.751 15.797 14.230 0.041 0.421 

3 Global Oxygen 

Range on T surfaces 

0.270 1.492 8.824 12.379 0.009 0.227 

4 Maximum oxygen 

solubility check 

0.654 3.548 0.638 2.684 0.081 1.325 

5 Stuck value check 0.000 00.000 64.547 65.504 0.043 0.073 

6 Multiple extrema 

check 

1.376 0.233 12.846 6.802 0.126 0.057 

7 Spike check 0.472 4.732 0.039 1.668 0.012 1.904 

8 Local climatological 

oxygen range check 

3.766 17.453 55.398 61.513 2.232 18.118 

9 Local climatological 

oxygen vertical 

gradient range 

check 

0.584 2.962 0.103 6.207 0.181 13.743 

10 Excessive flagged 

level percentage 

check 

10.538 12.489 79.681 76.853 4.434 4.661 

 ALL QC CHECKS 11.968 24.564 80.207 84.392 5.191 29.495 

 458 

5      Benchmarking of the QC procedure using manually controlled datasets 459 

Evaluation of the QC system is a crucial part of the dataset generation. Good et al. (2022) 460 

conducted a comprehensive benchmarking exercise to evaluate the performance of automated QC 461 

checks for temperature profiles implemented by different research groups, aiming to recommend an 462 

optimal set of quality checks. They used several reference datasets with known quality (e.g., bench-463 

marking datasets whose quality was manually evaluated by experts). 464 

Unfortunately, in a deviation from temperature profiles, no community-agreed oxygen datasets 465 

exist which could be used for benchmarking. In this study, we use for the bench-marking a 466 

comprehensive set of bottle profile data obtained during the World Ocean Circulation Experiment 467 

(WOCE) – the largest international oceanographic experiment ever conducted (Wunsch, 2005). To 468 
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achieve high data quality and consistency between the cruises over the entire period of 469 

observations, the WOCE Hydrographic Program Office (WHPO) issued operation manuals 470 

(WHPO, 1991), where measurement methods and procedures are described. As shown by Gouretski 471 

and Jancke, (2000), the WHPO quality requirements have been fulfilled with the WOCE 472 

hydrographic dataset representing a unique global scale high-quality collection of the whole suite of 473 

oceanographic parameters. Specifically, the mean inter-cruise oxygen offset was found to be 2.39 474 

µmol kg-1. Upon completing the WOCE, the GO-SHIP program was established in 2007 to revise 475 

the WOCE hydrographic program by repeating several WOCE lines (Hood et al, 2010).  476 

Applying our QC procedure to the entire WOCE dataset confirms the high quality of this 477 

unique dataset, with only 2.8% of oxygen outliers (Fig. 13a, b) from the total of 354028 oxygen 478 

measurements for the entire time period 1990-1998. Similar to the entire OSD dataset, the QC 479 

diagnostics reflect the progressive improvement of the oxygen data quality over the period of 480 

WOCE (Fig. 13a). The spatial distribution of outliers for the entire time period (Fig. 13c) indicates 481 

that the majority of WOCE oxygen profiles have a very low percentage of outliers. For 79% of 482 

WOCE oxygen profiles, our QC procedure identified no data outliers. The higher rejection rate is 483 

found only for several WOCE lines in the tropical South Atlantic, North-Western Indian Ocean, and 484 

the Labrador Sea. We note that, in the same areas, there are data from other cruises which exhibit 485 

low outlier percentages, so the flagging cannot be attributed to the spatial selectivity of the QC 486 

procedure.  487 

The WOD database permits data selection for a large number of observational programs using 488 

the respective project identification code. The outlier rejection percentage for the data from 128 489 

projects that reported oxygen data is shown in Fig. 14.  The mean rejection rate over all projects is 490 

7%. Apart from WOCE, several outstanding observational programs like GEOSECS (Geochemical 491 

Ocean Sections Study) (Craig, 1974), SAVE (South Atlantic Ventilation Experiment) (Larque et al., 492 

1997), CARINA (Carbon dioxide in the Atlantic Ocean) (Falck and Olsen, 2010), and CLIVAR 493 

(Climate and Ocean: Variability, Predictability and Change) (Sarachick, 1995) delivered a 494 

significant number of high-quality hydrographic data with quality documented in the literature. We 495 

note that the four projects with a median year after 1985 (SAVE, WOCE, CARINA, and CLIVAR) 496 

are characterized by rejection rates lower than the mean. The 8% outlier rate for one of the largest 497 

international GEOSECS experiments conducted in the 1970s only slightly exceeds the mean outlier 498 

percentage over all 128 projects. 499 
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 500 

Figure 13. QC statistics for the WOCE dataset: a) percentage of outliers in year/depth bins; b) 

percentage of outliers in oxygen/depth bins; c) percentage of outliers in 1°×1° squares. 

 

Finally, we used the delayed mode quality-controlled Argo data to evaluate the performance of 501 

our QC procedure. The Argo dataset used for the current study consists of oxygen profiles reported 502 

from 1794 floats. The histogram of the percentage of flagged observations for each Argo float (Fig. 503 

15a) shows that for 90% of all floats, the percentage of rejected observations is less than 15%, with 504 

84% of floats exhibiting less than 5% of rejected measurements. We conclude that the QC applied 505 

in the DAC centers effectively identifies data outliers for the majority of the floats, resulting in a 506 

low outlier percentage (see Fig. 12 c, d). The location map of profiles from Argo floats with more 507 

than 15% of data flagged over the float lifetime (Fig. 15b) shows a rather random distribution 508 

throughout the world ocean, with almost all DACs contributing with such floats. We interpreted this 509 

result as an implicit confirmation of the ability of our QC scheme to identify data with quality 510 

issues. 511 
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 512 

Figure 14. Outlier diagnostics for 128 distinct WOD projects (OSD Winkler profiles): a) 

overall percent of outliers; b) percent of profiles with oxygen outliers. Acronyms and 

percentages for selected hydrographic projects described in text are shown in color. 

 

Figure 15. a) percent of Argo oxygen profiles versus percent of flagged data per profile; b) 

trajectories of Argo floats with more than 15% of flagged data (a total of 127 floats).  
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6      Bias assessment for sensor oxygen data 513 

The QC procedure described in the previous sections is based on the underlying statistics of the 514 

data and aims to identify random outliers. The second step in data QC is estimating the possible 515 

systematic errors or biases. These systematic errors may differ depending on the instrumentation 516 

type, but the common cause for systematic errors is the absence of the possibility to calibrate the 517 

instrument. A classic example provides temperature data obtained by eXpandable 518 

BathyThermographs (XBT) where systematic errors are due to the uncertainty in depth, which is 519 

calculated from the elapsed time, and the uncertainty in thermistor, which is typically not calibrated 520 

(Gouretski and Reseghetti, 2010; Cheng et al., 2014).  521 

In the case of dissolved oxygen, only Winkler oxygen determinations of discrete samples can be 522 

considered to be bias-free because the chemical analysis is based on the standard reference, with the 523 

replicate measurements having a precision better than 0.4 µmol kg-1 (Thaillandier et al., 2018). 524 

However, differences in methods and standards between hydrographic cruises suggest a lower level 525 

of data precision. Gouretski and Jancke (2000) used the high-quality WOCE one-time hydrographic 526 

dataset and conducted a comprehensive analysis of the inter-cruise oxygen differences at the cruise 527 

cross-over areas.  The analysis was performed in the deep part of the water column (typically below 528 

2000 m), where the time variations of seawater properties are small. For 305 cross-over areas, they 529 

estimated the mean difference between WOCE cruises to be 2.40 µmol kg-1 with a standard 530 

deviation of 2.37 µmol kg-1. Considering stringent criteria for the WOCE hydrographic program, 531 

this estimate can be considered to represent an approximate precision of the Winkler method in 532 

application to real hydrographic data. As noted by Golterman (1983), the Winkler method still 533 

represents the most precise determination of dissolved oxygen. In spite of some modifications over 534 

time, the principle of the method is unchanged. In the following, we describe residual biases for 535 

CTD and Argo profiles. The term “residual” is used because CTD oxygen profiles are often 536 

adjusted on Winkler bottle samples, and Argo oxygen profiles used in our study undergo adjustment 537 

procedures at the respective DACs. 538 

The use of electrochemical and optical oxygen sensors in oceanographic practice has two main 539 

aspects. First, these sensors permitted a significantly higher rate of data acquisition and a much 540 

finer vertical resolution than bottle data. Secondly, they made the observational process much easier 541 

than bottle samples, which need chemical titration in the laboratory. However, like other electronic 542 

sensors, oxygen sensors are prone to offsets and drift. Takeshita et al (2013) analyzed data from 130 543 

Argo floats and found a mean bias of -5.0 % O2 saturation at 100 % O2 saturation. Bittig et al. 544 
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(2018) explained this negative bias by the reduction of O2 sensitivity proportional to oxygen 545 

content, with the decrease of sensitivity being on the order of several percent per year. Optode drift 546 

characteristics require regular calibration. Use of reference Winkler profiles is possible only for the 547 

ship-based CTD oxygen sensors (mostly electrochemical sensors) if CTD rosette water samples are 548 

obtained simultaneously with sensor profiles and are analyzed for oxygen during a cruise (Uchida et 549 

al., 2010). For unmanned autonomous platforms like Argo, the direct comparison with reference 550 

Winkler data is limited to samples from the hydrographic casts conducted during the float 551 

deployment. Bittig et al. (2018) recommended adjusting optode data on oxygen partial pressure 552 

primarily by the gain (Argo Quality Control Manual, 2021). If no previous delayed-mode 553 

adjustment is available, the basic real-time adjustments are performed based on the oxygen 554 

saturation maps provided by the WOA digital climatological atlas (Thierry et al., 2021). In case a 555 

delayed-mode adjustment is not available after one year, the re-assessment of the gain factor is 556 

recommended. Uncertainty in underlying optode calibration and time drift characteristics leads to 557 

errors in adjusted data. 558 

 559 

6.1     Bias assessment method 560 

We aim to assess the magnitude of the possible overall residual bias for CTD profiles and 561 

adjusted Argo profiles by comparing these profiles with collocated reference discrete samples. The 562 

data from 10 national DACs were used for this analysis, for which both unadjusted and adjusted 563 

oxygen profiles are available. Data centers and the respective number of oxygen profiles are given 564 

in Table 1. Data using the Winkler method are used as reference data for the comparison with 565 

collocated Argo oxygen profiles. 566 

For the current analysis, we selected a 100 km threshold distance within which two profiles are 567 

spatially collocated. To decide upon the choice of the optimal maximum time difference between 568 

Argo and reference profiles, we calculated median oxygen offsets increasing threshold value for the 569 

time separation between a pair of profiles (Fig. 16a). Increasing the temporal collocation bubble 570 

leads to the increase of the bias magnitude in agreement with the assumption that the older 571 

reference data are richer in oxygen compared to the more recent data. Below 1000 m depth, the 572 

difference between the median offsets for the temporal collocation bubble of 5 and 50 years is about 573 

3.5 µmol kg-1, corresponding to a deoxygenation trend of about 0.7 µmol kg-1 per decade. This 574 

estimate can be compared with 0.75 µmol kg-1 per decade reported by Gregoire et al. (2021).  As 575 

Fig. 16c suggests, the overall offset estimate below 1000 m stabilizes after the time difference 576 

threshold of 5 years. The extension of the temporal bubble for more than 7 years leads to the 577 
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progressive increase of the bias magnitude, which we attribute to the impact of the general 578 

deoxygenation. Based on these calculations, the 5-year threshold was selected as the maximum time 579 

separation between collocated profiles. For this threshold value, the number of collocated pairs 580 

below 1000m depth is about 10000 (Fig. 16b). A step-wise decrease of the number of collocated 581 

pairs below 950 m is explained by a significant part of reference profiles being limited to the upper 582 

1000-meter layer. These calculations suggest that about 1000 collocated pairs are required for stable 583 

offset estimates. 584 

 585 

Figure 16. a) Overall median oxygen bias versus the size of the temporal collocation bubble; 

b) number of collocated pairs for different choices of collocation bubbles; c) depth-averaged 

(1000-1900m) bias versus time bubble size. 

 586 

The number of Argo profiles having collocations with discrete ship-based Winkler profiles is 587 

shown in Table 1. No collocated Winkler profiles are found for the Argo profiles from the two 588 

Korean DACs. Profiles from these DACs are restricted within a relatively small area east of the 589 

Korean peninsula. The four largest contributors of Argo data (AOML, Coriolis, JMA, and CSIRO) 590 

comprise up to 90% of all Argo profiles having collocations with reference profiles. 591 

 592 

6.2      Overall bias characteristics of unadjusted and adjusted Argo oxygen data from DACS 593 

The normalized frequency histograms (Fig. 17) characterize the spread of individual bias 594 

estimates around the distribution mode. These histograms are based on all Argo profiles having 595 

collocations with reference Winkler data. In these histograms, for each depth bin, the number of 596 

values in each bias bin is normalized by the number for the most populated bias bin at each depth 597 

level to account for the decrease of data with depth. The histograms are shown for raw (unadjusted) 598 

(Fig. 17a) and adjusted Argo profiles (Fig. 17b). The adjustment procedures applied at different 599 
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DACs reduce the spread of the individual bias estimates and the skewness of the bias distribution, 600 

with the overall median bias of 10-12 µmol kg-1 for unadjusted data and 1-2 µmol kg-1 for adjusted 601 

data. As suggested by the bias distribution with depth, we estimate residual bias using the collocated 602 

data below 1000 m depth, where the bias spread reduces significantly compared to the upper part of 603 

the water column.  604 

 605 

Figure 17. Normalized histograms of the unadjusted (a) and adjusted (b) Argo oxygen bias 

versus collocated Winkler profiles. The black lines show the median bias value.  

 606 

6.3 Residual Oxygen Biases for distinct oxygen sensor 607 

A total of 11 oxygen sensor models were implemented on Argo BGC floats, with 8 sensor 608 

models found among Argo profiles having collocations with reference data (see Table 3). Figure 18 609 

shows the yearly number of Argo profiles that have collocations with reference data and are 610 

equipped with different models of oxygen sensors. The SBE43 series sensors are electrochemical 611 

Clark-type sensors, whereas all other models are optical sensors (optodes). Since the beginning of 612 

the 2000s, several models of optodes have been implemented in BGC Argo floats. The two most 613 

widespread sensors are AANDERAA 3830, implemented between 2004 and 2018, and the newer 614 

model AANDERAA 4330 used since 2010. The majority of Argo floats from the three largest 615 

AOML, Coriolis, and JMA datasets have been equipped with this sensor. Data from AOML, 616 

Coriolis, JMA, and CSIRO include oxygen profiles obtained by means of several sensor models. 617 

The other four DAC subsets of data are represented by a single sensor model:  618 

AANDERAA_OPTODE_4330 prevails in the data from INCOIS, CSIO, and BODC, and 619 
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AANDERAA_OPTODE_3830 is typical for MEDS data. AROD_FT and ARO_FT optodes have 620 

been implemented only on Argo floats managed by JMA. 621 

 622 

Table 3. Oxygen sensors installed on BGC Argo floats 623 

N Oxygen Sensor Model Number of Argo 

profiles 

Number of Argo profiles  

collocated with Winkler 

profiles 

                                                                      Optode sensors 

1 AANDERAA_OPTODE_4330 160261  16112 

2 AANDERAA_OPTODE_3830 49049 8234 

3 AANDERAA_OPTODE_3835 405 0 

4 AANDERAA_OPTODE_4831 454 0 

5 SBE63_OPTODE 16775 1978 

6 SBE83_OPTODE 462 0 

7 ARO_FT 2792 618 

8 AROD_FT 370 31 

                                                                      Clarke-type sensors 

9 SBE43F_IDO 12234 2341 

10 SBE43I 9620 1046 

11 SBE43_IDO 2173 246 
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 624 

Figure 18. Yearly number of BGC Argo profiles equipped with different types of oxygen 625 

sensors (colored lines, see sensor attribution in plate e)). (a) AOML, (b) Coriolis, (c) JMA, and 626 

(d) CSIRO, e) CSIO, f) INCOIS, g) BODC, h) MEDS. 627 

 

According to the Argo Quality Control Manual (Thierry et al., 2021), several adjustment 628 

procedures can be applied to unadjusted data (adjustment to climatology, nearby Winkler samples, 629 

or in-air data). The adjustment results may depend on many factors, such as the subjective decision 630 

of the operator in a DAC, the use of a specific software, the availability of the respective reference 631 

data, and other factors. If a climatology is used as a reference, the Argo oxygen values will be 632 

adjusted to the median year of a climatology, which can differ by several decades from the year of 633 

an Argo profile. In such cases, the long-term deoxygenation trend of the world ocean might impact 634 

the results of the adjustment procedure. Differences in the applied adjustment procedures may 635 

potentially result in DAC-specific residual offsets. Considering these two main causes for biases in 636 

sensor oxygen data, we calculated profiles of overall oxygen biases versus depth (e.g. biases based 637 

on the data from all years) for six sensor models (1, 2, 5, 6, 8, and 10, see Table 3) and for six DACs 638 

which provided a sufficient number of collocated pairs (Fig. 19).  639 

 The number of available collocations with reference Winkler profiles varies by two orders of 640 

magnitude for different DACs. Since reference bottle data often cover only part of the upper 2000-641 

meter layer, the number of collocated pairs also changes over depth, with the main step-wise 642 

decrease seen around 1000 m. However, our calculations suggest that changes in the number of 643 

collocated pairs over depth do not significantly impact the diagnosed bias. In order to reduce the 644 

effect of the varying geographical sampling pattern over depth, only Argo profiles deeper than 1000 645 
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m were used for bias calculations. Figure 19 shows a much higher variability of diagnosed biases in 646 

the upper part of the water column due to a stronger temporal and spatial oxygen variability. 647 

However, in the layer below 1000 m (e.g., crudely below the main thermocline), all profiles indicate 648 

much smaller variations over depth, and in the following discussion, we will focus on biases within 649 

this layer. 650 

For almost all oxygen sensors, the overall bias exhibits a characteristic hook below about 1900-651 

1950 meters. Such hooks on Argo oxygen profiles were found by Thallander et al., (2018). The 652 

hook can reflect the adjustment of the oxygen sensor at the beginning of the float ascending. Further 653 

we note that Clarke-type sensors from SBE43 series are characterized by a positive oxygen bias 654 

below 1000 m, whereas the majority of optoids is characterized by negative biases, with the 655 

exception of SBE63 profiles in CSIRO data. 656 

Another feature common to AANDERAA optodes and SBE43-series sensors is the dependence 657 

of bias on depth (pressure). For one and the same sensor model, the slope of the bias profile differs 658 

among the DACs. The most clear dependence on pressure is seen for the SBE43F IDO and SBE43I 659 

models for AOML data (Fig. 19c, d) and for AANDERAA_3830_OPTODE  for the four largest 660 

DAC datasets (Fig. 19a). It is known that dissolved oxygen measurements by SBE43-IDO series 661 

sensors are influenced by changes of sensor membrane characteristics due to temperature and 662 

pressure. Depending on the sensor's time-pressure history, these changes have long time constants, 663 

resulting in hysteresis at depths greater than 1000 meters (Thierry et al., 2021). Until now, there has 664 

been no effective method for adjusting the pressure effects of these sensors on profiling floats under 665 

operation. Data from all optodes also require adjustments for pressure effects (Bittig et al., 2015). 666 

Increasing pressure reduces the oxygen concentration inside the sensing membrane (which is 667 

relevant for luminescence quenching) by ca. 3.0 - 5.5% per 1000 dbar. The optodes are thus 668 

expected to show lower oxygen under pressure, which is confirmed by our Fig. 19a, b for all DACs 669 

except JMA. 670 

Also shown in Fig. 19 are estimates of mean biases calculated for the layer 1000-1900m (B1000-671 

1900m).  The lower boundary of 1900m was selected in order to exclude the depth range where bias 672 

profiles exhibit characteristic hooks described above. In order to assess the stability of the overall 673 

biases shown in Fig. 19, we calculated the time series of the bias for the layer 1000-1900m for six 674 

most numerous sensor models (Fig. 20). The changes of the diagnosed biases over time indicate a 675 

certain degree of sensor stability with biases typically retaining the same sign throughout the entire 676 

period of observations. We attribute at least a part of this layer's apparent bias time variability to the 677 

changes in the geographical sampling and the differences in the reference data.  678 

 679 
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 680 

Figure 19. Overall oxygen biases for six oxygen sensor models: a) 681 

AANDERAA_OPTODE_3830, b) AANDERAA_OPTODE_4330, c) SBE43F_IDO, d) SBE43I, 682 

e) SBE63_OPTODE, f) ARO_FT. Bias profiles are shown for the six largest DAC datasets 683 

(colour lines). Values of the average bias for the layer 1000-1900m (B1000-1900m) are shown in 684 

the lower right part of each panel, with standard errors given in parentheses. Light colour 685 
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shading corresponds to the bias standard error at depth levels with the number of degrees of 686 

freedom equal to the number of distinct Argo floats. 687 

 688 

Figure 20. Residual oxygen bias for the layer 1000-1900m versus time. Vertical bars show 689 

standard error with the number of degrees of freedom equal to the number of distinct floats. 690 

Each value corresponds to the bias averaged within the five-year time window. Calculations 691 

are shown for the data from distinct DACs: a) AOML, b) Coriolis, c) JMA, d) CSIRO. 692 

 693 

In order to assess the stability of the overall bias estimates shown in Fig. 19, we calculated 694 

time series of the average bias within the layer 1000-1900m for six most abundant sensor models 695 

(Fig. 20). The changes of the diagnosed biases over time indicate a certain degree of sensor stability 696 

with biases typically remaining positive or negative over the entire period of observations. At least 697 

part of this apparent time variability may be due to the changes in the number of collocated pairs 698 

and their geographical distribution over time. Considering the strong limitation imposed by the 699 

number of available collocated pairs, we suggest overall constant bias corrections for different 700 

sensors and DACs (Table 4). These corrections correspond to the residual biases in the layer 1000-701 

1900 m (see Fig. 19). 702 



37 

 703 

Table 4. Sensor-specific bias corrections for data from different DACs*) 704 

 705 
 706 
*) Bias corrections are given in µmol/kg. Values in parentheses show standard errors. If standard 707 

error is not shown the correction indicates a guess value equal to the mean of values with standard 708 

error estimate. Corrections indicated in the table should be subtracted from the reported oxygen 709 

value. Empty boxes correspond to the sensors which are absent for a specific DAC.  710 

 711 

Finally, overall biases were calculated for the data from eight distinct DACs (Korean datasets 712 

from KORDI and KMA are relatively small and do not have collocations with reference cruises 713 

available for this study). Biases were calculated for the original data (QC-ed and adjusted by DACs) 714 

 Sensor model AANDERAA_

OPTODE_383

0 

AANDERAA_

OPTODE_433

0 

AROD_FT, 

ARO_FT 

SBE43F_I

DO 

SBE43I SBE63_OPTO

DE 

1 AOML  1.36(0.43) -3.22(0.19)  2.17(0.42) 0.52(0.42) -1.07(0.16) 

2 Coriolis 

 

-1.78(0.72) -2.06(0.62)  2.17(3.32)   0.50(0.68) 

3 JMA 

 

4.38(0.99) -3.19(0.52) -6.24(0.36) 2.08(0.67)  0.52 -0.74(0.42) 

4 CSIRO 

 

0.44(0.24) -1.23(0.70)  2.57(0.72)    1.22(0.70) 

5 CSIO 

 

 -2.43      -0.02 

6 INCOIS 

 

 -2.43    0.52   

7 BODC   4.00(2.07)     

8 MEDS -1.09 -2.43    -0.02 

9 KORD  1.09    2.25   

10 KMA  -2.43     
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and for the data corrected for residual biases according to Table 4 (Fig. 21). For all DACs, the 715 

suggested bias corrections led to the reduction of the overall bias. AOML, CSIRO, and MEDS data 716 

are characterized by a rather constant bias below about 700 m depth. Bias profiles for Coriolis and 717 

JMA subsets of data indicate the possible impact of pressure effect on oxygen sensors discussed 718 

above. It should be noted that the number of collocated profile pairs differs by two orders of 719 

magnitude among the eight DACs. In the layer above 1900 m, the AOML data has between 6500-720 

9500 collocated pairs for each depth level, whereas the BODC dataset contributes only with 37 721 

Argo profiles having collocations with reference data. A larger variability of the bias over depth for 722 

CSIO and BODC data is most likely explained by the insufficient sample size. 723 

 724 

 725 
Figure 21. Overall mean Argo oxygen offsets versus Winkler profiles for distinct DACs: a) 726 

AOML, b) Coriolis, c) JMA, d) CSIRO, e) INCOIS, f) MEDS, g) CSIO, h) BODC. Offset 727 

profiles for DAC-adjusted data and for the data corrected for residual biases (Table 4) are 728 

shown in red and blue, respectively. Standard error bars (light shading) are calculated using 729 

the number of distinct floats at each level as the number of degrees of freedom. Green lines 730 

show number of collocated pairs in thousands. 731 

 732 

6.4   Residual Oxygen Biases for CTD oxygen sensors 733 

We conducted similar bias calculations for the CTD oxygen profiles obtained by both 734 

electrochemical and optical sensors. Only CTD data which passed all QC checks were used for the 735 
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bias estimation. Unlike Argo profiles, the CTD oxygen sensor data can be adjusted on the 736 

simultaneously collected bottles analyzed in the ship laboratory using the Winkler method 737 

(Taillandier et al., 2018). Unfortunately, it is not possible to identify profiles with such adjustments 738 

within the WOD archive because of missing metadata. As noted by Boyer et al. (2018) “in many 739 

cases, the dissolved oxygen …  data are uncalibrated and not of high quality. Information on 740 

whether these variables are calibrated is not usually supplied by the data submitter”. As noted by 741 

Uchida et al. (2010) calibration of oxygen sensor profiles is not straightforward, requires some 742 

expertise, and depends on the quality of the reference data. Saout-Grit et al. (2015) described the 743 

calibration procedure for SBE-43 sensor done by fitting to reference Winkler data and found a time 744 

trend in residuals during the analyzed cruise. WOD archives the data submitted by the data 745 

producers and other resources. Thus, the data quality and calibration procedure of the CTD oxygen 746 

data are likely inhomogeneous. 747 

For 0-1900 m, we find an overall CTD oxygen offset of about 0.25 µmol kg-1 (median) relative 748 

to the Winkler data over the 1960-2022 period, which is much smaller than Argo oxygen biases 749 

ranging from -3.72 (JMA) to 0.76 µmol kg-1 (CSIRO) (see Fig. 19). Similar to Argo data the offset 750 

distribution above 1000 m level (Fig. 22e) exhibits stronger spread than that below 1000 m.  The 751 

median offset for the layer 1000-2000 m is 0.25 µmol kg-1.  Grégoire et al. (2021) indicated that 752 

“the uncertainty associated with the last generation of O2 sensors that uses the best calibration and 753 

calculation methods amounts, in the best case at ∼2 μmol kg−1”. Therefore, the overall median 754 

offset of 0.25 µmol kg-1 identified by this study is well within the expected uncertainty of the CTD 755 

sensors. Besides, there is no spatial uniform pattern for the CTD offsets (Fig. 22d), implying that 756 

this offset might not be systematic. Further investigation of the offsets for different cruises (figure 757 

not shown) indicates that the offset varies cruise by cruise and year by year.  Therefore, in this 758 

study, we decided not to adjust the CTD data before the offset can be further confirmed after a 759 

cruise-by-cruise investigation, and the underlying reasons for the bias can be understood. 760 
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 761 

Figure 22. Statistics of the CTD oxygen bias relative to co-located Winkler data. Histograms 

of layer-averaged bias for 0-2000 m (a), 0-1000 m (b) and 1000-2000 m (c). Number of 

negative (N) and positive (M) bias values is shown respectively on the left and right side of 

each histogram. (d) median of depth-averaged bias (1000-2000m) in 2°×4° grid boxes; (e) 

overall median CTD oxygen offset as a function of depth. 

 762 

7. Impact of quality control and bias adjustment on estimating oxygen changes 763 

Applying the QC and bias adjustment to historical in situ oxygen data is expected to impact the 764 

derived ocean oxygen changes on various spatial/temporal scales. To illustrate this impact, we 765 

implemented the new Auto-QC system for all oxygen data and adjusted the Argo data based on the 766 

approach described in Section 6. Based on these data, we applied the mapping method (Ensemble 767 

Optimal Interpolation approach with a Dynamic Ensemble from climate model simulations, EnOI-768 

DE) proposed by Cheng et al. (2017, 2020) to spatially interpolate oxygen data, yielding a spatially 769 
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complete gridded global ocean oxygen dataset. Because of the limited spatial coverage of oxygen 770 

data, we combine each successive three years of data to derive oxygen fields for each calendar year. 771 

Respectively, the oxygen time series are based on these fields. The reconstruction is only done for 772 

the upper 2000 m because of the insufficient in situ data in the abyssal layers. The resultant oxygen 773 

field is denoted as “after QC/adjustment”. To show the impact of QC and adjustment on the oxygen 774 

changes estimate, we also applied the same method to the data without QC (e.g. with only several 775 

crude QC checks applied to remove most likely erroneous values, including overall range checks, 776 

solubility check, and spike check) and without Argo adjustments. The resultant field is denoted as 777 

“before QC/adjustment”. 778 

The long-term mean states (e.g., the climatology, reconstructed using all data between 1990-779 

2022 based on EnOI-DE approach) of the upper 1000 m oxygen before and after QC/adjustment are 780 

very similar (Figs. 23a, b). One reason is the EnOI-DE method (as any mapping approach) has a 781 

smoothing effect, so the erroneous data is less visible behind high spatial variability. This indicates 782 

the robust large-scale pattern, where the oceans in the low latitudes have lower oxygen 783 

concentrations than in the higher latitudes because of the water temperature and ocean circulation 784 

difference. The Eastern Pacific and North Indian Oceans show even lower oxygen levels because of 785 

the subsurface oxygen minimum zone. The difference between oxygen climatologies calculated 786 

before and after QC/adjustment ranges from -15~15 µmol kg-1 but differs at different locations (Fig. 787 

23c). The zonal mean difference is smaller (-3~1 µmol kg-1) because of the error cancellation at 788 

each latitude (Fig. 23d).  789 

The QC/adjustment also impacts the annual cycle (including both phase and magnitude) of the 790 

global mean oxygen changes (Fig. 23e). Examples for the layers 0 – 100 m (representing the upper 791 

seasonal change layer), 100 – 600 m (representing the main thermocline) and 0 – 2000 m (showing 792 

the ocean oxygen inventory) are shown in Fig. 23e. For 0 – 100 m, the mean oxygen level shifts 793 

from negative to positive in November after QC/adjustment but in September before 794 

QC/adjustment. The magnitude of the annual cycle (defined as the difference between the 795 

maximum and minimum of the 12-month climatology time series) is 1.45 µmol kg-1 but slightly 796 

reduced after QC/adjustment (1.22 µmol kg-1). Similarly, the annual cycle magnitude for the layers 797 
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100-600m and 0-2000m reduced from 1.18 and 0.55 µmol kg-1 before QC/adjustment to 0.79 and 798 

0.48 µmol kg-1 after QC/adjustment (Fig. 23e).  799 

 800 

Figure 23. The climatological upper 1000 m oxygen field before (a) and after (b) 801 

QC/adjustment, with their spatial difference shown in (c) and zonal mean differences in (d). 802 

The annual cycle (relative to the climatological annual mean level) before (dashed line) and 803 

after (solid line) QC/adjustment are compared in (e) for different vertical layers. The 804 

climatology field is reconstructed by combining all data within 1990-2022 with EnOI-DE 805 

mapping method (Cheng et al. 2017, 2020). 806 

 807 

The QC and adjustment also impact the estimates of long-term oxygen changes, for example 808 

the global deoxygenation estimates for 0 – 100 m,100 – 600 m and 0 – 2000 m layers depicted in 809 

Fig. 24. After QC/adjustment, the standard deviation of the time series is decreased from 1.71 (0 – 810 

100m), 2.37 (100 – 600m), 1.60 (0 – 2000m) to 1.62 (0 – 100m), 2.24 (100 – 600m), 1.44 (0 – 811 

2000m) µmol kg-1, showing a reduced variability in global oxygen time series after QC/adjustment. 812 

This indicates a reduction of noise, which is mainly attributed to both QC and Argo adjustment. For 813 

example, before QC/adjustment, there was a big global deoxygenation of ~ 3 µmol kg-1 from 1995 814 

to 1996 in the layer 0-100m, which is likely non-physical and spurious. This feature disappeared 815 

after QC/adjustment (Fig. 24). The linear rate of deoxygenation differs for the two tests changes as 816 
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well: -0.77 ± 0.43 (0 – 100m), -1.45 ± 0.30 (100 – 600m), -0.95 ± 0.30 (0 – 2000m) µmol kg-1 dec-1 817 

before QC/adjustment and -0.90 ± 0.38 (0 – 100m), -1.37 ± 0.40 (100 – 600m), -0.84 ± 0.41 (0 – 818 

2000m) µmol kg-1 dec-1 after QC/adjustment. The linear trend is calculated by the ordinary least 819 

square regression with a 90% confidence interval shown (accounting for the reduction in degree of 820 

freedom). The deoxygenation rates are reduced after QC/adjustment for both 100 – 600m and 0 – 821 

2000m, mainly because of the Argo adjustment, which shifted the oxygen level in the past decade 822 

by ~0.76 µmol kg-1 for 100 – 600 m average and ~0.82 µmol kg-1 for 0 – 2000 m average within 823 

2015-2023 (Fig. 24). 824 

By means of these tests we demonstrate that QC and bias adjustment can impact the estimation 825 

of the oxygen changes at various temporal-spatial scales, highlighting the need for a careful oxygen 826 

data processing before application. However, we note here that the validity of the mapping 827 

approach on oxygen reconstruction has not been thoroughly evaluated, which deserves a separate 828 

study.  829 

 830 

Figure 24. The reconstructed global averaged oxygen time series before (dashed line) and 831 

after (solid line) QC/adjustment from 1970 to 2023 for the layers 0 – 100 m, 100 – 600 m and 832 
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0 – 2000 m. Here, we combine each successive three years of data to estimate the oxygen 833 

changes. The anomalies are calculated relative to the climatology shown in Fig. 23. 834 

 835 

8      Conclusion and Discussion 836 

This study developed a new automated QC scheme for ocean oxygen profile data and applied it 837 

to the OSD and CTD oxygen profiles from the WOD and to the Argo float oxygen profiles provided 838 

by national DACs. The procedure consists of ten quality checks based on local or global parameter 839 

thresholds. Some checks are conceptually similar to the quality checks used to validate the profiles 840 

in the World Ocean Database (Boyer et al., 2018) (for example, the global range test and vertical 841 

gradient test) and in the Argo data acquisition centers (Thierry et al., 2021) (for example, spike and 842 

“frozen” profile tests). However, we provide additional checks (for example, test for the number of 843 

local extrema and local climatological range test) which increase the ability of the QC procedure to 844 

better identify erroneous data. For instance, the procedure proves whether an oxygen value falls out 845 

of accepted ranges (defined by globally or locally) or whether an oxygen profile exhibits a very 846 

untypical shape. The shape of the profile is characterized by the vertical oxygen gradient, the 847 

number and magnitude of local oxygen extrema, and by the presence of spikes. The check is also 848 

done for the so-called “frozen” profiles occurring when the oxygen sensor stucks and reports the 849 

same values throughout the profile.  850 

The QC procedure presented here is tailored for the quality assessment of the archived oxygen 851 

data obtained both by Winkler methods and sensors. Large ocean depositories like WOD often 852 

contain observed data that have already undergone a certain degree of QC and adjustment. 853 

Therefore, our QC procedure differs from the real-time QC of dissolved oxygen observations by 854 

means of oxygen sensors as suggested in the frame of the Integrated Ocean Observing System 855 

(IOOS) in the quality control manual by Bushnell et al. (2015) (B2015 hereafter). Three quality 856 

tests which have been required or suggested in that manual can be applied only to the real time data: 857 

the application of the gap test needs the time stamp of each measurement, the application of the 858 

syntax test requires the full original data record, and the application of the neighbor test is possible 859 

only in the case when a nearby second sensor is installed on the device. Information needed for 860 

these tests is not kept in the WOD therefore these tests cannot be applied to “static” archive data. 861 

Five other tests outlined in B2015 are conceptually similar to the tests applied by our QC procedure:  862 

location test, gross range test, climatology test (all three required by B2015), spike test and flat line 863 

test (both recommended by B2015). In a deviation from our QC procedure, thresholds for test 864 
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variables according to B2015 should be chosen subjectively by operators in the data centers. We 865 

note that the metadata on decisions made operators are usually missing in the data archives. 866 

The novelty of the proposed quality scheme is that the threshold choice is based on the 867 

respective statistics of test variables, and the Gaussian distribution is not assumed for the important 868 

local climatological range checks for oxygen and for oxygen vertical gradient. The QC procedure 869 

presented in this study was benchmarked against several hydrographic datasets known for their 870 

outstanding measurement quality, with WOCE experiment data collection being the largest and best 871 

documented. Analysis of the outliers and their distribution among distinct hydrographic sections 872 

and cruises suggests the ability of the procedure to flag outliers but retain the overwhelming 873 

majority of good data. The accompanying diagnostic tool provides the overview of outlier scores 874 

and permits tuning of thresholds when new benchmark quality-controlled datasets become 875 

available. Finally, we note that the transparent choice of test threshold values on the basis of the 876 

underlying statistics and the subsequent analysis of outliers for each quality check permits further 877 

tuning of the quality control procedure in order to increase the percentage of true outliers and to 878 

decrease the percentage of falsely identified outliers.  879 

Further, we estimated possible residual oxygen biases in the delayed-mode adjusted Argo 880 

oxygen profiles. The bias estimates are based on the collocated Argo and discrete water sample 881 

ship-based profiles. The latter represents reference measurements as the bottle samples are analyzed 882 

by means of the Winkler chemical method. The size of the collocation bubble (e.g., the maximum 883 

distance between two profiles and the maximum time difference) was set at 100 km and 5 years, 884 

respectively, after several experiments with different bubble sizes. Residual biases relative to the 885 

Winkler reference data are represented by the difference at an isobaric level between the Argo 886 

sensor oxygen value and the Winkler oxygen, with the overall bias at each level being defined by 887 

the average of individual differences. To reduce the impact of time- and spatial variability, the final 888 

bias assessment is done for the layer 1000-1900m, which is typically located below the main 889 

thermocline. 890 

Using all available Argo profiles which have collocations with reference Winkler data, we 891 

calculated overall oxygen offsets for six models of oxygen sensors implemented on Argo BGC 892 

floats and for six Argo DACs.  Our results suggest that derived biases are both sensor- and DAC-893 

specific, with the electrochemical SBI-series sensors exhibiting a positive bias in the range from 0.5 894 

to 2.6 μmol/kg. The optoid sensors typically are characterized by negative biases ranging between -895 

0.7 and -6.2 μmol/kg depending on sensor model and DAC. Only for 896 

AANDERAA_OPTODE_3830 small positive offsets were found for AOML and CSIRO, as well as 897 

positive offsets for SBE63_OPTODE for Coriolis and CSIRO.  This diagnosed biases are crucial to 898 
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accurately identify the deoxygenation trend, as current assessments suggest an upper 1000 m O2 899 

content decrease of 0.2–1.2 μmol kg−1 dec-1 during 1970–2010 (Gulev et al. 2023). Our calculations 900 

suggest that at least 1000 collocation pairs are needed for the stable residual bias estimation. This 901 

number of collocations is available only for AOML, Coriolis, JMA, CSIRO, INCOIS, and MEDS 902 

datasets. 903 

Diagnosed residual biases for the quality-controlled CTD oxygen sensor profiles revealed a 904 

good agreement between the CTD and Winkler reference data, with a small median bias of 0.25 905 

µmol kg-1 within the layer below 1000 m. Because of a relatively small bias value, which is well 906 

within the uncertainty of the CTD sensors and due to a non-uniform spatial CTD bias pattern, the 907 

diagnosed overall bias is not considered to be a common and robust feature, and no adjustment of 908 

CTD data is performed in this study. Our preliminary investigation also indicates that the CTD 909 

offset varies cruise-by-cruise, probably associated with the differences in the calibration or re-910 

calibration (or post-processing). Therefore, the follow-on work should include investigating the 911 

offsets on a cruise-by-cruise basis and providing an understanding of the causes of bias. Only after 912 

these examinations are done can the adjustment of CTD profiles be physically tenable. 913 

This study also has some limitations and caveats: (1) Although systematical errors have been 914 

identified for Argo oxygen data, the cause of the biases is still poorly known and requires further 915 

work. The differences between the DAC centers are also mysterious, and we suspect that the non-916 

standard adjustment procedure developed by different National Argo Data Centers and the 917 

difference in sensors on Argo floats used in different countries might be responsible for the 918 

differences in diagnosed biases, which needs further confirmation. (2) Because the sources of biases 919 

are poorly known, the correction proposed in our study is largely empirical and can be applied only 920 

to the Argo data used in this study. If the Global Argo Data Center updates quality control and 921 

adjustment procedures, our bias corrections also require an update. (3) The QC procedure is 922 

designed to detect and flag the outliers. However, there are also risks of removing the “real 923 

extremes” in the ocean, especially under rapid climate change, as ocean extreme events are 924 

expected to become more frequent. One possible way to partly resolve this problem is imposing a 925 

trend in the local climatological range, accounting for the time-variation of the local oxygen 926 

distributions due to climate change, which would help to reduce the false rejection of the real 927 

extreme data. This requires further work when the local oxygen trends become clearer. (4) The 928 

Winkler data are used in this study as a reference. However, it is likely that the Winkler data are not 929 

always taken to the same standard, thus posing inconsistency within the Winkler dataset, especially 930 

for the data taken by different countries and in different time periods. Investigating offsets on a 931 

cruise-by-cruise basis is also recommended in the future, as for CTD data. 932 
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In summary, this study proposed a new quality control approach and bias assessment for the 933 

CTD, bottle, and Argo oxygen data and investigated the consistency between these three primary 934 

instrumentation types. Our investigations ensured the consistency between the three datatypes and 935 

provided a solid basis for merging them into a single, integrated, and homogeneous oxygen 936 

database. Therefore, the database obtained in this study supports the next-step assessment and 937 

understanding of the change in ocean oxygen levels.  938 

 939 

9      Data availability 940 

The quality control procedure described above was applied to the OSD and CTD oxygen profiles 941 

between 1920 and 2023 from the World Ocean Database (https://www.ncei.noaa.gov/access/world-942 

ocean-database-select/dbsearch.html) and to the oxygen profiles from the BGC Argo floats 943 

(https://www.seanoe.org/data/00311/42182/). The resulting dataset comprises observed level data 944 

with quality flags, and data interpolated on 10-meter levels. The data are in NetCDF format and 945 

include metadata information. The complete dataset (Gouretski et al., 2023) can be found at  946 

http://dx.doi.org/10.12157/IOCAS.20231208.001 and 947 

http://www.ocean.iap.ac.cn/ftp/cheng/IAP_oxygen_profile_dataset 948 

 949 

10      Code availability 950 

The code of the QC system developed in this paper is available at 951 

http://www.ocean.iap.ac.cn/ftp/cheng/IAP_oxygen_profile_dataset/QC_Code_SAMPLE.zip. 952 
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