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Abstract.  21 

Accurate and timely information on global terrestrial actual evapotranspiration (ET) is crucial in 22 

agriculture, water resource management and drought forecasting in a changing climate. While numerous 23 

satellite-based ET products have been developed in recent decades, few provide near-real-time global 24 

terrestrial ET estimates. The MOD16 ET dataset, currently updating at the fastest rate, still experiences 25 

a delay of over two weeks. This is because most satellite-based ET algorithms rely on meteorological 26 

data from land surface models or in situ measurements, which cannot be obtained in near-real-time, 27 

resulting in delays of more than two weeks. To expedite global ET data access, we developed the 28 

Moderate Resolution Imaging Spectroradiometer (MODIS) based Variation of Standard 29 

Evapotranspiration Algorithm (VISEA) to provide global daily ET data within a week of the actual 30 

measurements at a spatial resolution of 0.05°. The VISEA model incorporates several key components: 31 

(1) A vegetation index (VI)-temperature (Ts) triangle method to simulate air temperature (Ta), serves as 32 

a basis for calculating other meteorological parameters (e.g., water vapor deficit and wind speed); (2) A 33 

daily evaporation fraction (EF) method based on the decoupling parameter, converts satellite-based 34 

instantaneous observations into daily ET estimates; (3) A net radiation calculation program takes into 35 

account cloud coverage in the atmosphere's downward longwave radiation. The VISEA model is driven 36 

by shortwave radiation from the European Centre for Medium-range Weather Forecasts (ERA5-Land) 37 

and MODIS land products, e.g., surface reflectance, land surface temperature/emissivity, land cover 38 

products, vegetation indices, and albedo as inputs. To assess its accuracy, we compared VISEA with 39 

measurements from 149 flux towers, five other satellite-based global ET products, and precipitation data 40 

from the Global Precipitation Climatology Centre (GPCC). The evaluations show that the near-real-time 41 

ET using VISEA performs with similar accuracy to other existing data products and offers a significantly 42 

shorter time frame for daily data availability. Over 12 landcover types, the mean R is about 0.6 with an 43 

RMSE of 1.4 mm day-1 at a daily scale. Furthermore, the consistent spatial patterns of multi-year average 44 
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VISEA align closely with GPCC precipitation data, reaffirming the dataset's ability to accurately 45 

represent global terrestrial ET distribution. To emphasize the capabilities of the VISEA for drought 46 

monitoring, we analyzed the spatial and temporal variations of ET during a drought event and subsequent 47 

recovery with precipitation in the Yangtze River basin from August 26th to September 2nd, 2022. The 48 

VISEA distinctly illustrated low mean ET levels (<0.5 mm day-1) across the Yangtze River Basin on 49 

August 28th, indicating the severity of the drought. Conversely, a noticeable increase in ET (>1 mm day-50 
1) is observed on August 30th, signifying the retreat of the drought due to precipitation. The near-real-51 

time global daily terrestrial ET estimates could be valuable for meteorology and hydrology applications 52 

requiring real-time data, particularly in coordinating relief efforts during droughts. The VISEA code and 53 

dataset are available at https://doi.org/10.11888/Terre.tpdc.300782 (Huang et al., 2023a). 54 

1 Introduction  55 

Global terrestrial evapotranspiration (ET) is a vital component of the Earth's water cycle and energy 56 

budget. It includes evaporation from the soil and water surfaces (some studies also consider evaporation 57 

from the intercepted precipitation in canopies) and plant transpiration (Zhang et al., 2021; He et al., 2022; 58 

Wang et al., 2021a). Accurate and timely estimation of ET is essential for quantitatively assessing 59 

changes in the water cycle under climate change, vigilant monitoring drought, and effectively managing 60 

and allocating water resources (Su et al., 2020; Han et al., 2021; Aschonitis et al., 2022).  61 

Near-real-time ET estimation from climate models have been widely used to assess and predict ET 62 

changes in the global water cycle under different weather conditions (Copernicus Climate Change 63 

Service, 2020), While these models such as ERA5 reanalysis offer near-real-time latent heat flux (ET in 64 

energy units) with a delay of just six days, they typically feature coarser spatial resolutions, often 0.1° or 65 

more. This level of resolution may limit their effectiveness for detailed assessments of drought conditions 66 

and the optimization of water resource allocation. On the other hand, obtaining highly accurate, near-67 

real-time, or real-time ET measurements through local eddy covariance or lysimeter methods can be very 68 

valuable (Awada et al., 2022), but collecting large-scale ET data using this equipment proves to be quite 69 

challenging (Barrios et al., 2015; Tang et al., 2009).  70 

Satellite remote sensing-based ET estimates outperform climate model simulations by offering high 71 

spatial resolution for detailed water use analysis, near-real-time data for prompt environmental response, 72 

and global coverage for comprehensive water cycle studies. These estimates rely on direct observations, 73 

enhancing accuracy, especially where ground data are sparse, and allow for the dynamic monitoring of 74 

land and vegetation changes. This capability underscores their importance in water resource management 75 

and climate research, complementing the broader perspectives provided by climate models. 76 

The selected ET products discussed in this study embody diverse and innovative algorithmic 77 

approaches that have significantly contributed to global ET estimation and gained recognition within the 78 

scientific community. The MOD16 ET dataset, developed by Mu et al. (2007, 2011), utilizes a Penman-79 

Monteith-based approach and is driven by MODIS land cover, albedo, fractional photosynthetically 80 

active radiation, leaf area index, and daily meteorological reanalysis data from NASA’s Global Modelling 81 
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and Assimilation Office to estimate ET. As the first satellite-based global ET product, it played a pivotal 82 

role in providing precise estimations crucial for global drought monitoring (Mu et al., 2013).  83 

The AVHRR ET dataset, developed by Zhang et al. (2006, 2009), employed a modified Penman–84 

Monteith approach over land, integrating biome-specific canopy conductance determined by NDVI, and 85 

utilized a Priestley–Taylor approach over water surfaces. These algorithms were driven by AVHRR 86 

Global Inventory Modeling and Mapping Studies (GIMMS) NDVI, daily surface meteorology data from 87 

the National Centers for Environment Prediction/National Center for Atmospheric Research 88 

(NCEP/NCAR) reanalysis, and solar radiation from NASA/GEWEX Surface Radiation Budget Release-89 

3.0. This dataset has significantly advanced the study of the global water cycle, capitalizing on its 90 

extensive coverage and high accuracy to provide valuable insights into global hydrological processes. 91 

The FLUXCOM dataset, is notable for its utilization of machine learning to integrate eddy 92 

covariance data from the global FLUXNET tower network, surface meteorological data, and remote 93 

sensing data. This approach has made a substantial contribution to resolving the evapotranspiration 94 

paradox and has cemented its status as a crucial tool widely acknowledged within the scientific 95 

community for elucidating intricate ET dynamics. (Jung et al., 2009, 2010, 2019). 96 

Additionally, GLEAM, developed by Miralles et al. (2011b) and Martens et al. (2017), holds a 97 

prominent position as one of the best satellite-based ET products, known for its unparalleled accuracy 98 

and unique algorithmic approaches that have considerably advanced global ET estimation and enhanced 99 

our understanding of land surface evapotranspiration processes. Lastly, PML, developed by Zhang et al. 100 

(2019, 2022), represents the first 250-meter global coverage ET product, providing unprecedented spatial 101 

resolution for global ET estimation and contributing to our understanding of the decline in global water 102 

availability (Zhang et al., 2023b). 103 

While these satellite-based global ET products provide reasonable estimations, they do not offer 104 

near-real-time ET estimates. Despite ongoing rapid updates to the MOD16 ET dataset, it still encounters 105 

delays exceeding two weeks. Additionally, AVHRR ET spans from 1983 to 2006, PML ET covers the 106 

period from 2002 to 2019, FLUXCOM data covers from 1950 to 2016, and GLEAM ET extends from 107 

2001 to 2022. Notably, the four later ET products exhibit data gaps exceeding one year, posing challenges 108 

for near-real-time estimation. Furthermore, NASA's ECOsystem Spaceborne Thermal Radiometer 109 

Experiment on Space Station (ECOSTRESS) aims to deliver global-scale ET estimation (Fisher et al., 110 

2020). However, as of now, the data from ECOSTRESS have not been published, resulting in a lack of 111 

satellite-based global near-real-time ET estimation. 112 

The Variation of the Moderate Resolution Imaging Spectroradiometer Standard Evapotranspiration 113 

Algorithm (VISEA) was introduced by Tang et al. (2009), which was designed for the near-real-time 114 

monitoring of crop consumption at the basin scale. Huang et al. (2017) examined its reliability by 115 

conducting a comprehensive assessment comparing its ET values with flux tower measurements and 116 

other gridded ET datasets across various scales in China. Subsequently, to improve the model, a 117 

decoupling parameter for daily evaporation fraction (EF) was introduced (Huang et al., 2021), and the 118 
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atmospheric emissivity and cloud coverage in the daily net radiation calculation was included (Huang et 119 

al., 2023b). Global terrestrial application and evaluation of the developed VISEA algorithm have not 120 

been conducted so far. In this study, we employ this VISEA algorithm along with MODIS surface 121 

reflectance (MOD09CMG) (Vermote, 2015), land surface temperature/emissivity (MOD11C1) (Wan et 122 

al., 2015), land cover products (MCD12C1) (Friedl & Sulla-Menashe, 2015), vegetation indices 123 

(MOD13C1) (Didan, 2015), albedo (MCD43C3) (Schaaf & Wang 2015), and hourly shortwave radiation 124 

from ECMWF ERA5-Land (Sabater, 2019) to provide global daily ET estimates from 2001 to 2022.  125 

The performance of VISEA was evaluated with data from meteorological instruments and eddy 126 

covariance measurements at 149 flux towers of FLUXNET (Pastorello et al., 2020). We assessed the 127 

spatial distribution averages of VISEA by comparing its multi-year average with established ET datasets 128 

GLEAM (Martens et al., 2017; Miralles et al., 2011), FLUXCOM (Jung et al., 2009, 2010, 2018), 129 

AVHRR (Zhang et al., 2009, 2010), MOD16 (Mu et al., 2007, 2011), PML (Zhang et al., 2019, 2022)  130 

and precipitation data from the Global Precipitation Climatology Centre (GPCC) (Udo et al., 2011).  131 

 132 

2. Methods 133 

2.1 Description of the VISEA algorithm 134 

VISEA, short for the Variation of the Moderate Resolution Imaging Spectroradiometer Standard 135 

Evapotranspiration Algorithm, is a modification of the MODIS standard Evapotranspiration (ET) 136 

algorithm. The original MODIS algorithm, created by Mu et al. (2007 and 2011), is based on the Penman-137 

Monteith method. VISEA introduces two significant modifications. First, it employs the Vegetation (VI)-138 

Temperature (Ts) Triangle method, originally developed by Nishida et al. (2003), to estimate air 139 

temperature. Second, VISEA incorporates hourly data on shortwave downward radiation from the ERA5-140 

Land dataset to calculate daily average energy. These two advancements enable VISEA to estimate large-141 

scale ET without needing local measurements as supplementary data.  142 

Unlike energy budget-based ET algorithms (such as SEBS, METRIC, and Alexi), which calculate 143 

ET (latent heat flux) as the residual of the net radiation, subtracting soil heat flux and sensible heat flux. 144 

VISEA estimates ET using the Penman-Monteith equation, placing it in a different category of satellite-145 

based global ET products currently in use. VISEA is a two-source model, which means the 𝐸𝑇 in one 146 

grid cell was separated as the transpiration from full vegetation cover and the evaporation from bare soil 147 

surface if energy transfer from the vegetation to the soil surface was ignored (Nishida et al., 2003), i.e., 148 

𝐸𝑇 = 𝑓𝑣𝑒𝑔𝐸𝑇𝑣𝑒𝑔 + (1 − 𝑓𝑣𝑒𝑔)𝐸𝑇𝑠𝑜𝑖𝑙                                                           (1) 149 

where the subscript "𝑣𝑒𝑔" means full vegetation cover and the subscript "soil" indicates the soil exposed 150 

to solar radiation (called bare soil); 𝐸𝑇𝑣𝑒𝑔 is the transpiration from full vegetation cover area (W m-2), 151 

𝐸𝑇𝑠𝑜𝑖𝑙  is the evaporation from bare soil (W m-2), 𝑓𝑣𝑒𝑔 is the portion of the area with the vegetation cover, 152 

which can be calculated by Normalized Difference Vegetation Index (calculation details are provided in 153 

Appendix A, Tang et al., 2009) 154 
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The available energy 𝑄 (W m-2), which is the sum of the latent heat flux and sensible heat flux (also 155 

known as the net radiation minus soil heat flux) is also separated into the available energy for vegetation 156 

transpiration, 𝑄𝑣𝑒𝑔 (W m-2) and 𝑄𝑠𝑜𝑖𝑙  (W m-2) for bare soil evaporation, which was expressed by Nishida 157 

et al. (2003) as: 158 

𝑄 = 𝑓𝑣𝑒𝑔𝑄𝑣𝑒𝑔 + (1 − 𝑓𝑣𝑒𝑔)𝑄𝑠𝑜𝑖𝑙                                                      (4) 159 

As satellites like Terra and Aqua provide instantaneous snapshot observations of the Earth only once 160 

a day, a temporal scaling method is needed to convert instantaneous measurements into daily ET values. 161 

Nishida et al. (2003) used satellite-based noon time instantaneous evaporation fraction (𝐸𝐹), defined as 162 

the ratio of latent heat flux (𝐸𝑇)  to available energy as daily 𝐸𝐹  ( 𝐸𝐹 =
𝐸𝑇

𝑄
, the calculation of 163 

instantaneous 𝐸𝐹 is described at Appendix B), multiplied the daily 𝑄 to calculated daily 𝐸𝑇 based on the 164 

assumption that 𝐸𝐹 is constant over a day: 165 

𝐸𝑇 = 𝐸𝐹 𝑄                                                                               (5) 166 

In the next section, we will detail how VISEA calculates the daily 𝐸𝐹, and Q in Equation (5), and 167 

also daily air and Ts, land surface temperature. 168 

2.1.1 Daily evaporation fraction calculation  169 

As the assumption of 𝐸𝐹𝑖 =  𝐸𝐹𝑑  caused 10%-30% underestimation of daily ET (Huang et al., 170 

2017; Yang et al., 2013), we introduced a decoupling parameter to covert 𝐸𝐹𝑖 into 𝐸𝐹𝑑 following the 171 

algorithm of Tang et al. (2017a, 2017b). This new decoupling parameter-based evaporation faction is 172 

developed from Penman-Monteith and McNaughton-Jarvis mathematical equations:  173 

𝐸𝐹𝑑 = 𝐸𝐹𝑖 ∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

Ω∗𝑖

Ω∗𝑑

Ω𝑑

Ω𝑖                                                          (6) 174 

where superscript "𝑑" means daily; the 𝐸𝐹𝑖 is the instantaneous evaporation fraction; Ω is the decoupling 175 

factor that represents the relative contribution of radiative and aerodynamic terms to the overall 176 

evapotranspiration (Tang and Li, 2017), 𝛺𝑖
∗ is the value of the decoupling factor, Ω, for wet surfaces. 177 

According to Pereira (2004), Ω and 𝛺∗ (the calculation details is presented in Appendix C). 178 

For full vegetation-covered areas, 𝐸𝐹𝑣𝑒𝑔
𝑑  is expressed as: 179 

𝐸𝐹𝑣𝑒𝑔
𝑑 =

𝛼 ∆𝑖

∆𝑖+γ(1+
𝑟𝑐 𝑣𝑒𝑔

𝑖

2𝑟𝑎 𝑣𝑒𝑔
𝑖 )

(
∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

𝛺𝑣𝑒𝑔 
∗ 𝑖

𝛺𝑣𝑒𝑔 
∗ 𝑑

𝛺𝑣𝑒𝑔 
 𝑑

𝛺𝑣𝑒𝑔 
𝑖 )                                (7) 180 

𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous canopy resistance (s m-1), 𝑟𝑎 𝑣𝑒𝑔

𝑖  is the instantaneous aerodynamic resistance (s 181 

m-1). Determining these resistances are presented in Appendix D. 182 

For bare soil, 𝐸𝐹𝑠𝑜𝑖𝑙
𝑑  is calculated as:  183 

𝐸𝐹𝑠𝑜𝑖𝑙
𝑑 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖 −𝑇𝑠𝑜𝑖𝑙 

 𝑖  

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖  −𝑇𝑎 

 𝑖  
𝑄𝑠𝑜𝑖𝑙 0 

 𝑖

𝑄𝑠𝑜𝑖𝑙 
 𝑖  (

∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

𝛺𝑠𝑜𝑖𝑙 
∗ 𝑖

𝛺𝑠𝑜𝑖𝑙 
∗ 𝑑

𝛺𝑠𝑜𝑖𝑙 
 𝑑

𝛺𝑠𝑜𝑖𝑙 
𝑖 )                       (8)  184 
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Thus, 𝐸𝐹𝑑 is expressed as:  185 

𝐸𝐹𝑑 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔 

 𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑑 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙 
 𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑑                        (9) 186 

2.1.2 Daily calculation of available energy 𝑸𝒗𝒆𝒈
𝒅  and 𝑸𝒔𝒐𝒊𝒍

𝒅   187 

We used an improved daily available energy 𝑄  (W m-2) method (Huang et al., 2023) for the 188 

vegetation and the bare soil surface is calculated by the energy balance equation: 189 

𝑅𝑛 − 𝐺 = 𝑄                                                                            (10) 190 

where 𝑅𝑛 is the net radiation (W m-2), which could be calculated by the land surface energy balance; 𝐺 191 

is the soil heat flux (W m-2), 𝐺≈0 on a daily basis (Fritschen and Gay, 1979; Nishida et al., 2003; Tang et 192 

al., 2009),  193 

𝑅𝑛
𝑑 = (1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4                   (11) 194 

Where 𝑎𝑙𝑏𝑒𝑑𝑜𝑑 is the daily albedo of the soil surface; 𝑅𝑑
𝑑 is daily incoming shortwave radiation (W m-195 

2), obtained the ERA5_Land shortwave radiation (we called ERA5_Rd); 𝜀𝑠
𝑑  and 𝜀𝑎

𝑑  are the daily 196 

emissivity of land surface and atmosphere; different from the former study provided by Huang et al., 197 

(2021), which set we 𝜀𝑠
𝑑 and 𝜀𝑎

𝑑 equal, we calculated the 𝜀𝑎
𝑑 by Appendix E flowing study of Brutsaert, 198 

(1975) and Wang and Dickinson(2013), 𝜀𝑠
𝑑  can be retried by MOD11C1; 𝜎 is the Stefan-Boltzmann 199 

constant; 𝑇𝑎
𝑑 is the daily near surface air temperature (K); 𝑇𝑠

𝑑 is the daily surface temperature (K).  200 

We account for the influence of clouds by assuming a linear correlation between downward 201 

longwave radiation and cloud coverage in the calculation of downwards longwave radiation based on the 202 

study of Huang et al., (2023): 203 

𝐶𝑙𝑜𝑢𝑑 = (1 − 𝐾𝑡)                                                                    (12) 204 

𝐾𝑡 =  
𝑅𝑑

𝑑

𝑅𝑎
𝑑                                                                            (13) 205 

𝐶𝑙𝑜𝑢𝑑𝑑 is derived from the clearness index 𝐾𝑡 (Chang and Zhang, 2019; Goforth et al., 2002). 𝑅𝑎
𝑑 is the 206 

daily extraterrestrial radiation calculated by the FAO (1998).  207 

According to Huang et al. (2023), 𝑄𝑣𝑒𝑔
𝑑  can be calculated by assuming as 𝑇𝑠

𝑑 =  𝑇𝑎
𝑑  according to the 208 

VI-Ts method which implies that the minimum land surface temperature occurs in fully vegetated grid 209 

cells and is equivalent to 𝑇𝑎
𝑑.  210 

𝑄𝑣𝑒𝑔
𝑑 = (1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4                  (14) 211 

𝑄𝑠𝑜𝑖𝑙
𝑑 = (1 − 𝐶𝐺)(1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4           (15) 212 

Thus, (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4  is the daily downward longwave radiation (W m-2), and 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4  is the 213 
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daily upward longwave radiation (W m-2), where 𝐶𝐺 is an empirical coefficient ranging from 0.3 for a 214 

wet soil to 0.5 for a dry soil (Idso et al., 1975).  215 

Following the study of Huang et al. (2023), the daily 𝐸𝑇𝑑 can be calculated by the daily 𝐸𝐹𝑑 and  216 

𝑄𝑑 as: 217 

 𝐸𝑇𝑑 = 𝐸𝐹𝑑𝑄𝑑                                                                         (16) 218 

Figure 1 illustrates the workflow of VISEA. 219 

 220 

 221 

Figure 1. Schematic of VISEA algorithm. The ovals in the top row are the databases, and the square 222 

boxes are the algorithms, and parallelograms are the parameters. The numbers in the parenthesis are the 223 

equation to determine the parameters. 224 
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 225 

2.1.3 The calculation of daily air temperature, 𝑻𝒂
𝒅 and surface temperature, 𝑻𝒔

𝒅 226 

Daily air temperature, 𝑇𝑎
𝑑  is a critical parameter in the VISEA algorithm, used in calculations for 227 

downward longwave radiation, daily aerodynamic resistance, and surface resistance. The key innovation 228 

in calculating 𝑇𝑎
𝑑, involves employing the VI-Ts method to estimate instantaneous air temperature, 𝑇𝑎

𝑖 229 

during the daytime.  230 

This method was developed based on the empirical linear relationship between surface temperature 231 

(Ts) and Vegetation Index (VI). Surface temperature increases when the vegetation index decreases, and 232 

conversely, surface temperature decreases when the vegetation index increases. By defining a "window" 233 

formed by the neighboring 5 * 5 grid cells, the scatter plot of these 25 grid cells' VI and Ts typically 234 

exhibits a triangular (or trapezoidal) distribution. In this scatter plot, we identify the "warm edge" 235 

(characterized by a low vegetation cover fraction and high Ts) and the "cold edge" (marked by a high 236 

vegetation cover fraction and low Ts). 237 

Through simple interpolation, Ts corresponding to any given vegetation condition within the range 238 

of the "warm edge" and "cold edge" can be determined. The lowest Ts could be determined by the highest 239 

VI, and the highest Ts could be determined by the lowest VI. Therefore, following Nishida et al. (2003), 240 

under the assumption that the lowest surface temperature equals the air temperature (Ta), we can derive 241 

the daily air temperature. 242 

For nighttime periods, it is assumed that air temperature is equivalent to the nighttime land surface 243 

temperature provided by MOD11C1. These two temperature estimates are then extended into hourly air 244 

temperature profiles using a sine-cosine fitting curve. The 24-hour average of 𝑇𝑎
𝑖 is used as 𝑇𝑎

𝑑. Similarly, 245 

𝑇𝑠
𝑑 is calculated using MOD11C1 land surface temperature data for both daytime and nighttime. These 246 

estimates are extended into hourly surface temperature profiles using a similar sine-cosine fitting curve, 247 

and the daily average of 𝑇𝑠
𝑑 is determined (Huang et al., 2021).  248 

A key advance of this VISEA algorithm is the application of the VI-Ts method to calculate 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖  249 

and 𝑇𝑎 
 𝑖 (Huang et al., 2017; Nishida et al., 2003; Tang et al., 2009). The VI-Ts method is based on the 250 

empirical linear relationship between the vegetation index (VI), typically calculated by NDVI, and land 251 

surface temperature (Ts). When plotted on a two-dimensional scatter plot, VI and Ts generally form a 252 

trapezoid or triangular shape. In these plots, regions with low VI and high Ts values constitute the "warm 253 

edge," while areas with high VI and low Ts values form the "cold edge." Using simple linear interpolation, 254 

Ts values corresponding to any given VI between the "warm edge" and the "cold edge" can be determined. 255 

Assuming𝑇𝑠 = 𝑇𝑎 
 𝑖 for cases where the highest VI corresponds to the lowest Ts, we can calculate 𝑇𝑎 

 𝑖. 256 

Similarly, 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖  can be easily calculated since it corresponds to the lowest VI.  257 

This VI-Ts method allows for the estimation of 𝑇𝑎 
 𝑖 and 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 

 𝑖  without the need for additional 258 

meteorological data. However, some studies have found that the VI-Ts method may not consistently 259 
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provide satisfactory results, especially in colder regions where vegetation thrives better under higher 260 

temperatures. 261 

2.2 Technical validation 262 

The correlation coefficient, Root Mean Square Error (RMSE) and Nash-Sutcliffe efficiency coefficient 263 

are used to evaluate our global daily ET estimates with eddy covariance measurements and compared 264 

with the other five independent global ET products on a monthly scale.  265 

The correlation coefficient R is calculated as: 266 

𝑅 =
∑(𝑋−�̅�)(𝑌−�̅�)

√∑(𝑋−�̅�)2∑(𝑌−�̅�)2
                                                                     (17) 267 

𝑅  is the correlation coefficient; 𝑋  is the estimated variable; �̅�  is the average of 𝑋; Y is the observed 268 

variable; �̅� is the average of 𝑌.  269 

The Root Mean Square Error (RMSE) is calculated as: 270 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑋𝑖−𝑌𝑖 )2

𝑖=1
𝑁

𝑁
                                                                    (18) 271 

For a more nuanced understanding of the Root Mean Square Error (RMSE), we have deconstructed 272 

it into two distinct components: RMSEs (systematic RMSE) and RMSEu (unsystematic RMSE). This 273 

breakdown allows a more detailed examination of the systematic and unsystematic sources contributing 274 

to the overall error metric.  275 

The systematic Root Mean Square Error (RMSEs) is calculated as: 276 

𝑅𝑀𝑆𝐸𝑠 =  √
∑ (𝑍𝑖−𝑌𝑖 )2

𝑖=1
𝑁

𝑁
                                                                    (19) 277 

The unsystematic Root Mean Square Error (RMSEu) is calculated as: 278 

𝑅𝑀𝑆𝐸𝑢 =  √
∑ (𝑍𝑖−𝑋𝑖 )2

𝑖=1
𝑁

𝑁
                                                                    (20) 279 

Where 𝑍𝑖 = 𝑎 + 𝑏𝑌𝑖, where a and b are the least squares regression coefficients of the estimated variable 280 

𝑋𝑖 and observed variable 𝑌𝑖, 𝑁 is the sample size (Norman et al., 1995). 281 

The Nash-Sutcliffe efficiency coefficient (NSE) 282 

𝑁𝑆𝐸 = 1 − 
∑(𝑋𝑖− 𝑌𝑖)2

∑(𝑌𝑖− �̅�)2                                                             (21) 283 

The ratio of the standard deviations of 𝑋 and 𝑌 284 
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𝑅𝑎𝑡𝑖𝑜 =  
𝑋𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑌𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                                                  (22)            285 

The Bias of 𝑋 and 𝑌 286 

𝐵𝑖𝑎𝑠 =  �̅� − �̅�                                                  (23)             287 

2.3 The gap-filling of MODIS data 288 

MODIS sensors on board of Terra and Aqua observe the Earth twice a day. However, there are 289 

always data gaps in the MODIS land products because of cloud cover problems. In the VISEA algorithm, 290 

we used the neighboring days’ available data to fill the data gaps. According to the study of Tang et al. 291 

(2009), the cloud gaps don’t reduce the accuracy of this algorithm significantly.  292 

3. Data  293 

3.1 The input data 294 

The input data including the MODIS land products: daily 0.05° surface reflectance (MOD09CMG), 295 

land surface temperature/emissivity (MOD11C1) and albedo (MCD43C3), 8-day 0.05° vegetation 296 

indices (MOD13C1) and yearly 0.05° land cover products (MCD12C1). We also used hourly downward 297 

surface solar radiation from the Fifth Generation of the European Centre for Medium-Range Weather 298 

Forecasts (ECMWF) Reanalysis (ERA5), “ERA5-Land hourly data from 1950 to present” data as energy 299 

input of VISEA algorithm. The surface solar radiation data from ERA5-Land and land data products from 300 

MODIS land products are both near-real-time datasets with a one-week delay, enabling VISEA to provide 301 

global near-real-time ET estimations. Details of the input data, their download links, variable names, used 302 

parameters, spatial and temporal resolution are given in Table 1. 303 

Table 1. The input of VISEA 304 

The input of VISEA 

Data source Data name Used parameter Spatial/temporal 

resolution 

MODIS Land 

Product 

 

MOD11C1  Land Surface Temperature 0.05°/ daily 

MOD09CMG  Surface Reflectance 0.05°/daily 

MCD43C3  Albedo 0.05°/daily 

MOD13C1  NDVI 0.05°/16-day 

MCD12C1  Land cover 0.05°/ yearly 

ERA5-Land 

hourly data Rd  
Downward surface solar radiation  0.1°/ hourly 

 305 

3.2 The evaluation data  306 
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3.2.1 The flux tower measurements from FLUXNET  307 

We evaluated the accuracy of the input ERA5-Land shortwave radiation, estimated daily net radiation, 308 

air temperature, and ET by comparing them against measurements from FLUXNET2015 (Pastorello et 309 

al., 2020). The data from FLUXNET2015 can be obtained at https://fluxnet.org/data/download-data. 310 

While there are records from a total of 212 flux towers in our datasets, not all of them met our stringent 311 

inclusion criteria. Each site needed to fulfil three specific requirements to be included in our analysis: (1) 312 

availability of data for the period spanning from 2001 to 2015; (2) ERA5-Land downward shortwave 313 

radiation greater than 0 within the 0.1° × 0.1° grid cell corresponding to the flux tower's location; (3) 314 

conformity with MODIS land cover data (MOD12C1) at the 0.05° × 0.05° grid cell level, ensuring that 315 

the flux tower was situated on land rather than over the ocean. In our evaluation using FLUXNET 316 

observational data, we leveraged FLUXNET’s diligent efforts in addressing energy closure concerns. 317 

Specifically, FLUXNET has implemented rigorous measures for energy closure corrections and 318 

validations, thereby enhancing the reliability of the observational data from the 212 globally distributed 319 

flux towers (Pastorello et al., 2020; Baldocchi et al., 2001; Wang et al., 2022), We selected data spanning 320 

the period from 2001 to 2015 and excluded sites where ERA5-Land downward shortwave radiation was 321 

zero. 322 

Our study incorporates data from a carefully selected subset of 149 flux towers that met these 323 

stringent criteria. This approach ensures the reliability and relevance of our analysis. The distribution of 324 

these 149 flux towers is presented in Figure 2. Supplementary Table S1 shows the longitude, latitude, 325 

elevation, and land cover type (classified by the International Geosphere-Biosphere Programme, IGBP) 326 

of these sites. The 149 sites covered 12 IGBP land cover types: 18 croplands (CRO), 1 closed shrublands 327 

(CSH), 15 deciduous broadleaf forests (DBF), 1 deciduous needle leaf forest (DNF), 10 evergreen 328 

broadleaf forests (EBF), 34 evergreen needle leaf forests (ENF), 30 grasslands (GRA), 5 mixed forests 329 

(MF), 8 open shrublands (OSH), 8 savannas (SAV), 13 wetlands (WET), and 6 woody savannas (WSA).  330 

3.2.2 The other gridded ET and precipitation products 331 

We also used five independent globally gridded ET and one precipitation products for VISEA estimated 332 

ET’s comparison. The five ET products include two MODIS-based ET products: MOD16 (Mu et al., 333 

2007, 2011) and Penman-Monteith-Leuning Evapotranspiration V2 (PML) (Zhang et al., 2019, 2022), 334 

one AVHRR-based AVHRR ET (Zhang et al., 2009, 2010), one machine learning algorithm output, the 335 

FLUXCOM ET data (Jung et al., 2009, 2010, 2018, 2019) and one multiple-satellites data based Global 336 

Land Evaporation Amsterdam Model (GLEAM) ET (Martens et al., 2017; Miralles et al., 2011). The 337 

precipitation data was from the Global Precipitation Climatology Centre (GPCC), which is based on local 338 

measurements (Schneider et al., 2014, 2017; Becker et al., 2013) and Global Unified Gauge-Based 339 

Analysis of Daily Precipitation (GPC). Details of these five ET products and the precipitation data are 340 

given in Table 2. To maintain the consistency in temporal and spatial resolution for comparison purposes, 341 

we obtained monthly MOD16 and PML, despite their original temporal resolution of 8 days and used the 342 

0.05°×0.05° version of MOD16, AVHRR ET and PML. Additionally, for multi-year scale comparisons, 343 

we confined our dataset to the timeframe between 2001 and 2020. We also incorporated daily 344 

Evapotranspiration (ET) data from GLEAM and VISEA, alongside precipitation data from the Climate 345 



12 
 

Prediction Center (CPC), spanning from July 25th to August 2nd, 2022. This allowed for near-real-time 346 

analysis of ET and precipitation during the Yangtze River drought incident within that interval, despite 347 

the datasets potentially encompassing more extensive periods. 348 

Table 2. The five global girded ET products and one precipitation product used for comparison with our 349 

near-real-time global daily terrestrial ET estimates. 350 

Product 

name 

Spatial/Temporal 

resolution 

Time period Theory 

GLEAM  0.25°/Monthly 2001-2022 Priestly-Taylor Equation 

FLUXCOM  0.5°/Monthly 2001-2016 Machine learning 

MOD16  0.05°/Monthly 2001-2014 Penman-Monteith Equation 

AVHRR  1°/Monthly 2001-2006 Improved Penman-Monteith Equation 

PML  0.05°/8-day 2003-2018 Penman-Monteith Equation and a diagnostic 

biophysical model 

GPCC  0.25°/Monthly 2001-2019 in-situ observations 

GPC  0.5°/Daily 08/28/2022-

09/01/2022 

Global Unified Gauge-Based Analysis of Daily 

Precipitation 

 351 

 352 

 353 

Figure 2. The distribution of 149 flux towers from FLUXNET in different IGBP land cover types, 354 

specifically OW (Water bodies), ENF (Evergreen needle leaf forests), EBF (Evergreen broadleaf forests), 355 

DNF (Deciduous needle leaf forests), DBF (Deciduous broadleaf forests), MF (Mixed forests), CSH 356 

(Closed shrublands), OSH (Open shrublands), WSA (Woody savannas), SAV (Savannas), GRA 357 

(Grasslands), WET (Permanent wetlands), CRO (Croplands), UB (Urban and built-up lands), CVM 358 

(Cropland/natural vegetation mosaics), SI (Snow and ice), BAR (Barren). 359 
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4. Results 360 

In our initial analysis, we juxtaposed downward solar radiation input data from ERA5-Land 361 

(ERA5_Rd) with measurements obtained from 149 flux towers (Obv_Rd) across diverse IGBP land cover 362 

types, as illustrated in Figure 3. The results indicate a commendable agreement between ERA5_Rd and 363 

Obv_Rd measurements for the majority of land covers, with notable exceptions observed in savanna 364 

(SAV). Specifically, the mean Nash-Sutcliffe Efficiency (NSE) stands at 0.84, the mean correlation 365 

coefficient (R) at 0.92, and the mean Root Mean Square Error (RMSE) at 38.3 W m-2. This comparative 366 

analysis offers helpful insights into the performance of ERA5_Rd across different land cover categories. 367 

  368 
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Figure 3. The scatter plot of downward solar radiation from ERA5-Land (ERA5_Rd) compared with 369 

local instruments measurements (Obv_Rd) under 12 IGBP land cover types: CRO (Croplands), CSH 370 

(Closed shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF 371 

(Evergreen broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed 372 

forests), OSH (Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent 373 

wetlands). The red dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe 374 

Efficiency, R is correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, 375 

and RMSEu is unsystematic RMSE. The Frequency denotes the probability density estimated through 376 

the KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value of the 377 

probability density function equals 1. P is the P-Value for the Correlation Coefficient. 378 

In Figure 3, ERA5_Rd exhibits optimal performance in DNF and MF, reflected by NSE and R values 379 

surpassing 0.9. In these land covers, the mean RMSEs stand at 11 W m-2, mean RMSEu at 24.5 W m-2, 380 

and mean RMSE at 26.9 W m-2. However, its performance in SAV is notably subpar, characterized by 381 

an NSE of 0.29, an R of 0.59, highest RMSEs of 40 W m-2, RMSEu of 48.9 W m-2, and RMSE of 63.2 382 

W m-2. For ERA5_Rd, the mean RMSEs amount to 16 W m-2, and the mean RMSEu is 34.8 W m-2, 383 

suggesting that ERA5_Rd demonstrates high accuracy by effectively capturing the systematic variation 384 

in Obv_Rd, as indicated by its relatively low RMSEs and RMSEu close to RMSE (Willmott et al., 1981) 385 

in most land covers, except for SAV. Specifically, we have annotated the figure to indicate that all Rd 386 

values derived from ERA5 exhibit very low P-values (<0.01). This indicates a statistically significant 387 

correlation between the input shortwave radiation from ERA5 and the local measurements. 388 

Several factors come into play in understanding the disparities in performance in downward solar 389 

radiation of ERA5 (ERA5_Rd) across different land cover types. In regions characterized by denser 390 

forests, such as DNF and MF, ERA5_Rd's superior performance may be attributed to the lower density 391 

of ground-based meteorology stations (DNF, N = 1096) and the relatively uniform subsurface and canopy 392 

coverage in MF, facilitating a more accurate representation in the ERA5 radiative transfer model. 393 

Conversely, savannas present unique challenges due to sparse vegetation and flat terrain, influencing 394 

sunlight transmission dynamics (Yang and Friedl, 2003). Land-use changes, including farming and urban 395 

development, further complicate the accuracy of sunlight transmission (Wang et al., 2014; Zhang et al., 396 

2022). Additionally, factors like aerosols from natural or anthropogenic sources contribute to data 397 

variations (Naud et al., 2014; Wang et al., 2021b). The inaccuracies in accounting for the rainy season, 398 

leading to increased cloud cover and rainfall in savannas, contribute to ERA5_Rd's limitations (Jiang et 399 

al., 2020). 400 

Our local scale evaluation, as demonstrated in Figure 3, supports our stance that this resolution 401 

disparity between MODIS Land product at 0.05° and ERA5 data at 0.1° minimally impacts the final ET 402 

product's accuracy. This approach is consistent with the methodologies adopted in the studies by Huang 403 

et al. (2017, 2021, 2023), which effectively utilized MODIS land products at a 0.05° resolution in 404 

conjunction with downward shortwave radiation data at a 0.1° resolution from the China Meteorology 405 

Forcing Dataset. Such precedents underscore the feasibility of integrating these resolutions for ET 406 
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estimation, bolstering our confidence in the methodological integrity of our study despite the noted 407 

resolution differences. 408 

Figure 4 depicts scatter plots illustrating the comparison between the estimated air temperature using 409 

the VI-TS method (VISEA_Ta) and local meteorological measurements (Obv_Ta). The analysis reveals 410 

that VISEA_Ta generally aligns with Obv_Ta, exhibiting NSE values ranging from -0.22 (MF) to 0.82 411 

(OSH), R values ranging from 0.44 (MF) to 0.97 (DNF), and RMSE values ranging from 5.7 K (WSA) 412 

to 11.2 K (MF). Particularly noteworthy is VISEA_Ta's outstanding performance at OSH (NSE = 0.82, 413 

R = 0.93, RMSE = 6.6 K), WSA (NSE = 0.79, R = 0.92, RMSE = 5.7 K) and GRA (NSE = 0.66, R = 414 

0.88, RMSE = 6.8 K).  415 

 416 
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Figure 4. The scatter plot of daily air temperature simulated by VISEA (VISEA_Ta) compared with local 417 

instruments measurements (Obv_Ta) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed 418 

shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen 419 

broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH 420 

(Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red 421 

dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is 422 

correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 423 

unsystematic RMSE. The frequency denotes the probability density estimated through the Kernel Density 424 

Estimation, KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value 425 

of the probability density function equals 1. 426 

Conversely, its least satisfactory performance is evident at MF (NSE = -0.22, R = 0.44, RMSE = 427 

11.2 K), SAV (NSE = -0.19, R = 0.57, RMSE = 6.4 K), and CRO (NSE = 0.26, R = 0.70, RMSE = 8.1 428 

K). The RMSEs are lower than RMSEu in most land cover sites, except in DNF. Despite VISEA_Ta 429 

displaying a high NSE of 0.8 and R of 0.97 at DNF, it exhibits higher RMSEs (8.3 K) compared to 430 

RMSEu (5.4 K), indicating a systematic underestimation of VISEA_Ta at DNF.  431 

As detailed in Section 2.4, the VI-Ts method relies on a negative correlation between vegetation 432 

coverage (VI) and land surface temperature (Ts), ideally suited for cases with significant VI and Ts 433 

differences. However, for land cover types like DNF and MF situated in temperate regions with distinct 434 

seasons and cool to cold climates, the assumed negative correlation breaks down. In these regions, the 435 

positive correlation between VI and Ts, driven by vegetation growth proportional to rising Ts, results in 436 

the failure of the VI-Ts method. The challenges persist in SAV, where the VI-Ts method encounters 437 

difficulties during both dry and wet seasons. In the dry season, the method falters due to the prevalence 438 

of bare soil, resulting in VI values approaching zero and homogeneous high Ts values. Conversely, the 439 

wet season presents challenges with both VI and Ts exhibiting relatively high values and limited 440 

variances between grid cells, ultimately undermining the accuracy of VISEA_Ta estimation. 441 

The simulated daily net radiation (VISEA_Rn) from VISEA is assessed against local meteorological 442 

measurements (Obv_Rn) in Figure 5. In contrast to the satisfactory performance of ERA5_Rd in Figure 443 

3, VISEA_Rn exhibits more notable discrepancies, characterized by significant underestimation 444 

compared to Obv_Rn. This is reflected in the mean NSE of 0.49, mean R of 0.74, and mean RMSE of 445 

43.3 W m-2. Specifically, VISEA_Rn demonstrates good accuracy in certain land cover types, including 446 

CHS with an NSE of 0.67, R of 0.84, and RMSE of 29.7 W m-2, EBF with an NSE of 0.63, R of 0.8, and 447 

RMSE of 42.9 W m-2, and ENF with an NSE of 0.66, R of 0.83, and RMSE of 39.6 W m-2. However, its 448 

performance diminishes notably at OSH, where it records an NSE of 0.16, R of 0.61, and RMSE of 56 449 

W m-2, as well as in SAV, with an NSE of 0.21, R of 0.52, and RMSE of 44.2 W m-2. While VISEA_Rn 450 

appears to have lower accuracy compared to ERA5_Rd, in the majority of land cover types, the RMSEs 451 

are smaller than RMSEu, with mean RMSEs of 25.2 W m-2 and mean RMSEu of 34.3 W m-2. Moreover, 452 

the RMSEu of 43.3 W m-2 is almost the same as the RMSE. These findings suggest that VISEA_Rn 453 

demonstrates fewer systematic biases, with unsystematic RMSEu contributing the most to the overall 454 

RMSE. 455 
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 456 

Figure 5. The scatter plot of daily net radiation simulated by VISEA (VISEA_Rn) compared with local 457 

instruments measurements (Obv_Rn) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed 458 

shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen 459 

broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH 460 

(Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red 461 

dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is 462 

correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 463 

unsystematic RMSE. The frequency denotes the probability density estimated through the Kernel Density 464 

Estimation, KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value 465 

of the probability density function equals 1. 466 



18 
 

In the context of VISEA_Rn, a consistent pattern of approximately 30% underestimation in net 467 

radiation across various land cover types raises noteworthy discussions. This systematic discrepancy 468 

could be linked to the disparity in vegetation coverage between the observed sites' footprint and the mean 469 

vegetation coverage of the 0.05° × 0.05° grid cell. Specifically, the lower albedo within the footprint, 470 

compared to the grid cell's average albedo (as expressed by Eq. 14, contributes to the underestimation of 471 

Obv_Rn. This is particularly evident in OSH, where the vegetation coverage within the footprint 472 

significantly exceeds the mean vegetation coverage of the grid cell (<0.2 compared to >0.5). Additionally, 473 

factors such as the bias in ERA5_Rd (refer to Fig. 3, j) and VISEA_Ta (refer to Fig. 4, j) contribute to 474 

the underestimation of VISEA_Rn in SAV. Moreover, a substantial 50% underestimation in DNF results 475 

from the underestimated VISEA_Ta (refer to Fig. 4, d), leading to a subsequent underestimation of 476 

downward long-wave radiation. Unpacking these intricacies sheds light on the nuanced interplay of 477 

variables influencing the observed underestimation trends in VISEA_Rn across diverse land cover types. 478 

Figure 6 illustrates scatter plots of daily evapotranspiration (ET) simulated by VISEA (VISEA_ET) 479 

against eddy covariance measurements obtained from 149 flux tower sites (Obv_ET) across 12 IGBP 480 

land cover types. The scatter plots of VISEA_ET reveal a dispersed distribution, as evidenced by an 481 

average NSE of -0.08, average R of 0.56, and average RMSE of 1.4 mm day-1. Notably, VISEA_ET tends 482 

to underestimate daily ET across most land cover types. Among the 12 land cover types, VISEA_ET 483 

exhibits the highest accuracy in DNF, with an NSE of 0.4, an R of 0.82, and an RMSE of 0.9 mm day-1. 484 

It was closely followed by GRA, with NSE values of 0.26, R values of 0.65, and RMSE values of 1.3 485 

mm day-1. However, for CRO, ENF, and WET land cover types, the NSE values, although above 0, are 486 

close to 0 (mean NSE of 0.11), with a mean R of 0.53 and a mean RMSE of 1.3 mm day-1. In the remaining 487 

land cover types, particularly in OSH and SAV, VISEA_ET appears to struggle in aligning with local 488 

measurements, resulting in NSE values of -0.57 and -0.51, R values of 0.31 and 0.36, and RMSE values 489 

of 1.2 mm day-1 and 1.7 mm day-1, respectively. As the evaluation of daily VISEA_ET with observed 490 

ET, Obv_ET, at CRO and WET, the bias mainly come from the bias in ERA5_Rd (the third highest 491 

RMSE of 45.2 W m-2 and second highest RMSE of 59.4 W m-2) (Fig. 3, a and l). In ENF, the biases 492 

primarily could by the disability of VISEA_ET to capturing the Obv_ET under a cold climate, with low 493 

net radiation estimation (Fig. 5, f), and air temperature (Fig. 4, f). For OSH, the bias mainly arises from 494 

the poor estimation of VISEA_Rn, which has the lowest NSE of 0.16 and highest RMSE of 56 W m-2 495 

(Fig. 5, i). The bias of VISEA_ET in SAV is a result of the combined biases in ERA5_Rd (the lowest 496 

NSE  and R of 0.29 and 0.59, respectively, and the highest RMSE of 63.2 W m-2), VISEA_Ta (the second 497 

lowest NSE and R of  -0.19 and 0.57 , respectively). 498 

 499 

 500 
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 501 

Figure 6. The scatter plot of daily ET simulated by VISEA (VISEA_ET) compared with local instruments 502 

measurements (Obv_ET) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed shrublands), 503 

DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen broadleaf 504 

forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH (Open 505 

shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red dotted line 506 

is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is correlation 507 

coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 508 

unsystematic RMSE. The frequency denotes the probability density estimated through the Kernel Density 509 

Estimation, KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value 510 

of the probability density function equals 1. 511 
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In Figure 7, we utilized Taylor diagrams (Taylor, 2001) to evaluate the performances of six global 512 

gridded monthly ET products with simulated ET from VISEA (a), GLEAM (b), FLUXCOM (c), AVHRR 513 

(d), MOD16 (e), and PML (f). Table 3 lists statistical metrics including correlation coefficient (CC), bias, 514 

RMSE, RMSEu, RMSEs, and Nash-Sutcliffe Efficiency (NSE) across different vegetation types and their 515 

mean values. The vegetation types include Croplands (CRO), Closed Shrublands (CSH), Deciduous 516 

Broadleaf Forest (DBF), Deciduous Needleleaf Forest (DNF), Evergreen Broadleaf Forest (EBF), 517 

Evergreen Needleleaf Forest (ENF), Grasslands (GRA), Mixed Forests (MF), Open Shrublands (OSH), 518 

Savannas (SAV), Woody Savannas (WSA), Wetlands (WET), and an overall mean (MEAN). 519 

 520 

Figure 7. Taylor Diagrams comparing monthly measurements of (a) VISEA, GLEAM (b), FLUXCOM 521 

(c), AVHRR (d), MOD16 (e), and PML (f) with 150 flux towers (labeled as Obv) in different IGBP land 522 

cover types. The diagrams display the Normalized Standard Deviation (represented by red circles), 523 

Correlation Coefficient (shown as green lines), and Centred Root-Mean-Square (depicted as blue circles). 524 
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Table 3. Statistical variables of six ET Products – CC (Correlation Coefficient), Ratio (the ratio of the 525 

standard deviations of simulated ET and flux tower measurements), Bias, RMSE, RMSEu, RMSEs, and 526 

NSE. 527 

  CRO CSH DBF DNF EBF ENF GRA MF OSH SAV WSA WET MEAN 

VISEA CC 0.57 0.89 0.67 0.95 0.74 0.74 0.72 0.79 0.39 0.55 0.6 0.66 0.69 

Ratio 0.77 1.27 0.99 0.76 1.29 1.01 0.8 1.27 1.06 0.7 0.78 0.63 0.94 

Bias -14.16 -1.27 3.9 -19.06 1.37 -12.84 -13.47 1.53 -6.83 -0.45 -23.14 -31.98 -9.70 

RMSE 39.4 12.5 34 22.1 30.4 28.5 32 23.3 30.4 32.5 41.2 51.6 31.49 

RMSEU 27.4 12.1 30.7 7.4 30.4 23.8 23.1 23.2 25.4 22.5 25.8 25.4 23.10 

RMSES 28.3 3.1 14.5 20.8 2.2 15.7 22.2 1.5 16.8 23.5 32.1 44.9 18.80 

NSE 0.18 0.64 0.34 0.45 0.24 0.33 0.41 0.38 -0.36 0.28 0.01 0.08 0.25 
  

             

GLEAM CC 0.56 0.99 0.56 0.91 0.81 0.77 0.75 0.83 0.53 0.53 0.61 0.67 0.71 

Ratio 0.69 1.25 0.73 0.77 0.94 0.98 0.75 0.99 0.99 1.02 0.98 0.54 0.89 

Bias -5.68 10.71 3.55 -6.12 3.41 2.34 -2.01 10.67 4.44 -7.99 -17 -16.26 -1.66 

RMSE 36.8 12.1 35.8 14.6 21.4 23.8 27.6 20.2 25.6 38.4 39.8 43.3 28.28 

RMSEU 24.6 3.2 25.4 9.6 19.4 22.0 20.7 16.3 21.9 33.2 31.9 21.4 20.80 

RMSES 27.3 11.6 25.3 10.9 9.1 9 18.2 11.9 13.1 19.3 23.7 37.7 18.09 

NSE 0.29 0.60 0.28 0.77 0.62 0.53 0.57 0.53 0.03 -0.01 0.06 0.34 0.38 
  

             

FLUXCOM CC 0.66 0.98 0.69 0.95 0.79 0.78 0.75 0.83 0.78 0.59 0.65 0.69 0.76 

Ratio 0.94 1.76 0.96 1.04 1.12 1.18 0.97 1.42 0.97 1.04 1.08 0.62 1.09 

Bias 7.22 23.49 17.57 -2.26 6.29 6.40 6.91 21.02 10.04 0.74 -9.75 -14.04 6.14 

RMSE 35.8 27.9 36.7 9.9 25.2 26.7 30.0 31.9 19.8 35.5 37.8 41.7 29.91 

RMSEU 31.0 5.8 28.9 9.7 24.1 25.8 26.8 23.5 15.8 32.3 34.3 24.2 23.52 

RMSES 18.0 27.3 22.6 2.3 7.5 7 13.4 21.6 11.9 14.8 15.8 33.9 16.34 

NSE 0.32 -1.14 0.23 0.88 0.48 0.42 0.48 -0.17 0.43 0.14 0.17 0.40 0.22 
  

             

AVHRR CC 0.8 _ 0.8 _ 0.76 0.68 0.58 0.79 0.69 0.32 0.7 0.79 0.69 

Ratio 0.91 _ 0.87 _ 0.87 1.15 0.83 0.9 0.89 0.3 0.95 0.43 0.81 

Bias -1.15 _ 5.96 _ 5.24 -2.73 -7.04 0.16 -2.41 -47.83 -0.42 -25.32 -7.55 

RMSE 23.6 _ 26.1 _ 23.3 31 36 18.8 22.1 54.7 33.2 46.6 31.54 

RMSEU 21.2 _ 22 _ 19.5 29.8 27.9 16.6 18.8 _ 29.8 14.6 22.24 

RMSES 10.4 _ 14.1 _ 12.7 8.4 22.7 8.7 11.6 54.2 14.6 44.2 20.16 

NSE 0.63 _ 0.61 _ 0.54 0.23 0.24 0.62 0.43 -2.79 0.42 0.29 0.12 
  

             

MOD16 CC 0.57 0.94 0.71 0.95 0.82 0.74 0.71 0.81 0.67 0.53 0.59 0.65 0.72 

Ratio 0.64 1.26 0.77 0.8 1.11 0.81 0.74 1.09 0.66 1 1 0.46 0.86 

Bias -7.88 -14.03 5.79 -4.07 -7.17 -4.51 -5.05 4.09 -6.41 -16.01 -23.76 -21.07 -8.34 

RMSE 36.9 16.7 30.7 11.1 23.4 24.3 29.6 19.4 20.4 40.4 44.3 47.2 28.70 

RMSEU 23 8.4 23 7.4 22 19.3 21.7 18.7 12.8 32.4 33.3 18.8 20.07 

RMSES 28.8 14.4 20.3 8.2 7.8 14.9 20.2 5.2 15.9 24.2 29.1 43.3 19.36 

NSE 0.28 0.24 0.48 0.87 0.55 0.52 0.5 0.57 0.39 0.12 0.14 0.23 0.41 
  

             

PML CC 0.68 0.99 0.68 0.93 0.8 0.81 0.68 0.77 0.7 0.57 0.61 0.82 0.75 

Ratio 0.8 1.04 0.81 1.22 0.98 0.97 0.79 0.96 1.01 0.94 0.83 0.56 0.91 

Bias -6.6 -3 -3.39 0.47 -1.42 -6.07 -6.66 -0.59 6.48 -0.18 -16.04 -22.1 -4.93 

RMSE 33.2 4.1 31.5 13.3 21.9 22.2 31.7 19.8 21.1 34.5 37.5 40.5 25.94 

RMSEU 25.6 2.8 25.1 12.7 20.5 20.1 24.1 18.2 18.6 29.5 27.1 17.3 20.13 

RMSES 21.1 3.1 19 3.9 7.8 9.6 20.6 7.7 9.9 17.8 26 36.6 15.26 

NSE 0.42 0.95 0.44 0.79 0.61 0.6 0.43 0.55 0.33 0.19 0.16 0.43 0.49 

 528 

VISEA, with a mean correlation coefficient (CC) of 0.69, indicates moderate correlation across 529 

vegetation types but suffers from significant biases, notably in WET, with a mean bias of -9.7 mm month-530 
1. It also has the highest mean Root Mean Square Error (RMSE) at 31.5 mm month-1 and a mean NSE of 531 

0.25. MOD16 demonstrates a slightly better correlation with a mean CC of 0.72 and presents less 532 

variation in bias, resulting in a marginally lower mean RMSE of 28.7 mm month-1 and a higher mean 533 

NSE of 0.41. AVHRR matches VISEA in mean CC at 0.69 but exhibits extreme biases, particularly in 534 
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SAV, and achieves a comparable mean RMSE of 31.5 mm month-1. However, its mean NSE of 0.12 is 535 

the lowest among the six products, suggesting its predictions are less reliable. 536 

On the other hand, GLEAM, FLUXCOM, and PML show better agreements. GLEAM has a high 537 

mean CC of 0.71 with the lowest bias at -1.66 mm month-1, indicating a consistent performance with a 538 

mean RMSE of 28.3 mm month-1and a mean NSE of 0.38. FLUXCOM exhibits a higher mean CC of 539 

0.76, suggesting better overall correlation, but with a higher mean bias of 6.1 mm month-1, it hints at a 540 

tendency towards overestimation. The mean RMSE stands at 29.9 mm month-1, with a mean NSE of 0.22. 541 

PML outperforms the others with the highest mean CC of 0.75 and the highest mean NSE of 0.49, 542 

indicating the strongest predictive accuracy. It also has the lowest mean RMSE at 25.9 mm month-1, 543 

affirming its status as the most accurate ET estimation product among those evaluated. 544 

Figure 8 illustrates the spatial distribution of the multi-year average (a-g), the zonal mean (h) and 545 

inter-annual variation (i) of (a) GPCC (2001-2019), (b) VISEA (2001-2020), (c) GLEAM (2001-2020), 546 

(d) FLUXCOM (2001-2016), (e) AVHRR (2001-2006), (f) MOD16 (2001-2014) and (g) PML (2003-547 

2018).  548 

 549 

 550 

Figure 8. The spatial distribution of the multi-year average (a-g), the zonal mean (h) and inter-annual 551 

variation (i) of (a) GPCC (2001-2019), (b) VISEA (2001-2020), (c) GLEAM (2001-2020), (d) 552 

FLUXCOM (2001-2016), (e) AVHRR (2001-2006), (f) MOD16 (2001-2014) and (g) PML (2003-2018).  553 
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The VISEA ET product demonstrates consistent spatial distribution patterns among the six ET 554 

products across various years, both in terms of annual means (a-g) and latitude zonal means (h). These 555 

patterns align closely with the precipitation distribution data from GPCC. It also exhibits similar 556 

distributions to other ET products, both below the 5th percentile (Figure S4) and above the 95th percentile 557 

(Figure S5). The highest ET values (about 1,500 mm year-1) are predominantly concentrated in equatorial 558 

low-latitude regions with the highest precipitation levels (nearly 2.500 mm year-1). The available water 559 

for evaporation and transpiration is abundant, and the primary constraint on evapotranspiration lies in the 560 

availability of energy to drive the process. In such conditions, water availability is not a limiting factor, 561 

allowing for ample potential evapotranspiration. These regions include South America (Amazon Basin), 562 

Central Africa (Congo Basin), and Southeast Asia (encompassing Indonesia, Malaysia, parts of Thailand, 563 

and the Philippines), which are known for their tropical rainforest climates. These ET estimates align 564 

with the findings of Chen et al. (2021) and Zhang et al. (2019) who reported that the multi-year average 565 

annual ET is nearly 1,500 and the precipitation is approximately 2,500 mm year-1 (Panagos et al., 2017).  566 

Conversely, areas categorized as barren land (BAR), including deserts such as Sahara, Arabian, 567 

Gobi, Kalahari, and large portions of Australia, as well as snow and ice (SI) areas like most parts of 568 

Canada, Russia, and the Qinghai-Tibet Plateau in China, where the growing seasons are short, typically 569 

falling below 400 mm year-1. These areas are also characterized by the lowest annual precipitation, 570 

ranging from 200 to 400 mm year-1 according to GPCC precipitation data mm year-1. ET estimates for 571 

other land cover types fall within this range, varying from 400 to 1,400 mm year-1, in close alignment 572 

with the GPCC precipitation data, which falls between 600 to 1,600 mm year-1. In these areas, there is a 573 

surplus of available energy, and the primary limitation on ET stems from the availability of water. This 574 

implies a high atmospheric water demand, often quantified as potential evapotranspiration (potential ET).  575 

In regions with moisture-limited evapotranspiration (ET), the primary constraint on ET arises from 576 

the limited availability of water. These areas typically experience insufficient precipitation or water 577 

supply, leading to a situation where the atmospheric demand for moisture exceeds the available water 578 

resources. On the other hand, regions with energy-limited ET face limitations due to inadequate energy 579 

for the process of evaporation and transpiration. This can be influenced by factors such as cloud cover, 580 

shading, or other conditions that limit the absorption of solar radiation. In such areas, even if there is an 581 

ample water supply, the lack of sufficient energy hinders the rate of evapotranspiration. 582 

Regarding the inter-annual monthly variations, panel (i) shows the fluctuations in ET across different 583 

years for the analyzed ET products and precipitation data. The graph reveals a rhythmic pattern of ET 584 

across the years, VISEA with other ET products showed distinctive peaks and troughs that correspond to 585 

seasonal changes and inter-annual climate variability. The ET products' data exhibit a close alignment 586 

with the precipitation patterns reported by GPCC, highlighting the interconnectedness between ET and 587 

precipitation as climatic variables. Notably, FLUXCOM consistently presents higher ET estimations 588 

compared to the other products, and GLEAM's ET estimations are also slightly higher during the winter, 589 

indicating a trend of systematic overestimation in these products relative to the others in the dataset. 590 
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Figure 9 presents the daily variations in ET from VISEA and GLEAM along with the precipitation 591 

from Global Unified Gauge-Based Analysis of Daily Precipitation recorded in the Yangtze River Basin 592 

during from August 26th, 2022, to September 2nd, 2022. According to a study by Zhang et al. (2023), the 593 

Yangtze River Basin endured a significant drought during the summer of 2022, beginning in July and 594 

showing signs of abatement towards the end of August and into early September. As GLEAM failed to 595 

capture the variability of ET during this drought and exhibited a negative correlation with precipitation 596 

data from CPC, we wouldn’t discuss it further in this context.  597 

 598 
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Figure 9. Daily ET from VISEA (a-h), GLEAM (i-p), and CPC precipitation (q-x) distributions 599 

from August 26th to September 2nd in 2022, alongside daily mean ET and Precipitation variances 600 

in the Yangtze River Basin (y) during the same period. 601 

VISEA ET graphically illustrates the evolving drought conditions: with notably low ET levels (below 602 

1 mm day-1) across the basin on August 26th to 28th, evidenced in panel (a-c). A notable increase in 603 

precipitation on August 29th, reflected in panels (s) and (u), correlates with an upswing in ET values 604 

(surpassing 1 mm day-1) throughout the basin, as visualized in panels (d-f). The graph in panel (y) displays 605 

the variances in mean ET and precipitation within the basin over this timeframe, highlighting a significant 606 

rise in ET (up to 11 mm day-1) on August 30th, which corresponds with the observed increase precipitation 607 

(reaching 11 mm day-1) on August 29th.  608 

VISEA's ET data align closely with the variances observed in the CPC precipitation data, showcasing 609 

its effectiveness in capturing daily ET fluctuations, especially during and after the drought conditions. It 610 

accurately reflects the dip and subsequent recovery in ET values following the precipitation events, 611 

indicating its robustness in near-real-time monitoring of ET during such hydrological extremes.  612 

5. Discussion  613 

While global ET products require at least 2 weeks (GLEAM, FLUXCOM, AVHRR and PML ET 614 

products has more than one years’ delay, MOD16 has at least 2 weeks delay) to generate global actual 615 

ET estimation, we developed VISEA, a satellite-based algorithm which is capable of generating near-616 

real-time evapotranspiration on a daily time step with a resolution of 0.05°. Compared with the monthly 617 

global ET of GLEAM, FLUXCOM, AVHRR which have more than two years’ delay and 8-day of 618 

MOD16 and PML which has more than two weeks’ delay and also more than one years’ delay. This 619 

algorithm is based Nishida et al. (2003) satellite-based evaporation fraction algorithm. To assess its 620 

accuracy, we compared the calculated ET with data from 149 flux towers around the world in various 621 

land use types.   622 

Scale mismatch is a problem for many satellite-based ET products. The footprints of these flux towers 623 

typically range from 100 to 200 meters, while the VISEA model outputs gridded cells at a resolution of 624 

0.05° × 0.05° (nearly 25 km²). This discrepancy introduces errors, especially since flux towers require a 625 

uniform fetch, which may not represent the larger gridded cell (Sun et al., 2023). To enhance the validity 626 

of our assessments, we assessed monthly values and spatial patterns of our ET measurements with five 627 

other satellite-based ET products named MOD16, AVHRR, GLEAM, FLUXCOM and PML (Figure 7 628 

and 8). 629 

The evapotranspiration is calculated with VISEA using shortwave downwards radiation, and 630 

intermediate variables including daily air temperature and net radiation. The calculated 631 

evapotranspiration generally matches local measurements and other model calculated values well but we 632 

found significant biases (Figures 6 and 7). These biases largely arise from inaccuracies in the input ERA5-633 

Land shortwave radiation (Figure 3), improper application of the VI-Ts method (Figure 4), and 634 

uncertainties in daily net radiation (Figure 5). Below we detail the origin of the biases. 635 
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Incoming shortwave radiation from ERA5-Land is employed to derive the available energy for 636 

vegetation coverage and bare soil (Eq. 14 and 15), which are the main parameters for calculating daily 637 

ET (Eq. 16). While ERA5-Land is widely utilized as a reanalysis dataset, offering near-real-time land 638 

variables by integrating model data with global observations based on physical laws. However, the 639 

accuracy of shortwave radiation from ERA5-Land seems compromised in savannas (Figure 3) due to the 640 

challenges associated with simulating radiation transmission under land-use changes and aerosol 641 

pollution from natural or anthropogenic sources (Babar et al., 2019; Martens et al., 2020). 642 

Air temperature is an important parameter in determining the daily evaporation fraction of bare soil 643 

(Appendix B), canopy surface resistance, aerodynamic resistance of the bare soil (Appendix D) and 644 

atmospheric emissivity (Appendix E), available energy for vegetation coverage and bare soil (Eq. 14 and 645 

15). Since air temperature is not measured directly by satellites, many other ET product use therefore 646 

ground observations, land model or reanalysis data. In contrast, VISEA derives the air temperature from 647 

the negative linear relationship between vegetation index (VI) and surface temperature (Ts) using the VI-648 

Ts method (section 2.1.3). It gives very good results under grass land, open shrubland and woody 649 

savannas landcover types, as shown in Figure 4. As previously explained, the VI-Ts method relies on the 650 

negative linear correlation between the Vegetation Index (VI) and surface temperature (Ts) within a 5 × 651 

5 grid. Therefore, both the variance of VI values across these grid cells and the negative correlation are 652 

essential for calculating the air temperature (Nishida et al., 2003). However, in regions where the 653 

vegetation index and temperature data in adjacent grid cells show small variations, such as dense forests 654 

and bare lands and deserts. Also, in regions with freezing temperatures, the VI-TS method does perform 655 

well, because warmer temperature is related to increased vegetation, opposite the other regions, where 656 

there is a positive correlation between the vegetation index and surface temperature (Cui et al., 2021). 657 

Another bias source of the VISEA model is the uncertainties of daily net radiation, notably originating 658 

from input downward shortwave radiation from ERA5-Land (Figure 2) and VI-Ts estimated air 659 

temperature (Figure 4). The energy budget equation (Eq. 11) and these two figures indicate that net 660 

radiation shows more uncertainties than shortwave radiation and air temperature. At the same time, 661 

assuming a linear relationship between cloud coverage (Eq. 12 and 13) and the calculation of downwards 662 

longwave radiation (Eq. 14 and 15) may be an oversimplification that could introduce uncertainties. Since 663 

available energy for evapotranspiration (ET) depends on net radiation (Eq. 16), addressing these 664 

uncertainties is crucial for enhancing overall model accuracy (Brutsaert, 1975; Huang et al., 2023). Future 665 

refinements will contribute to a more precise daily net radiation estimation within the VISEA model. 666 

The VISEA model calculates ET primarily based on vegetation coverage, utilizing it as an indirect 667 

constraint to estimate evapotranspiration. However, this model does not directly incorporate variables 668 

related to water availability, which is a critical factor in ET processes. In tropical regions, where there is 669 

an abundance of solar radiation (available energy), the model tends to overestimate ET due to its emphasis 670 

on vegetation coverage without adequately accounting for the actual water available for 671 

evapotranspiration. This methodology, while effective in capturing the influence of vegetation on ET 672 

under varied conditions, can lead to overestimations in areas where energy availability significantly 673 

exceeds water availability, typical of many tropical regions. Our analysis and subsequent discussion aim 674 



27 
 

to highlight this characteristic of the VISEA model, acknowledging its implications for ET estimations 675 

in such energy-rich, water-variable environments. 676 

Furthermore, the VISEA model exhibits a tendency to underestimate ET in colder regions within the 677 

60°N to 90°N latitude range, such as the western territories of Canada. This underestimation is primarily 678 

due to the model's inability to incorporate evaporation from frozen surfaces into its ET calculations. These 679 

discrepancies arise from several factors: inaccuracies in the ERA5-Land shortwave radiation data 680 

(illustrated in Figure 3), the misapplication of the VI-Ts method (explained in Figure 4), and the 681 

uncertainties in daily net radiation (depicted in Figure 5). Designed to amalgamate bare soil and full 682 

vegetation coverage as depicted in Equation 1, the VISEA model encounters difficulties in accurately 683 

estimating ET at higher latitudes, especially in conditions of reduced solar radiation. These challenges 684 

are predominantly linked to the uncertainties associated with ERA5-Land shortwave radiation data, 685 

further compounded by increased cloudiness levels in these regions, as highlighted by Babar et al. (2019). 686 

Such uncertainties have a substantial impact on the model's performance at higher latitudes, affecting its 687 

reliability in these conditions. 688 

Despite these challenges, our analysis confirms the VISEA model's ability to provide valuable ET 689 

estimates during the growing season, evidenced by a high Nash-Sutcliffe efficiency (NSE) of 0.4 and a 690 

correlation coefficient (R) of 0.9 when compared against local measurements. These findings support the 691 

model's applicability for ET estimation in the 60°N to 90°N latitude range, highlighting its effectiveness 692 

and relevance during the vegetative growth period. 693 

We recognize that variations in the temporal coverage of ET products can introduce variability into 694 

our comparisons. To mitigate this, we have deliberately chosen validation datasets spanning from 2001 695 

to 2020, achieving a uniform analysis timeframe. This selection enabled us to utilize a diverse range of 696 

ET products, effectively minimizing the influence of temporal discrepancies on our comparative analysis. 697 

Concentrating on this two-decade interval has allowed us to robustly evaluate spatial and inter-annual ET 698 

variability, significantly reducing potential biases associated with differing dataset durations. This 699 

method enhances the clarity of our validation approach, solidifies the reliability of our comparisons, and 700 

ensures our analysis accurately reflects long-term ET dynamics. 701 

The VISEA ET product provides near-real-time global evapotranspiration (ET) data with a mere one-702 

week delay and a daily resolution of 0.05 degrees, making it a valuable asset for the research community. 703 

It empowers researchers by providing access to information on land surface water consumption in near-704 

real-time, which is crucial for monitoring and predicting droughts, and enables decision-makers to make 705 

well-informed choices. This not only enhances research efficiency but also supports more effective and 706 

expedited actions within the scientific and environmental research community.  707 

The accuracy of the VISEA model could be enhanced by incorporating additional satellite and climate 708 

data with higher resolution and improved accuracy. Moreover, the delay in providing ET data could be 709 

reduced to three days or less by integrating real-time updated satellite and climate data. In response to 710 

the suggestion to conclude our discussion with specific recommendations for future research directions, 711 
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we recognize the importance of addressing the identified gaps and uncertainties. We propose exploring 712 

the development of alternative methods for estimating air temperature and net radiation to provide more 713 

accurate and reliable models. Additionally, incorporating variables such as soil moisture and water 714 

availability into the model could further refine its precision. By integrating these suggestions, we aim to 715 

outline a comprehensive roadmap for future research that builds upon our findings, significantly 716 

contributing to the enhancement of environmental modelling and prediction within the field. 717 

6. Conclusion  718 

In recent decades, several ET products using satellites have been developed, but few of them 719 

provide near-real-time global terrestrial ET estimates. Despite being updated at the fastest rate, the 720 

MOD16 ET dataset still encounters a delay of more than two weeks. In this study, we provide a satellite-721 

based near-real-time global daily terrestrial ET estimates by incorporating near-real-time updated hourly 722 

shortwave radiation data from ERA5 and MODIS land products at a spatial resolution of 0.05°. The 723 

assessments indicate that near-real-time ET estimation with VISEA achieves comparable accuracy to 724 

other existing data products and offers a significantly shorter time frame for daily data availability.  725 

The new VISEA aligns well with measurements at 149 tower flux sites distributed globally in both 726 

daily and monthly time scales. It demonstrates competitive correlation coefficients and Nash-Sutcliffe 727 

efficiencies (NSEs) across most land cover types but exhibits higher biases. However, like the other five 728 

ET products, it encounters greater uncertainties for the SAV land cover type. In the comparison of the 729 

multiple-year average spatial distribution of other monthly ET products and GPCC precipitation, VISEA 730 

consistently demonstrates spatial patterns aligned with GPCC in most areas, featuring elevated values in 731 

tropical rainforest regions and lower values in arid and semi-arid zones. This alignment underscores 732 

VISEA's proficiency in portraying the spatial distribution of evapotranspiration, offering valuable 733 

insights into water consumption dynamics across diverse geographical regions. However, VISEA 734 

exhibits slightly higher estimates in the Sahara region and lower estimations in the western Canada. In 735 

future studies, the VISA ET algorithm can be enhanced by incorporating more precise models for the 736 

radiation estimation in savanna and the evaporation from the frozen surface. These improvements will 737 

greatly contribute to enhancing the overall accuracy of the algorithm. The satellite-based near-real-time 738 

global daily terrestrial ET estimates could be beneficial for meteorology and hydrology applications 739 

requiring real-time data, especially in coordinating relief efforts during droughts. 740 

7. Code Availability  741 

Python code to synthesise the results and to generate the figures of VISEA results and the codes for 742 

generating the global ET products can be obtained through the public repository at 743 

https://doi.org/10.6084/m9.figshare.24647721.v1 (Huang, 2023c).  744 

8. Data Availability  745 
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The VISEA ET data can be obtained from https://data.tpdc.ac.cn/en/data/236e33bf-e66b-4682-bbc1-746 

274de1dcbcd3 (Huang, 2023a). 747 

8.1 Input data 748 

MOD11C1 can be obtained at https://e4ftl01.cr.usgs.gov/MOLT/MOD11C1.061/. MOD09CMG can be 749 

obtained at https://e4ftl01.cr.usgs.gov/MOLT/MOD09CMG.061/. MCD43C3 can be obtained at 750 

https://e4ftl01.cr.usgs.gov/MOTA/MCD43C3.061/. MOD13C1 can be obtained at 751 

https://e4ftl01.cr.usgs.gov/MOLT/MOD13C1.061/. MCD12C1 can be obtained at 752 

https://e4ftl01.cr.usgs.gov/MOLT/MOD21C1.061/. ERA5-Land shortwave radiation data can be 753 

obtained at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form.  754 

8.2 Evaluation data 755 

FLUXNET2015 flux towers data (FLUXNET2015: CC-BY-4.0 33) can be obtained at 756 

https://fluxnet.org/data/download-data/. The GLEAM 3.8a ET dataset was obtained from 757 

https://www.gleam.eu/#downloads (an email is required to receive a password for the SFTP). The 758 

FLUXCOM ET dataset was freely available (CC4.0 BY licence) from https://www.fluxcom.org/EF-759 

Download/ the Data Portal (an email is required to are receive a password for the FTP). MOD16 ET with 760 

the resolution of 0.05° was freely downloaded from 761 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1k762 

mALB/Previous/. Additionally, the AVHRR ET dataset with 1° was sourced from 763 

http://files.ntsg.umt.edu/data/ET_global_monthly_ORIG/Global_1DegResolution/ASCIIFormat/. 764 

Lastly, the PML ET dataset was obtained from https://www.tpdc.ac.cn/zh-hans/data/48c16a8d-d307-765 

4973-abab 972e9449627c.  766 

The precipitation from Global Precipitation Climatology Centre (GPCC) data was as obtained at 767 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-global-and-768 

regional?tab=form. The precipitation from Global Unified Gauge-Based Analysis of Daily Precipitation 769 

(CPC) was obtained at https://downloads.psl.noaa.gov/Datasets/cpc_global_precip/precip.2022.nc 770 

Other data that supports the analysis and conclusions of this work is available at 771 

https://figshare.com/articles/dataset/Satellite-based_Near-Real 772 

Time_Global_Daily_Terrestrial_Evapotranspiration_Estimates/24669306 (Huang, 2023d). 773 
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Appendix  775 

Appendix A. Determining the vegetation fraction calculation: 776 

𝑓𝑣𝑒𝑔 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
                                                                     (A1) 777 

where the 𝑁𝐷𝑉𝐼 is the Normalized Difference Vegetation Index and can be calculated as:  778 

𝑁𝐷𝑉𝐼 =  
𝑅𝑛𝑖𝑟−𝑅𝑟𝑒𝑑

𝑅𝑛𝑖𝑟+𝑅𝑟𝑒𝑑
                                                                          (A2) 779 

where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  is the 𝑁𝐷𝑉𝐼  of the bare soil without plants and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  is the 𝑁𝐷𝑉𝐼  of the full 780 

vegetation cover, 𝑅𝑛𝑖𝑟  is the near-infrared reflectance and 𝑅𝑟𝑒𝑑  is the red reflectance. The daily 781 

reflectance 𝑅𝑛𝑖𝑟 and 𝑅𝑟𝑒𝑑 were measured by MODIS reflectance data MOD09CMG (Fig. 1). Based on 782 

Tang et al. (2009), we set 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 = 0.22 and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 = 0.83. Missing observation for the daily 783 

MOD09CMG calculated 𝑁𝐷𝑉𝐼  data was filled with the 16-day averaged 𝑁𝐷𝑉𝐼  values in the 784 

MOD13Q1data product (Fig. 1). 785 

  786 
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Appendix B. Determining the instantaneous EF: 787 

Combining Eq. 1 and 4, we fist calculated the instantaneous evaporation fraction, 𝐸𝐹𝑖 as:  788 

𝐸𝐹𝑖 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔

𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑖 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙
𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑖                                          (B1) 789 

where the superscript i stands for the instantaneous value of the parameter, 𝐸𝐹𝑣𝑒𝑔
𝑖  and 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  are the 790 

instantaneous full vegetation coverage and bare soil 𝐸𝐹 , respectively. 𝐸𝐹𝑣𝑒𝑔
𝑖  can be expressed as a 791 

function of instantaneously parameters as ( Nishida et al., 2003):  792 

𝐸𝐹𝑣𝑒𝑔
𝑖 =

𝛼 ∆𝑖

∆𝑖+γ(1+𝑟𝑐 𝑣𝑒𝑔
𝑖 /2𝑟𝑎 𝑣𝑒𝑔

𝑖 )
                                                         (B2) 793 

where α is the Priestley-Taylor parameter, which was set to 1.26 for wet surfaces (De Bruin, 1983); ∆𝑖 is 794 

the slope of the saturated vapor pressure, which is a function of the temperature (Pa K-1); 𝛾  is the 795 

psychometric constant (Pa K-1); 𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous surface resistance of the vegetation canopy (s 796 

m-1); 𝑟𝑎 𝑣𝑒𝑔
𝑖  is the instantaneous aerodynamics resistance of the vegetation canopy (s m-1). 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  was 797 

expressed by Nishida et al. (2003) as a function of the instantaneous soil temperature and the available 798 

energy based on the energy budget of the bare soil:  799 

𝐸𝐹𝑠𝑜𝑖𝑙
𝑖 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑠𝑜𝑖𝑙 

𝑖

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑎 

𝑖

𝑄𝑠𝑜𝑖𝑙0 
𝑖

𝑄𝑠𝑜𝑖𝑙 
𝑖                                                              (B3) 800 

where 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖  is the instantaneous maximum possible temperature at the surface reached when the land 801 

surface is dry (K), 𝑇𝑠𝑜𝑖𝑙 
𝑖  is the instantaneous temperature of the bare soil (K), 𝑇𝑎 

𝑖 is the instantaneous air 802 

temperature, 𝑄𝑠𝑜𝑖𝑙0 
𝑖 is the instantaneous available energy when 𝑇𝑠𝑜𝑖𝑙 

𝑖  is equal to 𝑇𝑎 
𝑖  (W m-2).  803 

  804 
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Appendix C. Determining of decoupling factor: 805 

𝛺𝑖
∗ is the value of the decoupling factor, Ω, for wet surface. According to Pereira (2004), Ω and 𝛺∗ can 806 

be expressed as: 807 

 808 

 809 

Ω = 
1

1+
𝛾

∆+𝛾

𝑟𝑐
𝑟𝑎

                                                       (C1) 810 

𝛺∗=
1

1+
𝛾

∆+𝛾 

𝑟∗

𝑟𝑎

                                                       (C2)   811 

𝑟∗=
(Δ+𝛾)𝜌𝐶𝑝𝑉𝑃𝐷

Δ𝛾(𝑅𝑛−𝐺)
                                                    (C3) 812 

where 𝑟𝑐  is the surface resistance (s m-1); 𝑟𝑎 is the aerodynamic resistance (s m-1); the calculation details 813 

of instantaneous and daily  𝑟𝑐  and 𝑟𝑎 for vegetation and soil are explained in Appendix A. 𝑟∗ is the critical 814 

surface resistance when the actual evapotranspiration equals the potential evaporation (called equilibrium 815 

evapotranspiration, s m-1); 𝜌 is the air density (kg m-3); 𝐶𝑝 is the specific heat of the air (J kg-1 K-1); 𝑉𝑃𝐷 816 

is the vapor pressure deficit of the air (Pa). ∆ is the slope of the saturated vapor pressure (Pa K-1).  817 

  818 
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Appendix D. Determining the resistances of vegetation canopy and bare soil surface 819 

The canopy surface resistance of the vegetation, denoted as 𝑟𝑐 𝑣𝑒𝑔 (s m-1), was determined using the 820 

relationship established by Jarvis et al. (1976), is equivalent to:  821 

1

𝑟𝑐 𝑣𝑒𝑔
 =

𝑓1 (𝑇𝑎)𝑓2 (𝑃𝐴𝑅)𝑓3 (𝑉𝑃𝐷)𝑓4 (𝜑)𝑓5 (𝑐𝑜2)

𝑟𝑐𝑀𝐼𝑁
+

1

𝑟𝑐𝑢𝑡𝑖𝑐𝑙𝑒
                                      (D1) 822 

The minimum resistance 𝑟𝑐𝑀𝐼𝑁 (s m-1) is defined as 33 (s m-1) for cropland and 50 (s m-1) for forest 823 

as determined by Tang et al. (2009); the canopy resistance related to diffusion through the cuticle layer 824 

of leaves 𝑟𝑐𝑢𝑡𝑖𝑐𝑙𝑒  is set at 100,000 (s m-1) in the Biome-BGC model is according to White et al. (2000). 825 

The relationships involving air temperature 𝑇𝑎, 𝑓1(𝑇𝑎) and photosynthetic active radiation PAR, 𝑓2(𝑃𝐴𝑅) 826 

expressed by the functions provided Jarvis et al. (1976): 827 

𝑓1 (𝑇𝑎) = ( 
𝑇𝑎−𝑇𝑛

𝑇𝑜−𝑇𝑛
) ( 

𝑇𝑥−𝑇𝑎

𝑇𝑥−𝑇𝑎
)

(
𝑇𝑥−𝑇𝑜
𝑇𝑜−𝑇𝑛

)

                                                             (D2) 828 

 829 
The minimum, optimal, and maximum temperatures for stomatal activity are denoted as 𝑇𝑛, 𝑇𝑜 and 830 

𝑇𝑥, respectively. As per Tang et al. (2009), 𝑇𝑛 is set to 275.85 K, 𝑇𝑜 to 304.25 K, and 𝑇𝑥 to 318.45 K. The 831 

expression for the function 𝑓2(𝑃𝐴𝑅) is provided below: 832 

𝑓2 (𝑃𝐴𝑅) =  
𝑃𝐴𝑅

𝑃𝐴𝑅+𝐴
                                                                               (D3) 833 

where 𝑃𝐴𝑅 is photosynthetic active radiation per unit area and time (μ mol m-2 s-1) calculated by 834 

incoming solar radiation multiplied by 2.05 (White et al., 2000); 𝐴 is a parameter related to photon 835 

absorption efficiency at low light intensity, which was set to 152 μ mol m-2 s-1 20; Nishida32 found that 836 

in Eq. D1 the following functions can be omitted without great loss of accuracy: the functions depending 837 

on vapor pressure deficit, 𝑓3 (𝑉𝑃𝐷) , leaf water potential 𝑓4 (𝜑)  and carbon dioxide vapor pressure, 838 

𝑓5 (𝐶𝑂2).  839 

The photosynthetic active radiation per unit area and time (PAR), measured in μ mol m⁻² s⁻¹, is 840 

computed by multiplying incoming solar radiation by 2.05, as outlined by White et al. (2000). The 841 

parameter A, associated with photon absorption efficiency at low light intensity, is established at 152 μ 842 

mol m⁻² s⁻¹. Nishida et al. (2003) observed that, in Eq. D1, the functions tied to vapor pressure deficit 843 

𝑓3 (𝑉𝑃𝐷), leaf water potential 𝑓4 (𝜑), and carbon dioxide vapor pressure 𝑓5 (𝐶𝑂2) can be omitted without 844 

significant loss of accuracy. Tang et al. (2009) employed this canopy resistance approach to estimate 845 

evapotranspiration (ET) at a 500 meter resolution in the Kalam river basin. The evaluation of their results 846 

indicated that the simplification of these calculations did not significantly impact the final accuracy of 847 

ET estimates. Additionally, Huang et al. (2017, 2021, and 2023) evaluated this method for 0.05 degree 848 

ET assessments across China. The evaluation results also demonstrated that the reduction in vapor 849 

pressure deficit (VPD) and leaf water potential had minimal effects on the final ET estimates. 850 



34 
 

The aerodynamic resistance of the canopy, denoted as 𝑟𝑎 𝑣𝑒𝑔 (s m⁻¹), is computed for forest cover, 851 

grassland, and cropland using the empirical formulae presented by Nishida et al. (2003) for both 852 

instantaneous and daily values. 853 

1

𝑟𝑎 𝑣𝑒𝑔 (𝑓𝑜𝑟𝑒𝑠𝑡)
= 0.008𝑈50𝑚                                                                  (D4) 854 

The wind speed at a height of 50 meters above the canopy ( 𝑈50𝑚) is used to determine the 855 

aerodynamic resistance for grassland and cropland, as follows: 856 

1

𝑟𝑎 𝑣𝑒𝑔 (𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 & 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑)
= 0.003𝑈1𝑚                                                           (D5) 857 

where 𝑈1𝑚 is the wind speed 1m above the canopy (m s-1). The wind speed as a function of the 858 

height z, 𝑈(𝑧) can be calculated by the logarithm profile of wind. A recent study  found that the velocity 859 

log law does not apply to a stratified atmospheric boundary layer (Cheng et al., 2011). Thus D4 and D5 860 

are valid under neutral boundary layer conditions. Since 𝑟𝑎 𝑣𝑒𝑔 is calculated differently for forests (Eq. 861 

D4) and grasslands/croplands (Eq. D5), we used the land cover classes from the yearly International 862 

Geosphere-Biosphere Programme (IGBP) (MCD12C1) to identify the land cover and choice the different 863 

equation of 𝑟𝑎 𝑣𝑒𝑔. 𝑈50𝑚 and 𝑈1𝑚 were calculated by the logarithm profile of wind:  864 

𝑈(𝑧) = 𝑈𝑠ℎ𝑒𝑎𝑟 ln [
(𝑧−𝑑)

𝑧0
]/𝑘                                                             (D6) 865 

where 𝑈𝑠ℎ𝑒𝑎𝑟  is the shear velocity (m s-1); 𝑧 is the height (m); 𝑑 is the surface displacement (m); 𝑧0 866 

is the roughness length, we followed Nishida et al. (2003), set as 0.005 m for bare soil and 0.01 m for 867 

grassland; 𝑘 is the von Kármán's constant and set as 0.4 following Nishida (Nishida et al., 2003). The 868 

shear velocity 𝑈𝑠ℎ𝑒𝑎𝑟  was calculated as: 869 

𝑈𝑠ℎ𝑒𝑎𝑟 =  𝑈1𝑚 𝑠𝑜𝑖𝑙  
0.4

ln (
1

0.005
)
                                                              (D7) 870 

  where the 𝑈1𝑚 𝑠𝑜𝑖𝑙  is the wind speed of bare soil at 1 m height (m s-1), it was calculated as: 871 

 𝑈1𝑚 𝑠𝑜𝑖𝑙 = 1/0.0015 𝑟𝑎 𝑠𝑜𝑖𝑙                                                                 (D8) 872 

The Vegetation Index-surface Temperature (VI-TS) diagram (Nishida et al., 2003) can be utilized to 873 

compute the instantaneous air temperature. This is achieved by utilizing MODIS instantaneous surface 874 

temperature/emissivity data (MOD11C1) and daily-calculated NDVI as input parameters. 875 

The aerodynamic resistance of the bare soil, denoted as 𝑟𝑎 𝑠𝑜𝑖𝑙  (s m⁻¹), was determined by Nishida 876 

et al. (2003). This calculation assumes that the maximum surface temperature of bare soil 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥  (K) 877 

happens when the sum of latent heat flux and sensible heat flux of the bare soil, referred to as the available 878 

energy of bare soil 𝑄𝑠𝑜𝑖𝑙 (W m-2), is utilized as the sensible heat flux, while the latent heat flux is set to 879 

zero. 880 

𝑟𝑎 𝑠𝑜𝑖𝑙 =
𝜌𝐶𝑝( 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥−𝑇𝑎)

𝑄𝑠𝑜𝑖𝑙 
                                                                      (D9) 881 
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𝑟𝑎 𝑠𝑜𝑖𝑙  is the aerodynamic resistance of the bare soil, (s m-1), 𝜌 is the air density, kg m-3; 𝐶𝑝 is the 882 

specific heat of the air, (J kg-1 K-1); 𝑇𝑎 is the air temperature (K), 𝑄𝑠𝑜𝑖𝑙 is the available energy of bare soil 883 

(W m-2).  884 

To compute the canopy surface resistance of bare soil, denoted as 𝑟𝑐 𝑠𝑜𝑖𝑙  (s m⁻¹), we adhere to the 885 

methodologies outlined in the works of Griend and Owe (1994) and Mu et al. (2007): 886 

𝑟𝑐 𝑠𝑜𝑖𝑙 = 𝑟𝑡𝑜𝑡 − 𝑟𝑎 𝑠𝑜𝑖𝑙                                                                (D10) 887 

𝑟𝑡𝑜𝑡 =
1.0

 (
𝑇𝑎

293.15
)

1.75101300

𝑃
    

∗ 107.0                                                    (D11) 888 

The total aerodynamic resistance 𝑟𝑡𝑜𝑡 (s m⁻¹) is composed of the aerodynamic resistance over the 889 

bare soil 𝑟𝑎 𝑠𝑜𝑖𝑙 (s m⁻¹), with atmospheric pressure 𝑃 set at 101,300 Pa. 890 

  891 



36 
 

Appendix E. The calculation of atmospheric emissivity for clear sky 892 

As per Brutsaert (1975), the atmospheric emissivity 𝜀𝑎
𝑑 for clear sky under standard humidity and 893 

temperature conditions is 894 

𝜀𝑎
𝑑 = 1.24 × (𝑒𝑎

𝑑/𝑇𝑎
𝑑)1/7                                                          (E1) 895 

where 𝑒𝑎
𝑑  represents the daily water vapor pressure (kPa). To calculated 𝑒𝑎

𝑑 , it is necessary to 896 

compute the slope of the saturated vapor (∆) as:   897 

 ∆ =  
4098 [0.6108 exp[

17.27𝑇𝑎
(𝑇𝑎+237.3)

]

(𝑇𝑎+237.3)2                                                              (E2) 898 

VPD is the vapor pressure deficit of the air (kPa), which is expressed as: 899 

VPD = 𝑒0(𝑇𝑎) − 𝑒𝑎                                                          (E3) 900 

𝑒0(𝑇𝑎) = 0.6108 exp [
17.27𝑇𝑎

(𝑇𝑎+237.3)
]                                               (E4) 901 

𝑒𝑎 =  𝑒0(𝑇𝑑𝑒𝑤)                                                                    (E5) 902 

𝑒0(𝑇𝑑𝑒𝑤)  = 0.6108 exp [
17.27𝑇𝑑𝑒𝑤

𝑇𝑑𝑒𝑤+237.3
  ]                                              (E6) 903 

The expression within parentheses denotes the independent variable, where, 𝑒0(𝑇𝑎) represents the 904 

saturation vapor pressure (kPa) at the air temperature 𝑇𝑎  (℃); 𝑒𝑎  is the actual vapor pressure (kPa); 905 

𝑒0(𝑇𝑑𝑒𝑤) is the saturation vapor pressure (kPa) at the dew point temperature 𝑇𝑑𝑒𝑤 (℃). For forest, water 906 

surface, and cropland 𝑇𝑑𝑒𝑤  is set to the minimum air temperature during the day. In arid regions such as 907 

bare soil and non-irrigated grassland, 𝑇𝑑𝑒𝑤  may be 2-3 ℃ lower than 𝑇𝑚𝑖𝑛 . Therefore, 2 ℃ is subtracted 908 

is subtracted from 𝑇𝑚𝑖𝑛  in arid and semiarid areas to derive 𝑇𝑑𝑒𝑤 . While these simplifications might 909 

introduce a bias in the final calculated ET value, our initial results indicate that the effect is negligible. 910 
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