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Abstract.  21 

Accurate and timely global evapotranspiration (ET) data is crucial for agriculture, water resource 22 

management, and drought forecasting. Although numerous satellite-based ET products are available, few 23 

offer near-real-time data. For instance, products like NASA’s ECOSTRESS and MOD16 face challenges 24 

such as uneven coverage and delays exceeding one week in data availability. In this study, we refined the 25 

Variation of the Standard Evapotranspiration Algorithm (VISEA) by fully integrating satellite-based 26 

data, including European Centre for Medium-Range Weather Forecasts ERA5-Land's shortwave 27 

radiation, which includes satellite remote sensing data within its assimilation system and MODIS's land 28 

surface data include surface reflectance, temperature/emissivity, land cover, vegetation indices, and 29 

albedo as inputs. It enables VISEA to provide near-real-time global daily ET estimates with a maximum 30 

delay of one week at a resolution of 0.05°. Its accuracy was assessed globally using observation data from 31 

149 flux towers across 12 land cover types and comparing it with five other satellite-based ET products 32 

and GPCC precipitation data. The results indicate that VISEA provides comparable accuracy ET 33 

estimates to existing products, achieving a mean correlation coefficient (R) of about 0.6 and an RMSE of 34 

1.4 mm day-1. Furthermore, we demonstrated VISEA's utility in drought monitoring during a drought 35 

event in the Yangtze River Basin in 2022, in which the ET changes correlated with the precipitation. The 36 

near-real-time capability of VISEA is, thus, especially valuable in meteorological and hydrological 37 

applications for coordinating drought relief efforts. The VISEA ET dataset is available at 38 

https://doi.org/10.11888/Terre.tpdc.300782 (Huang, 2023a). 39 

1 Introduction  40 

Global terrestrial evapotranspiration (ET) is a vital component of the Earth water cycle and energy 41 

budget. It includes evaporation from the soil and water surfaces (some studies also consider evaporation 42 

from the intercepted precipitation in canopies) and plant transpiration (He et al., 2022; Wang et al., 2021a; 43 
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Zhang et al., 2021). Accurate and timely estimation of ET is essential for quantitatively assessing changes 44 

in the water cycle under climate change, vigilant monitoring drought, and effectively managing and 45 

allocating water resources (Aschonitis et al., 2022; Han et al., 2021; Su et al., 2020).  46 

Near-real-time ET estimation from reanalysis data has been widely used to assess ET changes in the 47 

global water cycle under different climate changes (Copernicus Climate Change Service, 2020). While 48 

these datasets, such as ERA5 (Albergel et al., 2012; Jarlan et al., 2008; Miller et al., 1992) and CRA-40 49 

(Liu et al., 2023; Zhao et al., 2019), offer near-real-time latent heat flux (ET in energy units) with a delay 50 

of just six days, but they typically feature coarser spatial resolutions, often 0.25° or more. This level of 51 

resolution may limit their effectiveness for detailed assessments of drought conditions and the 52 

optimization of water resource allocation. On the other hand, obtaining highly accurate, near-real-time, 53 

or real-time ET measurements through local eddy covariance or lysimeter methods can be very valuable 54 

(Awada et al., 2022), but collecting large-scale ET data on a fine grid using this equipment is prohibitively 55 

expensive  (Barrios et al., 2015; Tang et al., 2009).  56 

Satellite remote sensing-based ET estimates outperform reanalysis data by providing high spatial 57 

resolution for detailed water utilization analysis, near-real-time data for prompt environmental response, 58 

and global coverage for comprehensive water cycle studies. These ET estimates rely on direct 59 

observations, enhancing accuracy, especially where ground data are sparse, and allowing for the dynamic 60 

monitoring of land and vegetation changes.  61 

The selected ET products discussed below have significantly contributed to estimating global ET 62 

and have gained recognition within the scientific community. The MOD16 ET product, developed by Mu 63 

et al. (2007, 2011), utilizes a Penman-Monteith-based approach and is driven by MODIS land cover, 64 

albedo, fractional photosynthetically active radiation, leaf area index, and daily meteorological reanalysis 65 

data from NASA’s Global Modelling and Assimilation Office (GMAO) to estimate ET. The AVHRR ET 66 

product, developed by Zhang et al. (2006, 2009), significantly advanced the study of the global water 67 

cycle. It employed a modified Penman–Monteith approach over land, integrating biome-specific canopy 68 

conductance determined by NDVI, and utilized a Priestley–Taylor approach over water surfaces. These 69 

algorithms were driven by AVHRR Global Inventory Modeling and Mapping Studies (GIMMS) NDVI, 70 

daily surface meteorology data from the National Centers for Environmental Prediction/National Center 71 

for Atmospheric Research (NCEP/NCAR) reanalysis, and solar radiation from NASA/GEWEX Surface 72 

Radiation Budget Release-3.0. The FLUXCOM framework has made a substantial contribution to 73 

resolving the evapotranspiration paradox. It utilizes machine learning to integrate eddy covariance data 74 

from the global FLUXNET tower network, surface meteorological data from the Climatic Research Unit 75 

(CRU) reanalysis, and remote sensing data (Jung et al., 2009, 2010, 2019). Additionally, GLEAM, 76 

developed by Miralles et al. (2011b) and Martens et al. (2017), is one of the best satellite-based ET 77 

products using unique algorithmic approaches that have advanced the estimation of global ET which uses 78 

meteorology data from ECMWF Reanalysis 5. Lastly, PML, developed by Zhang et al. (2019, 2022) is 79 

the first to offer global ET coverage at a 500-meter resolution, demonstrating high accuracy compared to 80 

local eddy covariance observations worldwide with MODIS satellite data and Global Land Data 81 

Assimilation System Version 2.1 (GLDAS-2.1) data (Zhang et al., 2023). 82 
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However, these ET products cannot provide near-real-time data due to reliance on local ground-83 

based meteorology and land-surface/reanalysis models, which are time-consuming to obtain globally. For 84 

example, MOD16 and PML use GMAO and GLDAS-2.1 data, respectively. While AVHRR ET depends 85 

on AVHRR satellite data and NCEP/NCAR Reanalysis meteorology data, GLEAM ET uses MODIS 86 

satellite data and ECMWF meteorology Reanalysis data. FLUXCOM relies on FLUXNET and the 87 

Climatic Research Unit (CRU) reanalysis data, which are not updated in real-time. Recently, NASA's 88 

ECOsystem Spaceborne Thermal Radiometer Experiment, mounted on the International Space Station 89 

on the Space Station (ECOSTRESS), was designed to estimate global-scale ET (Fisher et al., 2019, 2020). 90 

thermal infrared data at 70-meter resolution every 1 to 7 days. This results in uneven global coverage and 91 

reduced data frequency, especially in regions like the Middle East, as noted by Anderson et al., 2021 and 92 

Jaafar et al., 2022. In contrast, the VISEA model uses only MODIS land products and ERA5-Land 93 

shortwave radiation, enabling near-real-time ET estimations. 94 

The objective of this manuscript is twofold: 1) adapt the VISEA model for near real-time, global 95 

application by replacing land-based solar radiation inputs with hourly shortwave radiation data from 96 

ECMWF ERA5-Land’s data assimilation system (Sabater, 2019); and 2) to globally validate the model 97 

using a comprehensive set of datasets, including meteorological instrument data and eddy covariance 98 

measurements from 149 FLUXNET flux towers (Pastorello et al., 2020). Additionally, multi-year ET 99 

datasets from GLEAM (Martens et al., 2017; Miralles et al., 2011), FLUXCOM (Jung et al., 2009, 2010, 100 

2018), AVHRR (Zhang et al., 2009, 2010), MOD16 (Mu et al., 2007, 2011), PML (Zhang et al., 2019, 101 

2022) and precipitation data from the Global Precipitation Climatology Centre (GPCC) (Udo et al., 2011) 102 

are also employed in the assessment. 103 

2. Methods 104 

2.1 Description of the VISEA algorithm 105 

VISEA, short for the Variation of the Moderate Resolution Imaging Spectroradiometer Standard 106 

Evapotranspiration Algorithm, is a modification of the MODIS standard Evapotranspiration (ET) 107 

algorithm. The original MODIS algorithm, created by Mu et al. (2007 and 2011), is based on the Penman-108 

Monteith method. VISEA introduces two significant modifications. First, it employs the Vegetation (VI)-109 

Temperature (Ts) Triangle method, originally developed by Nishida et al. (2003), to estimate air 110 

temperature. Second, VISEA incorporates hourly data on shortwave downward radiation from the ERA5-111 

Land dataset to calculate daily average energy. These two advancements enable VISEA to estimate large-112 

scale ET without needing local measurements as supplementary data.  113 

Unlike energy budget-based ET algorithms, such as SEBS (Surface Energy Balance System), 114 

METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration), and ALEXI 115 

(Atmosphere-Land Exchange Inverse), which calculate ET (latent heat flux) as the residual of the net 116 

radiation by subtracting soil heat flux and sensible heat flux. VISEA estimates ET using the Penman-117 

Monteith equation, placing it in a different category of satellite-based global ET products currently in 118 

use. VISEA is a two-source model, which means the ET in one grid cell was separated as the transpiration 119 

from full vegetation cover and the evaporation from bare soil surface if energy transfer from the 120 

vegetation to the soil surface was ignored (Nishida et al., 2003), i.e., 121 



 

4 
 

𝐸𝑇 = 𝑓𝑣𝑒𝑔𝐸𝑇𝑣𝑒𝑔 + (1 − 𝑓𝑣𝑒𝑔)𝐸𝑇𝑠𝑜𝑖𝑙                                                           (1) 122 

where the subscript "𝑣𝑒𝑔" means full vegetation cover and the subscript "soil" indicates the soil exposed 123 

to solar radiation (called bare soil); 𝐸𝑇𝑣𝑒𝑔 is the transpiration from full vegetation cover area (W m-2), 124 

𝐸𝑇𝑠𝑜𝑖𝑙  is the evaporation from bare soil (W m-2), 𝑓𝑣𝑒𝑔 is the portion of the area with the vegetation cover, 125 

which can be calculated by Normalized Difference Vegetation Index (calculation details are provided in 126 

Appendix A, Tang et al., 2009). 127 

The available energy 𝑄 (W m-2), which is the sum of the latent heat flux and sensible heat flux (also 128 

known as the net radiation minus soil heat flux) is also separated into the available energy for vegetation 129 

transpiration, 𝑄𝑣𝑒𝑔 (W m-2) and 𝑄𝑠𝑜𝑖𝑙  (W m-2) for bare soil evaporation, which was expressed by Nishida 130 

et al. (2003) as: 131 

𝑄 = 𝑓𝑣𝑒𝑔𝑄𝑣𝑒𝑔 + (1 − 𝑓𝑣𝑒𝑔)𝑄𝑠𝑜𝑖𝑙                                                      (2) 132 

As satellites like Terra and Aqua only provide instantaneous snapshot observations of the Earth, a 133 

temporal scaling method is needed to convert instantaneous measurements into daily ET values. Nishida 134 

et al. (2003) used satellite-based noon time instantaneous evaporation fraction (𝐸𝐹), defined as the ratio 135 

of latent heat flux (𝐸𝑇) to available energy as daily 𝐸𝐹 (𝐸𝐹 =
𝐸𝑇

𝑄
), multiplied the daily 𝑄 to calculated 136 

daily 𝐸𝑇 based on the assumption that 𝐸𝐹 is constant over a day: 137 

𝐸𝑇 = 𝐸𝐹 𝑄                                                                               (3) 138 

In the next section, we will detail how VISEA calculates the daily 𝐸𝐹 , and 𝑄  in Eq. 3, daily air 139 

temperature and daily land surface temperature. 140 

2.1.1 Daily evaporation fraction calculation  141 

Combining Eq. 1, 2 and 3, we calculated the instantaneous evaporation fraction, 𝐸𝐹𝑖 as:  142 

𝐸𝐹𝑖 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔

𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑖 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙
𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑖                                          (4) 143 

𝐸𝐹𝑣𝑒𝑔
𝑖  and 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  are the instantaneous full vegetation coverage and bare soil 𝐸𝐹, respectively. 𝐸𝐹𝑣𝑒𝑔
𝑖  can 144 

be expressed as a function of instantaneous parameters (Nishida et al., 2003):  145 

𝐸𝐹𝑣𝑒𝑔
𝑖 =

𝛼 ∆𝑖

∆𝑖+γ(1+𝑟𝑐 𝑣𝑒𝑔
𝑖 /2𝑟𝑎 𝑣𝑒𝑔

𝑖 )
                                                         (5) 146 

where α is the Priestley-Taylor parameter, which was set to 1.26 for wet surfaces (De Bruin, 1983); ∆𝑖 is 147 

the instantaneous slope of the saturated vapor pressure, which is a function of the temperature (Pa K-1); 148 

𝛾 is the psychometric constant (Pa K-1); 𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous surface resistance of the vegetation 149 

canopy (s m-1); 𝑟𝑎 𝑣𝑒𝑔
𝑖  is the instantaneous aerodynamics resistance of the vegetation canopy (s m-1). 150 

𝐸𝐹𝑠𝑜𝑖𝑙
𝑖  was expressed by Nishida et al. (2003) as a function of the instantaneous soil temperature and the 151 

available energy based on the energy budget of the bare soil:  152 
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𝐸𝐹𝑠𝑜𝑖𝑙
𝑖 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑠𝑜𝑖𝑙 

𝑖

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑎 

𝑖

𝑄𝑠𝑜𝑖𝑙0 
𝑖

𝑄𝑠𝑜𝑖𝑙 
𝑖                                                              (6) 153 

where 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖  is the instantaneous maximum possible temperature at the surface reached when the land 154 

surface is dry (K), 𝑇𝑠𝑜𝑖𝑙 
𝑖  is the instantaneous temperature of the bare soil (K), 𝑇𝑎 

𝑖 is the instantaneous air 155 

temperature, 𝑄𝑠𝑜𝑖𝑙0 
𝑖 is the instantaneous available energy for bare soil when 𝑇𝑠𝑜𝑖𝑙 

𝑖  is equal to 𝑇𝑎 
𝑖  (W m-2).  156 

As the assumption of noon time instantaneous evaporation fraction 𝐸𝐹𝑖  equals daily average 157 

evaporation fraction, 𝐸𝐹𝑑, thus,  𝐸𝐹𝑖 =  𝐸𝐹𝑑, caused a 10%-30% underestimation of daily ET (Huang 158 

et al., 2017; Yang et al., 2013), we introduced a decoupling parameter to covert 𝐸𝐹𝑖 into 𝐸𝐹𝑑 (Huang et 159 

al., 2021; Tang et al., 2017; Tang and Li, 2017). The superscript "𝑑" means daily and "𝑖" means 160 

instantaneous. This new decoupling parameter-based evaporation faction is developed from Penman-161 

Monteith and McNaughton-Jarvis mathematical equations:  162 

𝐸𝐹𝑑 = 𝐸𝐹𝑖 ∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

Ω∗𝑖

Ω∗𝑑

Ω𝑑

Ω𝑖                                                          (7) 163 

where Ω is the decoupling factor that represents the relative contribution of radiative and aerodynamic 164 

terms to the overall evapotranspiration (Tang and Li, 2017), 𝛺𝑖
∗ is the value of the decoupling factor, Ω, 165 

for wet surfaces. According to Pereira (2004),  the calculation details of Ω and 𝛺∗  are presented in 166 

Appendix B. 167 

For full vegetation-covered areas, the decoupling parameter based daily 𝐸𝐹𝑣𝑒𝑔
𝑑  is expressed as: 168 

𝐸𝐹𝑣𝑒𝑔
𝑑 =

𝛼 ∆𝑖

∆𝑖+γ(1+
𝑟𝑐 𝑣𝑒𝑔

𝑖

2𝑟𝑎 𝑣𝑒𝑔
𝑖 )

(
∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

𝛺𝑣𝑒𝑔 
∗ 𝑖

𝛺𝑣𝑒𝑔 
∗ 𝑑

𝛺𝑣𝑒𝑔 
 𝑑

𝛺𝑣𝑒𝑔 
𝑖 )                                (8) 169 

where 𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous canopy resistance (s m-1), 𝑟𝑎 𝑣𝑒𝑔

𝑖  is the instantaneous aerodynamic 170 

resistance (s m-1). Determining these resistances are presented in Appendix C. For bare soil, the 171 

decoupling parameter based daily 𝐸𝐹𝑠𝑜𝑖𝑙
𝑑  is calculated as:  172 

𝐸𝐹𝑠𝑜𝑖𝑙
𝑑 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖 −𝑇𝑠𝑜𝑖𝑙 

 𝑖  

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖  −𝑇𝑎 

 𝑖  
𝑄𝑠𝑜𝑖𝑙 0 

 𝑖

𝑄𝑠𝑜𝑖𝑙 
 𝑖  (

∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

𝛺𝑠𝑜𝑖𝑙 
∗ 𝑖

𝛺𝑠𝑜𝑖𝑙 
∗ 𝑑

𝛺𝑠𝑜𝑖𝑙 
 𝑑

𝛺𝑠𝑜𝑖𝑙 
𝑖 )                       (9)  173 

Thus, 𝐸𝐹𝑑 is expressed as:  174 

𝐸𝐹𝑑 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔 

 𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑑 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙 
 𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑑                             (10) 175 

The same energy balance equations are used for calculating both instantaneous values 𝑄𝑖 , 𝑄𝑣𝑒𝑔 
 𝑖  and 𝑄𝑠𝑜𝑖𝑙 

 𝑖  176 

and daily values 𝑄𝑑, 𝑄𝑣𝑒𝑔
𝑑  and 𝑄𝑠𝑜𝑖𝑙

𝑑  but with parameters adjusted for each timeframe. The details of the 177 

calculation for the daily values are outlined below.  178 
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2.1.2 Daily calculation of available energy 𝑸𝒗𝒆𝒈
𝒅  and 𝑸𝒔𝒐𝒊𝒍

𝒅   179 

We used an improved daily available energy 𝑄  (W m-2) method (Huang et al., 2023b) for the 180 

vegetation and the bare soil surface is calculated by the energy balance equation: 181 

𝑅𝑛 − 𝐺 = 𝑄                                                                            (11) 182 

where 𝑅𝑛 is the net radiation (W m-2), which could be calculated by the land surface energy balance; 𝐺 183 

is the soil heat flux (W m-2), 𝐺≈0 on a daily basis (Fritschen and Gay, 1979; Nishida et al., 2003; Tang et 184 

al., 2009),  185 

𝑅𝑛
𝑑 = (1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4                   (12) 186 

where 𝑎𝑙𝑏𝑒𝑑𝑜𝑑 is the daily albedo of the soil surface; 𝑅𝑑
𝑑 is daily incoming shortwave radiation (W m-2), 187 

obtained from the ERA5_Land shortwave radiation (called ERA5_Rd); 𝜀𝑠
𝑑  and 𝜀𝑎

𝑑  are the daily 188 

emissivity of land surface and atmosphere, 𝜎 is the Stefan-Boltzmann constant; 𝑇𝑎
𝑑  is the daily near-189 

surface air temperature (K); 𝑇𝑠
𝑑 is the daily surface temperature (K). The difference with the former study 190 

by Huang et al. (2021) is that  𝜀𝑠
𝑑 and 𝜀𝑎

𝑑 were not set equal. Instead we calculated the 𝜀𝑎
𝑑 using the method 191 

of Brutsaert, (1975) and Wang and Dickinson(2013), as detailed in Appendix D and 𝜀𝑠
𝑑  can be was 192 

retrieved from MOD11C1.  193 

We account for the influence of clouds by assuming a linear correlation between downward 194 

longwave radiation and cloud coverage in the calculation of downward longwave radiation based on the 195 

study of Huang et al. (2023b): 196 

𝐶𝑙𝑜𝑢𝑑𝑑 = (1 − 𝐾𝑡)                                                                    (13) 197 

where 𝐶𝑙𝑜𝑢𝑑𝑑 is the daily clearness index and 𝐾𝑡 is  (Chang and Zhang, 2019; Goforth et al., 2002) 198 

𝐾𝑡 =  
𝑅𝑑

𝑑

𝑅𝑎
𝑑                                                                            (14) 199 

where  𝑅𝑎
𝑑 is the daily extraterrestrial radiation calculated by the FAO (1998).  200 

 𝑄𝑣𝑒𝑔
𝑑  can be calculated by assuming as 𝑇𝑠

𝑑 =  𝑇𝑎
𝑑 according to the VI-Ts method which implies that 201 

the minimum land surface temperature occurs in fully vegetated grid cells and is equivalent to 𝑇𝑎
𝑑 (Huang 202 

et al., 2023b). According to the land surface energy budget, the daily available energy of vegetation 203 

coverage area, 𝑄𝑣𝑒𝑔
𝑑  and bare soil 𝑄𝑠𝑜𝑖𝑙

𝑑  can be calculated following the study of Huang et al. (2023b): 204 

𝑄𝑣𝑒𝑔
𝑑 = (1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4                  (15) 205 

𝑄𝑠𝑜𝑖𝑙
𝑑 = (1 − 𝐶𝐺)(1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4           (16) 206 

The daily mean air temperature, 𝑇𝑎
𝑑  can be extended by a sin and cos function based on the 207 

instantaneous air temperature 𝑇𝑎
𝑖  which was calculated using the linear correlation between vegetation 208 
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index (VI) and surface temperature (Ts) method. Thus, (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 is the daily downward 209 

longwave radiation (W m-2), and 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4 is the daily upward longwave radiation (W m-2), where 𝐶𝐺 is 210 

an empirical coefficient ranging from 0.3 for a wet soil to 0.5 for a dry soil (Idso et al., 1975).   211 

 𝑄𝑣𝑒𝑔
𝑑  and 𝑄𝑠𝑜𝑖𝑙

𝑑  are  calculated by the energy balance equations, which are robust on both 212 

instantaneous and daily scales. Thus instantaneous 𝑄𝑣𝑒𝑔 
 𝑖  and 𝑄𝑠𝑜𝑖𝑙 

 𝑖  are calculated by the same set of 213 

equsing Eq 17 andd 18 by replacing the daily by the instantaneous parameters.  214 

Following the study of Huang et al. (2023b), the daily 𝐸𝑇𝑑 can be calculated by the daily 𝐸𝐹𝑑 and  215 

𝑄𝑑 as: 216 

 𝐸𝑇𝑑 = 𝐸𝐹𝑑𝑄𝑑                                                                         (17) 217 

Figure 1 illustrates the workflow of VISEA. VISEA utilizes land cover data from the MOD12C1 218 

IGBP land cover classification. When land cover in a MOD12C1 IGBP data grid cell is identified as a 219 

water surface, VISEA then uses the Priestley-Taylor equation to compute water surface evaporation. This 220 

process guarantees that the unique attributes of water surfaces are precisely reflected in VISEA ET 221 

calculations. 222 
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 223 

Figure 1. Schematic of VISEA algorithm. The ovals in the top row are the databases, the square boxes 224 

are the algorithms, and parallelograms are the parameters. The numbers in the parenthesis are the equation 225 

to determine the parameters. 226 



 

9 
 

2.1.3 The calculation of daily air temperature, 𝑻𝒂
𝒅 and surface temperature, 𝑻𝒔

𝒅 227 

Daily air temperature, 𝑇𝑎
𝑑 is a critical parameter in the VISEA algorithm, used in calculations for 228 

downward longwave radiation, daily aerodynamic resistance, and surface resistance. The key innovation 229 

in calculating 𝑇𝑎
𝑑, involves employing the VI-Ts method to estimate instantaneous air temperature, 𝑇𝑎

𝑖 230 

during the daytime (Huang et al., 2017; Nishida et al., 2003; Tang et al., 2009).  231 

This VI-Ts method was developed based on the empirical linear relationship between the surface 232 

temperature (Ts) and the Vegetation Index (VI). Surface temperature increases when the vegetation index 233 

decreases, and conversely, surface temperature decreases when the vegetation index increases. In the 234 

scatter plot, defined by VI (horizontal axis) and Ts (vertical axis) from the neighboring 5 × 5 grid cells, 235 

we identify the "warm edge" (characterized by a low vegetation cover fraction and high Ts) and the "cold 236 

edge" (marked by a high vegetation cover fraction and low Ts). The warm edge is automatically selected 237 

as the hypotenuse of the triangle formed by these scatter points. Through simple interpolation, Ts 238 

corresponding to any given vegetation condition within the range of the "warm edge" and "cold edge" 239 

can be determined. The lowest Ts could be determined by the highest VI, and the highest Ts could be 240 

determined by the lowest VI. Therefore, following Nishida et al. (2003), assuming that the lowest surface 241 

temperature equals the air temperature (Ta), we can derive the daily air temperature.  242 

For nighttime periods, it is assumed that air temperature is equivalent to the nighttime land surface 243 

temperature provided by MOD11C1. These two temperature estimates are then extended into hourly air 244 

temperature profiles using a sine-cosine fitting curve. The 24-hour average of 𝑇𝑎
𝑖 is used as 𝑇𝑎

𝑑. Similarly, 245 

𝑇𝑠
𝑑 is calculated using MOD11C1 land surface temperature data for both daytime and nighttime. These 246 

estimates are extended into hourly surface temperature profiles using a similar sine-cosine fitting curve, 247 

and the daily average of 𝑇𝑠
𝑑 is determined (Huang et al., 2021).  248 

This VI-Ts method allows for the estimation of 𝑇𝑎 
 𝑖 and 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 

 𝑖  without the need for additional 249 

meteorological data. However, some studies have found that the VI-Ts method may not consistently 250 

provide satisfactory results, especially in colder regions where vegetation thrives better under higher 251 

temperatures. 252 

2.2 Technical validation 253 

The correlation coefficient, Root Mean Square Error (RMSE) and Nash-Sutcliffe efficiency 254 

coefficient are used to evaluate our global daily ET estimates with eddy covariance measurements and 255 

compared with the other five independent global ET products on a monthly scale.  256 

The correlation coefficient R is calculated as: 257 

𝑅 =
∑(𝑋−𝑋̅)(𝑌−𝑌̅)

√∑(𝑋−𝑋̅)2∑(𝑌−𝑌̅)2
                                                                     (18) 258 

𝑅  is the correlation coefficient; 𝑋  is the estimated variable; 𝑋̅  is the average of 𝑋; Y is the observed 259 

variable; 𝑌̅ is the average of 𝑌.  260 
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The Root Mean Square Error (RMSE) is calculated as: 261 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑋𝑖−𝑌𝑖 )2

𝑖=1
𝑁

𝑁
                                                                    (19) 262 

For a more nuanced understanding of the Root Mean Square Error (RMSE), we have deconstructed 263 

it into two distinct components: RMSEs (systematic RMSE) and RMSEu (unsystematic RMSE). This 264 

breakdown allows a more detailed examination of the systematic and unsystematic sources contributing 265 

to the overall error metric.  266 

The systematic Root Mean Square Error (RMSEs) is calculated as: 267 

𝑅𝑀𝑆𝐸𝑠 =  √
∑ (𝑍𝑖−𝑌𝑖 )2

𝑖=1
𝑁

𝑁
                                                                    (20) 268 

The unsystematic Root Mean Square Error (RMSEu) is calculated as: 269 

𝑅𝑀𝑆𝐸𝑢 =  √
∑ (𝑍𝑖−𝑋𝑖 )2

𝑖=1
𝑁

𝑁
                                                                    (21) 270 

Where 𝑍𝑖 = 𝑎 + 𝑏𝑌𝑖, where a and b are the least squares regression coefficients of the estimated variable 271 

𝑋𝑖 and observed variable 𝑌𝑖, 𝑁 is the sample size (Norman et al., 1995). 272 

The Nash-Sutcliffe efficiency coefficient (NSE) 273 

𝑁𝑆𝐸 = 1 − 
∑(𝑋𝑖− 𝑌𝑖)2

∑(𝑌𝑖− 𝑌̅)2                                                             (22) 274 

The ratio of the standard deviations of 𝑋 and 𝑌 275 

𝑅𝑎𝑡𝑖𝑜 =  
𝑋𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑌𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                                                  (23)            276 

The Bias of 𝑋 and 𝑌 277 

𝐵𝑖𝑎𝑠 =  𝑋̅ − 𝑌̅                                                  (24)             278 

2.3 The gap-filling of MODIS data 279 

MODIS sensors on board of Terra and Aqua observe the Earth twice a day. However, there are 280 

always data gaps in the MODIS land products because of cloud cover problems. In the VISEA algorithm, 281 

we used the data from the neighboring days to fill the data gaps. The periods when MODIS Land 282 

temperature data were missing, primarily due to cloud cover, accounted for approximately one-third of 283 

the observation period. The accuracy of this gap-filling method is evaluated in Section 4. 284 
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3. Data  285 

3.1 The input data 286 

The input data including the MODIS land products: daily 0.05° surface reflectance (MOD09CMG), 287 

land surface temperature/emissivity (MOD11C1) and albedo (MCD43C3), 8-day 0.05° vegetation 288 

indices (MOD13C1) and yearly 0.05° land cover products (MCD12C1). We also used hourly downward 289 

surface solar radiation from the Fifth Generation of the European Centre for Medium-Range Weather 290 

Forecasts (ECMWF) Reanalysis (ERA5), “ERA5-Land hourly data from 1950 to present” data as energy 291 

input of VISEA algorithm. The surface solar radiation data from ERA5-Land and land data products from 292 

MODIS land products are both near-real-time datasets with a one-week delay, enabling VISEA to provide 293 

global near-real-time ET estimations. Details of the input data, their download links, variable names, used 294 

parameters, spatial and temporal resolution are given in Table 1. 295 

Table 1. The input of VISEA 296 

The input of VISEA 

Data source Data name Used parameter Spatial/temporal 

resolution 

MODIS Land 

Product 

 

MOD11C1  Land Surface Temperature 0.05°/ daily 

MOD09CMG  Surface Reflectance 0.05°/daily 

MCD43C3  Albedo 0.05°/daily 

MOD13C1  NDVI 0.05°/16-day 

MCD12C1  Land Cover  0.05°/ yearly 

ERA5-Land 

hourly data Rd  
Downward Surface Solar 

Radiation  
0.1°/ hourly 

 297 

3.2 The evaluation data  298 

3.2.1 The flux tower measurements from FLUXNET  299 

We evaluated the accuracy of the input ERA5-Land shortwave radiation, estimated daily net 300 

radiation, air temperature, and ET by comparing them against measurements from FLUXNET2015 301 

(Pastorello et al., 2020). FLUXNET consists of 212 globally distributed flux towers and it has 302 

implemented quality control measures for energy closure and is considered reliable (Baldocchi et al., 303 

2001; Pastorello et al., 2020; Wang et al., 2022).  The data from FLUXNET2015 can be obtained at 304 

https://fluxnet.org/data/download-data. We selected data from 2001 to 2015 and excluded sites with zero 305 

ERA5-Land downward shortwave radiation.  306 

While there are records from 212 flux towers in our datasets, not all met the stringent inclusion 307 

criteria. Each site needed to fulfill three specific requirements to be included in our analysis: (1) 308 

availability of data for the period spanning from 2001 to 2015; (2) ERA5-Land downward shortwave 309 

radiation greater than 0 within the 0.1° × 0.1° grid cell corresponding to the flux tower's location; (3) 310 

conformity with MODIS land cover data (MOD12C1) at the 0.05° × 0.05° grid cell level, ensuring that 311 

the flux tower was situated on land rather than over the ocean. Based on these criteria, we selected a 312 
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subset of 149 flux towers that met these stringent criteria. This approach ensures the reliability and 313 

relevance of our analysis. The distribution of these 149 flux towers is presented in Figure 2. 314 

Supplementary Table S1 shows the longitude, latitude, elevation, and land cover type (classified by the 315 

International Geosphere-Biosphere Programme, IGBP) of these sites. The 149 sites covered 12 IGBP 316 

land cover types: 18 croplands (CRO), 1 closed shrublands (CSH), 15 deciduous broadleaf forests (DBF), 317 

1 deciduous needle leaf forest (DNF), 10 evergreen broadleaf forests (EBF), 34 evergreen needle leaf 318 

forests (ENF), 30 grasslands (GRA), 5 mixed forests (MF), 8 open shrublands (OSH), 8 savannas (SAV), 319 

13 wetlands (WET), and 6 woody savannas (WSA).  320 

3.2.2 The other gridded ET and precipitation products 321 

Five independent globally gridded ET products and one precipitation product were used to evaluate 322 

VISEA estimated ET. The five ET products include two MODIS-based ET products: MOD16 (Mu et al., 323 

2007, 2011) and Penman-Monteith-Leuning Evapotranspiration V2 (PML) (Zhang et al., 2019, 2022), 324 

one AVHRR-based AVHRR ET (Zhang et al., 2009, 2010), one machine learning algorithm output, the 325 

FLUXCOM ET data (Jung et al., 2009, 2010, 2018, 2019) and one multiple-satellites data based Global 326 

Land Evaporation Amsterdam Model (GLEAM) ET (Martens et al., 2017; Miralles et al., 2011). The 327 

precipitation data was from the Global Precipitation Climatology Centre (GPCC), which is based on local 328 

measurements (Becker et al., 2013; Schneider et al., 2014, 2017) and Global Unified Gauge-Based 329 

Analysis of Daily Precipitation (GPC). Details of these five ET products and the precipitation data are 330 

given in Table 2. To maintain the consistency in temporal and spatial resolution for comparison purposes, 331 

we obtained monthly MOD16 and PML despite their original temporal resolution of 8 days. We used the 332 

0.05°×0.05° version of MOD16, AVHRR ET and PML. Additionally, for multi-year scale comparisons, 333 

we confined our dataset to the timeframe between 2001 and 2020. This selection enabled us to utilize a 334 

diverse range of ET products, effectively minimizing the influence of temporal discrepancies on our 335 

comparative analysis.We also incorporated daily Evapotranspiration (ET) data from GLEAM and 336 

VISEA, alongside precipitation data from the Climate Prediction Center (CPC), from July 25th to August 337 

2nd, 2022. It  allowed for near-real-time analysis of ET and precipitation during the Yangtze River drought 338 

incident within that interval, despite the datasets potentially encompassing more extensive periods. 339 

Table 2. The five global girded ET products and one precipitation product used for comparison with our 340 

near-real-time global daily terrestrial ET estimates. 341 

Product 

name 

Spatial/Temporal 

resolution 

Time period Theory 

GLEAM  0.25°/Monthly 2001-2022 Priestly-Taylor Equation 

FLUXCOM  0.5°/Monthly 2001-2016 Machine Learning 

MOD16  0.05°/Monthly 2001-2014 Penman-Monteith Equation 

AVHRR  1°/Monthly 2001-2006 Improved Penman-Monteith Equation 

PML  0.05°/8-day 2003-2018 Penman-Monteith Equation and A Diagnostic 

Biophysical Model 

GPCC  0.25°/Monthly 2001-2019 In-situ Observations 

GPC  0.5°/Daily 08/28/2022-

09/01/2022 

Global Unified Gauge-Based Analysis of Daily 

Precipitation 

 342 
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 343 

Figure 2. The distribution of 149 flux towers from FLUXNET in different IGBP land cover types, 344 

specifically OW (Water bodies), ENF (Evergreen needle leaf forests), EBF (Evergreen broadleaf forests), 345 

DNF (Deciduous needle leaf forests), DBF (Deciduous broadleaf forests), MF (Mixed forests), CSH 346 

(Closed shrublands), OSH (Open shrublands), WSA (Woody savannas), SAV (Savannas), GRA 347 

(Grasslands), WET (Permanent wetlands), CRO (Croplands), UB (Urban and built-up lands), CVM 348 

(Cropland/natural vegetation mosaics), SI (Snow and ice), BAR (Barren). 349 

4. Results 350 

To evaluate the performance of ERA5_Rd across different land cover initial categories, we 351 

juxtaposed downward solar radiation input data from ERA5-Land (ERA5_Rd) with measurements 352 

obtained from 149 flux towers (Obv_Rd) across diverse IGBP land cover types, as illustrated in Figure 353 

3. The results indicate a commendable agreement between ERA5_Rd and Obv_Rd measurements for the 354 

majority of land covers, with notable exceptions observed in savanna (SAV). Specifically, the mean 355 

Nash-Sutcliffe Efficiency (NSE) stands at 0.84, the mean correlation coefficient (R) at 0.92, and the mean 356 

Root Mean Square Error (RMSE) at 38.3 W m-2.  357 

Figure 3 shows that ERA5 input shortwave radiation generally agrees well with local measurements.  358 

ERA5_Rd exhibits optimal performance in DNF and MF, reflected by NSE and R values surpassing 0.9. 359 

In these land covers, the mean RMSEs stand at 11 W m-2, mean RMSEu at 24.5 W m-2, and mean RMSE 360 

at 26.9 W m-2. However, its performance in SAV is notably subpar, characterized by an NSE of 0.29, an 361 

R of 0.59, highest RMSEs of 40 W m-2, RMSEu of 48.9 W m-2, and RMSE of 63.2 W m-2. For ERA5_Rd, 362 

the mean RMSEs amount to 16 W m-2, and the mean RMSEu is 34.8 W m-2, suggesting that ERA5_Rd 363 

demonstrates high accuracy by effectively capturing the systematic variation in Obv_Rd, as indicated by 364 

its relatively low RMSEs and RMSEu close to RMSE (Willmott et al., 1981) in most land covers, except 365 

for SAV. Specifically, in Figure 3,  Rd s derived from ERA5 exhibit very low P-values (<0.01).   366 

 367 
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368 

Figure 3. The scatter plot of downward solar radiation from ERA5-Land (ERA5_Rd) compared with 369 

local instruments measurements (Obv_Rd) under 12 IGBP land cover types: CRO (Croplands), CSH 370 

(Closed shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF 371 

(Evergreen broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed 372 

forests), OSH (Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent 373 

wetlands). The red dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe 374 

Efficiency, R is correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, 375 

and RMSEu is unsystematic RMSE. The Frequency denotes the probability density estimated through 376 

the KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value of the 377 

probability density function equals 1. P is the P-Value for the Correlation Coefficient. 378 

Several factors come into play in understanding the disparities in performance in downward solar 379 

radiation of ERA5 (ERA5_Rd) across different land cover types. In regions characterized by denser 380 
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forests, such as DNF and MF, ERA5_Rd's good performance may be attributed to the lower density of 381 

ground-based meteorology stations (DNF, N = 1096) and the relatively uniform subsurface and canopy 382 

coverage in MF, facilitating a more accurate representation in the ERA5 radiative transfer model. 383 

Conversely, savannas present unique challenges due to sparse vegetation and flat terrain, influencing 384 

sunlight transmission dynamics (Yang and Friedl, 2003). Land-use changes, including farming and urban 385 

development, further complicate the accuracy of sunlight transmission. Additionally, factors like aerosols 386 

from natural or anthropogenic sources contribute to data variations (Naud et al., 2014; Wang et al., 387 

2021b). The inaccuracies in accounting for the rainy season, leading to increased cloud cover and rainfall 388 

in savannas, contribute to ERA5_Rd's limitations (Jiang et al., 2020). 389 

We chose to utilize 0.05° MODIS data for its detailed land surface information, daily time step, and 390 

global coverage, which is essential for accurate and near-real-time ET calculations. Although ERA5 data 391 

is at a coarser 0.1° resolution, it provides necessary atmospheric inputs that can be effectively interpolated 392 

to match the MODIS resolution without significant loss of accuracy. As illustrated in Figures 3 and 4, 393 

our tests confirm that this method achieves accurate ET despite the resolution differences. 394 

Figure 4 depicts scatter plots illustrating the comparison between the estimated air temperature using 395 

the VI-TS method (VISEA_Ta) and local meteorological measurements (Obv_Ta). The analysis reveals 396 

that VISEA_Ta generally aligns with Obv_Ta, exhibiting NSE values ranging from -0.22 (MF) to 0.82 397 

(OSH), R values ranging from 0.44 (MF) to 0.97 (DNF), and RMSE values ranging from 5.7 K (WSA) 398 

to 11.2 K (MF). Particularly noteworthy is VISEA_Ta's outstanding performance at OSH (NSE = 0.82, 399 

R = 0.93, RMSE = 6.6 K), WSA (NSE = 0.79, R = 0.92, RMSE = 5.7 K) and GRA (NSE = 0.66, R = 400 

0.88, RMSE = 6.8 K). Conversely, the least satisfactory performance is evident at MF (NSE = -0.22, R 401 

= 0.44, RMSE = 11.2 K), SAV (NSE = -0.19, R = 0.57, RMSE = 6.4 K), and CRO (NSE = 0.26, R = 402 

0.70, RMSE = 8.1 K). The RMSEs are lower than RMSEu in most land cover sites, except in DNF. 403 

Despite VISEA_Ta displaying a high NSE of 0.8 and R of 0.97 at DNF, it exhibits higher RMSEs (8.3 404 

K) compared to RMSEu (5.4 K), indicating a systematic underestimation of VISEA_Ta at DNF.  405 

As detailed in Section 2.4, the VI-Ts method relies on a negative correlation between vegetation 406 

coverage (VI) and land surface temperature (Ts), ideally suited for cases with significant VI and Ts 407 

differences. However, the assumed negative correlation breaks down for land cover types like DNF and 408 

MF in temperate regions with distinct seasons and cool-to-cold climates. In these regions, the positive 409 

correlation between VI and Ts, driven by vegetation growth proportional to rising Ts, results in the failure 410 

of the VI-Ts method. The challenges persist in SAV, where the VI-Ts method encounters difficulties 411 

during dry and wet seasons. In the dry season, the method falters due to the prevalence of bare soil, 412 

resulting in VI values approaching zero and homogeneous high Ts values. Conversely, the wet season 413 

presents challenges, with both VI and Ts exhibiting relatively high values and limited variances between 414 

grid cells, ultimately undermining the accuracy of VISEA_Ta estimation. 415 

 416 
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 417 

Figure 4. The scatter plot of daily air temperature simulated by VISEA (VISEA_Ta) compared with local 418 

instruments measurements (Obv_Ta) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed 419 

shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen 420 

broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH 421 

(Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red 422 

dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is 423 

correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 424 

unsystematic RMSE. The frequency denotes the probability density estimated through the Kernel Density 425 

Estimation, KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value 426 

of the probability density function equals 1. 427 
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The simulated daily net radiation (VISEA_Rn) from VISEA is assessed against local meteorological 428 

measurements (Obv_Rn) in Figure 5. In contrast to the satisfactory performance of ERA5_Rd in Figure 429 

3, VISEA_Rn exhibits more notable discrepancies, characterized by significant underestimation 430 

compared to Obv_Rn. This is reflected in the mean NSE of 0.49, mean R of 0.74, and mean RMSE of 431 

43.3 W m-2. Specifically, VISEA_Rn demonstrates good accuracy in certain land cover types, including 432 

CHS with an NSE of 0.67, R of 0.84, and RMSE of 29.7 W m-2, EBF with an NSE of 0.63, R of 0.8, and 433 

RMSE of 42.9 W m-2, and ENF with an NSE of 0.66, R of 0.83, and RMSE of 39.6 W m-2. However, its 434 

performance diminishes notably at OSH, where it records an NSE of 0.16, R of 0.61, and RMSE of 56 435 

W m-2, as well as in SAV, with an NSE of 0.21, R of 0.52, and RMSE of 44.2 W m-2. While VISEA_Rn 436 

appears to have lower accuracy compared to ERA5_Rd, in the majority of land cover types, the RMSEs 437 

are smaller than RMSEu, with mean RMSEs of 25.2 W m-2 and mean RMSEu of 34.3 W m-2. Moreover, 438 

the RMSEu of 43.3 W m-2 is almost the same as the RMSE.  439 

In the context of VISEA_Rn, a consistent pattern of approximately 30% underestimation in net 440 

radiation across various land cover types raises noteworthy discussions. This systematic discrepancy 441 

could be linked to the disparity in vegetation coverage between the observed sites' footprint and the mean 442 

vegetation coverage of the 0.05° × 0.05° grid cell. Specifically, the lower albedo within the footprint, 443 

compared to the grid cell's average albedo (as expressed by Eq. 14, contributes to the underestimation of 444 

Obv_Rn. This is particularly evident in OSH, where the vegetation coverage within the footprint 445 

significantly exceeds the mean vegetation coverage of the grid cell (<0.2 compared to >0.5). Factors such 446 

as the bias in ERA5_Rd (refer to Fig. 3j) and VISEA_Ta (refer to Fig. 4j) contribute to the 447 

underestimation of VISEA_Rn in SAV. Moreover, a substantial 50% underestimation in DNF results 448 

from the underestimated VISEA_Ta (refer to Fig. 4d) leads to a subsequent underestimation of downward 449 

long-wave radiation. 450 

 451 
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 452 

Figure 5. The scatter plot of daily net radiation simulated by VISEA (VISEA_Rn) compared with local 453 

instruments measurements (Obv_Rn) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed 454 

shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen 455 

broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH 456 

(Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red 457 

dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is 458 

correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 459 

unsystematic RMSE. The frequency denotes the probability density estimated through the Kernel Density 460 

Estimation, KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value 461 

of the probability density function equals 1. 462 
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Figure 6 illustrates scatter plots of daily evapotranspiration (ET) simulated by VISEA (VISEA_ET) 463 

against eddy covariance measurements obtained from 149 flux tower sites (Obv_ET) across 12 IGBP 464 

land cover types. The scatter plots of VISEA_ET reveal a dispersed distribution, as evidenced by an 465 

average NSE of -0.08, average R of 0.56, and average RMSE of 1.4 mm day-1. Notably, VISEA_ET tends 466 

to underestimate daily ET across most land cover types. Among the 12 land cover types, VISEA_ET 467 

exhibits the highest accuracy in DNF, with an NSE of 0.4, an R of 0.82, and an RMSE of 0.9 mm day-1. 468 

It was closely followed by GRA, with NSE values of 0.26, R values of 0.65, and RMSE values of 1.3 469 

mm day-1. However, for CRO, ENF, and WET land cover types, the NSE values, although above 0, are 470 

close to 0 (mean NSE of 0.11), with a mean R of 0.53 and a mean RMSE of 1.3 mm day-1. In the remaining 471 

land cover types, particularly in OSH and SAV, VISEA_ET appears to struggle in aligning with local 472 

measurements, resulting in NSE values of -0.57 and -0.51, R values of 0.31 and 0.36, and RMSE values 473 

of 1.2 mm day-1 and 1.7 mm day-1, respectively. As the evaluation of daily VISEA_ET with observed 474 

ET, Obv_ET, at CRO and WET, the bias mainly comes from the bias in ERA5_Rd (the third highest 475 

RMSE of 45.2 W m-2 and second highest RMSE of 59.4 W m-2) (Fig. 3a and l). In ENF, the biases 476 

primarily is caused by the disability of VISEA_ET to capture the Obv_ET under a cold climate, with low 477 

net radiation estimation (Fig. 5f) and air temperature (Fig. 4f). For OSH, the bias mainly arises from the 478 

poor estimation of VISEA_Rn, which has the lowest NSE of 0.16 and the highest RMSE of 56 W m-2 479 

(Fig. 5i). The bias of VISEA_ET in SAV is a result of the combined biases in ERA5_Rd (the lowest NSE  480 

and R of 0.29 and 0.59, respectively, and the highest RMSE of 63.2 W m-2), VISEA_Ta (the second 481 

lowest NSE and R of  -0.19 and 0.57, respectively). 482 

The periods when MODIS land temperature data were missing, primarily due to cloud cover, 483 

accounted for approximately one-third of the observation period. Using the gap-filling method (section 484 

2.3), it can be observed that for most surfaces, the accuracy of VISEA was not significantly affected by 485 

clouds, as evidenced by the figures below. The accuracy on cloudy days is slightly lower for some 486 

surfaces compared to clear days. For example, in the case of DBF, the correlation coefficient R is 0.52 487 

on both clear and cloudy days, and the RMSE is 1.4 mm day-1 on both clear and cloudy days, indicating 488 

a slight decrease in accuracy under cloudy conditions. Similarly, for ENF, the R value is 0.59 on clear 489 

days and 0.56 on cloudy days. At the same time, the RMSE is 1.3 mm day-1 on clear days and 1.4 mm 490 

day-1 on cloudy days, showing that although there is some impact, the overall performance of VISEA 491 

remains robust across different weather conditions (Figures S4 and S5). 492 
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 493 

Figure 6. The scatter plot of daily ET simulated by VISEA (VISEA_ET) compared with local instruments 494 

measurements (Obv_ET) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed shrublands), 495 

DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen broadleaf 496 

forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH (Open 497 

shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red dotted line 498 

is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is correlation 499 

coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 500 

unsystematic RMSE. The frequency denotes the probability density estimated through the Kernel Density 501 

Estimation, KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value 502 

of the probability density function equals 1. 503 



 

21 
 

We also conducted the VISEA sensitivity to different radiation input data by comparing results 504 

obtained using CERES and ERA5 datasets. Specifically, we analyzed the performance of the VISEA 505 

model in simulating net radiation (Rn) and evapotranspiration (ET), comparing these simulations with 506 

ground-based observational data. Figures S1 and 2 compare the downward shortwave radiation data from 507 

CERES and ERA5 with ground-based observations of the 149 flux towers. The CERES shortwave 508 

radiation data generally agree with the observational data, with a mean R of 0.89, a mean RMSE of 34.8 509 

W m2, and a mean NSE of 0.78. In contrast, the ERA5 shortwave radiation data mean R of 0.85, a mean 510 

RMSE of 40.4 W m2, and a mean NSE of 0.58 when compared with the ground-based observations, 511 

indicating systematic bias and lower precision for the ERA5 net radiation compared with CERES. Figures 512 

S2 and 5 compare the net radiation of the flux towers with that calculated by the VISEA model with 513 

shortwave radiation of CERES and ERA5 as input data. For CERES data, the mean R is 0.74, the mean 514 

RMSE is 34.3 W m2 and the mean NSE is 0.64. The ERA5 data yield a mean R of 0.64, a mean RMSE 515 

of 39.44 W m2, and a mean NSE of 0.44. Finally, the ET calculated with the VISEA using the net radiation 516 

of CERES and ERA5 as input is compared with ground-based data in Figures S3 and 6. Again, CERES 517 

outperforms ERA5 as indicated by the statistical measures. The sensitivity analysis reveals that the 518 

VISEA model's performance highly depends on the quality of the incident radiation data used as input. 519 

The model shows better accuracy and consistency with CERES data than ERA5 data. Therefore, selecting 520 

high-precision radiation data is crucial for improving the accuracy and reliability of VISEA model 521 

simulations. 522 

In Figure 7, we utilized Taylor diagrams (Taylor, 2001) to evaluate the performances of six global 523 

gridded monthly ET products with simulated ET from VISEA (a), GLEAM (b), FLUXCOM (c), AVHRR 524 

(d), MOD16 (e), and PML (f). Table 3 lists the statistical metrics, including correlation coefficient (CC), 525 

bias, RMSE, RMSEu, RMSEs, and Nash-Sutcliffe Efficiency (NSE) across different vegetation types 526 

and their mean values. The vegetation types include Croplands (CRO), Closed Shrublands (CSH), 527 

Deciduous Broadleaf Forest (DBF), Deciduous Needleleaf Forest (DNF), Evergreen Broadleaf Forest 528 

(EBF), Evergreen Needleleaf Forest (ENF), Grasslands (GRA), Mixed Forests (MF), Open Shrublands 529 

(OSH), Savannas (SAV), Woody Savannas (WSA), Wetlands (WET), and an overall mean (MEAN). 530 

VISEA, with a mean correlation coefficient (CC) of 0.69, indicates moderate correlation across 531 

vegetation types but suffers from significant biases, notably in WET, with a mean bias of -9.56 mm 532 

month-1. It also has the highest mean Root Mean Square Error (RMSE) at 31.6 mm month-1 and a mean 533 

NSE of 0.25. MOD16 demonstrates a slightly better correlation with a mean CC of 0.72 and presents less 534 

variation in bias, resulting in a marginally lower mean RMSE of 28.7 mm month-1 and a higher mean 535 

NSE of 0.36. AVHRR matches VISEA in mean CC at 0.69 but exhibits extreme biases, particularly in 536 

SAV, and achieves a comparable mean RMSE of 26.3 mm month-1. However, its mean NSE of 0.10 is 537 

the lowest among the six products, suggesting its predictions are less reliable. 538 

On the other hand, GLEAM, FLUXCOM, and PML show better agreements. GLEAM has a high 539 

mean CC of 0.69 with the lowest bias at -0.82 mm month-1, indicating consistent performance with a 540 

mean RMSE of 29.6 mm month-1 and a mean NSE of 0.31. FLUXCOM exhibits a higher mean CC of 541 

0.76, suggesting better overall correlation, but with a higher mean bias of 6.2 mm month-1, it hints at a 542 
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tendency towards overestimation. The mean RMSE is 30.0  mm month-1, with a mean NSE of 0.22. PML 543 

outperforms the others, with the highest mean CC of 0.75 and the highest mean NSE of 0.49, indicating 544 

the strongest predictive accuracy. It also has the lowest mean RMSE at 26.0 mm month-1.  545 

 546 

Figure 7. Taylor Diagrams comparing monthly measurements of (a) VISEA, GLEAM (b), FLUXCOM 547 

(c), AVHRR (d), MOD16 (e), and PML (f) with 150 flux towers (labeled as Obv) in different IGBP land 548 

cover types. The diagrams display the Normalized Standard Deviation (represented by red circles), 549 

Correlation Coefficient (shown as green lines), and Centred Root-Mean-Square (depicted as blue circles).  550 
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Table 3. Statistical variables of six ET Products – CC (Correlation Coefficient), Ratio (the ratio of the 551 

standard deviations of simulated ET and flux tower measurements), Bias, RMSE, RMSEu, RMSEs, and 552 

NSE. 553 

    CRO CSH DBF DNF EBF ENF GRA MF OSH SAV WSA WET MEAN 

VISEA 

CC 0.57 0.89 0.67 0.95 0.74 0.71 0.72 0.79 0.39 0.55 0.6 0.66 0.69 

Ratio 0.77 1.27 0.99 0.76 1.29 1.02 0.8 1.27 1.06 0.7 0.78 0.63 0.95 

Bias -14.16 -1.27 3.9 -19.06 1.37 -11.15 -13.47 1.53 -6.83 -0.45 -23.14 -31.98 -9.56 

RMSE 39.4 12.5 34 22.1 30.4 29.3 32 23.3 30.4 32.5 41.2 51.6 31.56 

RMSEU 27.4 12.1 30.7 7.4 30.4 25.3 23.1 23.2 25.4 22.5 25.8 25.4 23.23 

RMSES 28.3 3.1 14.5 20.8 2.2 14.7 22.2 1.5 16.8 23.5 32.1 44.9 18.72 

NSE 0.18 0.64 0.34 0.45 0.24 0.3 0.41 0.38 -0.36 0.28 0.01 0.08 0.25 

               

GLEAM 

CC 0.56 0.94 0.61 0.89 0.81 0.67 0.71 0.81 0.51 0.53 0.57 0.67 0.69 

Ratio 0.7 1.28 0.79 0.82 0.99 1.1 0.78 1.04 1.12 0.96 0.95 0.56 0.92 

Bias -6.13 12.52 5.8 -5.04 5.42 4.37 -1.16 10.51 5.62 -7.1 -16.73 -17.91 -0.82 

RMSE 37.2 15.4 34.2 14.7 21.8 30.3 29.6 21.4 28.6 37.1 40.9 44.4 29.63 

RMSEU 25.3 8 25.9 11.2 20.1 28.5 22.8 18 25.5 31.2 32.1 22.5 22.59 

RMSES 27.2 13.1 22.3 9.4 8.6 10.3 18.8 11.5 12.8 20 25.3 38.3 18.13 

NSE 0.27 0.35 0.33 0.75 0.61 0.25 0.5 0.47 -0.17 0.06 0.02 0.32 0.31 

               

FLUXCOM 

CC 0.66 0.98 0.69 0.95 0.79 0.77 0.75 0.83 0.78 0.59 0.65 0.69 0.76 

Ratio 0.94 1.76 0.96 1.04 1.12 1.18 0.97 1.42 0.97 1.04 1.08 0.62 1.09 

Bias 7.22 23.49 17.57 -2.26 6.29 7.08 6.91 21.02 10.04 0.74 -9.75 -14.04 6.19 

RMSE 35.8 27.9 36.7 9.9 25.2 27.7 30 31.9 19.8 35.5 37.8 41.7 29.99 

RMSEU 31 5.8 28.9 9.7 24.1 26.6 26.8 23.5 15.8 32.3 34.3 24.2 23.58 

RMSES 18 27.3 22.6 2.3 7.5 7.8 13.4 21.6 11.9 14.8 15.8 33.9 16.41 

NSE 0.32 -1.14 0.23 0.88 0.48 0.38 0.48 -0.17 0.43 0.14 0.17 0.4 0.22 

               

AVHRR 

CC 0.8 0 0.8 0 0.76 0.67 0.58 0.79 0.69 0.32 0.7 0.79 0.58 

Ratio 0.91 0 0.87 0 0.87 1.14 0.83 0.9 0.89 0.3 0.95 0.43 0.67 

Bias -1.15 0 5.96 0 5.24 -1.72 -7.04 0.16 -2.41 -47.83 -0.42 -25.32 -6.21 

RMSE 23.6 0 26.1 0 23.3 31.1 36 18.8 22.1 54.7 33.2 46.6 26.29 

RMSEU 21.2 0 22 0 19.5 29.9 27.9 16.6 18.8 8 29.8 14.6 17.36 

RMSES 10.4 0 14.1 0 12.7 8.5 22.7 8.7 11.6 54.2 14.6 44.2 16.81 

NSE 0.63 0 0.61 0 0.54 0.22 0.24 0.62 0.43 -2.79 0.42 0.29 0.10 

               

MOD16 

CC 0.57 0.94 0.71 0.95 0.82 0.73 0.71 0.81 0.67 0.53 0.59 0.65 0.72 

Ratio 0.64 1.26 0.77 0.8 1.11 0.81 0.74 1.09 0.66 1 1 0.46 0.86 

Bias -7.88 14.03 5.79 -4.07 7.17 -4.34 -5.05 4.09 -6.41 -16.01 -23.76 -21.07 -4.79 

RMSE 36.9 16.7 30.7 11.1 23.4 24.6 29.6 19.4 20.4 40.4 44.3 47.2 28.73 

RMSEU 23 8.4 23 7.4 22 19.5 21.7 18.7 12.8 32.4 33.3 18.8 20.08 

RMSES 28.8 14.4 20.3 8.2 7.8 15 20.2 5.2 15.9 24.2 29.1 43.3 19.37 

NSE 0.28 0.24 0.48 0.87 0.55 0.51 0.5 0.57 0.39 -0.12 -0.14 0.23 0.36 

               

PML 

CC 0.68 0.99 0.68 0.93 0.8 0.79 0.68 0.77 0.7 0.57 0.61 0.82 0.75 

Ratio 0.8 1.04 0.81 1.22 0.98 0.97 0.79 0.96 1.01 0.94 0.83 0.56 0.91 

Bias -6.6 -3 3.39 0.47 -1.42 -5.43 -6.66 -0.59 6.48 -0.18 -16.04 -22.1 -4.31 

RMSE 33.2 4.1 31.5 13.3 21.9 23 31.7 19.8 21.1 34.5 37.5 40.5 26.01 

RMSEU 25.6 2.8 25.1 12.7 20.5 20.8 24.1 18.2 18.6 29.5 27.1 17.3 20.19 

RMSES 21.1 3.1 19 3.9 7.8 9.6 20.6 7.7 9.9 17.8 26 36.6 15.26 

NSE 0.42 0.95 0.44 0.79 0.61 0.57 0.43 0.55 0.33 0.19 0.16 0.43 0.49 

 554 

Figure 8 illustrates the spatial distribution of the multi-year average (a-g), the zonal mean (h) and 555 

inter-annual variation (i) of (a) GPCC (2001-2019), (b) VISEA (2001-2020), (c) GLEAM (2001-2020), 556 

(d) FLUXCOM (2001-2016), (e) AVHRR (2001-2006), (f) MOD16 (2001-2014) and (g) PML (2003-557 

2018).  558 
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 559 

Figure 8. The spatial distribution of the multi-year average (a-g), the zonal mean (h) and inter-annual 560 

variation (i) of (a) GPCC precipitation (2001-2019), (b) VISEA (2001-2020), (c) GLEAM (2001-2020), 561 

(d) FLUXCOM (2001-2016), (e) AVHRR (2001-2006), (f) MOD16 (2001-2014) and (g) PML (2003-562 

2018) ET data.  563 

The VISEA ET product demonstrates consistent spatial distribution patterns among the six ET 564 

products across various years in terms of annual means (a-g) and latitude zonal means (h). These patterns 565 

closely align with the precipitation distribution data from GPCC. Furthermore, VISEA ET also exhibit 566 

similar spatial distributions compared to other ET products, particularly in the extremes of the 567 

distribution, below the 5th percentile and above the 95th percentile (Figure S6, S7). The highest ET values, 568 

approximately 1,500 mm year-1, are predominantly in equatorial low-latitude regions with the 569 

corresponding high precipitation levels of approximately 2,500 mm year-1. These regions include South 570 

America (Amazon Basin), Central Africa (Congo Basin), and Southeast Asia (encompassing Indonesia, 571 

Malaysia, parts of Thailand, and the Philippines), which have tropical rainforest climates. Remote sensing 572 

data support the ET estimates and align with findings from previous studies, such as Chen et al. (2021) 573 
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and Zhang et al. (2019), who reported that the multi-year average annual ET is nearly 1,500 and the 574 

precipitation is approximately 2,500 mm year-1. Also, Panagos et al. (2017) report similar multi-year 575 

average annual ET and precipitation rates. 576 

In this analysis, barren lands (BAR) such as the Sahara, Arabian, Gobi, and Kalahari deserts, along 577 

with large areas of Australia, and snow and ice (SI) regions including significant parts of Canada, Russia, 578 

and the Qinghai-Tibet Plateau in China, are characterized by notably low evapotranspiration (ET). These 579 

regions typically experience less than 400 mm year-1 of annual ET, paralleled by minimal yearly 580 

precipitation ranging from 200 to 400 mm year-1, according to GPCC data. Comparative ET rates for 581 

other land cover types generally range from 400 to 1,400 mm year-1, closely following the GPCC 582 

precipitation amounts of 600 to 1,600 mm year-1.  583 

In regions experiencing moisture-limited evapotranspiration (ET), the scarcity of available water is 584 

the primary constraint. Conversely, in areas where sufficient water is available, ET is energy-limited, and 585 

factors such as cloud cover or shading restrict the absorption of solar radiation, affecting the 586 

evapotranspiration rate. Panel (i) in Figure 8 illustrates inter-annual monthly variations over the past two 587 

decades. It shows how VISEA and other satellite-based ET products, alongside GPCC precipitation data, 588 

capture the rhythmic patterns of ET. These data reveal distinctive seasonal fluctuations and highlight the 589 

significant inter-annual climate variability. Among these products, FLUXCOM consistently shows ET 590 

values 10-20 mm month-1 higher than those of other ET products. GLEAM and MOD16 exhibit similar 591 

ET estimations, closely paralleling each other, as do PML and VISEA. Notably, after 2007, both GLEAM 592 

and MOD16 reported higher ET estimations than PML and VISEA in November, December, January, 593 

and February. For the same months, PML consistently records lower ET estimations than VISEA.  594 

Analysis across the datasets reveals how ET estimates respond to extreme climate events, providing 595 

insights into the variability and resilience of these models. For instance, during the 2011-2012 drought in 596 

the Horn of Africa—one of the most severe droughts in recent decades—both ET estimations and GPCC 597 

precipitation data showed significant declines. Similarly, the prolonged California drought from 2012 to 598 

2016 also saw a considerable decrease in ET values, aligning with the reduced precipitation levels 599 

captured by GPCC. 600 

Regarding the inter-annual monthly variations, panel (i) shows the fluctuations in ET across 601 

different years for the analyzed ET products and precipitation data. The graph reveals a rhythmic pattern 602 

of ET across the years. VISEA and other ET products showed distinctive peaks and troughs 603 

corresponding to seasonal changes and inter-annual climate variability. The ET products' data align 604 

closely with the precipitation patterns reported by GPCC, highlighting the interconnectedness between 605 

ET and precipitation as climatic variables. Notably, FLUXCOM consistently presents higher ET 606 

estimations than the other products. GLEAM's ET estimations are also slightly higher during the winter, 607 

indicating a trend of systematic overestimation in these products relative to the others in the dataset. 608 

Figure 9 presents the daily ET from VISEA and GLEAM, alongside precipitation data from the 609 

GPCC across the Yangtze River Basin from August 26th to September 2nd, 2022. During this period, a 610 
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significant drought was observed in the region, which began in July and showed signs of abating by late 611 

August and early September, according to Zhang et al. (2023). VISEA ET illustrates the evolving drought 612 

conditions, with notably low ET levels (below 1 mm day-1) across the basin from August 26th to 28th, as 613 

shown in panels (a-c). A marked increase in precipitation on August 29th, evident in panels (s) and (u), 614 

correlates with an uptick in ET values (surpassing 1 mm day-1) throughout the basin, visualized in panels 615 

(d-f). Although GLEAM generally captures the fluctuations in ET—both decreases and increases—616 

during this period, it consistently reports much higher ET values than VISEA. The panel (y) graph in 617 

Figure 9 shows the precipitation and the ET calculated by VISAE and GLEAM after an 11 mm rainfall 618 

on August 29th. The ET of VISEA increased and the deceased, which is expected because ET and soil 619 

moisture are positively correlated. The GLEAM does not follow the expected pattern shown in panel y.    620 

This comprehensive analysis highlights the interdependence of precipitation and ET and underscores the 621 

importance of considering soil moisture dynamics to fully understand the hydrological processes within 622 

the Yangtze River Basin during extreme weather events. 623 

Beyond precipitation, soil moisture is a critical regulator of ET, particularly during droughts and 624 

their recovery phases. Acting as a buffer, soil moisture tempers ET rates during dry periods and amplifies 625 

them after rainfall, as noted in late August. This buffering capacity results in a delay between precipitation 626 

events and subsequent ET changes, which is key to understanding drought recovery dynamics. VISEA’s 627 

data accurately reflect these variations in precipitation, demonstrating its effectiveness in tracking daily 628 

ET fluctuations and its reliability for near-real-time monitoring of ET during hydrological extremes. 629 
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 630 

Figure 9. Daily ET from VISEA (a-h), GLEAM (i-p), and CPC precipitation (q-x) distributions from 631 

August 26th to September 2nd in 2022, alongside daily mean ET and Precipitation variances in the Yangtze 632 

River Basin (y) during the same period. 633 

5. Discussion  634 

While global ET products (GLEAM, FLUXCOM, AVHRR, MOD 16 and PML ET) require at least 635 

2 weeks to generate global actual ET estimation, we developed VISEA, a satellite-based algorithm which 636 

is capable of generating near-real-time evapotranspiration on a daily time step with a resolution of 0.05°. 637 
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To assess its accuracy, we compared the calculated ET with data from 149 flux towers around the world 638 

in various land use types.   639 

Scale mismatch is a problem for many satellite-based ET products. The footprints of these flux towers 640 

typically range from 100 to 200 meters, while the VISEA model outputs gridded cells at a resolution of 641 

0.05° × 0.05° (nearly 25 km²). This discrepancy introduces errors, especially since flux towers require a 642 

uniform fetch, which may not represent the larger gridded cell (Sun et al., 2023). To enhance the validity 643 

of our assessments, we assessed monthly values and spatial patterns of our ET measurements with five 644 

other satellite-based ET products named MOD16, AVHRR, GLEAM, FLUXCOM and PML (Figures 7 645 

and 8). 646 

The VISEA model uses gridded ERA5-Land shortwave downward radiation as its energy input. 647 

Utilizing this input, along with MODIS land surface products, VISEA calculates gridded daily air 648 

temperature and net radiation. These two important intermediate variables are essential for estimating 649 

daily ET. The calculated ET generally matches local measurements and other model-calculated values 650 

well, but we found significant biases (Figures 6 and 7). These biases largely arise from inaccuracies in 651 

the input ERA5-Land shortwave radiation (Figure 3), improper application of the VI-Ts method (Figure 652 

4), and uncertainties in daily net radiation (Figure 5). Next, we look further into the causes of the biases.  653 

Incoming shortwave radiation from ERA5-Land is employed to derive the available energy for 654 

vegetation coverage and bare soil (Eq. 15 and 16), which are the main parameters for calculating daily 655 

ET (Eq. 17). While ERA5-Land is widely utilized as a reanalysis dataset, offering near-real-time land 656 

variables by integrating model data with global observations based on physical laws. However, the 657 

accuracy of shortwave radiation from ERA5-Land seems compromised in savannas (Figure 3) due to the 658 

challenges associated with simulating radiation transmission under land-use changes and aerosol 659 

pollution from natural or anthropogenic sources (Babar et al., 2019; Martens et al., 2020). 660 

Air temperature is an important parameter in determining the daily evaporation fraction of bare soil 661 

(Appendix B), canopy surface resistance, aerodynamic resistance of the bare soil (Appendix C), 662 

atmospheric emissivity (Appendix D),  and available energy for vegetation coverage and bare soil.Since 663 

air temperature is not measured directly by satellites, many other ET products use therefore ground 664 

observations, land models or reanalysis data. In contrast, VISEA derives the air temperature from the 665 

negative linear relationship between vegetation index (VI) and surface temperature (Ts) using the VI-Ts 666 

method (section 2.1.3). It gives very good results under grass land, open shrubland and woody savannas 667 

landcover types, as shown in Figure 4. As previously explained, the VI-Ts method relies on the negative 668 

linear correlation between the Vegetation Index (VI) and surface temperature (Ts) within a 5 × 5 grids’ 669 

window. Therefore, the variance of VI values across these grid cells and the strength of their negative 670 

correlation are crucial for accurately calculating air temperature (Nishida et al., 2003). However, the VI-671 

Ts method is less effective in regions like dense forests, bare lands and deserts, where the vegetation 672 

index and temperature data vary little across the 5 × 5 grids’ window. Also, in regions with freezing 673 

temperatures, the VI-TS method does not perform well because warmer temperature is related to increased 674 
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vegetation, which is the opposite of warmer areas, where there is a positive correlation between the 675 

vegetation index and surface temperature (Cui et al., 2021). 676 

Another bias source of the VISEA model is the uncertainties of daily net radiation, notably 677 

originating from input downward shortwave radiation from ERA5-Land (Figure 2) and VI-Ts estimated 678 

air temperature (Figure 4). The energy budget equation (Eq. 14) and these two figures indicate that net 679 

radiation shows more uncertainties than shortwave radiation and air temperature. At the same time, 680 

assuming a linear relationship between cloud coverage (Eq. 15 and 16) and calculating downward 681 

longwave radiation (Eq. 17 and 18) may be an oversimplification that could introduce uncertainties. Since 682 

available energy for evapotranspiration (ET) depends on net radiation (Eq. 14), addressing these 683 

uncertainties is crucial for enhancing overall model accuracy (Huang et al., 2023b). Future refinements 684 

will contribute to a more precise daily net radiation estimation within the VISEA model. 685 

The VISEA model calculates ET primarily based on vegetation coverage, utilizing it as an indirect 686 

constraint to estimate evapotranspiration. However, this model does not directly incorporate variables 687 

related to water availability, which is a critical factor in ET processes. In tropical regions, where solar 688 

radiation is abundant (available energy), the model tends to overestimate ET due to its emphasis on 689 

vegetation coverage without adequately accounting for the actual water available for evapotranspiration. 690 

This methodology, while effectively capturing the effect of vegetation on ET under varied conditions, 691 

can lead to overestimations in areas where energy availability significantly exceeds water availability, 692 

typical of many tropical regions. Our analysis and subsequent discussion aim to highlight this 693 

characteristic of the VISEA model, acknowledging its implications for ET estimations in such energy-694 

rich, water-variable environments. 695 

While the VISEA model provides evapotranspiration (ET) globally, its best ET is between 60°N and 696 

90°S, as evidenced by a Nash-Sutcliffe efficiency (NSE) of 0.4 and a correlation coefficient (R) of 0.9 in 697 

Figure 6. VISEA model tends to underestimate ET in colder regions within the 60°N to 90°S latitude 698 

range, such as the western territories of Canada. This underestimation is primarily due to the model's 699 

inability to incorporate evaporation from frozen surfaces into its ET calculations. These discrepancies 700 

arise from several factors: inaccuracies in the ERA5-Land shortwave radiation data (illustrated in Figure 701 

3), the misapplication of the VI-Ts method (explained in Figure 4), and the uncertainties in daily net 702 

radiation (depicted in Figure 5). Designed to amalgamate bare soil and full vegetation coverage, as shown 703 

in Equation 1, the VISEA model encounters difficulties in accurately estimating ET at higher latitudes, 704 

especially in conditions of reduced solar radiation. These challenges are predominantly linked to the 705 

uncertainties associated with ERA5-Land shortwave radiation data, further compounded by increased 706 

cloudiness levels in these regions, as highlighted by Babar et al. (2019). Such uncertainties substantially 707 

impact the model's performance at higher latitudes, affecting its reliability in these conditions. 708 

Nevertheless, VISEA's ET estimates compare favorably with other ET data products in cold regions 709 

above 60°N, as indicated by the latitude zonal mean comparison in Figure 8. 710 

The accuracy of the VISEA model could be enhanced by incorporating additional satellite and 711 

climate data with higher resolution and improved accuracy. Moreover, the delay in providing ET data 712 
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could be reduced to three days or less by integrating real-time updated satellite and climate data. We 713 

propose developing alternative methods for estimating air temperature and net radiation to enhance 714 

accuracy. Additionally, incorporating variables such as soil moisture and water availability into the model 715 

could further refine its precision. These improvements provide a roadmap for future research, aiming to 716 

significantly enhance satellite-based near-real-time ET modeling. 717 

6. Conclusion  718 

Several satellite-based ET products have been developed, but few estimate near-real-time global 719 

terrestrial evapotranspiration (ET). We have developed VISEA ET, which only uses satellite-based input 720 

data and can provide near-real-time global daily terrestrial ET estimates at a 0.05° spatial resolution. The 721 

accuracy of VISEA ET estimates is comparable to existing ET products sooner than existing products. 722 

Our evaluations show that VISEA aligns well with measurements from 149 globally distributed tower 723 

flux sites on daily and monthly scales. In addition, VISEA captures spatial patterns of evapotranspiration, 724 

aligning with GPCC precipitation data across diverse geographical regions, particularly highlighting 725 

elevated values in tropical rainforest regions and lower values in arid and semi-arid zones. ET estimates 726 

are slightly too high in the Sahara and slightly too low in western Canada. Specifically, daily net radiation 727 

and ET estimations of VISEA in Savannah and frozen surfaces need improvements. We plan to address 728 

these issues in future developments. The near-real-time global daily terrestrial ET estimates provided by 729 

VISEA are valuable for meteorology and hydrology applications, especially for coordinating relief efforts 730 

during droughts. 731 

7. Code Availability  732 

Python code to synthesise the results and to generate the figures of VISEA results and the codes for 733 

generating the global ET products can be obtained through the public repository at 734 

https://doi.org/10.6084/m9.figshare.24647721.v1 (Huang, 2023c). The VISEA code for calculating daily 735 

ET is written in C and can be executed on Windows 10 using an Intel(R) Core (TM) i7-8565U CPU @ 736 

1.80GHz, 1.99 GHz, 16.0 GB RAM with Visual Studio 2019, or compatible platforms. Additionally, it 737 

can run on high-performance computing servers equipped with an Intel(R) Xeon(R) CPU E5-2680 in a 738 

CentOS environment. The system is scalable, supporting configurations ranging from 20 nodes and 656 739 

CPUs down to fewer nodes and CPUs as required. 740 

8. Data Availability  741 

The VISEA ET data can be obtained from https://doi.org/10.11888/Terre.tpdc.300782 (Huang, 742 

2023a). We are committed to continuously updating this dataset, ensuring that the latest ET data will be 743 

consistently and promptly made available. 744 

8.1 Input data 745 



 

31 
 

MOD11C1 can be obtained at https://e4ftl01.cr.usgs.gov/MOLT/MOD11C1.061/. MOD09CMG 746 

can be obtained at https://e4ftl01.cr.usgs.gov/MOLT/MOD09CMG.061/. MCD43C3 can be obtained at 747 

https://e4ftl01.cr.usgs.gov/MOTA/MCD43C3.061/. MOD13C1 can be obtained at 748 

https://e4ftl01.cr.usgs.gov/MOLT/MOD13C1.061/. MCD12C1 can be obtained at 749 

https://e4ftl01.cr.usgs.gov/MOLT/MOD21C1.061/. ERA5-Land shortwave radiation data can be 750 

obtained at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form.  751 

8.2 Evaluation data 752 

FLUXNET2015 flux towers data (FLUXNET2015: CC-BY-4.0 33) can be obtained at 753 

https://fluxnet.org/data/download-data/. The GLEAM 3.8a ET dataset was obtained from 754 

https://www.gleam.eu/#downloads (an email is required to receive a password for the SFTP). The 755 

FLUXCOM ET dataset was freely available (CC4.0 BY licence) from https://www.fluxcom.org/EF-756 

Download/ the Data Portal (an email is required to are receive a password for the FTP). MOD16 ET with 757 

the resolution of 0.05° was freely downloaded from 758 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1k759 

mALB/Previous/. Additionally, the AVHRR ET dataset with 1° was sourced from 760 

http://files.ntsg.umt.edu/data/ET_global_monthly_ORIG/Global_1DegResolution/ASCIIFormat/. 761 

Lastly, the PML ET dataset was obtained from https://www.tpdc.ac.cn/zh-hans/data/48c16a8d-d307-762 

4973-abab 972e9449627c.  763 

The precipitation from Global Precipitation Climatology Centre (GPCC) data was as obtained at 764 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-global-and-765 

regional?tab=form. The precipitation from Global Unified Gauge-Based Analysis of Daily Precipitation 766 

(CPC) was obtained at https://downloads.psl.noaa.gov/Datasets/cpc_global_precip/precip.2022.nc 767 

Other data that supports the analysis and conclusions of this work is available at 768 

https://figshare.com/articles/dataset/Satellite-based_Near-Real 769 

Time_Global_Daily_Terrestrial_Evapotranspiration_Estimates/24669306 (Huang, 2023d). 770 
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Appendix  772 

Appendix A. Determining the vegetation fraction calculation: 773 

𝑓𝑣𝑒𝑔 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
                                                                     (A1) 774 

where the 𝑁𝐷𝑉𝐼 is the Normalized Difference Vegetation Index and can be calculated as:  775 

𝑁𝐷𝑉𝐼 =  
𝑅𝑛𝑖𝑟−𝑅𝑟𝑒𝑑

𝑅𝑛𝑖𝑟+𝑅𝑟𝑒𝑑
                                                                          (A2) 776 

where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  is the 𝑁𝐷𝑉𝐼  of the bare soil without plants and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  is the 𝑁𝐷𝑉𝐼  of the full 777 

vegetation cover, 𝑅𝑛𝑖𝑟  is the near-infrared reflectance and 𝑅𝑟𝑒𝑑  is the red reflectance. The daily 778 

reflectance 𝑅𝑛𝑖𝑟 and 𝑅𝑟𝑒𝑑  were measured by MODIS reflectance data MOD09CMG (Fig. 1). Based on 779 

Tang et al. (2009), we set 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 = 0.22 and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 = 0.83. Missing observation for the daily 780 

MOD09CMG calculated 𝑁𝐷𝑉𝐼  data was filled with the 16-day averaged 𝑁𝐷𝑉𝐼  values in the 781 

MOD13Q1data product (Fig. 1). 782 

  783 
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Appendix B. Determining of decoupling factor: 784 

𝛺𝑖
∗ is the value of the decoupling factor, Ω, for wet surface. According to Pereira (2004), Ω and 𝛺∗ 785 

can be expressed as: 786 

 787 

 788 

Ω = 
1

1+
𝛾

∆+𝛾

𝑟𝑐
𝑟𝑎

                                                       (B1) 789 

𝛺∗=
1

1+
𝛾

∆+𝛾 

𝑟∗

𝑟𝑎

                                                       (B2)   790 

𝑟∗=
(Δ+𝛾)𝜌𝐶𝑝𝑉𝑃𝐷

Δ𝛾(𝑅𝑛−𝐺)
                                                    (B3) 791 

where 𝑟𝑐  is the surface resistance (s m-1); 𝑟𝑎 is the aerodynamic resistance (s m-1); the calculation details 792 

of instantaneous and daily  𝑟𝑐  and 𝑟𝑎 for vegetation and soil. 𝑟∗ is the critical surface resistance when the 793 

actual evapotranspiration equals the potential evaporation (called equilibrium evapotranspiration, s m-1); 794 

𝜌 is the air density (kg m-3); 𝐶𝑝 is the specific heat of the air (J kg-1 K-1); 𝑉𝑃𝐷 is the vapor pressure deficit 795 

of the air (Pa). ∆ is the slope of the saturated vapor pressure (Pa K-1).  796 

  797 
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Appendix C. Determining the resistances of vegetation canopy and bare soil surface 798 

The canopy surface resistance of the vegetation, denoted as 𝑟𝑐 𝑣𝑒𝑔 (s m-1), was determined using the 799 

relationship established by Jarvis et al. (1976), is equivalent to:  800 

1

𝑟𝑐 𝑣𝑒𝑔
 =

𝑓1 (𝑇𝑎)𝑓2 (𝑃𝐴𝑅)𝑓3 (𝑉𝑃𝐷)𝑓4 (𝜑)𝑓5 (𝑐𝑜2)

𝑟𝑐𝑀𝐼𝑁
+

1

𝑟𝑐𝑢𝑡𝑖𝑐𝑙𝑒
                                      (C1) 801 

The minimum resistance 𝑟𝑐𝑀𝐼𝑁 (s m-1) is defined as 33 (s m-1) for cropland and 50 (s m-1) for forest 802 

as determined by Tang et al. (2009); the canopy resistance related to diffusion through the cuticle layer 803 

of leaves 𝑟𝑐𝑢𝑡𝑖𝑐𝑙𝑒  is set at 100,000 (s m-1) in the Biome-BGC model is according to White et al. (2000). 804 

The relationships involving air temperature 𝑇𝑎, 𝑓1(𝑇𝑎) and photosynthetic active radiation PAR, 𝑓2(𝑃𝐴𝑅) 805 

expressed by the functions provided Jarvis et al. (1976): 806 

𝑓1 (𝑇𝑎) = ( 
𝑇𝑎−𝑇𝑛

𝑇𝑜−𝑇𝑛
) ( 

𝑇𝑥−𝑇𝑎

𝑇𝑥−𝑇𝑎
)

(
𝑇𝑥−𝑇𝑜
𝑇𝑜−𝑇𝑛

)

                                                             (C2) 807 

 808 
The minimum, optimal, and maximum temperatures for stomatal activity are denoted as 𝑇𝑛, 𝑇𝑜 and 809 

𝑇𝑥, respectively. As per Tang et al. (2009), 𝑇𝑛 is set to 275.85 K, 𝑇𝑜 to 304.25 K, and 𝑇𝑥 to 318.45 K. The 810 

expression for the function 𝑓2(𝑃𝐴𝑅) is provided below: 811 

𝑓2 (𝑃𝐴𝑅) =  
𝑃𝐴𝑅

𝑃𝐴𝑅+𝐴
                                                                               (C3) 812 

where 𝑃𝐴𝑅 is photosynthetic active radiation per unit area and time (μ mol m-2 s-1) calculated by 813 

incoming solar radiation multiplied by 2.05 (White et al., 2000); 𝐴 is a parameter related to photon 814 

absorption efficiency at low light intensity, which was set to 152 μ mol m-2 s-1 20; Nishida32 found that 815 

in Eq. D1 the following functions can be omitted without great loss of accuracy: the functions depending 816 

on vapor pressure deficit, 𝑓3 (𝑉𝑃𝐷) , leaf water potential 𝑓4 (𝜑)  and carbon dioxide vapor pressure, 817 

𝑓5 (𝐶𝑂2).  818 

The photosynthetic active radiation per unit area and time (PAR), measured in μ mol m⁻² s⁻¹, is 819 

computed by multiplying incoming solar radiation by 2.05, as outlined by White et al. (2000). The 820 

parameter A, associated with photon absorption efficiency at low light intensity, is established at 152 μ 821 

mol m⁻² s⁻¹. Nishida et al. (2003) observed that, in Eq. D1, the functions tied to vapor pressure deficit 822 

𝑓3 (𝑉𝑃𝐷), leaf water potential 𝑓4 (𝜑), and carbon dioxide vapor pressure 𝑓5 (𝐶𝑂2) can be omitted without 823 

significant loss of accuracy. Tang et al. (2009) employed this canopy resistance approach to estimate 824 

evapotranspiration (ET) at a 500-meter resolution in the Kalam river basin. The evaluation of their results 825 

indicated that the simplification of these calculations did not significantly impact the final accuracy of 826 

ET estimates. Additionally, Huang et al. (2017) evaluated this method for 0.05° ET assessments across 827 

China. In this study, we follow the methodologies originally developed by Tang et al. (2009) and Nishida 828 

(2003), with the goal of enhancing the VISEA model to accurately estimate daily scale evaporation 829 

fraction and net radiation. These efforts build on earlier work by Huang et al. (2017, 2021 and 2023b) 830 
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that introduced vapor pressure deficit (VPD) and leaf water potential in calculating canopy resistance. 831 

However, comparative analyses between VISEA and other models, such as PML and MOD16—832 

particularly PML, which integrates VPD as a limiting factor in estimating GPP and ET—show that 833 

VISEA maintains accuracy without significant biases. It is important to note that none of the ET models 834 

in our comparison directly incorporate leaf water potential into their canopy resistance calculations. We 835 

are committed to addressing these gaps in our future studies. 836 

The aerodynamic resistance of the canopy, denoted as 𝑟𝑎 𝑣𝑒𝑔 (s m⁻¹), is computed for forest cover, 837 

grassland, and cropland using the empirical formulae presented by Nishida et al. (2003) for both 838 

instantaneous and daily values. 839 

1

𝑟𝑎 𝑣𝑒𝑔 (𝑓𝑜𝑟𝑒𝑠𝑡)
= 0.008𝑈50𝑚                                                                  (C4) 840 

The wind speed at a height of 50 meters above the canopy ( 𝑈50𝑚) is used to determine the 841 

aerodynamic resistance for grassland and cropland, as follows: 842 

1

𝑟𝑎 𝑣𝑒𝑔 (𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 & 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑)
= 0.003𝑈1𝑚                                                           (C5) 843 

where 𝑈1𝑚 is the wind speed 1m above the canopy (m s-1). The wind speed as a function of the 844 

height z, 𝑈(𝑧) can be calculated by the logarithm profile of wind. A recent study  found that the velocity 845 

log law does not apply to a stratified atmospheric boundary layer (Cheng et al., 2011). Thus D4 and D5 846 

are valid under neutral boundary layer conditions. Since 𝑟𝑎 𝑣𝑒𝑔 is calculated differently for forests (Eq. 847 

D4) and grasslands/croplands (Eq. D5), we used the land cover classes from the yearly International 848 

Geosphere-Biosphere Programme (IGBP) (MCD12C1) to identify the land cover and choice the different 849 

equation of 𝑟𝑎 𝑣𝑒𝑔. 𝑈50𝑚 and 𝑈1𝑚 were calculated by the logarithm profile of wind:  850 

𝑈(𝑧) = 𝑈𝑠ℎ𝑒𝑎𝑟 ln [
(𝑧−𝑑)

𝑧0
]/𝑘                                                             (C6) 851 

where 𝑈𝑠ℎ𝑒𝑎𝑟  is the shear velocity (m s-1); 𝑧 is the height (m); 𝑑 is the surface displacement (m); 𝑧0 852 

is the roughness length, we followed Nishida et al. (2003), set as 0.005 m for bare soil and 0.01 m for 853 

grassland; 𝑘 is the von Kármán's constant and set as 0.4 following Nishida (Nishida et al., 2003). The 854 

shear velocity 𝑈𝑠ℎ𝑒𝑎𝑟  was calculated as: 855 

𝑈𝑠ℎ𝑒𝑎𝑟 =  𝑈1𝑚 𝑠𝑜𝑖𝑙  
0.4

ln (
1

0.005
)
                                                              (C7) 856 

  where the 𝑈1𝑚 𝑠𝑜𝑖𝑙  is the wind speed of bare soil at 1 m height (m s-1), it was calculated as: 857 

 𝑈1𝑚 𝑠𝑜𝑖𝑙 = 1/0.0015 𝑟𝑎 𝑠𝑜𝑖𝑙                                                                 (C8) 858 

The Vegetation Index-surface Temperature (VI-TS) diagram (Nishida et al., 2003) can be utilized to 859 

compute the instantaneous air temperature. This is achieved by utilizing MODIS instantaneous surface 860 

temperature/emissivity data (MOD11C1) and daily-calculated NDVI as input parameters. 861 
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The aerodynamic resistance of the bare soil, denoted as 𝑟𝑎 𝑠𝑜𝑖𝑙  (s m⁻¹), was determined by Nishida 862 

et al. (2003). This calculation assumes that the maximum surface temperature of bare soil 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥  (K) 863 

happens when the sum of latent heat flux and sensible heat flux of the bare soil, referred to as the available 864 

energy of bare soil 𝑄𝑠𝑜𝑖𝑙 (W m-2), is utilized as the sensible heat flux, while the latent heat flux is set to 865 

zero. 866 

𝑟𝑎 𝑠𝑜𝑖𝑙 =
𝜌𝐶𝑝( 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥−𝑇𝑎)

𝑄𝑠𝑜𝑖𝑙 
                                                                      (C9) 867 

𝑟𝑎 𝑠𝑜𝑖𝑙  is the aerodynamic resistance of the bare soil, (s m-1), 𝜌 is the air density, kg m-3; 𝐶𝑝 is the 868 

specific heat of the air, (J kg-1 K-1); 𝑇𝑎 is the air temperature (K), 𝑄𝑠𝑜𝑖𝑙 is the available energy of bare soil 869 

(W m-2).  870 

To compute the canopy surface resistance of bare soil, denoted as 𝑟𝑐 𝑠𝑜𝑖𝑙  (s m⁻¹), we adhere to the 871 

methodologies outlined in the works of Griend and Owe (1994) and Mu et al. (2007): 872 

𝑟𝑐 𝑠𝑜𝑖𝑙 = 𝑟𝑡𝑜𝑡 − 𝑟𝑎 𝑠𝑜𝑖𝑙                                                                (C10) 873 

𝑟𝑡𝑜𝑡 =
1.0

 (
𝑇𝑎

293.15
)

1.75101300

𝑃
    

∗ 107.0                                                    (C11) 874 

The total aerodynamic resistance 𝑟𝑡𝑜𝑡 (s m⁻¹) is composed of the aerodynamic resistance over the 875 

bare soil 𝑟𝑎 𝑠𝑜𝑖𝑙 (s m⁻¹), with atmospheric pressure 𝑃 set at 101,300 Pa. 876 

  877 
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Appendix D. The calculation of atmospheric emissivity for clear sky 878 

As per Brutsaert (1975), the atmospheric emissivity 𝜀𝑎
𝑑 for clear sky under standard humidity and 879 

temperature conditions is 880 

𝜀𝑎
𝑑 = 1.24 × (𝑒𝑎

𝑑/𝑇𝑎
𝑑)1/7                                                          (D1) 881 

where 𝑒𝑎
𝑑  represents the daily water vapor pressure (kPa). To calculated 𝑒𝑎

𝑑 , it is necessary to 882 

compute the slope of the saturated vapor (∆) as:   883 

 ∆ =  
4098 [0.6108 exp[

17.27𝑇𝑎
(𝑇𝑎+237.3)

]

(𝑇𝑎+237.3)2                                                              (D2) 884 

VPD is the vapor pressure deficit of the air (kPa), which is expressed as: 885 

VPD = 𝑒0(𝑇𝑎) − 𝑒𝑎                                                          (D3) 886 

𝑒0(𝑇𝑎) = 0.6108 exp [
17.27𝑇𝑎

(𝑇𝑎+237.3)
]                                               (D4) 887 

𝑒𝑎 =  𝑒0(𝑇𝑑𝑒𝑤)                                                                    (D5) 888 

𝑒0(𝑇𝑑𝑒𝑤)  = 0.6108 exp [
17.27𝑇𝑑𝑒𝑤

𝑇𝑑𝑒𝑤+237.3
  ]                                              (D6) 889 

The expression within parentheses denotes the independent variable, where, 𝑒0(𝑇𝑎) represents the 890 

saturation vapor pressure (kPa) at the air temperature 𝑇𝑎  (℃); 𝑒𝑎  is the actual vapor pressure (kPa); 891 

𝑒0(𝑇𝑑𝑒𝑤) is the saturation vapor pressure (kPa) at the dew point temperature 𝑇𝑑𝑒𝑤 (℃). For forest, water 892 

surface, and cropland 𝑇𝑑𝑒𝑤  is set to the minimum air temperature during the day. In arid regions such as 893 

bare soil and non-irrigated grassland, 𝑇𝑑𝑒𝑤  may be 2-3 ℃ lower than 𝑇𝑚𝑖𝑛 . Therefore, 2 ℃ is subtracted 894 

is subtracted from 𝑇𝑚𝑖𝑛  in arid and semiarid areas to derive 𝑇𝑑𝑒𝑤 . While these simplifications might 895 

introduce a bias in the final calculated ET value, our initial results indicate that the effect is negligible. 896 
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