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Abstract. Large-scale and multi-annual maps of building rooftop area (BRA) are crucial for addressing policy decisions and 

sustainable development. In addition, as a fine-grained indicator of human activities, BRA could contribute to urban planning 

and energy modelling to provide benefits to human well-being. However, it is still challenging to produce large-scale BRA 

due to the rather tiny size of individual buildings. From the viewpoint of classification methods, conventional approaches 15 

utilize high-resolution aerial images (metric or sub-metric resolution) to map BRA; unfortunately, high-resolution imagery is 

both infrequently captured and expensive to purchase, making the BRA mapping costly and inadequate over a consistent 

spatio-temporal scale. From the viewpoint of learning strategies, there is a non-trivial gap that persists between the limited 

training references and the applications over geospatial variations. Despite the difficulties, existing large-scale BRA datasets, 

such as those from Microsoft or Google, do not include China, hence there are no full-coverage maps of BRA in China yet. In 20 

this paper, we first propose a deep-learning method, named Spatio-Temporal aware Super-Resolution Segmentation 

framework (STSR-Seg) to achieve robust super-resolution BRA extraction from relatively low-resolution imagery over a large 

geographic space. Then, we produce the multi-annual China building rooftop area dataset (CBRA) with 2.5 m resolution from 

2016-2021 Sentinel-2 images. The CBRA is the first full-coverage and multi-annual BRA data in China. With the designed 

training sample generation algorithms and the spatio-temporal aware learning strategies, the CBRA achieves good performance 25 

with the F1 score of 62.55% (+10.61% compared with the previous BRA data in China) based on 250,000 testing samples in 

urban areas, and the recall of 78.94% based on 30,000 testing samples in rural areas. Temporal analysis shows good 

performance consistency over years and the well agreement to other multi-annual impervious surface area datasets. The STSR-

Seg will enable low-cost, dynamic and large-scale BRA mapping (https://github.com/zpl99/STSR-Seg). The CBRA will foster 

the development of BRA mapping and therefore provide basic data for sustainable research (Liu et al., 2023; 30 

https://doi.org/10.5281/zenodo.7500612).  
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1 Introduction  

The building rooftop area is an essential indicator of human activity (Huang et al., 2021a), sustainable urbanization (Appolloni 

et al., 2021; Burke et al., 2021), building energy modeling (Byrne et al., 2015; Chen et al., 2022), urban planning (Nadal et al., 

2017) and quick response to natural disasters (Chen et al., 2022; Ge et al., 2023) in the recent years. Such dataset has thus 35 

become pivotal in a range of policy decisions by the government, such as arranging the correlation between economic 

development and demographic growth, and how and where to implement public service. However, many regions might lack 

the kind of information to systematically assess this development in both large geographical regions and long time periods 

(Burke et al., 2021). In the meantime, satellite remote sensing has been the prominent measure for urban mapping of our earth 

(Zhu et al., 2022b), especially in developing regions where survey data or human-labeled data is rather difficult to obtain 40 

(Ayush et al., 2021a). Compared to the traditional survey-based methods (Kuthanazhi et al., 2016; Jones and Hobbs, 2021), 

remote sensing could observe large areas at a potentially low cost, thus allowing tracking of the building dynamic of developing 

regions. 

Unlike other datasets containing building information from satellite imagery, such as Impervious Surface Area (ISA) or 

Human Settlement Footprint (HSF), the Building Rooftop Area (BRA) requires a higher spatial resolution for well 45 

identification due to the tiny size of objects of interest (e.g., residential houses). Typically, the ISA (Zhang et al., 2022a; Huang 

et al., 2022) or HSF (Marconcini et al., 2020a; Qiu et al., 2020) are derived from the imagery with a spatial resolution of 

decametric level (e.g., 30 m or 10 m). While the BRA (Liu et al., 2022; Zhang et al., 2022b) utilizes high-resolution aerial 

imagery with a resolution of metric level (e.g., 1 m). However, high-resolution aerial imagery is costly and potentially not 

publicly available. For example, the price of WorldView-2 is $23/km2 (HR Imagery Ordering, 2022). The high data expenditure 50 

makes large-scale BRA possible only for large companies, e.g., Google and Microsoft, which have implemented the 

continental-scale BRA of Africa (Sirko et al., 2021) and global BRA (GlobalMLBuildingFootprints, 2022) using Google Map 

and Bing Map, respectively. To overcome the cost barrier, international efforts utilize open-access Google Earth Satellite (GES) 

images (Liang et al., 2018). Most recently, Zhang et al. (2022b) utilize GES imagery and obtained 90-cities-BRA for China 

under the resolution of 1 m. However, due to the uneven distribution of GES image patches and inconsistent acquisition time, 55 

the existing BRA has geospatial inconsistency, limiting its generalization to questions of broad social importance, particularly 

in large geographic and time-scale mapping. 

China is a rapidly developing country, with 4.3% urbanization growth in the past five years. According to the National 

Bureau of Statistics of China, the urbanization rate of China has reached 64.72% in 2021 but the rural population is still large, 

accounting for 509.79 million people. The “dual-track” society structure indicates that human activity occurs variously in both 60 

developed and developing regions of China (Guan et al., 2018a). The existing large-scale BRA dataset provided by Microsoft 

and Google do not include China, while the BRA produced by Zhang et al. (2022b) only covers 90 cities in China. In addition, 

to our best knowledge, few of the existing BRA provide multi-annul results, and such temporal information is of great 

significance to developing countries such as China. 
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To foster the development of the observation of human living space, and to provide all stakeholders with free access to data 65 

to monitor building rooftop dynamic at a national scale and high spatio-temporal resolution, we introduce the CBRA (China 

Building Rooftop Area) dataset, which reports the pixel-level building rooftops distribution along with their dynamic, from 

2016 to 2021, on a national scale. The CBRA is derived from the Sentinel-2 imagery (up to 10 m spatial resolution). To meet 

the spatial resolution of the BRA needs and tackle the lack of reliable training references, we propose a deep-learning-based 

framework, called the Spatio-Temporal aware Super-Resolution SEGmentation framework (STSR-Seg). The STSR-Seg could 70 

capture the high-resolution context from the Sentinel-2 imagery and the low-resolution land cover data, thus achieving robust 

spatio-temporal results of BRA at 2.5 m resolution. With the proposed STSR-Seg, the CBRA outperforms the existing BRA 

in the urban region of China, with overall accuracy and F1 score of  82.85%, and 62.55%, respectively. The main contributions 

are as follows: 

(1) The free access to the CBRA, which is the first multi-annual (2016-2021) and 2.5 m BRA products at a national scale 75 

(e.g., China). The CBRA is also the full-coverage BRA data in China, including both urban regions and rural regions. 

(2) The CBRA is a spatio-temporal consistency dataset among the existing BRA datasets, only generated by Sentinel-2 

satellite imagery with specific acquisition time and location. 

(3) The proposed STSR-Seg framework could achieve robust spatio-temporal super-resolution output, thus reducing the 

data expenditure of both the high-resolution imagery and training references for the large-scale BRA applications 80 

The remainder of this paper is arranged as follows: Sect. 2 reviews and analyses the background of our methodology and 

the building-related datasets. Sect.3 introduces the data we used for dataset generation. Sect. 4 describes the methodology in 

detail. The following Sect. 5 provides results, evaluations, and analyses of the CBRA. Discussions are listed in Sect. 6. Finally, 

the conclusions are drawn in Sect. 7. 

2 Background 85 

To provide an overview of the involved methodology and dataset, Sect. 2.1 would briefly describe the methodological 

background. Moreover, the existing building-related products would be reviewed in Sect. 2.2. 

2.1 Methodological background 

Fig. 1 shows an overview of the background of the involved methods and their relations to our methodology. Specifically, we 

will focus on two fields of deep learning in earth observation, i.e., the super resolution and semantic segmentation classification 90 

methods, and the weakly-supervised learning algorithms. 
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Figure 1: An overview of the methodological background and its relation to our proposed methodology.  

2.1.1 Super resolution and semantic segmentation methods 

The great success of deep convolutional neural networks (CNN) in the computer vision field has already revealed a new era 95 

for earth observation (Hoeser et al., 2022), like super resolution (SR) and semantic segmentation (SS). Utilizing the SR 

methods could transfer the low-resolution image to the high-resolution, thus expanding the cheaper satellite with a coarser 

resolution to the application demanding high-resolution data (Shermeyer and van Etten, 2019). He et al. (2021) utilize low-

resolution and high-resolution image pairs to learn the SR model and map the low-resolution image to the high-resolution, 

while Xu et al. (2021) apply only the high-resolution label, achieving strong performance in the downstream high-resolution 100 

tasks. The SS, which is a pixel-wise classification task, also has a lot of applications in earth observation, such as land use 

mapping (Zhu et al., 2022a) and disaster detection (Munawar et al., 2022). Recently, the SR and SS are combined to realize 

high spatial resolution tasks, like building counting (He et al., 2022) and boat detection (Zhang et al., 2019). Such state-of-the-

art SR and SS approaches have shown great accuracy in various benchmark datasets and competitions (Wang et al., 2022), 

and their huge potential in large-scale and time-series building rooftop mapping is ripe for discovery. 105 

2.1.2 Weak-supervised learning algorithms 

Remote sensing offers an enormous supply of data provided by the over 1000 satellites currently in orbit. Many downstream 

tasks, however, are limited by the lack of reliable annotations, which are particularly costly as they often require expert 

knowledge, or expensive ground sensors (Robinson et al., 2019; Manas et al., 2021). Besides, satellite imagery is various in 

both geography and time. Factors like season and climate pose great generalization challenges to the deep learning model, 110 

while these factors are difficult to be human-labelled and explicitly learned by the model. 

Recent years have seen a proliferation of studies to tackle the above challenges, among which the weak-supervised learning 

algorithm has gained great attention in the earth observation field (Yue et al., 2022). One is the pre-text task learning algorithm. 

It is implemented by forcing the model to learn representations of other related tasks simultaneously, e.g., the coordinates of 

the input imagery (Muhtar et al., 2022), and the night-time light intensities (Xie et al., 2016). Another is the contrastive learning 115 

algorithm, which is to learn the representations by pulling positive (similar) feature pairs closely in latent space and pushing 

the negative (dissimilar) feature far away from the positive. For example, Manas et al. (2021) and Ayush et al. (2021b) denote 

the imagery of the same location but at different times are positive. While Yang and Ma. (2022) denote the patch in images 

with the same land cover class as positive and different types as negative. The intuition of the weak-supervised learning 
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algorithm is to learn the representation from other related tasks with easily accessible labelled data, or learn the latent 120 

invariance from the observed imagery itself, thus alleviating the limitation of annotations of the downstream tasks.  

Due to spatio-temporal variations, there is a shortage of reliable annotations for national-scale and multi-annual building 

rooftop detection. In the meantime, information such as acquisition time, image location, and land cover data are plentiful in 

the community. Overall, there are two primary challenges, each with a possible solution: 

(1) The lack of reliable building rooftop annotations, especially in rural areas, poses a weakly supervised problem – utilizing 125 

low-resolution land cover data as supervision, since they could provide the information about “where possibly have 

built”. 

(2) The different acquisition time of imagery makes the image of the same location but at a different time have different 

image style, posing a challenge for the model generalization – implementing the contrastive learning algorithm to make 

the model invariant for the temporal discrepancies. 130 

Based on the above observation, we propose a novel framework (STSR-Seg), where we utilize the state-of-the-art SR and 

SS approach and the weak-supervised learning algorithm, to achieve robust building rooftop detection in China.  

2.2 Building-related products 

So far, there have been a lot of studies focused on human living space or the land surface cover from different scales. These 

studies also give information about buildings. Early efforts usually focus on using very low-resolution satellite data, e.g., 135 

Defense Meteorological Satellite Program (DMSP) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, to 

produce the Land Use and land Cover Change (LUCC) data (including urban or built cover information) at 100 m to 1 km 

spatial resolution (Schneider et al., 2003; Tateishi et al., 2011). With the free availability of Landsat and Sentinel satellite data, 

as well as the powerful geospatial cloud platforms (e.g., Google Earth Engine, GEE), more international studies work towards 

mapping at a finer spatial resolution (e.g., decametric) over long periods and large geographic, and providing more detailed 140 

building-related products such as the Impervious Surface Area (ISA), and the Human Settlement Footprint (HSF). For LUCC, 

ISA and HSF, it is witnessed a series of global mapping efforts in recent years, such as FROM_GLC (Gong et al., 2013), 

GAIA (Gong et al., 2020a), GISA-10m (Huang et al., 2022), GHSL (Corbane et al., 2021) and WSF (Marconcini et al., 2020b). 

The spatial resolution of the products aforementioned ranges from 30 m to 10 m, and the period ranges from 40 years to only 

1 year (Table 1). These data provide the built cover information, or the impervious surface information, and are frequently 145 

used to conduct building-related studies (Fox et al., 2019). However, due to the resolution gap, these data may contain errors 

when specific to individual buildings (Fig. 2), which has thus inspired the investigation of the Building Rooftop Area (BRA) 

that can describe the individual buildings.  

However, BRA mapping remains challenging and is not well solved due to the tiny size of individual buildings. Typically, 

the BRA demands remote sensing images with a metric or sub-metric resolution. Purchasing these images needs a very high 150 

data expenditure; hence, large-scale BRA mapping is relatively hampered compared with other building-related data 

aforementioned. Currently, the open-access large-scale BRA data are from Google (Sirko et al., 2021) and Microsoft 
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(GlobalMLBuildingFootprints, 2022), due to the fact that these companies can afford the high cost of large-scale building 

mapping. They utilize deep learning (e.g., semantic segmentation) methods, high-resolution imagery from Google map or Bing 

map, as well as the building rooftop ground truths by human labelled, to achieve continent-scale mapping (e.g., Africa) and 155 

global mapping, respectively. Unfortunately, China is not included in their products.  

Recently, Zhang et al, (2022b) apply GES images and semantic segmentation methods to detect building rooftops of 90 

cities in China in the year 2020. However, the GES images are collected from various kinds of high-resolution satellites, and 

have two potential problems when applied to large-scale mapping: (1) inconsistent geographical offset (illustrated in Fig. S1), 

and (2) inconsistent acquisition time (e.g., the image is obtained from various satellite sensors with different acquisition times) 160 

which results in spatio-temporal inconsistency in the generated product. Also, the product from Zhang et al, (2022b)  does not 

cover the living space of more than 36% of China's population, e.g., the rural area. 

Moreover, China is undergoing rapid urbanization and a rural-urban demographic transition (Guan et al., 2018b). A single 

year of building rooftop distribution may not be sufficient for the research about sustainable development. To our best 

knowledge, few of the existing BRA provide a multi-annual mapping on a large-scale (e.g., national), or in a developing region 165 

(e.g., rural). Therefore, there is an urgent for BRA over both a large-scale area and a specific time span, to support various 

fine-scale applications. 

Overall, the large-scale BRA data is currently limited, especially in China. In addition, there are no both multi-annual and 

large-scale BRA data freely available to the public (summarizes in Table 1). To this end, we present the CBRA (China Building 

Rooftop Area) dataset by using the proposed STSR-Seg deep learning method in this study, which is with 2.5 m spatial 170 

resolution and 1 y temporal resolution, ranging from 2016-2021.  

 

 
Figure 2: An example of the result from several representative building-related datasets (121.344419ºE,31.093870ºN). The GAIA 
(Gong et al., 2020b) reflects the impervious area (30 m). The WSF (Marconcini et al., 2020b) and GHSL (Corbane et al., 2021) are the 175 
human settlement data (10 m). The CBRA (ours) is the building rooftop area data (2.5 m). 
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 180 
Table 1: The recent well-known building-related datasets and the existing large-scale BRA datasets. 

Dataset  Data, scale, and time span Resolution Classification method and strategy Type definition 
FROM-GLC30 
(Gong et al., 2013) 

Landsat, global, 2015 30 m Maximum likelihood classifier, 
random forests, and the support 
vector machine 

LUCC data  
(including ISA) 

GISA 
(Huang et al., 2021b) 

Landsat, global, 1972-2019 30 m Random forest classifier via 
hexagonal partitioning 

ISA data 

GAIA 
(Gong et al., 2020b) 

Landsat, global, 1985-2018 30 m  An exclusion-inclusion approach ISA data 

WSF 
(Marconcini et al., 2020b) 

Landsat 8 and Sentinel-1, 
global, 2015 

10 m Support vector machine HSF data 

GISA-10m 
(Huang et al., 2022) 

Sentinel-1 and Sentinel-2, 
global, 2016 

10 m Random forest classifier via 
hexagonal partitioning 

ISA data 

GHSL 
(Corbane et al., 2021) 

Sentinel-2, global, 2018 10 m Convolutional neural networks with 
two-stage training 

HSF data 

Google BRA* 

(Sirko et al., 2021) 
Google map, Africa, no 
specific time 

0.5 m Semantic segmentation, pre-training, 
self-training, and polygonization 

BRA data 

Microsoft BRA* 

(GlobalMLBuildingFootprints, 
2022) 

Bing map, global (not cover 
China), no specific time 

<1 m Semantic segmentation and 
polygonization 

BRA data 

90-cities-BRA 
(Zhang et al., 2022b) 

Google Earth Satellite image, 
90 cities in China, 2020 

1 m  Semantic segmentation and 
vectorization 

BRA data 

CBRA  
(ours) 

Sentinel-2, China, 2016-
2021 

2.5 m Super-resolution segmentation and 
spatio-temporal aware learning 

BRA data 

* Results from Google and Microsoft are not specific in time, because the images they collected worldwide do not have consistent acquisition times. 

3 Data 

3.1 Satellite imagery 

Sentinel-2 optical images are used for the CBRA mapping. The Sentinel-2 is an earth observation mission under the European 185 

Space Agency (ESA) Copernicus program, including a constellation of two satellites, i.e., Sentinel-2A and Sentinel-2B. The 

first Sentinel-2 satellite has observed the earth since June 2015, providing mainly four 10 m visible bands (i.e., RGB) and the 

near-infrared (NIR) bands, six 20 m short-wave infrared (SWIR) and red-edge bands, and three 60 m bands (Huang et al., 

2022). In this paper, we only utilize the band with 10 m (i.e., RGB and NIR), since the previous study shows that introducing 

bands with coarser resolution potentially brings degradation in the performance of deep learning models (Adriano et al., 2021). 190 

After the testing and adjustment by ESA, Sentinel-2 has achieved complete coverage of China since 2016 (Huang et al., 2022). 

Therefore, we utilize the Level-1C top-of-atmosphere (TOA) reflectance product, which has been conducted with systematic 

radiometric calibration, geometric and terrain correction by ESA. To tackle the cloud noise, we utilize the Google earth engine 

(GEE) (Gorelick et al., 2017) to filter out the images with more than 20% clouds, and further conduct clouds and shadow 

removal by the quality bands to get cloud-free pixels. Finally, we perform median-composition of the filtered images within 195 
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1-year intervals. The number of image tiles for median composition (cloud under 20%) over China from 2016-2021 are shown 

in Fig. 3. Note that there are several missing images in parts of southwest China. However, there are few human activities in 

these regions, thus the impact on our results is negligible (Table S13). 

 
Figure 3: Distribution of the Sentinel-2 images (cloud cover under 20%). Base map © OpenStreetMap contributors 2023. Distributed 200 
under the Open Data Commons Open Database License (ODbL) v1.0. 
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Figure 4: Illustration of the collected high-resolution reference. (a) is the high-resolution reference distribution map (base map © 
OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0).  (b) and (c) 
are real-world examples of the collected survey data (survey data © Tiandi-Map) and the volunteered data (volunteered data © 205 
OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0), respectively. 
(d) is the statistic of building rooftops.  

3.2 Reference data 

For the deep-learning-based method, the supervised information (e.g., reference data) is crucial to the model performance. In 

this study, we collect three kinds of reference data for training and evaluation, i.e., the survey building rooftop data (2.5 m) the 210 

volunteered building rooftop data (2.5 m), and the land cover data (10 m).  
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The survey data should reflect the precise building rooftop distribution in the region of interest. Hence, in this study, we 

collect 52 cities’ building rooftops for the year 2019 from Tiandi-Map, which is sponsored by the National Platform for 

Common Geospatial Information Service of China (Zhang et al., 2021). We use 47 cities for training (1.22 million buildings) 

and 5 cities for testing (250, 000 buildings), as shown in Fig. 4. To verify the accuracy in the rural area, we collect additional 215 

building rooftops of several rural regions from the volunteered geographic information platform, i.e., the Open Street Map 

(OSM) (Haklay and Weber, 2008).  However, there are uneven omissions and errors in the OSM data. To address these issues, 

we manually correct the data on the ArcGIS software in conjunction with high-resolution images provided by ArcGIS Online 

(Arcgis online, 2022). Despite our efforts, the accuracy of our interpretation is subject to some omissions due to the uncertainty 

of acquisition time of the images used. Finally, building rooftops of 14 villages are obtained (30, 000 buildings), as shown in 220 

Fig. 4.  

To improve the geospatial generalization of the deep learning method (i.e., scaling to all regions of China), we also collect 

the land cover data over China from 2016-2021 from Dynamic World product (Brown et al., 2022). Dynamic World, as a 

result of the partnership between Google and the World Resources Institute, is a near real-time (2-5 days) and 10 m global 

land cover dataset. It includes ten land cover types and provides the probability estimates for each type. This paper only focuses 225 

on the “built” land cover type for weakly supervised learning. Though the resolution could not meet the demand of our CBRA 

(2.5 m), the dynamic world could provide a kind of vital information such as “where there might be a building rooftop”. The 

strategy of sampling Dynamic World as the training reference would be illustrated in Sect. 4.1, and how to use it as reference 

information for updating the parameter in our model would be clarified in Sect. 4.3. 

4 Methodology 230 

Fig. 5 shows an overview of the methodology workflow, including (a) the training sample generation, i.e., arranging the high-

resolution reference, low-resolution reference, and Sentinel-2 imagery, (b) the proposed STSR-Seg framework for detecting 

the building rooftop area, which is the core of our workflow, and (c) the workflow used for BRA data generation based on the 

trained STSR-Seg framework. (d) The strategy for dataset evaluation. 
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235 
Figure 5: The flowchart for CBRA mapping and evaluation. 

4.1 Training sample generation 

The deep-learning-based method is data-driven, and the training samples are crucial to its generalization performance. As 

described in Sect. 3, the reference data for training consists of both the high-resolution building rooftop in 47 cities from 

Tiandi-Map and the low-resolution land cover data from the Dynamic World product. For the rooftop data, we can easily pair 240 

them with the Sentinel-2 imagery obtained in the same location and time. However, for two reasons, we think it is not a wise 

choice to use all the available land cover data for 2016-2021 in China or just uniformly sample a part from the land cover 

database for training. First and foremost, utilizing all the data or uniform sampling would lead to a large amount of redundancy 

in supervised information. For example, 13% of land in China is deserted, and 23% is forested. The redundancy of these non-

human areas would bring unbalanced categories, thus leading to ineffective model training. Secondly, China covers an area of 245 

approximately 9.6 million km², and utilizing all the land cover for training would bring a great burden on our computation 

recourses. To work around this, we assume that people mainly live in the vicinity of basic administrative units. We utilize the 

third level of China administrative divisions, i.e., the county level, for a total of 2844, as the basic units. Hence, the heuristic 

sampling strategy is as followings: 
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(1) Sampling 200 coordinates using the Gaussian distribution spanning a standard deviation of 150 km around each basic 250 

unit.  

(2) For each coordinate, randomly assign three reference years over 2016-2021. 

(3) Checking whether the coordinate exists within valid Sentinel-2 tiles for the reference year and with less than 10% cloud, 

then processing and downloading the image patch, as well as the corresponding land cover type. Otherwise, go to step 

1 255 

The number of sampling coordinates and standard deviation employed in the heuristic sampling strategy is based on off-

line experiments, which thoroughly cover the potential urban areas of China (Fig. S2). It is important to note that only three 

years are randomly sampled from 2016-2021 to avoid increasing the dataset and imposing an unmanageable computational 

burden. Through this approach, the land cover training samples, covering both urban and rural scenes and ranging for various 

years, are easily and automatically gathered.  260 

Finally, the generated samples may still exhibit redundant information, necessitating their further filtration. Specifically, 

those samples containing fewer built-up area pixels (i.e., below 10%) are discarded. In all, we obtain two sets for model training. 

One is the high-resolution reference set, paired with the Sentinel-2 imagery (10 m) and the building rooftop reference (2.5 m). 

The other is the low-resolution reference set, paired with the Sentinel-2 imagery and the corresponding land cover type (10 m). 

We also assign a corresponding “built” land cover type for each building rooftop reference, as high-resolution references and 265 

low-resolution references can be learned collaboratively in our learning strategy. 

 

 
Figure 6: The schematic diagram of the STSR-Seg framework.  
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4.2 Super resolution and semantic segmentation pipeline 270 

To achieve super-resolution and robust building rooftop prediction, we design the STSR-Seg framework, as shown in Fig. 6. 

The STSR-Seg includes two major components: the super resolution and semantic segmentation pipeline (i.e., blue forward 

arrow in Fig. 6), and the spatio-temporal aware learning (i.e., red arrow in Fig. 6). In this sub-section, we would describe the 

forward pipeline in details. 

We utilize the state-of-the-art method, EDSR (Lim et al., 2017), to serve as the front component of the framework (i.e., the 275 

super resolution component). Let I ∈ 𝑅𝑅𝐶𝐶×𝐻𝐻×𝑊𝑊 denote the input imagery, where C, H, W are the channel, height, and width, 

respectively. The EDSR first utilizes successive convolutional layers embedded with residual connections to increase the 

dimension of C. For example, assuming the up-sampling factor is r, the implemented CNN would output the feature with the 

dimension of 𝐶𝐶𝑟𝑟2 × 𝐻𝐻 × 𝑊𝑊. Then, the EDSR enlarges the 𝐻𝐻 and 𝑊𝑊 dimensions by applying the pixel shuffle function, and 

outputs the fine-grained middle feature F ∈ 𝑅𝑅𝐶𝐶×𝑟𝑟𝐻𝐻×𝑟𝑟𝑊𝑊. In this paper, the up-sampling factor r is 4. 280 

Next, we apply a modified Unet architecture (Ronneberger et al., 2015) to serve as the rear component (i.e., the semantic 

segmentation component) to obtain high-resolution and pixel-wise rooftop prediction. To enlarge the capacity of the naïve 

Unet, we replace the encoder of the naïve Unet with the Resnet-50 (He et al., 2016), which is a powerful and widely-used 

residual network. We also replace the final up-sampling layer in the decoder with a deconvolution layer, and add a batch 

normalization layer in each convolutional block of the naïve Unet. With the F output by the SR, the modified Unet will predict 285 

high-resolution sigmoid confidence of the building rooftop area 𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ ∈ 𝑅𝑅1×𝑟𝑟𝐻𝐻×𝑟𝑟𝑊𝑊. To achieve a robust learning strategy, we 

add an additional global average pooling layer and a fully connected layer in the encoder of the Unet (i.e., Resnet-50), and 

output the temporal representation z ∈ 𝑅𝑅𝑑𝑑 of the input imagery, where 𝑑𝑑 is the representation dimension.  We also add an 

additional average pooling layer to the high-resolution prediction map 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ , and obtain the low-resolution sigmoid 

confidence𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 𝑅𝑅1×𝐻𝐻×𝑊𝑊. The overall output of this SR-SS forward pipeline is of three-folds, i.e., the 𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ, the 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙and the 290 

z. The 𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ is what we need to generate the dataset, while the 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙 and the z are served for producing auxiliary loss for tuning 

the model parameter (see in Sect. 4.3).  

4.3 Spatio-temporal aware learning 

In this paper, we regard the large-scale and multi-annual building rooftop mapping as a weakly supervised learning problem, 

since the survey rooftop reference could only be gathered in a part of urban areas of a certain year as described in Sect. 3.2. 295 

To generalize both the temporal (e.g., 2016-2021) and the spatial (e.g., all over China), we design a robust model learning 

strategy, i.e., the spatio-temporal aware learning. Our spatio-temporal aware learning contains three learning algorithms 

(1) The High-Resolution loss (HR loss) is a fully-supervised loss, used for better learning the supervised information from 

the collected high-resolution survey rooftop reference.  

(2) The Temporal Contrast loss (TC loss) is a weakly-supervised loss, used to allow the model be invariant to subtle 300 

variations over time (e.g., due to image acquisition times)  
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(3) The Spatial Generalization loss (SG loss) is another weakly-supervised loss, used to inform the model to generalize the 

spatial extent where the high-resolution survey rooftop data is not available. 

4.3.1 High-resolution learning 

The STSR-Seg gives a sigmoid confidence map of the building rooftop 𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ~[0, 1] and we have the high-resolution rooftop 305 

reference  𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ~{0, 1}. In our HR loss, we firstly calculate the cross entropy as follows: 

𝐿𝐿𝑐𝑐𝑐𝑐�𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ,𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ� = −�𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ + �1 − 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ�lo g�1 − 𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ� , (1) 

Previous work on semantic segmentation has shown the mixed cross entropy loss is effective (Iglovikov et al., 2018). Here, 

we utilize Focal Tversky Loss (Abraham and Khan, 2019), which is a tunable loss function: 

𝐿𝐿𝑓𝑓𝑡𝑡𝑙𝑙�𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ,𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ� = �1 −
∑𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ + 𝜀𝜀

∑(1 − β)𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ + ∑β𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ + 𝜀𝜀
�
𝛾𝛾

, (2) 310 

where 𝜀𝜀 is a constant providing numerical stability, 𝛾𝛾 is the focal parameter to balance the loss weight between the easy sample 

(𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ ≈ 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ) and the hard sample. β is the parameter to control the trade-off between the importance of false positives (FP) 

and false negatives (FN). In this paper, we set ε = 10−6, γ = 0.5, β = 0.6. The γ < 1 would improve the model convergence 

by shifting the focus on the easy sample. Because in the informal experiment, we find that some hard samples are actually 

mislabelled in our training set, such focal parameter would make the model robust to the label noise. Besides, β > 0.5 would 315 

shift the convergence more on minimizing FN predictions to improve the recall score of the model. The overall HR loss is 

given by weighted sum: 

𝐿𝐿ℎ𝑟𝑟 = 𝐿𝐿𝑐𝑐𝑐𝑐 + 0.5 ∙ 𝐿𝐿𝑓𝑓𝑡𝑡𝑙𝑙 (3) 

4.3.2 Temporal contrast 

Sentinel-2 images at the same location but at different times have very different hues, and the model may fail to predict for 320 

images with “unseen” image styles in training samples. To tackle this, we utilize the location as a priori and encourage the 

temporal representation corresponding to pairs of images with the same location but different times to be semantically more 

similar than typical unrelated pairs (i.e., from other locations), thus making the model keep time-invariant according to the 

image style. This similarity could be measured by calculating matrix similarity (e.g., dot product) among the two similar 

representations z and �̂�𝑧 ∈ 𝑅𝑅𝑑𝑑 , and the unrelated representation k ∈ 𝑅𝑅𝑑𝑑 . Here, following the previous contrastive learning 325 

framework MoCo (He et al., 2020), we implement InfoNCE as the similarity measure: 

𝐿𝐿𝑡𝑡𝑐𝑐�𝑧𝑧, �̂�𝑧,𝑘𝑘𝑗𝑗� = −𝑙𝑙𝑙𝑙𝑙𝑙
ex p(𝑧𝑧 ∙ �̂�𝑧/𝜏𝜏)

ex p(𝑧𝑧 ∙ �̂�𝑧/𝜏𝜏) + ∑ ex p�z ∙ 𝑘𝑘𝑗𝑗/𝜏𝜏�𝑁𝑁
𝑗𝑗=1

, (4) 

where 𝜏𝜏 is a temperature hyperparameter scaling the distribution of the similarity measurement. For each training step, we 

assign the anchor image with a random selection of images from other years, and obtain the pairing temporal representation z 

and �̂�𝑧 from the Resnet-50. As for the unrelated representation 𝑘𝑘, we maintain a memory bank to store the representation from 330 
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𝑁𝑁 previous steps. The memory bank is a queue structure with the size of 𝑁𝑁 ∙ 𝑑𝑑. The memory bank is first zero-initialized. For 

each training step, we adopt the first-in-first-out (FIFO) strategy to update the queue by adding the anchor representation z 

from the previous step and removing the oldest representation. In this paper, the hyperparameter 𝜏𝜏 = 0.75, N = 16, and d =

128. 

4.3.3 Spatial generalization 335 

Though the HR loss could provide precise pixel-to-pixel supervision, this information is only available in urban regions (i.e., 

47 cities) and is sorely inadequate in other regions of China, e.g., rural regions. This situation inspires us to use additional low-

resolution references (e.g., LUCC data) from outside the spatial extent of our collected high-resolution survey data to better 

inform the model. Given the low-resolution output 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙 and the land cover reference 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙, it is intuitive to calculate the cross-

entropy loss (Eq. 1), i.e., 𝐿𝐿𝑐𝑐𝑐𝑐(𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙,𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙). Obviously, the 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙 is an average aggregation of the 𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ, i.e., each pixel in  𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙 340 

denotes an average 4 × 4 block in the  𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ in our experimental setting. The cross entropy could suppress the prediction score 

of the background pixel of 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙, i.e., non-building pixel, and also suppress the corresponding 4 × 4 pixels in 𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ. However, 

for the foreground pixels, the cross entropy homogeneously boosts the prediction score for all pixels related to the built area 

in 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙, introducing errors to 𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ like false predictions to roads and city squares. To tackle it, the loss must be interpreted in 

a softer manner, which means the prediction score should not be uniformly improved. 345 

In the case of BRA mapping, the descriptions of “built” class in Dynamic World product (10 m) suggest it is a mixture of 

building and other impervious surfaces (Table S14). Therefore, we assume each low-resolution built land cover determines a 

known distribution over frequencies of the high-resolution building rooftop (Fig. S3). Inspired by the success of super-

resolution loss (Malkin et al., 2018), we utilize a variant of it, which encourages our model to match its  𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ to the fixed 

distributions obtained by the low-resolution reference. Specifically, we assume the high-resolution building rooftop 𝑐𝑐ℎ𝑟𝑟 350 

follows the Gaussian distribution in the low-resolution built-up area 𝑐𝑐𝑙𝑙𝑟𝑟, i.e., 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙(𝑐𝑐ℎ𝑟𝑟|𝑐𝑐𝑙𝑙𝑟𝑟) = 𝒩𝒩(𝜇𝜇,𝜎𝜎2), (5) 

where 𝜇𝜇  and 𝜎𝜎  are the mean and standard deviation of the reference Gaussian distribution, respectively. They could be 

statistically obtained from our training set where both the high-resolution and low-resolution references are available, or be 

manually set. Also, due to the 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙  is derived from 𝑃𝑃�ℎ𝑖𝑖𝑖𝑖ℎ  by averaging, the 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙  also follows an estimated Gaussian 355 

distribution 𝒩𝒩(�̂�𝜇,𝜎𝜎�2) . Therefore, the loss could be interpreted by the KL divergence of these two distributions. This 

optimization criterion is softer due to the statistics matching rather than the distribution fitting (e.g., the cross-entropy). Finally, 

we incorporate this metric into the cross-entropy loss function, and our SG loss is formulated by: 

L𝑠𝑠𝑖𝑖�𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙,𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙 ,𝜇𝜇,𝜎𝜎, �̂�𝜇,𝜎𝜎�� = 𝐿𝐿𝑐𝑐𝑐𝑐�𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙,𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙� + 𝐷𝐷_𝐾𝐾𝐿𝐿(𝜇𝜇,𝜎𝜎, �̂�𝜇,𝜎𝜎�), (6) 

where 𝜇𝜇 = 0.44, 𝜎𝜎 = 0.01 based on the statistic of the high-resolution and low-resolution reference pairs (Fig. S3). The SG 360 

loss only utilizes low-resolution references, and could be implemented on collected land cover samples covering multiple 

geographies and years, thus improving the capacity of generalizing the vast geospatial mapping.  
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To sum up, the spatio-temporal aware learning includes three objective functions: (1) The HR loss, providing pixel-to-pixel 

high-resolution supervision. (2) The TC loss, learning invariance to image differences due to different times. (3) The SG loss, 

learning weak information from land cover samples. In the training phase, these losses are weighted to update the model 365 

parameters simultaneously: 

L = αLℎ𝑟𝑟 + φL𝑡𝑡𝑐𝑐 + ωL𝑠𝑠𝑖𝑖, (7) 

In our offline experiment, we have found a ratio of α:φ:ω = 200: 1: 5  balances the three losses effectively in our 

experiment. The backpropagation pipeline is illustrated in Fig. 6 (red arrow). 

4.4 CBRA Dataset generation 370 

We first download Sentinel-2 imagery covering China from 2016-2021 (Fig. 3) with a fixed grid of 0.10° × 0.10°. To avoid 

the uneven transition or stitched problem between the splicing gap of the prediction result of cropped smaller images, the 

rooftop is predicted by the trained model in an expansion style, which consists of five steps as shown in Fig. 7: (1) Expanding 

the size of the downloaded image to contain an integral number of sliding windows that overlap each other by zero padding. 

(2) An 𝐻𝐻 × 𝑊𝑊 sliding window is created to extract image patches. During the movement, the window would assure that the 375 

next move overlaps the previous by 10% pixels. Then, the image is cropped into smaller image patches with a size of 𝐻𝐻 × 𝑊𝑊. 

(3) The cropped images are input to the model, and the sigmoid confidences of the building rooftop are obtained. (4) 

Calculating the maximum value of overlapping area at each pixel, then stitching the confidence map into one and removing 

the zero padding. (5) A threshold value of 0.5 is used to differentiate between candidate foreground pixels (i.e., building rooftop) 

and background pixels, following common practice (Liu and Tang, 2023). 380 

For the binary mask obtained from the expanding prediction, the intersection is then taken between our prediction and the 

built area provided by Dynamic World, to remove any candidate pixels that do not intersect with the built area. This process 

would reduce the false positives because our model potentially incorrectly identifies the bare land as the building rooftop. The 

built area provided by Dynamic World is a possibility estimation ranging from 0-1. A low threshold of 0.2 is utilized to 

distinguish between built-up and unbuilt areas, as this threshold does not filter out correct prediction results (further discussions 385 

in Fig. S4).  

 
Figure 7: Schematic diagram of our dataset generation workflow. Imagery (left) © ESA.  
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Due to the possible random bias of our method in locating the boundary of building rooftops (outlined in Sect. 6.2), 

inconsistencies in identification results over time for the same building may occur. To address this issue, a temporal 390 

homogeneity check approach has been implemented. Specifically, it is assumed that a building's state does not undergo 

continuous change over three successive years. Building upon the method proposed by Li et al, (2015), a 3 × 3 sliding window 

is employed to determine the final pixel value by majority voting, as illustrated in Fig. 8. This ensures that the results are 

comparable in the adjacent years. However, for the edge year like 2016 and 2021, they are not checked due to the lack of 

temporal information. 395 

The implementation is conducted on our local server with  2 × NVIDIA Tesla P40 GPU. The overall dataset generation 

pipeline costs about 3 months using Python. 

 
Figure 8: The temporal homogeneity check.  

4.5 Accuracy assessment 400 

To comprehensively assess the performance of our 2.5 m multi-annual CBRA dataset. The sampled-based approaches and 

temporal-based approaches are adopted. Firstly, the sample-based approaches utilize five cities (250, 000 buildings) with 

precise building rooftops for testing (Fig. 4). The metrics are listed in Table 2. Accuracy, intersection-over-union (IoU), recall, 

and F1-score all range from 0-1, and 1 indicates the best classifier. In rural areas, however, there is a lack of reliable high-

resolution references. As described in Sect. 3.2, we utilize our manually-calibrated OSM data as the reference. There are 14 405 

villages in all (Fig. 4), accounting for 30, 000 buildings. Since there are still a few omissions, we only examine the recall in 

rural areas. Buildings are dynamic and may change each year (van Etten et al., 2021). To ensure the reliability of the evaluation 

accuracy, we only use the prediction results of the corresponding year for accuracy evaluation, e.g., 5 cities correspond to 2019 

and 14 villages correspond to 2020. As for the dataset comparison, we use two products for comparison: (1) China 90 cities 1 

m building rooftop area dataset (90-cities-BRA) (Zhang et al., 2022b). (2) The 10 m global human settlement layer (GHSL) 410 

(Corbane et al., 2021). To our best knowledge, the 90-cities-BRA is currently the only large-scale and freely accessible building 
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rooftop data in China, and it covers 90 cities for 2020, which is also the dataset we can compare in the urban scene at a fair. 

The GHSL provides the human settlement layer of the globe for 2018, and we mainly use it for the comparison of rural scenes. 

Secondly, in the temporal-based approaches, we design two experiments to estimate our performance consistency in a time 

span. For the first experiment, we assume that the buildings in the old town area of Beijing, Hong Kong and Macao remain 415 

unchanged in the last six years, therefore, we test the consistency of the results in terms of evaluation metrics in these regions. 

For the second experiment, we calculate the correlation coefficient (e.g., R2) of our data with the existing well-known annual 

impervious surface products. To achieve it, we utilize 30 m China land cover dataset (CLCD) (Yang and Huang, 2021) and 30 

m global artificial impervious area (GAIA) (Gong et al., 2020b), ranging from 1990 to 2019 and 1985 to 2018, respectively. 

As well as evaluating our data, we examine several examples of our poor rooftop extraction result, to understand the 420 

limitation of our dataset. 
Table 2: Classification performance metrics calculated in this study. 

Metric Definition 
True positive (TP) Pixels correctly classified as positive (i.e., building rooftop). 
False positive (FP) Pixels incorrectly classified as positive. 
True negative (TN) Pixels correctly classified as negative (i.e., background). 
False negative (FN) Pixels incorrectly classified as negative. 
Intersection over union (IoU) TP/(TP+FP+FN). 
Recall TP/(TP+FN) 
F1-score 2×TP/(2×TP+FP+FN) 
Overall accuracy (OA)  (TP+TN)/(TP+FP+TN+FN) 

5 Results 

The implementation configurations of the overall generation pipeline are listed in Table S15. Based on all available Sentinel-

2 data in China, we generate the annual 2.5 m resolution CBRA (China-building-rooftop-area) dataset of 2016-2021. To 425 

evaluate it, we first use independent testing samples to assess the performance of CBRA in urban and rural areas and compare 

it with other datasets, both qualitatively and quantitatively (Sect. 5.1). Then, we test the time consistency of the CBRA by 

using stable samples and other ISA datasets (Sect. 5.2). Finally, we analyse the BRA in China of 2016-2021 in terms of spatial 

distribution and temporal change (Sect. 5.3). 

5.1 Accuracy assessment using testing samples 430 

5.1.1 Quantitative analysis 

The accuracy of CBRA is first assessed via the collected samples from urban scenes and rural scenes. The confusion matrix 

for building rooftop identification in urban scenes is given in Table 3, and the performance statistics in both urban and rural 

areas are given in Table 4. 
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In urban scenes, although the CBRA is derived from Sentinel-2 imagery (10 m), it achieves a balance result in TP and TN 435 

with a higher F1-score value of 62.55% (+ 10.61%) compared to the previous 90-cities-BRA, which is derived from high-

resolution GES imagery (1 m). In terms of IoU, the CBRA obtains a score of 45.51%, indicating the CBRA has a high 

classification accuracy for building rooftop pixels. In addition, the OA is slightly lower than 90-cities-BRA (-0.54%), this is 

due to the several blob-like predictions of the CBRA because of relatively low resolution (2.5 m) compared with 90-cities-

BRA (1 m), which will be covered in more detail in Sect. 6.2. For recall, the CBRA obtains 74.66%, which achieves great 440 

improvement (+ 27.29%) compared with 90-cities-BRA, mainly because our robust designation of STSR-Seg framework. It 

is noteworthy that solely relying on OA for evaluating the performance of CBRA is inadequate due to the category-unbalanced 

nature of building roof extraction. The OA score may introduce a potential bias in this scenario (Shao et al., 2019; Uhl and 

Leyk, 2022), and therefore, multiple metrics must be utilized when assessing the performance of CBRA. 

In the rural scene, there is no publicly available building rooftop dataset in rural areas of China before our CBRA, hence we 445 

compare the CBRA with GHSL, which is a human settlement layer data (resolution of 10 m), and we only evaluate them in 

terms of recall. The GHSL is a result of a coarser level compared with the building rooftop (e.g., including impervious surfaces 

like roads and city squares), thus achieving the highest recall value (80.89%) in rural scenes. However, the CBRA is very close 

to it (78.94%), with a gap of only 1.95%, indicating its reliability in predicting building rooftops in rural areas. Considering 

the varieties of urban and rural test samples, it should be mentioned that the presented results in Table 4 intend to compare 450 

product-to-product, rather than to demonstrate performance differences between urban and rural areas. 

 
Table 3: Statistic of the confusion matrix for building rooftop extraction in urban scenes. 

Dataset TP (%) FP (%) TN (%) FN (%) 
90-cities-BRA (Zhang et al., 2022b) 14.32 12.29 68.52 4.86 
CBRA (Ours) 8.98 6.65 74.42 9.96 

 

Table 4: Performance metrics for building rooftop extraction. Only recall with respect to OSM data is reported in rural areas, due to the 455 
challenges of accurately calculating other metrics caused by omissions in the OSM data. 

Dataset Description Urban scenes Rural 
scenes 

IoU 
(%) 

OA 
(%) 

Recall 
(%) 

F1-score 
(%) 

Recall* 

(%) 
90-cities-BRA (Zhang et 
al., 2022b) 

90 cities building rooftop in China with a 
resolution of 1 m (2020) 

35.08 83.39 47.39 51.94 - 

GHSL (Corbane et al., 
2021) 

Global human settlement layer with a 
resolution of 10 m (2018) 

25.85 53.84 84.94 41.07 80.89 

CBRA (Ours) China building rooftop data with a resolution of 
2.5 m (2016-2021) 

45.51 82.85 74.66 62.55 78.94 

* 90-cities-BRA does not include the rural area in China.  
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5.1.2 Qualitative analysis 

To further test the performance of the CBRA, we select several examples from our testing set to analyze and compare our 

results in both urban and rural areas. As shown in Fig. 9, in urban areas, our CBRA and the 90-cities-BRA are generally similar 460 

in the region where buildings are well separated, e.g., Fig.9a2, and Fig. 9b2. The difference is mainly about the rooftop details, 

the CBRA ignores several vertexes on the boundary, thus achieving blob-like results, which is mainly due to the resolution 

gap, as shown in Fig. 9c1 and Fig. 9d1. In the dense urban areas, especially in the old town where the distance between 

buildings may be less than 2.5 m, the CBRA treats buildings as blocks, e.g., Fig. 9a1. However, the CBRA has more complete 

building rooftops and fewer false predictions on the background (e.g., the road) compared with 90-cities-BRA, as shown in 465 

Fig. 9c2 and d2, which explains the smaller value of FP of CBRA in Table 3. Besides, the 90-cities-BRA utilizes the Google 

Earth Satellite (GES) images as the data source. Although GES images are of high spatial resolution (e.g., 1 m), GES images 

are provided by different satellites simultaneously and do not have consistent geographic offsets and acquisition times. The 

CBRA utilizes a super resolution technique to extract 2.5 m results only from the Sentinel-2 satellite, ensuring the reliability 

of the geography and the acquisition time, as shown in Fig. 10 and 11.  470 

In rural areas, as shown in Fig. 12, CBRA also provides building rooftop areas, while the 90-cities-BRA does not include 

them. Although it is difficult to identify individual buildings from the Sentinel-2 images, CBRA still extracts them, as shown 

in Fig. 12e and f. Compared to other datasets that provide information related to buildings in rural areas, the CBRA is at a 

significantly fine-grained scale, albeit with a greater presence of block areas in rural versus urban environments (Fig. 13). 

In summary, the CBRA achieves higher performance on extracting building rooftop (TP) and suppressing the false 475 

prediction on the background (FP), with 62.55% (+ 10.61%) in term of F1-score compared with the 90-cities-BRA. Besides, 

the CBRA has a full coverage of China, including the rural areas at a finer scale than other existing full-coverage and thematic-

related products. However, a decline in accuracy in rural areas, consistent with prior studies (Leyk et al., 2018; Kaim et al., 

2022), has been observed. In addition, the temporal coverage of CBRA spans 6 years (2016-2021), which is the first available 

building rooftop data with a span of time. The temporal information in the CBRA would be analysed in the subsection 5.2. 480 
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Figure 9: Comparison of the CBRA and the 90-cities-BRA (Zhang et al., 2022b) over the sampled urban regions in Shanghai and 
Qingdao. a and c are results of our CBRA. b and d are results of the 90-cities-BRA.  

 
Figure 10: Example of the inconsistent geographical offset of the previous dataset (121.531467ºE, 31.299903ºN). (a) The Sentinel-2 485 
image with survey rooftop data (imagery © ESA). (b) Result of CBRA. (c) Result of 90-cities-BRA (Zhang et al., 2022b). On could 
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observe that the result from 90-cities-BRA has geographical offset as red circle indicates. The CBRA uses the imagery only from 
Sentinel-2 satellite, ensuring the reliability of the geographical positions.  

 
Figure 11: Example of the inconsistent acquisition time of the previous dataset (121.341982ºE, 30.762489ºN). (a) The Sentinel-2 490 
image in 2019 (imagery © ESA). (b) Result of CBRA in 2019. (c) The Sentinel-2 image in 2020 (imagery © ESA). (d) Result of CBRA 
in 2020. (e) Result of 90-cities-BRA (Zhang et al., 2022b) in 2020. The CBRA uses the image with specific acquisition time, ensuring 
the reliability of the results in terms of temporal consistency.  

 
Figure 12: Example of the rural area (118.328041ºE, 28.817881ºN). (a-c) Sentinel-2 images (imagery © ESA). (d-f) Results of CBRA. 495 
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Figure 13: Comparison of the CBRA and the other datasets over the sampled rural region (106.352257ºE, 38.533718ºN). (a) CBRA. 
(b) GHSL (Corbane et al., 2021). (c) WSF (Marconcini et al., 2020b). 

5.2 Temporal consistency analysis 

To evaluate the temporal characteristics of the CBRA, we first test the performance of CBRA in three regions, i.e., the old 500 

town of Beijing, Hong Kong and Macao, where the distribution of the building is almost stable without change based on our 

priori knowledge. We utilize the survey rooftop data collected in 2019 to quantitatively demonstrate the accuracy, as shown 

in Fig. 14. Overall, the CBRA shows good performance consistency with little variation over 2016-2021. One may observe 

the accuracy fluctuates between 2016 and 2017, there are two potential reasons for this. First is the relatively long interval 

between the sampling time of survey data (2019) and the year 2016. The second is that the results for 2016 are not checked by 505 

temporal homogeneity due to the lack of temporal information; thus, its reliability is slightly lower compared to other years.  

The well-known annual impervious surface area (ISA) products could provide time span information for the evaluation. 

Thereby, we compare CBRA with the ISA of CLCD (CLCD-ISA) (Yang and Huang, 2021) and the GAIA (Gong et al., 2020b). 

We calculate fractions of foreground pixels within the 0.10° ×  0.10°  spatial grid for each year and then estimate the 

correlation coefficients (R2) between CLCD-ISA and GAIA to quantitatively demonstrate their agreement. Overall, the CBRA 510 

shows good consistency with the ISA products over the time span (0.63 < R2 < 0.71), indicating the reliability of the CBRA 

(Fig. 15). 

Although good agreement has been found between 2016-2019, the 2020 and 2021 are not checked because the annual ISA 

products with close resolution are not available for these years. However, the training material for producing CBRA contains 

the Dynamic World (Brown et al., 2022), which is a timely updated product providing built land cover, and the CBRA is 515 

therefore in very good agreement with it from 2016 to 2021 (0.83 < R2 < 0.89), also indicating the reliability of the CBRA.  
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Figure 14: Accuracy of CBRA in the building stable regions over 2016-2021. (a) IoU. (b) OA. (c) Recall. (d) F1-score. 

 520 
Figure 15: The correlation coefficients of the fraction of the foreground pixels between CBRA and two thematic-related datasets for 
each year. The fraction is aggregated within the 𝟎𝟎.𝟏𝟏𝟎𝟎° ×  𝟎𝟎.𝟏𝟏𝟎𝟎° spatial grid. 
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5.3 The spatial and temporal characteristics of China BRA from 2016-2021 

The statistical result of the average area of building rooftops in China from 2016-2021 is shown in Fig. 16. From the perspective 

of spatial distribution, there are three main city clusters in China: (a) The North China Plain (NCP), (b) the Yangtze River 525 

Delta (YRD); and (3) the Greater Bay Area (GBA). The NCP is the largest alluvial plain in China. There are 19.8% of the 

population living here (280 million out of 1.4 billion), but occupying 30.4% building rooftop areas (27,277 out of 89,826 K𝑚𝑚2), 

which indicates a more developed primary and secondary industry in the region (more industrial buildings and farm buildings).  

The YRD is dominated by Shanghai and is one of the regions with the most active economic development, providing 24.1% 

of GDP of China. There are 16.4% population (236 million) living here, and occupying 16.0% building rooftop area (14,342 530 

K𝑚𝑚2). The ratio of population and building areas are almost equal, indicating a more developed tertiary industry in the region.  

The GBA is a city cluster consisting of 11 cities including Guangzhou, Shenzhen, Hong Kong and Macao, which is the largest 

and most populated urban area in the world. There are 6.0% population (86 million) but occupying only 3.9% building rooftop 

areas (3,472 K𝑚𝑚2), indicating the region has a developed tertiary industry along with a high density of population and a tighter 

housing supply. 535 

Fig. 17 quantitatively summarizes the BRA and their changes on the three city clusters from 2016 to 2021. Overall, the 

China BRA has increased over the past 6 years, with more than 110,000 K𝑚𝑚2 in 2021, which is increased by 34,000 K𝑚𝑚2 

compared with 2016 (Fig. 17a). In addition, Fig. 17b indicates that the proportion of BRA on the NCP and YRD has obviously 

increased, while the proportion of the GBA and other regions except these three city clusters has slowly declined from 2016-

2021. Specifically, the proportion of the NCP increases the most, from 27% to 31%, while the proportion of other regions 540 

clearly decreases, from 53% to 49%. The change in the proportion reveals that the urbanization in China is characterized by 

the concentration of large city clusters. Lastly, Fig. 17c illustrates the statistic of BRA change from 2016 to 2021 and the 

expansion area on each city clusters, respectively. Specifically, the NCP has a largest increased with a total of 13,081 K𝑚𝑚2 

(from 20, 884 K𝑚𝑚2 in 2016 to 33, 966 K𝑚𝑚2 in 2021). 

The spatial distribution of the temporal changes of building rooftop area in China is shown in Fig. 18. It could be observed 545 

that the BRA in developed regions, such as coastal regions, is increasing, while the BRA in less developed regions, such as 

the northeast, northwest and southwest regions of China, is decreasing.  Fig. 18(b) and Fig. 18(c) are two examples of building 

demolition and construction, showing the removal of dense buildings (e.g., shack houses) in the rural area, and the 

establishment of buildings (e.g., apartments) in the urban area, respectively. More comprehensible references about the 

building change can be found in Fig. S5, S6 and S7. For simplicity, we only show building dynamic in a one-way conversion 550 

pattern.  

Overall, we establish the relationship between the BRA of China with the natural and economic spatial difference, which 

also validates the accuracy of the CBRA. The analysis on its temporal change reveals the spatio-temporal trends of BRA in 

China. Further analysis will be left for exploration in the future. 
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  555 
Figure 16: The spatial distribution of the average area of building rooftops in China over the period of 2016-2021. The area fraction 
is aggregated within the 𝟎𝟎.𝟏𝟏𝟎𝟎° ×  𝟎𝟎.𝟏𝟏𝟎𝟎° spatial grid. Base map © OpenStreetMap contributors 2023. Distributed under the Open 
Data Commons Open Database License (ODbL) v1.0. 
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 560 
Figure 17: The change of building rooftop area of China and three biggest city clusters in China (NCP, YRD and GBA) over the 
period of 2016-2021. (a) The annual statistic of building rooftop area in China. (b) The proportion of building rooftop of the biggest 
city clusters in China and other regions from 2016 to 2021. (c) The increased building rooftop area on each city clusters and other 
regions. 
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 565 
Figure 18: (a) The spatial distribution of the annual change of building rooftop area over the period of 2016-2021. The area fraction 
is aggregated within the 𝟎𝟎.𝟏𝟏𝟎𝟎° ×  𝟎𝟎.𝟏𝟏𝟎𝟎° spatial grid (base map © OpenStreetMap contributors 2023. Distributed under the Open 
Data Commons Open Database License (ODbL) v1.0). (b) An example of the demolition of the building (116.275761ºE, 39.844715º
N) from 2016 to 2021. (c) An example of the construction of the building (113.130952ºE, 22.948144ºN) from 2016 to 2021. 

6 Discussion 570 

6.1 Importance of the spatio-temporal aware learning 

In this paper, we develop a deep learning framework STSR-Seg for robust building rooftop extraction. The overall framework 

contains a super resolution pipeline for up-sampling the input resolution, a semantic segmentation pipeline for obtaining pixel-

wise building rooftop classifications, and the designed spatio-temporal aware learning with three dedicated learning algorithms 

(i.e., loss functions). Here, we mainly ablate the three dedicated designed learning algorithms to reveal their importance.  575 
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The baseline is the naive structure of super-resolution and semantic segmentation pipelines, i.e., EDSR as the super-

resolution module, our modified Unet as the semantic segmentation head, and the loss function is only the binary cross entropy 

loss (Eq. 1). The results of our ablation experiments are shown in Fig. S8. By disabling each learning strategy in turn from the 

baseline, we observe the impact on F1 testing performance: SG has the most significant effect, followed by the TC. 

The SG loss (Eq. 6) is designed to leverage the information from full-coverage, but low-resolution land-cover data, to 580 

achieve larger-scale weak supervision for the model training. Essentially, to achieve the SG loss, one needs to increase the 

amount of training resources, and therefore greatly improves the accuracy of our data-driven method (+2.38% in terms of F1 

score). Even when high-resolution references are available, incorporating low-resolution land-cover information in the training 

process through collaboration as supervised information is found to be beneficial (Table S16). In addition, we qualitatively 

find that using SG loss will prevent the model from falling into unexplained repeated predictions, as shown in Fig. S9. Without 585 

utilizing SG loss as supervision, the model could only converge to a limited number of training resources, i.e., the collected 

data. When applying to a large scale (e.g., national scale), the complexity of background in remote sensing images would 

significantly increase, which causes serious false alarms due to larger intra-class variance, therefore resulting in the unexpected 

false predictions in Fig. S9. Utilizing SG loss could suppress such false alarm by providing accurate non-building supervisions. 

The TC loss (Eq. 4) is proposed to keep the model time-invariant, which is essential for generating the multi-annual dataset. 590 

As shown in Fig. S10-S12, utilizing TC loss would increase the model capacity of handling time information, especially for 

supressing the accuracy gap between the year 2016 and 2017. Among these evaluation metrics, utilizing TC loss brings a 

greater improvement on recall (Fig. S10c, Fig. S11c, Fig. S12c), which indicates the TC loss would decrease the omissions of 

the rooftop prediction due to the different image styles of different years, thus improving the robustness of the model. 

Meanwhile, utilizing TC loss increases the overall performance of our method compared with the baseline (+1.46% in F1 595 

score). 

The HR loss (Eq. 3) is composited of two losses, i.e., the cross entropy loss (Eq. 1), and the Focal Tversky Loss (Eq. 2). 

Here we only ablate the Focal Tversky Loss in our “+HR loss” setting. Utilizing the Focal Tversky Loss would bring 0.45% 

improvement in terms of F1 score by shifting the model convergence more on minimizing FN predictions, and further supresses 

the false predictions on the background. 600 

As a conclusion of the ablation study, the designed learning strategy in the STSR-Seg framework leads to three significant 

benefits: (1) The SG loss provides enough supervision all over the China, thus increasing the geographical robustness of the 

model. (2) The TC loss keeps the model invariant to time span, increasing the temporal robustness of the model. (3) The HR 

loss is an optimized loss of the naïve cross entropy loss by introducing the Focal Tversky Loss. It could slightly improve the 

overall performance of the model. These advantages are also complementary to each other without conflict when used jointly 605 

together.  
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6.2 Limitations and prospects 

Although our STSR-Seg framework is scalable, allowing larger areas to be monitored (e.g., national scale). there remain some 

limitations to our approach. Specifically, the segmentation results for densely populated residential areas may present certain 

rooftops as a single block, rather than individual buildings. Our analysis suggests that this occurrence is primarily due to the 610 

resolution of the results, which is 2.5 m. Furthermore, the semantic segmentation technique utilized in the approach may 

introduce some uncertainty at the edges of buildings, resulting in additional pixels, up to three pixels, at the boundary. 

Consequently, up to 7.5 meters of buffering may occur, exacerbating the problem of building adhesion. Examples of this issue 

are presented in Fig. 19 

Besides, there is a need for further improvement in the delineation of the building boundaries within the CBRA. Buildings 615 

differ from other objects of interest in that they have regularized boundaries (e.g., polygons made of lines and vertexes). 

However, our dense pixel-to-pixel classification method disregards the morphology of the building, resulting a blob-like shape. 

For example, in Table 5, we add a buffer with 1-2 px to the collected reference rooftop data and then use this as a benchmark 

to calculate the accuracy. It is noted that the there is a significant increase in the TP percent (+ 4.35% for 1 px and + 6.18% 

for 2 px), and by a greater percentage than the increase of the FN (the increase of FN is due to the excessive background pixels 620 

considered as the ground truth). This indicates that the CBRA results suffer from ambiguous localization on the building 

boundaries  

We have noticed that there are many studies on the morphology extraction of buildings in recent years, such as instance 

segmentation methods (Liu et al., 2022; Zhu et al., 2021; Huang et al., 2021a). We also try to replace our semantic segmentation 

branch with current instance segmentation methods, e.g., recurrent neural network methods (Liu et al., 2022). However, the 625 

results are not good and even fail in our off-line experiment, mainly because these methods are designed for very high-

resolution aerial images (sub-metric level). In addition, the efficiency of these methods is too low to support national-level 

building mapping.  

Many endeavors utilize a post-processing strategy, e.g., Douglas–Peucker algorithm, to achieve regularization (Wei et al., 

2019; Chen et al., 2020; Zorzi et al., 2021) and such strategy has shown the success in building mapping at a relatively small 630 

scale (Wei et al., 2019). However, in the CBRA, the use of post-processing would introduce errors due to several block 

estimations in the densely residential area as aforementioned. Considering the potential errors by vectorizing, it is hard to 

provide vector results of the CBRA. 

The CBRA provides full-coverage and multi-annual information of building rooftops for China at 2.5 m spatial resolution, 

and the proposed STSR-Seg offers an opportunity to obtain high-resolution output by using relative low-resolution remote 635 

sensing images. However, our findings are constrained by the adhesion of closely located buildings and the blob-like shapes 

of rooftops. In the near future, we aim to enhance our methodology by designing more powerful model architecture and 

utilizing multisource data, including synthetic-aperture radar (SAR), and other BRA datasets, with the goal of achieving vector 

outputs. 
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 640 
Figure 19: Two examples of blob-like areas and the measured distances between adjacent buildings. (a) Densely residential area 
(101.302089ºE, 21.298532ºN). (b) Relatively discrete residential area (121.634662ºE, 31.746674ºN). Imagery © 2023 Maxar 
Techonlogies.  
 
Table 5: Statistic of confusion matrix for building rooftop extraction in urban scene. The collected reference is added by the buffer zone on 645 
the boundary with 1px and 2px, respectively. 

Buffer size TP (%) FP (%) TN (%) FN (%) 
+ 0px 14.32 12.29 68.52 4.86 
+ 1px 18.67 (+ 4.35) 7.95 64.95  8.43 (+ 3.57) 
+ 2px 20.50 (+ 6.18) 6.12  62.42  10.96 (+ 6.10) 

7 Conclusion 

In this study, we propose a robust Spatio-Temporal aware Super-Resolution SEGmentation (STSR-Seg) framework for fine-

grained spatial information extraction of BRA from the abundant availability of low-resolution imagery. Specifically, the 

STSR-Seg framework is built on the super resolution and semantic segmentation pipeline. Given the input low-resolution 650 

image, the STSR-Seg first extracts the corresponding high-resolution feature and then achieves pixel-to-pixel classification by 

the semantic segmentation branch. Considering the lack of reliable building rooftop references in China, we designed the 

spatio-temporal aware learning to enable the model to generalize in both large geographical regions and long time period. 

Ablation experiments on the designed learning strategy show the complementary advantage on handling false positives of the 

complex background and the temporal consistency over a time span, and the improvement of 4.29% in terms of F1 score 655 

compared to our baseline method.  

The resulting China building rooftop area dataset (CBRA) is the first multi-annual (2016-2021) and full-coverage BRA 

dataset in China, with 2.5 m spatial resolution. The OA and F1 scores of CBRA exceed 82% and 62% respectively based on 

the independent testing samples in urban areas. The inter-comparison between the CBRA and the previous 90-cities-BRA 

(Zhang et al., 2022b) confirms the superiority of the results obtained in this study. In particular, for the first time, the BRA in 660 
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rural areas of China is further identified at a fine-grained scale compared with other building-related products. Based on the 

CBRA and other annual ISA datasets, the building rooftop dynamic over a time-span is also evaluated and discussed. The 

CBRA completes the BRA in China and will allow for a more comprehensive characterization of climate change, urban 

planning, and policy decisions combined with other data, such as BRA provided by Google and Microsoft. The proposed 

STSR-Seg framework could also be applied for large-scale and dynamic high-resolution BRA monitoring without any data 665 

expenditure. In the future, we plan to investigate improving the BRA accuracy and extend the spatial coverage to reveal the 

global BRA dynamic at the 2.5 m resolution.  

8 Data availability 

The source code of the STSR-Seg and the dataset generation pipeline could be found on our project page: 

https://github.com/zpl99/STSR-Seg. The 2.5 m multi-annual China building rooftop area (CBRA) dataset from 2016 to 2021 670 

is free to access at: https://doi.org/10.5281/zenodo.7500612 (Liu et al., 2023). The CBRA is organized as GeoTIFF (.tif) raster 

file format with a single band and GCS_WGS_1984 coordinate system. The pixel values are 0 and 255, with 0 representing 

the background and 255 representing the building rooftop area. Furthermore, to facilitate the use of the data, the CBRA is split 

into 215 tiles of 2.5° ×  2.5° spatial grid, named “CBRA_year_E/W**N/S**.tif”, where “year” is the sampling year, the 

“E/W**N/S**” is the latitude and longitude coordinates found in the upper left corner of the tile data. 675 

 

Author contributions. HT and ZL conceived the study. ZL performed the investigation. HT and ZL designed the methodology. 

ZL developed the software. ZL, LF, SL performed the validation. ZL prepared the original draft of the paper and HT reviewed 

it. 

 680 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgment. The authors greatly appreciate the free access to the Sentinel data provided by ESA, the Dynamic World 

product provided by Google, the survey rooftop data provided by Tiandi-Map, and the 90 cities building rooftop area data 

provided by Nanjing Normal University. We would also like to thank the Google Earth Engine team for their excellent work 685 

to maintain the planetary-scale geospatial cloud platform, as well as the Geemap python package for interactive mapping with 

Google Earth Engine, developed by Qiusheng Wu.  

 

Financial support. This research has been supported by the National Natural Science Foundation of China under Grant No. 

42192584 and 41971280, and by the Key Laboratory of Environmental Change and Natural Disaster of the Ministry of 690 

Education, Beijing Normal University (Project No.2022-KF-07). 

https://github.com/zpl99/STSR-Seg
https://doi.org/10.5281/zenodo.7500612


33 
 

References 

HR Imagery Ordering: https://www.aaas.org/resources/high-resolution-satellite-imagery-ordering-and-analysis-handbook, 

last access: 21 November 2022. 
Abraham, N. and Khan, N. M.: A novel focal tversky loss function with improved attention u-net for lesion segmentation, in: 695 

2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), 683–687, 2019. 

Adriano, B., Yokoya, N., Xia, J., Miura, H., Liu, W., Matsuoka, M., and Koshimura, S.: Learning from multimodal and 

multitemporal earth observation data for building damage mapping, ISPRS Journal of Photogrammetry and Remote Sensing, 

175, 132–143, 2021. 

Arcgis online: https://www.arcgis.com/home/index.html, last access: 24 November 2022. 700 

GlobalMLBuildingFootprints: https://github.com/microsoft/GlobalMLBuildingFootprints, last access: 21 November 2022. 

Appolloni, E., Orsini, F., Specht, K., Thomaier, S., Sanye-Mengual, E., Pennisi, G., and Gianquinto, G.: The global rise of 

urban rooftop agriculture: A review of worldwide cases, J Clean Prod, 296, 126556, 2021. 

Ayush, K., Uzkent, B., Tanmay, K., Burke, M., Lobell, D., and Ermon, S.: Efficient poverty mapping from high resolution 

remote sensing images, in: Proceedings of the AAAI Conference on Artificial Intelligence, 12–20, 2021a. 705 

Ayush, K., Uzkent, B., Meng, C., Tanmay, K., Burke, M., Lobell, D., and Ermon, S.: Geography-aware self-supervised 

learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 10181–10190, 2021b. 

Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., 

Haertel, R., and Ilyushchenko, S.: Dynamic World, Near real-time global 10 m land use land cover mapping, Sci Data, 9, 1–

17, 2022. 710 

Burke, M., Driscoll, A., Lobell, D. B., and Ermon, S.: Using satellite imagery to understand and promote sustainable 

development, Science (1979), 371, eabe8628, 2021. 

Byrne, J., Taminiau, J., Kurdgelashvili, L., and Kim, K. N.: A review of the solar city concept and methods to assess rooftop 

solar electric potential, with an illustrative application to the city of Seoul, Renewable and sustainable energy reviews, 41, 

830–844, 2015. 715 

Chen, J., Tang, H., Ge, J., and Pan, Y.: Rapid Assessment of Building Damage Using Multi-Source Data: A Case Study of 

April 2015 Nepal Earthquake, Remote Sens (Basel), 14, 1358, 2022. 

Corbane, C., Syrris, V., Sabo, F., Politis, P., Melchiorri, M., Pesaresi, M., Soille, P., and Kemper, T.: Convolutional neural 

networks for global human settlements mapping from Sentinel-2 satellite imagery, Neural Comput Appl, 33, 6697–6720, 2021. 

van Etten, A., Hogan, D., Manso, J. M., Shermeyer, J., Weir, N., and Lewis, R.: The multi-temporal urban development 720 

spacenet dataset, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6398–6407, 

2021. 



34 
 

Fox, D. M., Youssaf, Z., Adnès, C., and Delestre, O.: Relating imperviousness to building growth and developed area in order 

to model the impact of peri-urbanization on runoff in a Mediterranean catchment (1964-2014), J Land Use Sci, 14, 210–224, 

2019. 725 

Ge, J., Tang, H., Yang, N., and Hu, Y.: Rapid identification of damaged buildings using incremental learning with transferred 

data from historical natural disaster cases, ISPRS Journal of Photogrammetry and Remote Sensing, 195, 105–128, 2023. 

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., and Liu, S.: Finer resolution observation 

and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data, Int J Remote Sens, 34, 2607–

2654, 2013. 730 

Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B., Yang, J., and Zhang, W.: Annual maps of global artificial 

impervious area (GAIA) between 1985 and 2018, Remote Sens Environ, 236, 111510, 2020a. 

Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B., Yang, J., and Zhang, W.: Annual maps of global artificial 

impervious area (GAIA) between 1985 and 2018, Remote Sens Environ, 236, 111510, 2020b. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale 735 

geospatial analysis for everyone, Remote Sens Environ, 202, 18–27, 2017. 

Guan, X., Wei, H., Lu, S., Dai, Q., and Su, H.: Assessment on the urbanization strategy in China: Achievements, challenges 

and reflections, Habitat Int, 71, 97–109, 2018a. 

Guan, X., Wei, H., Lu, S., Dai, Q., and Su, H.: Assessment on the urbanization strategy in China: Achievements, challenges 

and reflections, Habitat Int, 71, 97–109, 2018b. 740 

Haklay, M. and Weber, P.: Openstreetmap: User-generated street maps, IEEE Pervasive Comput, 7, 12–18, 2008. 

He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, in: Proceedings of the IEEE conference 

on computer vision and pattern recognition, 770–778, 2016. 

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R.: Momentum contrast for unsupervised visual representation learning, in: 

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 9729–9738, 2020. 745 

He, Y., Wang, D., Lai, N., Zhang, W., Meng, C., Burke, M., Lobell, D., and Ermon, S.: Spatial-Temporal Super-Resolution of 

Satellite Imagery via Conditional Pixel Synthesis, Adv Neural Inf Process Syst, 34, 27903–27915, 2021. 

He, Y., Zhang, W., Meng, C., Burke, M., Lobell, D. B., and Ermon, S.: Tracking Urbanization in Developing Regions with 

Remote Sensing Spatial-Temporal Super-Resolution, arXiv preprint arXiv:2204.01736, 2022. 

Hoeser, T., Feuerstein, S., and Kuenzer, C.: DeepOWT: a global offshore wind turbine data set derived with deep learning 750 

from Sentinel-1 data, Earth Syst Sci Data, 14, 4251–4270, 2022. 

Huang, W., Tang, H., and Xu, P.: OEC-RNN: Object-oriented delineation of rooftops with edges and corners using the 

recurrent neural network from the aerial images, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12, 2021a. 

Huang, X., Li, J., Yang, J., Zhang, Z., Li, D., and Liu, X.: 30 m global impervious surface area dynamics and urban expansion 

pattern observed by Landsat satellites: From 1972 to 2019, Sci China Earth Sci, 64, 1922–1933, 2021b. 755 



35 
 

Huang, X., Yang, J., Wang, W., and Liu, Z.: Mapping 10-m global impervious surface area (GISA-10m) using multi-source 

geospatial data, Earth System Science Data Discussions, 1–39, 2022. 

Iglovikov, V., Seferbekov, S., Buslaev, A., and Shvets, A.: Ternausnetv2: Fully convolutional network for instance 

segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 233–237, 

2018. 760 

Jones, L. and Hobbs, P.: The application of terrestrial LiDAR for geohazard mapping, monitoring and modelling in the British 

Geological Survey, Remote Sens (Basel), 13, 395, 2021. 

Kaim, D., Ziółkowska, E., Grădinaru, S. R., and Pazúr, R.: Assessing the suitability of urban-oriented land cover products for 

mapping rural settlements, International Journal of Geographical Information Science, 36, 2412–2426, 2022. 

Kuthanazhi, V., Jois, S., Jadhav, P., Kumar, K., Magal, A., Pimpalkhare, A., Vasi, J., Kottantharayil, A., Ramamritham, K., 765 

and Narayanan, N. C.: Estimating Mumbai’s rooftop PV potential through mobilization of IEEE student community, in: 2016 

IEEE 43rd Photovoltaic Specialists Conference (PVSC), 3311–3316, 2016. 

Leyk, S., Uhl, J. H., Balk, D., and Jones, B.: Assessing the accuracy of multi-temporal built-up land layers across rural-urban 

trajectories in the United States, Remote Sens Environ, 204, 898–917, 2018. 

Liang, J., Gong, J., and Li, W.: Applications and impacts of Google Earth: A decadal review (2006–2016), ISPRS Journal of 770 

Photogrammetry and Remote Sensing, 146, 91–107, 2018. 

Lim, B., Son, S., Kim, H., Nah, S., and Mu Lee, K.: Enhanced deep residual networks for single image super-resolution, in: 

Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 136–144, 2017. 

Liu, Z. and Tang, H.: Learning Sparse Geometric Features for Building Segmentation from Low-Resolution Remote-Sensing 

Images, Remote Sens (Basel), 15, 1741, 2023. 775 

Liu, Z., Tang, H., and Huang, W.: Building Outline Delineation From VHR Remote Sensing Images Using the Convolutional 

Recurrent Neural Network Embedded With Line Segment Information, IEEE Transactions on Geoscience and Remote Sensing, 

60, 1–13, 2022. 

Liu, Z., Tang, H., Feng, L., and Lyu, S.: CBRA: The first multi-annual (2016-2021) and high-resolution (2.5 m) building 

rooftop area dataset in China derived with Super-resolution Segmentation from Sentinel-2 imagery, 780 

https://doi.org/10.5281/ZENODO.7500612, 2023. 

Li, X., Gong, P., and Liang, L.: A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat 

data, Remote Sens Environ, 166, 78–90, 2015. 

Malkin, K., Robinson, C., Hou, L., Soobitsky, R., Czawlytko, J., Samaras, D., Saltz, J., Joppa, L., and Jojic, N.: Label super-

resolution networks, in: International Conference on Learning Representations, 2018. 785 

Manas, O., Lacoste, A., Giró-i-Nieto, X., Vazquez, D., and Rodriguez, P.: Seasonal contrast: Unsupervised pre-training from 

uncurated remote sensing data, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 9414–9423, 

2021. 



36 
 

Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., Hanke, W., Bachofer, F., Zeidler, J., Esch, T., Gorelick, 

N., and Kakarla, A.: Outlining where humans live, the World Settlement Footprint 2015, Sci Data, 7, 1–14, 2020a. 790 

Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., Hanke, W., Bachofer, F., Zeidler, J., Esch, T., Gorelick, 

N., and Kakarla, A.: Outlining where humans live, the World Settlement Footprint 2015, Sci Data, 7, 1–14, 2020b. 

Muhtar, D., Zhang, X., and Xiao, P.: Index Your Position: A Novel Self-Supervised Learning Method for Remote Sensing 

Images Semantic Segmentation, IEEE Transactions on Geoscience and Remote Sensing, 2022. 

Munawar, H. S., Hammad, A. W. A., and Waller, S. T.: Remote Sensing Methods for Flood Prediction: A Review, Sensors, 795 

22, 960, 2022. 

Nadal, A., Alamús, R., Pipia, L., Ruiz, A., Corbera, J., Cuerva, E., Rieradevall, J., and Josa, A.: Urban planning and agriculture. 

Methodology for assessing rooftop greenhouse potential of non-residential areas using airborne sensors, Science of the total 

environment, 601, 493–507, 2017. 

Qiu, C., Schmitt, M., Geiß, C., Chen, T.-H. K., and Zhu, X. X.: A framework for large-scale mapping of human settlement 800 

extent from Sentinel-2 images via fully convolutional neural networks, ISPRS Journal of Photogrammetry and Remote Sensing, 

163, 152–170, 2020. 

Robinson, C., Hou, L., Malkin, K., Soobitsky, R., Czawlytko, J., Dilkina, B., and Jojic, N.: Large scale high-resolution land 

cover mapping with multi-resolution data, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 12726–12735, 2019. 805 

Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical image segmentation, in: 

International Conference on Medical image computing and computer-assisted intervention, 234–241, 2015. 

Schneider, A., Friedl, M. A., McIver, D. K., and Woodcock, C. E.: Mapping urban areas by fusing multiple sources of coarse 

resolution remotely sensed data, Photogramm Eng Remote Sensing, 69, 1377–1386, 2003. 

Shao, G., Tang, L., and Liao, J.: Overselling overall map accuracy misinforms about research reliability, Landsc Ecol, 34, 810 

2487–2492, 2019. 

Shermeyer, J. and van Etten, A.: The effects of super-resolution on object detection performance in satellite imagery, in: 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 0, 2019. 

Sirko, W., Kashubin, S., Ritter, M., Annkah, A., Bouchareb, Y. S. E., Dauphin, Y., Keysers, D., Neumann, M., Cisse, M., and 

Quinn, J.: Continental-scale building detection from high resolution satellite imagery, arXiv preprint arXiv:2107.12283, 2021. 815 

Tateishi, R., Uriyangqai, B., Al-Bilbisi, H., Ghar, M. A., Tsend-Ayush, J., Kobayashi, T., Kasimu, A., Hoan, N. T., Shalaby, 

A., and Alsaaideh, B.: Production of global land cover data–GLCNMO, Int J Digit Earth, 4, 22–49, 2011. 

Uhl, J. H. and Leyk, S.: A scale-sensitive framework for the spatially explicit accuracy assessment of binary built-up surface 

layers, Remote Sens Environ, 279, 113117, 2022. 

Wang, Y., Bashir, S. M. A., Khan, M., Ullah, Q., Wang, R., Song, Y., Guo, Z., and Niu, Y.: Remote sensing image super-820 

resolution and object detection: Benchmark and state of the art, Expert Syst Appl, 116793, 2022. 



37 
 

Wei, S., Ji, S., and Lu, M.: Toward automatic building footprint delineation from aerial images using CNN and regularization, 

IEEE Transactions on Geoscience and Remote Sensing, 58, 2178–2189, 2019. 

Xie, M., Jean, N., Burke, M., Lobell, D., and Ermon, S.: Transfer learning from deep features for remote sensing and poverty 

mapping, in: Thirtieth AAAI Conference on Artificial Intelligence, 2016. 825 

Xu, P., Tang, H., Ge, J., and Feng, L.: ESPC_NASUnet: An End-to-End Super-Resolution Semantic Segmentation Network 

for Mapping Buildings From Remote Sensing Images, IEEE J Sel Top Appl Earth Obs Remote Sens, 14, 5421–5435, 2021. 

Yang, F. and Ma, C.: Sparse and Complete Latent Organization for Geospatial Semantic Segmentation, in: Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1809–1818, 2022. 

Yang, J. and Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth Syst Sci Data, 830 

13, 3907–3925, 2021. 

Yue, J., Fang, L., Ghamisi, P., Xie, W., Li, J., Chanussot, J., and Plaza, A.: Optical remote sensing image understanding with 

weak supervision: Concepts, methods, and perspectives, IEEE Geosci Remote Sens Mag, 10, 250–269, 2022. 

Zhang, S., Wu, R., Xu, K., Wang, J., and Sun, W.: R-CNN-based ship detection from high resolution remote sensing imagery, 

Remote Sens (Basel), 11, 631, 2019. 835 

Zhang, T., Tang, H., Ding, Y., Li, P., Ji, C., and Xu, P.: FSRSS-Net: High-resolution mapping of buildings from middle-

resolution satellite images using a super-resolution semantic segmentation network, Remote Sens (Basel), 13, 2290, 2021. 

Zhang, X., Liu, L., Zhao, T., Gao, Y., Chen, X., and Mi, J.: GISD30: global 30 m impervious-surface dynamic dataset from 

1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform, Earth Syst Sci Data, 14, 1831–1856, 

2022a. 840 

Zhang, Z., Qian, Z., Zhong, T., Chen, M., Zhang, K., Yang, Y., Zhu, R., Zhang, F., Zhang, H., and Zhou, F.: Vectorized rooftop 

area data for 90 cities in China, Sci Data, 9, 1–12, 2022b. 

Zhu, Q., Guo, X., Deng, W., Guan, Q., Zhong, Y., Zhang, L., and Li, D.: Land-use/land-cover change detection based on a 

Siamese global learning framework for high spatial resolution remote sensing imagery, ISPRS Journal of Photogrammetry and 

Remote Sensing, 184, 63–78, 2022a. 845 

Zhu, X. X., Qiu, C., Hu, J., Shi, Y., Wang, Y., Schmitt, M., and Taubenböck, H.: The urban morphology on our planet–Global 

perspectives from space, Remote Sens Environ, 269, 112794, 2022b. 

Zhu, Y., Huang, B., Gao, J., Huang, E., and Chen, H.: Adaptive polygon generation algorithm for automatic building extraction, 

IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14, 2021. 

  850 


	1 Introduction
	2 Background
	2.1 Methodological background
	2.2 Building-related products

	3 Data
	3.1 Satellite imagery
	3.2 Reference data

	4 Methodology
	4.1 Training sample generation
	4.2 Super resolution and semantic segmentation pipeline
	4.3 Spatio-temporal aware learning
	4.3.1 High-resolution learning
	4.3.2 Temporal contrast
	4.3.3 Spatial generalization

	4.4 CBRA Dataset generation
	4.5 Accuracy assessment

	5 Results
	5.1 Accuracy assessment using testing samples
	5.1.1 Quantitative analysis
	5.1.2 Qualitative analysis

	5.2 Temporal consistency analysis
	5.3 The spatial and temporal characteristics of China BRA from 2016-2021

	6 Discussion
	6.1 Importance of the spatio-temporal aware learning
	6.2 Limitations and prospects

	7 Conclusion
	8 Data availability
	References

