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Abstract.  21 

Accurate and timely information on global terrestrial actual evapotranspiration (ET) is crucial in 22 

agriculture, water resource management and drought forecasting in a changing climate. While numerous 23 

satellite-based ET products have been developed in recent decades, few provide near-real-time global 24 

terrestrial ET estimates. The MOD16 ET dataset, currently updating at the fastest rate, still experiences 25 

a delay of over two weeks. This is because most satellite-based ET algorithms rely on meteorological 26 

data from land surface models or in situ measurements, which cannot be obtained in near-real-time, 27 

resulting in delays of more than two weeks. To expedite global ET data access, we developed the 28 

Moderate Resolution Imaging Spectroradiometer (MODIS) based Variation of Standard 29 

Evapotranspiration Algorithm (VISEA) to provide global daily ET data within a week of the actual 30 

measurements at a spatial resolution of 0.05°. The VISEA model incorporates several key components: 31 

(1) A vegetation index (VI)-temperature (Ts) triangle method to simulate air temperature (Ta), serves as 32 

a basis for calculating other meteorological parameters (e.g., water vapor deficit and wind speed); (2) A 33 

daily evaporation fraction (EF) method based on the decoupling parameter, converts satellite-based 34 

instantaneous observations into daily ET estimates; (3) A net radiation calculation program takes into 35 

account cloud coverage in the atmosphere's downward longwave radiation. The VISEA model is driven 36 

by shortwave radiation from the European Centre for Medium-range Weather Forecasts (ERA5-Land) 37 

and MODIS land products, e.g., surface reflectance, land surface temperature/emissivity, land cover 38 

products),, vegetation indices, and albedo as inputs. To assess its accuracy, we compared VISEA- with 39 

measurements from 149 flux towers, five other satellite-based global ET products, and precipitation data 40 

from the Global Precipitation Climatology Centre (GPCC). The evaluations show that the near-real-time 41 

ET using VISEA performs with similar accuracy to other existing data products and offers a significantly 42 

shorter time frame for daily data availability. Over 12 landcover types, the mean R is about 0.6 with an 43 

RMSE of 1.4 mm day-1 at a daily scale. Furthermore, the consistent spatial patterns of multi-year average 44 
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VISEA align closely with GPCC precipitation data, reaffirming the dataset's ability to accurately 45 

represent global terrestrial ET distribution. To emphasize the capabilities of the VISEA for drought 46 

monitoring, we analyzed the spatial and temporal variations of ET during a drought event and subsequent 47 

recovery with precipitation in the Yangtze River basin from August 28th26th to September 1st2nd, 2022. 48 

The VISEA distinctly illustrated low mean ET levels (<0.25 mm day-1) across most areas of the Yangtze 49 

River Basin on August 28th, indicating the severity of the drought. Conversely, a noticeable increase in 50 

ET (>0.91 mm day-1) is observed on August 29th30th, signifying the retreat of the drought due to 51 

precipitation. The near-real-time global daily terrestrial ET estimates could be valuable for meteorology 52 

and hydrology applications requiring real-time data, particularly in coordinating relief efforts during 53 

droughts. The VISEA code and dataset are available at https://doi.org/10.11888/Terre.tpdc.300782 54 

(Huang et al., 2023a). 55 

1 Introduction  56 

Global terrestrial evapotranspiration (ET) is a vital component of the Earth's water cycle and energy 57 

budget. It includes evaporation from the soil and water surfaces (some studies also consider evaporation 58 

from the intercepted precipitation in canopies) and plant transpiration (Zhang et al., 2021; He et al., 59 

2022).(Zhang et al., 2021; He et al., 2022; Wang et al., 2021a). Accurate and timely estimation of ET is 60 

essential for quantitatively assessing changes in the water cycle under climate change, vigilant monitoring 61 

drought, and effectively managing and allocating water resources (Su et al., 2020; Han et al., 2021; 62 

Aschonitis et al., 2022).  63 

While nearNear-real-time ET estimation from climate models ishave been widely used to assess and 64 

predict ET changes in the global water cycle under different weather conditions (Copernicus Climate 65 

Change Service, 2020), While these models often have limitedsuch as ERA5 reanalysis offer near-real-66 

time latent heat flux (ET in energy units) with a delay of just six days, they typically feature coarser 67 

spatial resolutions, making them less effectiveoften 0.1° or more. This level of resolution may limit their 68 

effectiveness for assessingdetailed assessments of drought conditions and optimizingthe optimization of 69 

water resource allocation. On the other hand, obtaining highly accurate, near-real-time, or real-time ET 70 

measurements through local eddy covariance or lysimeter methods can be very valuable (Awada et al., 71 

2022), but collecting large-scale ET data using this equipment proves to be quite challenging (Barrios et 72 

al., 2015; Tang et al., 2009)(Barrios et al., 2015; Tang et al., 2009).  73 

Remote sensing presents a promising method for near-real-time estimation of global terrestrial ET 74 

by offering timely observed land surface data. Several satellite-based ET datasets have emerged in recent 75 

decades, each utilizing different algorithms such as the Penman-Monteith-based ET products like MODIS 76 

ET (MOD16), developed by Mu et al. (2007, 2011), the Advanced Very High Resolution Radiometer 77 

(AVHRR) ET by Zhang et al. (2006, 2009), and the Penman-Monteith-Leuning Evapotranspiration V2 78 

(PML_V2, or simply PML) developed by Zhang et al. (2019, 2022). In addition, the Global Bio-79 

Atmosphere Flux (GBAF, also known as FluxCom) uses a machine learning approach with data from 80 

flux towers, meteorology, and hydrology, published by Jung et al. (2009, 2010, 2019). Finally, the 81 

Priestley–Taylor equation-based Global Land Evaporation Amsterdam Model (GLEAM) ET was 82 
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developed by Miralles et al. (2011b) and Martens et al. (2017). While these satellite-based global ET 83 

products yield reasonable estimations, they cannot provide near-real-time ET estimates. Despite the 84 

ongoing rapid updates of the MOD16 ET dataset, it still encounters a delaySatellite remote sensing-based 85 

ET estimates outperform climate model simulations by offering high spatial resolution for detailed water 86 

use analysis, near-real-time data for prompt environmental response, and global coverage for 87 

comprehensive water cycle studies. These estimates rely on direct observations, enhancing accuracy, 88 

especially where ground data are sparse, and allow for the dynamic monitoring of land and vegetation 89 

changes. This capability underscores their importance in water resource management and climate 90 

research, complementing the broader perspectives provided by climate models. 91 

The selected ET products discussed in this study embody diverse and innovative algorithmic 92 

approaches that have significantly contributed to global ET estimation and gained recognition within the 93 

scientific community. The MOD16 ET dataset, developed by Mu et al. (2007, 2011), utilizes a Penman-94 

Monteith-based approach and is driven by MODIS land cover, albedo, fractional photosynthetically 95 

active radiation, leaf area index, and daily meteorological reanalysis data from NASA’s Global Modelling 96 

and Assimilation Office to estimate ET. As the first satellite-based global ET product, it played a pivotal 97 

role in providing precise estimations crucial for global drought monitoring (Mu et al., 2013).  98 

The AVHRR ET dataset, developed by Zhang et al. (2006, 2009), employed a modified Penman–99 

Monteith approach over land, integrating biome-specific canopy conductance determined by NDVI, and 100 

utilized a Priestley–Taylor approach over water surfaces. These algorithms were driven by AVHRR 101 

Global Inventory Modeling and Mapping Studies (GIMMS) NDVI, daily surface meteorology data from 102 

the National Centers for Environment Prediction/National Center for Atmospheric Research 103 

(NCEP/NCAR) reanalysis, and solar radiation from NASA/GEWEX Surface Radiation Budget Release-104 

3.0. This dataset has significantly advanced the study of the global water cycle, capitalizing on its 105 

extensive coverage and high accuracy to provide valuable insights into global hydrological processes. 106 

The FLUXCOM dataset, is notable for its utilization of machine learning to integrate eddy 107 

covariance data from the global FLUXNET tower network, surface meteorological data, and remote 108 

sensing data. This approach has made a substantial contribution to resolving the evapotranspiration 109 

paradox and has cemented its status as a crucial tool widely acknowledged within the scientific 110 

community for elucidating intricate ET dynamics. (Jung et al., 2009, 2010, 2019). 111 

Additionally, GLEAM, developed by Miralles et al. (2011b) and Martens et al. (2017), holds a 112 

prominent position as one of the best satellite-based ET products, known for its unparalleled accuracy 113 

and unique algorithmic approaches that have considerably advanced global ET estimation and enhanced 114 

our understanding of land surface evapotranspiration processes. Lastly, PML, developed by Zhang et al. 115 

(2019, 2022), represents the first 250-meter global coverage ET product, providing unprecedented spatial 116 

resolution for global ET estimation and contributing to our understanding of the decline in global water 117 

availability (Zhang et al., 2023b). 118 
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While these satellite-based global ET products provide reasonable estimations, they do not offer 119 

near-real-time ET estimates. Despite ongoing rapid updates to the MOD16 ET dataset, it still encounters 120 

delays exceeding two weeks. Additionally, AVHRR ET spans from 1983 to 2006, PML ET covers the 121 

period from 2002 to 2019, GBAFFLUXCOM data covers from 20011950 to 20152016, and GLEAM ET 122 

extends from 20032001 to 20202022. Notably, the four later ET products exhibit data gaps exceeding 123 

one year, posing challenges for near-real-time estimation. AdditionallyFurthermore, NASA's ECOsystem 124 

Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) intendsaims to deliver 125 

global-scale ET estimation (Fisher et al., 2020). UnfortunatelyHowever, as of now, the data from 126 

ECOSTRESS have not been published. This data gap means there is still, resulting in a lack of satellite-127 

based global near-real-time ET estimation. 128 

The Variation of the Moderate Resolution Imaging Spectroradiometer Standard Evapotranspiration 129 

Algorithm (VISEA) was introduced by Tang et al. (2009), which was designed for the near-real-time 130 

monitoring of crop consumption at the basin scale. Huang et al. (2017) examined its reliability by 131 

conducting a comprehensive assessment comparing its ET values with flux tower measurements and 132 

other gridded ET datasets across various scales in China. Subsequently, to improve the model, a 133 

decoupling parameter for daily evaporation fraction (EF) was introduced (Huang et al., 2021), and the 134 

atmospheric emissivity and cloud coverage in the daily net radiation calculation was included (Huang et 135 

al., 2023b)(Huang et al., 2023b). Global terrestrial application and evaluation of the developed VISEA 136 

algorithm have not been conducted so far. In this study, we employ this VISEA algorithm along with 137 

MODIS surface reflectance (MOD09CMG) (Vermote, 2015), land surface temperature/emissivity 138 

(MOD11C1) (Wan et al., 2015), land cover products (MCD12C1) (Friedl & Sulla-Menashe, 2015), 139 

vegetation indices (MOD13C1) (Didan, 2015), albedo (MCD43C3) (Schaaf & Wang 2015), and hourly 140 

shortwave radiation from ECMWF ERA5-Land (Sabater, 2019) to provide global daily ET estimates 141 

from 2001 to 2022.  142 

The performance of VISEA was evaluated with data from meteorological instruments and eddy 143 

covariance measurements at 149 flux towers of FLUXNET (Pastorello et al., 2020). We assessed the 144 

spatial distribution averages of VISEA by comparing its multi-year average with established ET datasets 145 

GLEAM (Martens et al., 2017; Miralles et al., 2011), GBAFFLUXCOM (Jung et al., 2009, 2010, 2018), 146 

AVHRR (Zhang et al., 2009, 2010), MOD16 (Mu et al., 2007, 2011), PML (Zhang et al., 2019, 2022)  147 

and precipitation data from the Global Precipitation Climatology Centre (GPCC) (Udo et al., 2011).  148 

 149 

2. Methods 150 

2.1 Description of the VISEA algorithm 151 

VISEA, short for the Variation of the Moderate Resolution Imaging Spectroradiometer Standard 152 

Evapotranspiration Algorithm, is a modification of the MODIS standard Evapotranspiration (ET) 153 

algorithm. The original MODIS algorithm, created by Mu et al. (2007 and 2011), is based on the Penman-154 

Monteith method. VISEA introduces two significant modifications. First, it employs the Vegetation (VI)-155 

Temperature (Ts) Triangle method, originally developed by Nishida et al. (2003), to estimate air 156 
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temperature. Second, VISEA incorporates hourly data on shortwave downward radiation from the ERA5-157 

Land dataset to calculate daily average energy. These two advancements enable VISEA to estimate large-158 

scale ET without needing local measurements as supplementary data.  159 

Unlike energy budget-based ET algorithms (such as SEBS, METRIC, and Alexi) that rely on), 160 

which calculate ET (latent heat flux) as the direct useresidual of thermal information,the net radiation, 161 

subtracting soil heat flux and sensible heat flux. VISEA estimates ET using the Penman-Monteith 162 

equation, placing it in a different category of satellite-based global ET products currently in use. VISEA 163 

is a two-source model, which means the 𝐸𝑇 in one grid cell was separated as the transpiration from full 164 

vegetation cover and the evaporation from bare soil surface if energy transfer from the vegetation to the 165 

soil surface was ignored (Nishida et al., 2003), i.e., 166 

𝐸𝑇 = 𝑓𝑣𝑒𝑔𝐸𝑇𝑣𝑒𝑔 + (1 − 𝑓𝑣𝑒𝑔)𝐸𝑇𝑠𝑜𝑖𝑙                                                           (1) 167 

where the subscript "𝑣𝑒𝑔" means full vegetation cover and the subscript "soil" indicates the soil exposed 168 

to solar radiation (called bare soil); 𝐸𝑇𝑣𝑒𝑔 is the transpiration from full vegetation cover area (W m-2), 169 

𝐸𝑇𝑠𝑜𝑖𝑙  is the evaporation from bare soil (W m-2), 𝑓𝑣𝑒𝑔 is the portion of the area with the vegetation cover, 170 

which can be calculated by Normalized Difference Vegetation Index, NDVI (Tang et al., 2009): 171 

where the subscript "𝑣𝑒𝑔" means full vegetation cover and the subscript "soil" indicates the soil exposed 172 

to solar radiation (called bare soil); 𝐸𝑇𝑣𝑒𝑔 is the transpiration from full vegetation cover area (W m-2), 173 

𝐸𝑇𝑠𝑜𝑖𝑙  is the evaporation from bare soil (W m-2), 𝑓𝑣𝑒𝑔 is the portion of the area with the vegetation cover, 174 

which can be calculated by Normalized Difference Vegetation Index (calculation details are provided in 175 

Appendix A, Tang et al., 2009) 176 

𝑓𝑣𝑒𝑔 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
                                                                     (2) 177 

where the 𝑁𝐷𝑉𝐼 is the Normalized Difference Vegetation Index and can be calculated as:  178 

𝑁𝐷𝑉𝐼 =  
𝑅𝑛𝑖𝑟−𝑅𝑟𝑒𝑑

𝑅𝑛𝑖𝑟+𝑅𝑟𝑒𝑑
                                                                          (3) 179 

where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  is the 𝑁𝐷𝑉𝐼  of the bare soil without plants and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  is the 𝑁𝐷𝑉𝐼  of the full 180 

vegetation cover, 𝑅𝑛𝑖𝑟  is the near-infrared reflectance and 𝑅𝑟𝑒𝑑  is the red reflectance. The daily 181 

reflectance 𝑅𝑛𝑖𝑟 and 𝑅𝑟𝑒𝑑 were measured by MODIS reflectance data MOD09CMG (Fig. 1). Based on 182 

Tang et al. (2009), we set 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 = 0.22 and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 = 0.83. Missing observation for the daily 183 

MOD09CMG calculated 𝑁𝐷𝑉𝐼  data was filled with the 16-day averaged 𝑁𝐷𝑉𝐼  values in the 184 

MOD13Q1data product (Fig. 1). 185 

The available energy 𝑄 (W m-2), which is the sum of the latent heat flux and sensible heat flux (also 186 

known as the net radiation minus soil heat flux) is also separated into the available energy for vegetation 187 

transpiration, 𝑄𝑣𝑒𝑔 (W m-2) and 𝑄𝑠𝑜𝑖𝑙  (W m-2) for bare soil evaporation, which was expressed by Nishida 188 

et al. (2003) as: 189 

𝑄 = 𝑓𝑣𝑒𝑔𝑄𝑣𝑒𝑔 + (1 − 𝑓𝑣𝑒𝑔)𝑄𝑠𝑜𝑖𝑙                                                      (4) 190 
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As satellites like Terra and Aqua provide instantaneous snapshot observations of the Earth only once 191 

a day, a temporal scaling method is needed to convert instantaneous measurements into daily ET values. 192 

Nishida et al. (2003) used satellite-based noon time instantaneous evaporation fraction (𝐸𝐹), defined as 193 

the ratio of latent heat flux (𝐸𝑇)  to available energy as daily 𝐸𝐹  ( 𝐸𝐹 =
𝐸𝑇

𝑄
),, the calculation of 194 

instantaneous 𝐸𝐹 is described at Appendix B), multiplied the daily 𝑄 to calculated daily 𝐸𝑇 based on the 195 

assumption that 𝐸𝐹 is constant over a day: 196 

𝐸𝑇 = 𝐸𝐹 𝑄                                                                               (5) 197 

In the next section, we will detail how VISEA calculates the daily 𝐸𝐹, and  Q in Equation (5), and 198 

also daily air and Ts, land surface temperaturestemperature. 199 

2.1.1 Daily evaporation fraction calculation  200 

Combining Eq. 1 and 4, we fist calculated the instantaneous evaporation fraction, 𝐸𝐹𝑖 as:  201 

𝐸𝐹𝑖 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔

𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑖 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙
𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑖                                          (6) 202 

where the superscript i stands for the instantaneous value of the parameter, 𝐸𝐹𝑣𝑒𝑔
𝑖  and 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  are the 203 

instantaneous full vegetation coverage and bare soil 𝐸𝐹 , respectively. 𝐸𝐹𝑣𝑒𝑔
𝑖  can be expressed as a 204 

function of instantaneously parameters as ( Nishida et al., 2003):  205 

𝐸𝐹𝑣𝑒𝑔
𝑖 =

𝛼 ∆𝑖

∆𝑖+γ(1+𝑟𝑐 𝑣𝑒𝑔
𝑖 /2𝑟𝑎 𝑣𝑒𝑔

𝑖 )
                                                         (7) 206 

where α is the Priestley-Taylor parameter, which was set to 1.26 for wet surfaces (De Bruin, 1983); ∆𝑖 is 207 

the slope of the saturated vapor pressure, which is a function of the temperature (Pa K-1); 𝛾  is the 208 

psychometric constant (Pa K-1); 𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous surface resistance of the vegetation canopy (s 209 

m-1); 𝑟𝑎 𝑣𝑒𝑔
𝑖  is the instantaneous aerodynamics resistance of the vegetation canopy (s m-1). 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  was 210 

expressed by Nishida et al. (2003) as a function of the instantaneous soil temperature and the available 211 

energy based on the energy budget of the bare soil:  212 

𝐸𝐹𝑠𝑜𝑖𝑙
𝑖 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑠𝑜𝑖𝑙 

𝑖

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑎 

𝑖

𝑄𝑠𝑜𝑖𝑙0 
𝑖

𝑄𝑠𝑜𝑖𝑙 
𝑖                                                              (8) 213 

where 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖  is the instantaneous maximum possible temperature at the surface reached when the land 214 

surface is dry (K), 𝑇𝑠𝑜𝑖𝑙 
𝑖  is the instantaneous temperature of the bare soil (K), 𝑇𝑎 

𝑖 is the instantaneous air 215 

temperature, 𝑄𝑠𝑜𝑖𝑙0 
𝑖 is the instantaneous available energy when 𝑇𝑠𝑜𝑖𝑙 

𝑖  is equal to 𝑇𝑎 
𝑖  (W m-2).  216 

 217 

As the assumption of 𝐸𝐹𝑖 =  𝐸𝐹𝑑  caused 10%-30% underestimation of daily ET (Huang et al., 218 

2017; Yang et al., 2013), we introduced a decoupling parameter to covert 𝐸𝐹𝑖 into 𝐸𝐹𝑑 following the 219 

algorithm of Tang et al. (2017a, 2017b). This new decoupling parameter-based evaporation faction is 220 

developed from Penman-Monteith and McNaughton-Jarvis mathematical equations:  221 

𝐸𝐹𝑑 = 𝐸𝐹𝑖 ∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

Ω∗𝑖

Ω∗𝑑

Ω𝑑

Ω𝑖                                                          (96) 222 
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where superscript "𝑑" means daily; the 𝐸𝐹𝑖 is the instantaneous evaporation fraction; Ω is the decoupling 223 

factor that represents the relative contribution of radiative and aerodynamic terms to the overall 224 

evapotranspiration (Tang and Li, 2017), 𝛺𝑖
∗ is the value of the decoupling factor, Ω, for wet surfaces. 225 

According to Pereira (2004), Ω and 𝛺∗  can be expressed as:(the calculation details is presented in 226 

Appendix C). 227 

Ω = 
1

1+
𝛾

∆+𝛾

𝑟𝑐
𝑟𝑎

                                                       (10) 228 

𝛺∗=
1

1+
𝛾

∆+𝛾 

𝑟∗

𝑟𝑎

                                                       (11)   229 

𝑟∗=
(Δ+𝛾)𝜌𝐶𝑝𝑉𝑃𝐷

Δ𝛾(𝑅𝑛−𝐺)
                                                    (12) 230 

where 𝑟𝑐  is the surface resistance (s m-1); 𝑟𝑎 is the aerodynamic resistance (s m-1); the calculation details 231 

of instantaneous and daily  𝑟𝑐  and 𝑟𝑎 for vegetation and soil are explained in Appendix A. 𝑟∗ is the critical 232 

surface resistance when the actual evapotranspiration equals the potential evaporation (called equilibrium 233 

evapotranspiration, s m-1); 𝜌 is the air density (kg m-3); 𝐶𝑝 is the specific heat of the air (J kg-1 K-1); 𝑉𝑃𝐷 234 

is the vapor pressure deficit of the air (Pa). ∆ is the slope of the saturated vapor pressure (Pa K-1).  235 

For full vegetation-covered areas, 𝐸𝐹𝑣𝑒𝑔
𝑑  is expressed as: 236 

𝐸𝐹𝑣𝑒𝑔
𝑑 =

𝛼 ∆𝑖

∆𝑖+γ(1+
𝑟𝑐 𝑣𝑒𝑔

𝑖

2𝑟𝑎 𝑣𝑒𝑔
𝑖 )

(
∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

𝛺𝑣𝑒𝑔 
∗ 𝑖

𝛺𝑣𝑒𝑔 
∗ 𝑑

𝛺𝑣𝑒𝑔 
 𝑑

𝛺𝑣𝑒𝑔 
𝑖 )                                (137) 237 

𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous canopy resistance (s m-1), 𝑟𝑎 𝑣𝑒𝑔

𝑖  is the instantaneous aerodynamic resistance (s 238 

m-1). Determining these resistances are presented in Appendix D. 239 

For bare soil, 𝐸𝐹𝑠𝑜𝑖𝑙
𝑑  is calculated as:  240 

𝐸𝐹𝑠𝑜𝑖𝑙
𝑑 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖 −𝑇𝑠𝑜𝑖𝑙 

 𝑖  

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖  −𝑇𝑎 

 𝑖  
𝑄𝑠𝑜𝑖𝑙 0 

 𝑖

𝑄𝑠𝑜𝑖𝑙 
 𝑖  (

∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

𝛺𝑠𝑜𝑖𝑙 
∗ 𝑖

𝛺𝑠𝑜𝑖𝑙 
∗ 𝑑

𝛺𝑠𝑜𝑖𝑙 
 𝑑

𝛺𝑠𝑜𝑖𝑙 
𝑖 )                       (148)  241 

Thus, 𝐸𝐹𝑑 is expressed as:  242 

𝐸𝐹𝑑 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔 

 𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑑 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙 
 𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑑                        (159) 243 

2.1.2 Daily calculation of available energy 𝑸𝒗𝒆𝒈
𝒅  and 𝑸𝒔𝒐𝒊𝒍

𝒅   244 

The daily available energy 𝑄 (W m-2) for the vegetation and the bare soil surface is calculated by 245 

the energy balance equation: 246 

We used an improved daily available energy 𝑄  (W m-2) method (Huang et al., 2023) for the 247 

vegetation and the bare soil surface is calculated by the energy balance equation: 248 



 

8 
 

𝑅𝑛 − 𝐺 = 𝑄                                                                            (1610) 249 

where 𝑅𝑛 is the net radiation (W m-2), which could be calculated by the land surface energy balance; 𝐺 250 

is the soil heat flux (W m-2). ( 𝐺≈0 on a  daily basis),  251 

𝑅𝑛
𝑑 = (1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4                   (17) 252 

where 𝑎𝑙𝑏𝑒𝑑𝑜𝑑 is the daily albedo of the soil surface; 𝑅𝑑
𝑑 is daily incoming shortwave radiation (W m-2); 253 

𝜀𝑠
𝑑 and 𝜀𝑎

𝑑 are the daily emissivity of land surface and atmosphere  (Brutsaert, 1975; Wang and Dickinson, 254 

2013; details are presented in Appendix B ), 𝜀𝑠
𝑑 can be retried by MOD11C1; 𝜎 is the Stefan-Boltzmann 255 

constant; 𝑇𝑎
𝑑 is the daily near surface air temperature (K); 𝑇𝑠

𝑑 is the daily surface temperature (K).  256 

For the downward longwave radiation, wewhere 𝑅𝑛  is the net radiation (W m-2), which could be 257 

calculated by the land surface energy balance; 𝐺 is the soil heat flux (W m-2), 𝐺≈0 on a daily basis 258 

(Fritschen and Gay, 1979; Nishida et al., 2003; Tang et al., 2009),  259 

𝑅𝑛
𝑑 = (1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4                   (11) 260 

Where 𝑎𝑙𝑏𝑒𝑑𝑜𝑑 is the daily albedo of the soil surface; 𝑅𝑑
𝑑 is daily incoming shortwave radiation (W m-261 

2), obtained the ERA5_Land shortwave radiation (we called ERA5_Rd); 𝜀𝑠
𝑑  and 𝜀𝑎

𝑑  are the daily 262 

emissivity of land surface and atmosphere; different from the former study provided by Huang et al., 263 

(2021), which set we 𝜀𝑠
𝑑 and 𝜀𝑎

𝑑 equal, we calculated the 𝜀𝑎
𝑑 by Appendix E flowing study of Brutsaert, 264 

(1975) and Wang and Dickinson(2013), 𝜀𝑠
𝑑  can be retried by MOD11C1; 𝜎 is the Stefan-Boltzmann 265 

constant; 𝑇𝑎
𝑑 is the daily near surface air temperature (K); 𝑇𝑠

𝑑 is the daily surface temperature (K).  266 

We account for the influence of clouds by assuming a linear correlation between downward 267 

longwave radiation and cloud coverage: in the calculation of downwards longwave radiation based on 268 

the study of Huang et al., (2023): 269 

𝐶𝑙𝑜𝑢𝑑 = (1 − 𝐾𝑡)                                                                    (1812) 270 

𝐾𝑡 =  
𝑅𝑑

𝑑

𝑅𝑎
𝑑                                                                            (1913) 271 

𝐶𝑙𝑜𝑢𝑑𝑑 is derived from the clearness index 𝐾𝑡 (Chang and Zhang, 2019; Goforth et al., 2002). 𝑅𝑎
𝑑 is the 272 

daily extraterrestrial radiation calculated by the FAO (1998).  273 

According to Huang et al. (20212023), 𝑄𝑣𝑒𝑔
𝑑  can be calculated by assuming as 𝑇𝑠

𝑑 =  𝑇𝑎
𝑑 according 274 

to the VI-Ts method which implies that the minimum land surface temperature occurs in fully vegetated 275 

grid cells and is equivalent to 𝑇𝑎
𝑑.  276 

𝑄𝑣𝑒𝑔
𝑑 = (1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4                  (2014) 277 

𝑄𝑠𝑜𝑖𝑙
𝑑 = (1 − 𝐶𝐺)(1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4           (2115) 278 

域代码已更改



 

9 
 

Thus, (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4  is the daily downward longwave radiation (W m-2), and 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4  is the 279 

daily upward longwave radiation (W m-2), where 𝐶𝐺  is an empirical coefficient ranging from 0.3 for a 280 

wet soil to 0.5 for a dry soil (Idso et al., 1975).  281 

 282 

Following the study of Huang et al. (20212023), the daily 𝐸𝑇𝑑 can be calculated by the daily 𝐸𝐹𝑑 283 

and  𝑄𝑑 as: 284 

 𝐸𝑇𝑑 = 𝐸𝐹𝑑𝑄𝑑                                                                         (2216) 285 

Figure 1 illustrates the workflow of VISEA. 286 

 287 

带格式的: 段落间距段后: 1 行
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 289 

Figure 1. Schematic of VISEA algorithm. The ovals in the top row are the databases, and the square 290 

boxes are the algorithms, and parallelograms are the parameters. The numbers in the parenthesis are the 291 

equation to determine the parameters. 292 

 293 

2.1.3 The calculation of daily air temperature, 𝑻𝒂
𝒅 and surface temperature, 𝑻𝒂𝒔

𝒅  294 

Daily air temperature, 𝑇𝑎
𝑑  Isis a critical parameter in the VISEA algorithm, used in calculations for 295 

downward longwave radiation, daily aerodynamic resistance, and surface resistance. The key innovation 296 

in calculating 𝑇𝑎
𝑑, involves employing the VI-Ts method to estimate instantaneous air temperature, 𝑇𝑎

𝑖 297 

during the daytime.  298 

This method was developed based on the empirical linear relationship between surface temperature 299 

(Ts) and Vegetation Index (VI). Surface temperature increases when the vegetation index decreases, and 300 
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conversely, surface temperature decreases when the vegetation index increases. By defining a "window" 301 

formed by the neighboring 5 * 5 grid cells, the scatter plot of these 25 grid cells' VI and Ts typically 302 

exhibits a triangular (or trapezoidal) distribution. In this scatter plot, we identify the "warm edge" 303 

(characterized by a low vegetation cover fraction and high Ts) and the "cold edge" (marked by a high 304 

vegetation cover fraction and low Ts). 305 

Through simple interpolation, Ts corresponding to any given vegetation condition within the range 306 

of the "warm edge" and "cold edge" can be determined. The lowest Ts could be determined by the highest 307 

VI, and the highest Ts could be determined by the lowest VI. Therefore, following Nishida et al. (2003), 308 

under the assumption that the lowest surface temperature equals the air temperature (Ta), we can derive 309 

the daily air temperature. 310 

For nighttime periods, it is assumed that air temperature is equivalent to the nighttime land surface 311 

temperature provided by MOD11C1. These two temperature estimates are then extended into hourly air 312 

temperature profiles using a sine-cosine fitting curve. The 24-hour average of 𝑇𝑎
𝑖 is used as 𝑇𝑎

𝑑. Similarly, 313 

𝑇𝑠
𝑑 is calculated using MOD11C1 land surface temperature data for both daytime and nighttime. These 314 

estimates are extended into hourly surface temperature profiles using a similar sine-cosine fitting curve, 315 

and the daily average of 𝑇𝑠
𝑑 is determined (Huang et al., 2021).  316 

A key advance of this VISEA algorithm is the application of the VI-Ts method to calculate 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖  317 

and 𝑇𝑎 
 𝑖 (Huang et al., 2017; Nishida et al., 2003; Tang et al., 2009). The VI-Ts method is based on the 318 

empirical linear relationship between the vegetation index (VI), typically calculated by NDVI, and land 319 

surface temperature (Ts). When plotted on a two-dimensional scatter plot, VI and Ts generally form a 320 

trapezoid or triangular shape. In these plots, regions with low VI and high Ts values constitute the "warm 321 

edge," while areas with high VI and low Ts values form the "cold edge." Using simple linear interpolation, 322 

Ts values corresponding to any given VI between the "warm edge" and the "cold edge" can be determined. 323 

Assuming𝑇𝑠 = 𝑇𝑎 
 𝑖 for cases where the highest VI corresponds to the lowest Ts, we can calculate 𝑇𝑎 

 𝑖. 324 

Similarly, 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖  can be easily calculated since it corresponds to the lowest VI.  325 

This VI-Ts method allows for the estimation of 𝑇𝑎 
 𝑖 and 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 

 𝑖  without the need for additional 326 

meteorological data. However, it's worth noting that some studies have found that the VI-Ts method may 327 

not consistently provide satisfactory results, especially in colder regions where vegetation thrives better 328 

under higher temperatures. 329 

2.2 Technical validation 330 

The correlation coefficient, Root Mean Square Error (RMSE) and Nash-Sutcliffe efficiency coefficient 331 

are used to evaluate our global daily ET estimates with eddy covariance measurements and compared 332 

with the other five independent global ET products on a monthly scale.  333 

The correlation coefficient R is calculated as: 334 

𝑅 =
∑(𝑋−𝑋̅)(𝑌−𝑌̅)

√∑(𝑋−𝑋̅)2∑(𝑌−𝑌̅)2
                                                                     (2317) 335 
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𝑅  is the correlation coefficient; 𝑋  is the estimated variable; 𝑋̅  is the average of 𝑋; Y is the observed 336 

variable; 𝑌̅ is the average of 𝑌.  337 

The Root Mean Square Error (RMSE) is calculated as: 338 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑋𝑖−𝑌𝑖 )2

𝑖=1
𝑁

𝑁
                                                                    (2418) 339 

For a more nuanced understanding of the Root Mean Square Error (RMSE), we have deconstructed 340 

it into two distinct components: RMSEs (systematic RMSE) and RMSEu (unsystematic RMSE). This 341 

breakdown allows a more detailed examination of the systematic and unsystematic sources contributing 342 

to the overall error metric.  343 

The systematic Root Mean Square Error (RMSEs) is calculated as: 344 

𝑅𝑀𝑆𝐸𝑠 =  √
∑ (𝑍𝑖−𝑌𝑖 )2

𝑖=1
𝑁

𝑁
                                                                    (2519) 345 

The unsystematic Root Mean Square Error (RMSEu) is calculated as: 346 

𝑅𝑀𝑆𝐸𝑢 =  √
∑ (𝑍𝑖−𝑋𝑖 )2

𝑖=1
𝑁

𝑁
                                                                    (2620) 347 

Where 𝑍𝑖 = 𝑎 + 𝑏𝑌𝑖, where a and b are the least squares regression coefficients of the estimated variable 348 

𝑋𝑖 and observed variable 𝑌𝑖, 𝑁 is the sample size (Norman et al., 1995). 349 

The Nash-Sutcliffe efficiency coefficient (NSE) 350 

𝑁𝑆𝐸 = 1 − 
∑(𝑋𝑖− 𝑌𝑖)2

∑(𝑌𝑖− 𝑌̅)2                                                             (2721) 351 

The ratio of the standard deviations of 𝑋 and 𝑌 352 

𝑅𝑎𝑡𝑖𝑜 =  
𝑋𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑌𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                                                  (2822)            353 

The Bias of 𝑋 and 𝑌 354 

𝐵𝑖𝑎𝑠 =  𝑋̅ − 𝑌̅                                                  (2923)             355 

2.3 The gap-filling of MODIS data 356 

MODIS sensors on board of Terra and Aqua observe the Earth twice a day. However, there are 357 

always data gaps in the MODIS land products because of cloud cover problems. In the VISEA algorithm, 358 

we used the neighboring days’ available data to fill the data gaps. According to the study of Tang et al. 359 

(2009), the cloud gaps don’t reduce the accuracy of this algorithm significantly.  360 
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3. Data  361 

3.1 The input data 362 

The input data including the MODIS land products: daily 0.05° surface reflectance (MOD09CMG), 363 

land surface temperature/emissivity (MOD11C1) and albedo (MCD43C3), 8-day 0.05° vegetation 364 

indices (MOD13C1) and yearly 0.05° land cover products (MCD12C1). We also used hourly downward 365 

surface solar radiation from the Fifth Generation of the European Centre for Medium-Range Weather 366 

Forecasts (ECMWF) Reanalysis (ERA5), “ERA5-Land hourly data from 1950 to present” data as energy 367 

input of VISEA algorithm. The surface solar radiation data from ERA5-Land and land data products from 368 

MODIS land products are both near-real-time datasets with a one-week delay, enabling VISEA to provide 369 

global near-real-time ET estimations. Details of the input data, their download links, variable names, used 370 

parameters, spatial and temporal resolution are given in Table 1. 371 

Table 1. The input of VISEA 372 

The input of VISEA 

Data source Data name Used parameter Spatial/temporal 

resolution 

MODIS Land 

Product 

 

MOD11C1  Land Surface Temperature 0.05°/ daily 

MOD09CMG  Surface Reflectance 0.05°/daily 

MCD43C3  Albedo 0.05°/daily 

MOD13C1  NDVI 0.05°/16-day 

MCD12C1  Land cover 0.05°/ yearly 

ERA5-Land 

hourly data Rd  
Downward surface solar radiation  0.1°/ hourly 

 373 

3.2 The evaluation data  374 

3.2.1 The flux tower measurements from FLUXNET  375 

We evaluated the accuracy of daily averagedthe input ERA5-Land shortwave radiation, VISEA estimated 376 

daily net radiation, air temperature, and ET by comparing them withagainst measurements from 377 

FLUXNET2015 flux towers FLUXNET2015: CC-BY-4.0 (Pastorello et al., 2020) 378 

(https://fluxnet.org/data/download-data/). we compared its results with measurements obtained from 379 

FLUXNET2015: CC-BY-4.0 15, which can be accessed at https://fluxnet.org/data/download-data/. 380 

While there are records from a total of 212 flux towers in our datasets, not all of them met our stringent 381 

inclusion criteria. Each site needed to fulfill three specific requirements to be included in our analysis: 382 

(1) availability of data for the period spanning from 2001 to 2015; (2) ERA5-Land downward shortwave 383 

radiation greater than 0 within the 0.1° × 0.1° grid cell corresponding to the flux tower's location; (3) 384 

conformity with MODIS land cover data (MOD12C1) at the 0.05° × 0.05° grid cell level, ensuring that 385 

the flux tower was situated on land rather than over the ocean. 386 

As a result, our. The data from FLUXNET2015 can be obtained at https://fluxnet.org/data/download-data. 387 

While there are records from a total of 212 flux towers in our datasets, not all of them met our stringent 388 
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inclusion criteria. Each site needed to fulfil three specific requirements to be included in our analysis: (1) 389 

availability of data for the period spanning from 2001 to 2015; (2) ERA5-Land downward shortwave 390 

radiation greater than 0 within the 0.1° × 0.1° grid cell corresponding to the flux tower's location; (3) 391 

conformity with MODIS land cover data (MOD12C1) at the 0.05° × 0.05° grid cell level, ensuring that 392 

the flux tower was situated on land rather than over the ocean. In our evaluation using FLUXNET 393 

observational data, we leveraged FLUXNET’s diligent efforts in addressing energy closure concerns. 394 

Specifically, FLUXNET has implemented rigorous measures for energy closure corrections and 395 

validations, thereby enhancing the reliability of the observational data from the 212 globally distributed 396 

flux towers (Pastorello et al., 2020; Baldocchi et al., 2001; Wang et al., 2022), We selected data spanning 397 

the period from 2001 to 2015 and excluded sites where ERA5-Land downward shortwave radiation was 398 

zero. 399 

Our study incorporates data from a carefully selected subset of 149 flux towers that met these 400 

stringent criteria. This approach ensures the reliability and relevance of our analysis. The distribution of 401 

these 149 flux towers is presented in Figure 2. Supplementary Table S1 shows the longitude, latitude, 402 

elevation, and land cover type (classified by the International Geosphere-Biosphere Programme, IGBP) 403 

of these sites. The 149 sites covered 12 IGBP land cover types: 18 croplands (CRO), 1 closed shrublands 404 

(CSH), 15 deciduous broadleaf forests (DBF), 1 deciduous needle leaf forest (DNF), 10 evergreen 405 

broadleaf forests (EBF), 34 evergreen needle leaf forests (ENF), 30 grasslands (GRA), 5 mixed forests 406 

(MF), 8 open shrublands (OSH), 8 savannas (SAV), 13 wetlands (WET), and 6 woody savannas (WSA).  407 

3.2.2 The other gridded ET and precipitation products 408 

We also used five independent globally gridded ET and one precipitation products for VISEA estimated 409 

ET’s comparison. The five ET products include two MODIS-based ET products: MOD16 (Mu et al., 410 

2007, 2011) and Penman-Monteith-Leuning Evapotranspiration V2 (PML) (Zhang et al., 2019, 2022), 411 

one AVHRR-based AVHRR ET (Zhang et al., 2009, 2010), one machine learning algorithm output, the 412 

Global Bio-Atmosphere Flux (GBAF)FLUXCOM ET data (Jung et al., 2009, 2010, 2018, 2019) and one 413 

multiple-satellites data based Global Land Evaporation Amsterdam Model (GLEAM) ET (Martens et al., 414 

2017; Miralles et al., 2011). The precipitation data was from the Global Precipitation Climatology Centre 415 

(GPCC), which is based on local measurements (Schneider et al., 2014, 2017; Becker et al., 2013) and 416 

Global Unified Gauge-Based Analysis of Daily Precipitation (GPC). Details of these five ET products 417 

and the precipitation data are given in Table 2. To maintain the consistency in temporal and spatial 418 

resolution for comparison purposes, we obtained monthly MOD16 and PML, despite their original 419 

temporal resolution of 8 days and used the 0.05°×0.05° version of MOD16, AVHRR ET and PML. 420 

Additionally, for multi-year scale comparisons, we confined our dataset to the timeframe between 2001 421 

and 2020. We also incorporated daily Evapotranspiration (ET) data from GLEAM and VISEA, alongside 422 

precipitation data from the Climate Prediction Center (CPC), spanning from July 25th to August 2nd, 2022. 423 

This allowed for near-real-time analysis of ET and precipitation during the Yangtze River drought 424 

incident within that interval, despite the datasets potentially encompassing more extensive periods. 425 

Table 2. The five global girded ET products and one precipitation product used for comparison with our 426 带格式的: 段落间距段后: 1 行, 无孤行控制
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near-real-time global daily terrestrial ET estimates. 427 

Product 

name 

Spatial/Temporal 

resolution 

Time period Theory 

GLEAM  0.25°/Monthly 2002-

20192001-

2022 

Priestly-Taylor Equation 

GBAFFLU

XCOM  

0.5°/Monthly 2001-

20082016 

Machine learning 

MOD16  0.05°/8-dayMonthly 2001-

20132014 

Penman-Monteith Equation 

AVHRR  1°/Monthly 2001-2006 Improved Penman-Monteith Equation 

PML  0.05°/8-day 2003-2018 Penman-Monteith Equation and a diagnostic 

biophysical model 

GPCC  0.25°/Monthly 2001-2019 in-situ observations 

GPC  0.5°/Daily 08/28/2022-

09/01/2022 

Global Unified Gauge-Based Analysis of Daily 

Precipitation 

 428 

  429 
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430 

 431 

 432 

Figure 2. The distribution of 149 flux towers from FLUXNET in different IGBP land cover types, 433 

specifically OW (Water bodies), ENF (Evergreen needle leaf forests), EBF (Evergreen broadleaf forests), 434 

DNF (Deciduous needle leaf forests), DBF (Deciduous broadleaf forests), MF (Mixed forests), CSH 435 

(Closed shrublands), OSH (Open shrublands), WSA (Woody savannas), SAV (Savannas), GRA 436 

(Grasslands), WET (Permanent wetlands), CRO (Croplands), UB (Urban and built-up lands), CVM 437 

(Cropland/natural vegetation mosaics), SI (Snow and ice), BAR (Barren). 438 

4. Results 439 

In our initial analysis, we juxtaposed downward solar radiation input data from ERA5-Land 440 

(ERA5_Rd) with measurements obtained from 149 flux towers (Obv_Rd) across diverse IGBP land cover 441 

types, as illustrated in Figure 3. The results indicate a commendable agreement between ERA5_Rd and 442 

Obv_Rd measurements for the majority of land covers, with notable exceptions observed in savanna 443 

(SAV). Specifically, the mean Nash-Sutcliffe Efficiency (NSE) stands at 0.84, the mean correlation 444 

coefficient (R) at 0.92, and the mean Root Mean Square Error (RMSE) at 38.3 W m-2. This comparative 445 

analysis offers helpful insights into the performance of ERA5_Rd across different land cover categories. 446 
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Figure 3. The scatter plot of downward solar radiation from ERA5-Land (ERA5_Rd) compared with 448 

local instruments measurements (Obv_Rd) under 12 IGBP land cover types: CRO (Croplands), CSH 449 

(Closed shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF 450 

(Evergreen broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed 451 

forests), OSH (Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent 452 

wetlands). The red dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe 453 

Efficiency, R is correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, 454 

and RMSEu is unsystematic RMSE. The Frequency denotes the probability density estimated through 455 

the KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value of the 456 

probability density function equals 1. P is the P-Value for the Correlation Coefficient. 457 

In Figure 3, ERA5_Rd exhibits optimal performance in DNF and MF, reflected by NSE and R values 458 

surpassing 0.9. In these land covers, the mean RMSEs stand at 11 W m-2, mean RMSEu at 24.5 W m-2, 459 

and mean RMSE at 26.9 W m-2. However, its performance in SAV is notably subpar, characterized by 460 

an NSE of 0.29, an R of 0.59, highest RMSEs of 40 W m-2, RMSEu of 48.9 W m-2, and RMSE of 63.2 461 

W m-2. For ERA5_Rd, the mean RMSEs amount to 16 W m-2, and the mean RMSEu is 34.8 W m-2, 462 

suggesting that ERA5_Rd demonstrates high accuracy by effectively capturing the systematic variation 463 

in Obv_Rd, as indicated by its relatively low RMSEs and RMSEu close to RMSE (Willmott et al., 1981) 464 

in most land covers, except for SAV. Specifically, we have annotated the figure to indicate that all Rd 465 

values derived from ERA5 exhibit very low P-values (<0.01). This indicates a statistically significant 466 

correlation between the input shortwave radiation from ERA5 and the local measurements. 467 
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 468 

Figure 3. The scatter plot of downward solar radiation from ERA5-Land (ERA5_Rd) compared 469 

with local instruments measurements (Obv_Rd) under 12 IGBP land cover types: CRO (Croplands), CSH 470 

(Closed shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF 471 

(Evergreen broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed 472 

forests), OSH (Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent 473 

wetlands). The red dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe 474 

Efficiency, R is correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, 475 

and RMSEu is unsystematic RMSE. 476 

Several factors come into play in understanding the disparities in performance in downward solar 477 

radiation of ERA5 (ERA5_Rd) across different land cover types. In regions characterized by denser 478 

forests, such as DNF and MF, ERA5_Rd's superior performance may be attributed to the lower density 479 
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of ground-based meteorology stations (DNF, N = 1096) and the relatively uniform subsurface and canopy 480 

coverage in MF, facilitating a more accurate representation in the ERA5 radiative transfer model. 481 

Conversely, savannas present unique challenges due to sparse vegetation and flat terrain, influencing 482 

sunlight transmission dynamics (Yang and Friedl, 2003). Land-use changes, including farming and urban 483 

development, further complicate the accuracy of sunlight transmission (Wang et al., 2014; Zhang et al., 484 

2022). Additionally, factors like aerosols from natural or anthropogenic sources contribute to data 485 

variations (Naud et al., 2014; Wang et al., 2021).(Naud et al., 2014; Wang et al., 2021b). The inaccuracies 486 

in accounting for the rainy season, leading to increased cloud cover and rainfall in savannas, contribute 487 

to ERA5_Rd's limitations (Jiang et al., 2020). 488 

Our local scale evaluation, as demonstrated in Figure 3, supports our stance that this resolution 489 

disparity between MODIS Land product at 0.05° and ERA5 data at 0.1° minimally impacts the final ET 490 

product's accuracy. This approach is consistent with the methodologies adopted in the studies by Huang 491 

et al. (2017, 2021, 2023), which effectively utilized MODIS land products at a 0.05° resolution in 492 

conjunction with downward shortwave radiation data at a 0.1° resolution from the China Meteorology 493 

Forcing Dataset. Such precedents underscore the feasibility of integrating these resolutions for ET 494 

estimation, bolstering our confidence in the methodological integrity of our study despite the noted 495 

resolution differences. 496 

Figure 4 depicts scatter plots illustrating the comparison between the estimated air temperature using 497 

the VI-TS method (VISEA_Ta) and local meteorological measurements (Obv_Ta). The analysis reveals 498 

that VISEA_Ta generally aligns with Obv_Ta, exhibiting NSE values ranging from -0.22 (MF) to 0.82 499 

(OSH), R values ranging from 0.44 (MF) to 0.97 (DNF), and RMSE values ranging from 5.7 K (WSA) 500 

to 11.2 K (MF). Particularly noteworthy is VISEA_Ta's outstanding performance at OSH (NSE = 0.82, 501 

R = 0.93, RMSE = 6.6 K), WSA (NSE = 0.79, R = 0.92, RMSE = 5.7 K) and GRA (NSE = 0.66, R = 502 

0.88, RMSE = 6.8 K).  503 
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 504 

Figure 4. The scatter plot of daily air temperature simulated by VISEA (VISEA_Ta) compared with local 505 

instruments measurements (Obv_Ta) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed 506 

shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen 507 

broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH 508 

(Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red 509 

dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is 510 

correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 511 

unsystematic RMSE. The frequency denotes the probability density estimated through the Kernel Density 512 

Estimation, KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value 513 

of the probability density function equals 1. 514 
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Conversely, its least satisfactory performance is evident at MF (NSE = -0.22, R = 0.44, RMSE = 515 

11.2 K), SAV (NSE = -0.19, R = 0.57, RMSE = 6.4 K), and CRO (NSE = 0.26, R = 0.70, RMSE = 8.1 516 

K). The RMSEs are lower than RMSEu in most land cover sites, except in DNF. Despite VISEA_Ta 517 

displaying a high NSE of 0.8 and R of 0.97 at DNF, it exhibits higher RMSEs (8.3 K) compared to 518 

RMSEu (5.4 K), indicating a systematic underestimation of VISEA_Ta at DNF.  519 

As detailed in Section 2.4, the VI-Ts method relies on a negative correlation between vegetation 520 

coverage (VI) and land surface temperature (Ts), ideally suited for cases with significant VI and Ts 521 

differences. However, for land cover types like DNF and MF situated in temperate regions with distinct 522 

seasons and cool to cold climates, the assumed negative correlation breaks down. In these regions, the 523 

positive correlation between VI and Ts, driven by vegetation growth proportional to rising Ts, results in 524 

the failure of the VI-Ts method. The challenges persist in SAV, where the VI-Ts method encounters 525 

difficulties during both dry and wet seasons. In the dry season, the method falters due to the prevalence 526 

of bare soil, resulting in VI values approaching zero and homogeneous high Ts values. Conversely, the 527 

wet season presents challenges with both VI and Ts exhibiting relatively high values and limited 528 

variances between grid cells, ultimately undermining the accuracy of VISEA_Ta estimation. 529 
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530 

Figure 4. The scatter plot of daily air temperature simulated by VISEA (VISEA_Ta) compared with local 531 

instruments measurements (Obv_Ta) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed 532 

shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen 533 

broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH 534 

(Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red 535 

dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is 536 

correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 537 

unsystematic RMSE. 538 

The simulated daily net radiation (VISEA_Rn) from VISEA is assessed against local meteorological 539 

measurements (Obv_Rn) in Figure 5. In contrast to the satisfactory performance of ERA5_Rd in Figure 540 

3, VISEA_Rn exhibits more notable discrepancies, characterized by significant underestimation 541 
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compared to Obv_Rn. This is reflected in the mean NSE of 0.49, mean R of 0.74, and mean RMSE of 542 

43.3 W m-2. 543 

 544 

 545 

Figure 5. The scatter plot of daily net radiation simulated by VISEA (VISEA_Rn) compared with local 546 

instruments measurements (Obv_Rn) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed 547 

shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen 548 

broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH 549 

(Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red 550 

dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is 551 

correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 552 

unsystematic RMSE. 553 
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Specifically, VISEA_Rn demonstrates good accuracy in certain land cover types, including CHS 554 

with an NSE of 0.67, R of 0.84, and RMSE of 29.7 W m-2, EBF with an NSE of 0.63, R of 0.8, and RMSE 555 

of 42.9 W m-2, and ENF with an NSE of 0.66, R of 0.83, and RMSE of 39.6 W m-2. However, its 556 

performance diminishes notably at OSH, where it records an NSE of 0.16, R of 0.61, and RMSE of 56 557 

W m-2, as well as in SAV, with an NSE of 0.21, R of 0.52, and RMSE of 44.2 W m-2. 558 

 While VISEA_Rn appears to have lower accuracy compared to ERA5_Rd, in the majority of land 559 

cover types, the RMSEs are smaller than RMSEu, with mean RMSEs of 25.2 W m-2 and mean RMSEu 560 

of 34.3 W m-2. Moreover, the RMSEu of 43.3 W m-2 is almost the same as the RMSE. These findings 561 

suggest that VISEA_Rn demonstrates fewer systematic biases, with unsystematic RMSEu contributing 562 

the most to the overall RMSE. 563 

 564 
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Figure 5. The scatter plot of daily net radiation simulated by VISEA (VISEA_Rn) compared with local 565 

instruments measurements (Obv_Rn) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed 566 

shrublands), DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen 567 

broadleaf forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH 568 

(Open shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red 569 

dotted line is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is 570 

correlation coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 571 

unsystematic RMSE. The frequency denotes the probability density estimated through the Kernel Density 572 

Estimation, KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value 573 

of the probability density function equals 1. 574 

In the context of VISEA_Rn, a consistent pattern of approximately 30% underestimation in net 575 

radiation across various land cover types raises noteworthy discussions. This systematic discrepancy 576 

could be linked to the disparity in vegetation coverage between the observed sites' footprint and the mean 577 

vegetation coverage of the 0.05° × 0.05° grid cell. Specifically, the lower albedo within the footprint, 578 

compared to the grid cell's average albedo (as expressed by Eq. 2014, contributes to the underestimation 579 

of Obv_Rn. This is particularly evident in OSH, where the vegetation coverage within the footprint 580 

significantly exceeds the mean vegetation coverage of the grid cell (<0.2 compared to >0.5). 581 

 Additionally, factors such as the bias in ERA5_Rd (refer to Fig. 3, j) and VISEA_Ta (refer to Fig. 582 

4, j) contribute to the underestimation of VISEA_Rn in SAV. Moreover, a substantial 50% 583 

underestimation in DNF results from the underestimated VISEA_Ta (refer to Fig. 4, d), leading to a 584 

subsequent underestimation of downward long-wave radiation. Unpacking these intricacies sheds light 585 

on the nuanced interplay of variables influencing the observed underestimation trends in VISEA_Rn 586 

across diverse land cover types. 587 

Figure 6 illustrates scatter plots of daily evapotranspiration (ET) simulated by VISEA (VISEA_ET) 588 

against eddy covariance measurements obtained from 149 flux tower sites (Obv_ET) across 12 IGBP 589 

land cover types. The scatter plots of VISEA_ET reveal a dispersed distribution, as evidenced by an 590 

average NSE of -0.08, average R of 0.56, and average RMSE of 1.4 mm day-1. Notably, VISEA_ET tends 591 

to underestimate daily ET across most land cover types. 592 

 Among the 12 land cover types, VISEA_ET exhibits the highest accuracy in DNF, with an NSE of 0.4, 593 

an R of 0.82, and an RMSE of 0.9 mm day-1. It was closely followed by GRA, with NSE values of 0.26, 594 

R values of 0.65, and RMSE values of 1.3 mm day-1. However, for CRO, ENF, and WET land cover 595 

types, the NSE values, although above 0, are close to 0 (mean NSE of 0.11), with a mean R of 0.53 and 596 

a mean RMSE of 1.3 mm day-1. In the remaining land cover types, particularly in OSH and SAV, 597 

VISEA_ET appears to struggle in aligning with local measurements, resulting in NSE values of -0.57 598 

and -0.51, R values of 0.31 and 0.36, and RMSE values of 1.2 mm day-1 and 1.7 mm day-1, respectively.  599 
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 600 

Figure 6. The scatter plot of daily ET simulated by VISEA (VISEA_ET) compared with local instruments 601 

measurements (Obv_ET) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed shrublands), 602 

DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen broadleaf 603 

forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH (Open 604 

shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red dotted line 605 

is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is correlation 606 

coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 607 

unsystematic RMSE. 608 

As the evaluation of daily VISEA_ET with observed ET, Obv_ET, at CRO and WET, the bias 609 

mainly come from the bias in ERA5_Rd (the third highest RMSE of 45.2 W m-2 and second highest 610 

RMSE of 59.4 W m-2) (Fig. 3, a and l). In ENF, the biases primarily could by the disability of VISEA_ET 611 
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to capturing the Obv_ET under a cold climate, with low net radiation estimation (Fig. 5, f), and air 612 

temperature (Fig. 4, f). For OSH, the bias mainly arises from the poor estimation of VISEA_Rn, which 613 

has the lowest NSE of 0.16 and highest RMSE of 56 W m-2 (Fig. 5, i). The bias of VISEA_ET in SAV is 614 

a result of the combined biases in ERA5_Rd (the lowest NSE  and R of 0.29 and 0.59, respectively, and 615 

the highest RMSE of 63.2 W m-2), VISEA_Ta (the second lowest NSE and R of  -0.19 and 0.57 , 616 

respectively). 617 

 618 

 619 

 620 
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Figure 6. The scatter plot of daily ET simulated by VISEA (VISEA_ET) compared with local instruments 621 

measurements (Obv_ET) under 12 IGBP land cover types: CRO (Croplands), CSH (Closed shrublands), 622 

DBF (Deciduous broadleaf forests), DNF (Deciduous needle leaf forests), EBF (Evergreen broadleaf 623 

forests), ENF (Evergreen needle leaf forests), GRA (Grasslands), MF (Mixed forests), OSH (Open 624 

shrublands), SAV (Savannas), WSA (Woody savannas), WET (Permanent wetlands). The red dotted line 625 

is the 1:1 line. N is the number of data points, NSE is Nash-Sutcliffe Efficiency, R is correlation 626 

coefficients, RMSE is Root Mean Square Error, RMSEs is systematic RMSE, and RMSEu is 627 

unsystematic RMSE. The frequency denotes the probability density estimated through the Kernel Density 628 

Estimation, KDE method with a Gaussian kernel, and it is then scaled to ensure that the maximum value 629 

of the probability density function equals 1. 630 

In Figure 7, we utilized Taylor diagrams (Taylor, 2001) to evaluate the performances of six global 631 

gridded monthly ET products with simulated ET from VISEA (a), GLEAM (b), GBAFFLUXCOM (c), 632 

AVHRR (d), MOD16 (e), and PML (f). The Table 3 lists statistical values,metrics including correlation 633 

coefficient (CC), bias, RMSE, RMSEu, RMSEs, and NSE are presented in Table 3. In contrast to the 634 

daily evaluation of VISEA, the assessment on a monthly scale revealed significant performance metrics 635 

for VISEA, featuring a robust mean correlation coefficient (CC) of 0.69, a mean Nash-Sutcliffe 636 

Efficiency (NSE) of 0.25,across different vegetation types and the highest mean Ratio of 0.94. On the 637 

downside, VISEA exhibited the highest mean bias, signifying an underestimation of -9.7 mm month-638 
1their mean values. The vegetation types include Croplands (CRO), Closed Shrublands (CSH), Deciduous 639 

Broadleaf Forest (DBF), Deciduous Needleleaf Forest (DNF), Evergreen Broadleaf Forest (EBF), 640 

Evergreen Needleleaf Forest (ENF), Grasslands (GRA), Mixed Forests (MF), Open Shrublands (OSH), 641 

Savannas (SAV), Woody Savannas (WSA), Wetlands (WET), and a moderate mean RMSE of 31.5 mm 642 

month-1. Comparatively, MOD16 has slightly better performance than VISEA with the second highest 643 

CC of 0.72 and higher NSE of 0.41, lower bias of -8.3 mm month-1 and RMSE of 28.7 mm month-1.an 644 

overall mean (MEAN). 645 

In contrast, GLEAM and PML stood out as top performers among all products. GLEAM displays 646 

the second-highest CC of 0.71, a mean NSE of 0.39 and the lowest mean bias at 2.3 mm month-1. While, 647 

it also exhibited the highest mean RMSE of 31.5 mm month-1 among the products. On the other hand, 648 

PML achieved the highest mean CC of 0.75 and the highest NSE of 0.49 coupled with the lowest RMSE 649 

at 25.9mm month-1 affirming its relatively accurate estimations. GBAF and AVHRR exhibit a higher 650 

degree of disagreement with the observed data compared to the other ET products. GBAF presents the 651 

lowest mean CC of 0.62, the second lowest NSE of 0.16, and an RMSE of 30.58 mm month-1, while it 652 

has the second lowest mean bias of -4.3 mm month-1, providing valuable insights into its performance 653 

characteristics. On the other hand, AVHRR records the lowest NSE of 0.12, second lowest CC of 0.69 654 

and the highest RMSE of 31.5 mm month-1.  655 
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 657 

Figure 7. Taylor Diagrams comparing monthly measurements of (a) VISEA, GLEAM (b), 658 

GBAFFLUXCOM (c), AVHRR (d), MOD16 (e), and PML (f) with 150 flux towers (labeled as Obv) in 659 

different IGBP land cover types. The diagrams display the Normalized Standard Deviation (represented 660 

by red circles), Correlation Coefficient (shown as green lines), and Centred Root-Mean-Square (depicted 661 

as blue circles). 662 

Table 3. Statistical variables of six ET Products – CC (Correlation Coefficient), Ratio (the ratio of the 663 

standard deviations of simulated ET and flux tower measurements), Bias, RMSE, RMSEu, RMSEs, and 664 

NSE. 665 

  CRO CSH DBF DN

F 

EBF ENF GRA MF OSH SAV WSA WET MEA

N 

VISEA CC 
0.57 0.89 0.67 

0.9

5 
0.74 0.74 0.72 0.79 0.39 0.55 0.6 0.66 0.69 

Ratio 
0.77 1.27 0.99 

0.7

6 
1.29 1.01 0.8 1.27 1.06 0.7 0.78 0.63 0.94 

Bias 
-

14.16 
-1.27 3.9 

-

19.

06 

1.37 
-

12.84 
-13.47 1.53 -6.83 -0.45 -23.14 -31.98 -9.70 
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RMS

E 
39.4 12.5 34 

22.

1 
30.4 28.5 32 23.3 30.4 32.5 41.2 51.6 31.49 

RMS

EU 
27.4 12.1 30.7 7.4 30.4 23.8 23.1 23.2 25.4 22.5 25.8 25.4 23.10 

RMS

ES 
28.3 3.1 14.5 

20.

8 
2.2 15.7 22.2 1.5 16.8 23.5 32.1 44.9 18.80 

NSE 
0.18 0.64 0.34 

0.4

5 
0.24 0.33 0.41 0.38 -0.36 0.28 0.01 0.08 0.25 

  
             

GLEAM CC 
0.56 0.99 0.56 

0.9

1 
0.81 0.77 0.75 0.83 0.53 0.53 0.61 0.67 0.71 

Ratio 
0.69 1.25 0.73 

0.7

7 
0.94 0.98 0.75 0.99 0.99 1.02 0.98 0.54 0.89 

Bias 

-5.68 10.71 -3.55 

-

6.1

2 

3.41 2.34 -2.01 10.67 4.44 -7.99 -17 -16.26 

-

2.251.

66 

RMS

E 
36.8 12.1 35.8 

14.

6 
21.4 23.8 27.6 20.2 25.6 38.4 39.8 43.3 28.28 

RMS

EU 
24.6 3.2 25.4 9.6 19.4 22.0 20.7 16.3 21.9 33.2 31.9 21.4 20.80 

RMS

ES 
27.3 11.6 25.3 

10.

9 
9.1 _9 18.2 11.9 13.1 19.3 23.7 37.7 

18.920

9 

NSE 
0.29 0.660 0.28 

0.7

7 
0.62 0.53 0.57 0.53 0.03 -0.01 0.06 0.34 0.3938 

  
             

GBAFFLU

XCOM 

CC 0.786

6 
0.7598 

0.536

9 

_0.

95 

0.887

9 

0.667

8 
0.5875 0.7383 

0.677

8 
0.3559 0.3565 0.5869 0.6276 

Ratio 
0.894 

0.851.

76 

0.589

6 

_1.

04 

0.911.

12 

0.791.

18 
0.5797 

0.871.

42 

0.649

7 
1.4204 

0.631.

08 
0.4662 

0.771.

09 

Bias 
3.487

.22 

18.252

3.49 

3.531

7.57 

_-

2.2

6 

-

1.556.

29 

-

7.956.

40 

-

12.516

.91 

14.082

1.02 

1.961

0.04 

-

10.020

.74 

-

25.089

.75 

-

31.661

4.04 

-

4.326.

14 

RMS

E 

22.53

5.8 

21.827

.9 

35.93

6.7 

_9.

9 

16.32

5.2 
26.27 

37.130

.0 

31.924

.2 

2119.

8 

33.735

.5 

43.137

.8 

53.841.

7 

30.582

9.91 

RMS

EU 

17.83

1.0 
105.8 

20.82

8.9 

_9.

7 

14.72

4.1 

19.42

5.8 
2026.8 

16.723

.5 

1315.

8 

30.232

.3 

21.234

.3 
24.220 

18.602

3.52 

RMS

ES 

13.81

8.0 

19.427

.3 

29.32

2.6 

_2.

3 
_7.5 17.7 

31.213

.4 

17.521

.6 

1611.

9 

15.114

.8 

37.515

.8 
5033.9 

24.841

6.34 

NSE 

0.632 
0.49-

1.14 

0.272

3 

_0.

88 

0.774

8 

0.374

2 
0.2548 

-

0.2617 

0.444

3 

-

1.210.

14 

-

0.4617 
-0.0340 0.1622 

  
             

AVHRR CC 0.8 _ 0.8 _ 0.76 0.68 0.58 0.79 0.69 0.32 0.7 0.79 0.69 

Ratio 0.91 _ 0.87 _ 0.87 1.15 0.83 0.9 0.89 0.3 0.95 0.43 0.81 

Bias -1.15 _ 5.96 _ 5.24 -2.73 -7.04 0.16 -2.41 -47.83 -0.42 -25.32 -7.55 

RMS

E 
23.6 _ 26.1 _ 23.3 31 36 18.8 22.1 54.7 33.2 46.6 31.54 

RMS

EU 
21.2 _ 22 _ 19.5 29.8 27.9 16.6 18.8 _ 29.8 14.6 22.24 

RMS

ES 
10.4 _ 14.1 _ 12.7 8.4 22.7 8.7 11.6 54.2 14.6 44.2 20.16 

NSE 0.63 _ 0.61 _ 0.54 0.23 0.24 0.62 0.43 -2.79 0.42 0.29 0.12 
  

             

MOD16 CC 
0.57 0.94 0.71 

0.9

5 
0.82 0.74 0.71 0.81 0.67 0.53 0.59 0.65 0.72 

Ratio 0.64 1.26 0.77 0.8 1.11 0.81 0.74 1.09 0.66 1 1 0.46 0.86 

Bias 

-7.88 -14.03 5.79 

-

4.0

7 

-7.17 -4.51 -5.05 4.09 -6.41 -16.01 -23.76 -21.07 -8.34 

RMS

E 
36.9 16.7 30.7 

11.

1 
23.4 24.3 29.6 19.4 20.4 40.4 44.3 47.2 28.70 

RMS

EU 
23 8.4 23 7.4 22 19.3 21.7 18.7 12.8 32.4 33.3 18.8 20.07 

RMS

ES 
28.8 14.4 20.3 8.2 7.8 14.9 20.2 5.2 15.9 24.2 29.1 43.3 19.36 

NSE 
0.28 0.24 0.48 

0.8

7 
0.55 0.52 0.5 0.57 0.39 0.12 0.14 0.23 0.41 

  
             

PML CC 
0.68 0.99 0.68 

0.9

3 
0.8 0.81 0.68 0.77 0.7 0.57 0.61 0.82 0.75 

Ratio 
0.8 1.04 0.81 

1.2

2 
0.98 0.97 0.79 0.96 1.01 0.94 0.83 0.56 0.91 

Bias 
-6.6 -3 -3.39 

0.4

7 
-1.42 -6.07 -6.66 -0.59 6.48 -0.18 -16.04 -22.1 -4.93 

RMS

E 
33.2 4.1 31.5 

13.

3 
21.9 22.2 31.7 19.8 21.1 34.5 37.5 40.5 25.94 

RMS

EU 
25.6 2.8 25.1 

12.

7 
20.5 20.1 24.1 18.2 18.6 29.5 27.1 17.3 20.13 

RMS

ES 
21.1 3.1 19 3.9 7.8 9.6 20.6 7.7 9.9 17.8 26 36.6 15.26 

NSE 
0.42 0.95 0.44 

0.7

9 
0.61 0.6 0.43 0.55 0.33 0.19 0.16 0.43 0.49 

 666 

VISEA, with a mean correlation coefficient (CC) of 0.69, indicates moderate correlation across 667 

vegetation types but suffers from significant biases, notably in WET, with a mean bias of -9.7 mm month-668 
1. It also has the highest mean Root Mean Square Error (RMSE) at 31.5 mm month-1 and a mean NSE of 669 

0.25. MOD16 demonstrates a slightly better correlation with a mean CC of 0.72 and presents less 670 
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variation in bias, resulting in a marginally lower mean RMSE of 28.7 mm month-1 and a higher mean 671 

NSE of 0.41. AVHRR matches VISEA in mean CC at 0.69 but exhibits extreme biases, particularly in 672 

SAV, and achieves a comparable mean RMSE of 31.5 mm month-1. However, its mean NSE of 0.12 is 673 

the lowest among the six products, suggesting its predictions are less reliable. 674 

On the other hand, GLEAM, FLUXCOM, and PML show better agreements. GLEAM has a high 675 

mean CC of 0.71 with the lowest bias at -1.66 mm month-1, indicating a consistent performance with a 676 

mean RMSE of 28.3 mm month-1and a mean NSE of 0.38. FLUXCOM exhibits a higher mean CC of 677 

0.76, suggesting better overall correlation, but with a higher mean bias of 6.1 mm month-1, it hints at a 678 

tendency towards overestimation. The mean RMSE stands at 29.9 mm month-1, with a mean NSE of 0.22. 679 

PML outperforms the others with the highest mean CC of 0.75 and the highest mean NSE of 0.49, 680 

indicating the strongest predictive accuracy. It also has the lowest mean RMSE at 25.9 mm month-1, 681 

affirming its status as the most accurate ET estimation product among those evaluated. 682 

Figure 8 illustrates the spatial distribution of the multi-year average monthly precipitation data 683 

sourced from the Global Precipitation Climatology Centre ((a-g), the zonal mean (h) and inter-annual 684 

variation (i) of (a) GPCC) and the calculated evapotranspiration (ET) by various models, namely VISEA, 685 

GLEAM, GBAF, AVHRR, MOD16, and PML. Comparing these precipitation and ET products may 686 

seem incompatible; nevertheless, this section focuses on the distribution patterns of rainfall and ET rather 687 

than on their specific values. (2001-2019), (b) VISEA (2001-2020), (c) GLEAM (2001-2020), (d) 688 

FLUXCOM (2001-2016), (e) AVHRR (2001-2006), (f) MOD16 (2001-2014) and (g) PML (2003-2018).  689 

 690 

 691 
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 692 

Figure 8. The spatial distribution of the multi-year average (2001-2019) for a-g), the zonal mean (h) and 693 

inter-annual variation (i) of (a) GPCC (2001-2019),), (b) VISEA (2001-2020), (c) GLEAM (2003-694 

20192001-2020), (d) GBAFFLUXCOM (2001-20082016), (e) AVHRR (2001-2006), (f) MOD16 (2001-695 

2014) and (g) PML (2003-2018).  696 

All six of these ET products exhibit similar and coherent spatial ET distributions, which align with 697 

the precipitation distribution data from GPCC. The highest ET values (1,400 to 1,600 mm year-1) are 698 

predominantly concentrated in equatorial low-latitude regions with the highest precipitation levels (1,600 699 

to 1,800 mm year-1). These regions include South America (Amazon Basin), Central Africa (Congo 700 

Basin), and Southeast Asia (encompassing Indonesia, Malaysia, parts of Thailand, and the Philippines), 701 

which are known for their tropical rainforest climates. These ET estimates align with the findings of 702 

Tapiador et al. (2012) and Panagos et al. (Panagos et al., 2017), who reported that the multi-year average 703 

annual precipitation is approximately 2,000 mm year-1.  704 

Conversely, areas categorized as barren land (BAR), including deserts such as Sahara, Arabian, 705 

Gobi, Kalahari, and large portions of Australia, as well as snow and ice (SI) areas like most parts of 706 

Canada, Russia, and the Qinghai-Tibet Plateau in China, where the growing seasons are short, typically 707 

falling below 400 mm year-1. These areas are also characterized by the lowest annual precipitation, 708 

ranging from 200 to 400 mm year-1 according to GPCC precipitation data mm year-1. ET estimates for 709 
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other land cover types fall within this range, varying from 400 to 1,400 mm year-1, in close alignment 710 

with the GPCC precipitation data, which falls between 600 to 1,600 mm year-1. 711 

Figure 9 presents the daily variations in ET from August 28th, 2022, to September 1st, 2022, within 712 

the Yangtze River Basin, along with the mean ET and Global Unified Gauge-Based Analysis of Daily 713 

Precipitation recorded during this period. According to a study by Zhang et al. (2023), the summer of 714 

2022 witnessed a severe drought within the Yangtze River Basin. This drought commenced in July, 715 

gradually relenting in late August and early September. Figure 9 visually represents the drought severity, 716 

highlighting extremely low ET levels (below 0.2 mm day-1) across most of the basin on August 28th, 717 

2022. Subsequently, on August 29th, 2022, an upsurge in precipitation resulted in a corresponding 718 

increase in ET (exceeding 0.8 mm day-1) throughout the majority of the basin, as depicted in subfigures 719 

(b)-(e). 720 

 721 

Figure 9. Daily ET distribution of VISEA from August 28th to September 1st in 2022) (a)-(e) and mean 722 

ET and Precipitation Variance in the Yangtze River Basin (f) during the same period. 723 

In subfigure (f), the variances in mean ET and precipitation across the river basin during this period 724 

are showcased. Notably, a substantial increase in rainfall (11 mm day-1) on August 29th, 2022, was 725 

responsible for the surge in ET (1.1 mm day-1) on August 30th, 2022, indicating an alleviation of drought 726 

conditions within the region. The consistent alignment of ET and precipitation variances underlines 727 

VISEA's ability to capture near-real-time fluctuations in ET, particularly during drought events.  728 

The VISEA ET product demonstrates consistent spatial distribution patterns among the six ET 729 

products across various years, both in terms of annual means (a-g) and latitude zonal means (h). These 730 

patterns align closely with the precipitation distribution data from GPCC. It also exhibits similar 731 

distributions to other ET products, both below the 5th percentile (Figure S4) and above the 95th percentile 732 

(Figure S5). The highest ET values (about 1,500 mm year-1) are predominantly concentrated in equatorial 733 

low-latitude regions with the highest precipitation levels (nearly 2.500 mm year-1). The available water 734 

for evaporation and transpiration is abundant, and the primary constraint on evapotranspiration lies in the 735 

availability of energy to drive the process. In such conditions, water availability is not a limiting factor, 736 

allowing for ample potential evapotranspiration. These regions include South America (Amazon Basin), 737 
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Central Africa (Congo Basin), and Southeast Asia (encompassing Indonesia, Malaysia, parts of Thailand, 738 

and the Philippines), which are known for their tropical rainforest climates. These ET estimates align 739 

with the findings of Chen et al. (2021) and Zhang et al. (2019) who reported that the multi-year average 740 

annual ET is nearly 1,500 and the precipitation is approximately 2,500 mm year-1 (Panagos et al., 2017).  741 

Conversely, areas categorized as barren land (BAR), including deserts such as Sahara, Arabian, 742 

Gobi, Kalahari, and large portions of Australia, as well as snow and ice (SI) areas like most parts of 743 

Canada, Russia, and the Qinghai-Tibet Plateau in China, where the growing seasons are short, typically 744 

falling below 400 mm year-1. These areas are also characterized by the lowest annual precipitation, 745 

ranging from 200 to 400 mm year-1 according to GPCC precipitation data mm year-1. ET estimates for 746 

other land cover types fall within this range, varying from 400 to 1,400 mm year-1, in close alignment 747 

with the GPCC precipitation data, which falls between 600 to 1,600 mm year-1. In these areas, there is a 748 

surplus of available energy, and the primary limitation on ET stems from the availability of water. This 749 

implies a high atmospheric water demand, often quantified as potential evapotranspiration (potential ET).  750 

In regions with moisture-limited evapotranspiration (ET), the primary constraint on ET arises from 751 

the limited availability of water. These areas typically experience insufficient precipitation or water 752 

supply, leading to a situation where the atmospheric demand for moisture exceeds the available water 753 

resources. On the other hand, regions with energy-limited ET face limitations due to inadequate energy 754 

for the process of evaporation and transpiration. This can be influenced by factors such as cloud cover, 755 

shading, or other conditions that limit the absorption of solar radiation. In such areas, even if there is an 756 

ample water supply, the lack of sufficient energy hinders the rate of evapotranspiration. 757 

Regarding the inter-annual monthly variations, panel (i) shows the fluctuations in ET across different 758 

years for the analyzed ET products and precipitation data. The graph reveals a rhythmic pattern of ET 759 

across the years, VISEA with other ET products showed distinctive peaks and troughs that correspond to 760 

seasonal changes and inter-annual climate variability. The ET products' data exhibit a close alignment 761 

with the precipitation patterns reported by GPCC, highlighting the interconnectedness between ET and 762 

precipitation as climatic variables. Notably, FLUXCOM consistently presents higher ET estimations 763 

compared to the other products, and GLEAM's ET estimations are also slightly higher during the winter, 764 

indicating a trend of systematic overestimation in these products relative to the others in the dataset. 765 

Figure 9 presents the daily variations in ET from VISEA and GLEAM along with the precipitation 766 

from Global Unified Gauge-Based Analysis of Daily Precipitation recorded in the Yangtze River Basin 767 

during from August 26th, 2022, to September 2nd, 2022. According to a study by Zhang et al. (2023), the 768 

Yangtze River Basin endured a significant drought during the summer of 2022, beginning in July and 769 

showing signs of abatement towards the end of August and into early September. As GLEAM failed to 770 

capture the variability of ET during this drought and exhibited a negative correlation with precipitation 771 

data from CPC, we wouldn’t discuss it further in this context.  772 
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 773 

Figure 9. Daily ET from VISEA (a-h), GLEAM (i-p), and CPC precipitation (q-x) distributions 774 

from August 26th to September 2nd in 2022, alongside daily mean ET and Precipitation variances 775 

in the Yangtze River Basin (y) during the same period. 776 

VISEA ET graphically illustrates the evolving drought conditions: with notably low ET levels (below 777 

1 mm day-1) across the basin on August 26th to 28th, evidenced in panel (a-c). A notable increase in 778 

precipitation on August 29th, reflected in panels (s) and (u), correlates with an upswing in ET values 779 

(surpassing 1 mm day-1) throughout the basin, as visualized in panels (d-f). The graph in panel (y) displays 780 

the variances in mean ET and precipitation within the basin over this timeframe, highlighting a significant 781 
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rise in ET (up to 11 mm day-1) on August 30th, which corresponds with the observed increase precipitation 782 

(reaching 11 mm day-1) on August 29th.  783 

VISEA's ET data align closely with the variances observed in the CPC precipitation data, showcasing 784 

its effectiveness in capturing daily ET fluctuations, especially during and after the drought conditions. It 785 

accurately reflects the dip and subsequent recovery in ET values following the precipitation events, 786 

indicating its robustness in near-real-time monitoring of ET during such hydrological extremes.  787 

5. Discussion  788 

While global ET products require at least 2 weeks (GLEAM, FLUXCOM, AVHRR and PML ET 789 

products has more than one years’ delay, MOD16 has at least 2 weeks delay) to generate global actual 790 

ET measurementestimation, we developed VISEA, a satellite-based algorithm which is capable of 791 

generating near-real-time evapotranspiration on a daily time step with a resolution of 0.05°. Compared 792 

with the monthly global ET of GLEAM, FLUXCOM, AVHRR which have more than two years’ delay 793 

and 8-day of MOD16 and PML which has more than two weeks’ delay and also more than one years’ 794 

delay. This algorithm is based Nishida et al. (2003) satellite-based evaporation fraction algorithm. To 795 

assess its accuracy, we compared the calculated ET with data from 149 flux towers around the world in 796 

various land use types.   797 

Scale mismatch is a problem for many satellite-based ET products. The footprints of these flux towers 798 

typically range from 100 to 200 meters, while the VISEA model outputs gridded cells at a resolution of 799 

0.05° × 0.05° (nearly 25 km²). This discrepancy introduces errors, especially since flux towers require a 800 

uniform fetch, which may not represent the larger gridded cell. To enhance the validity of our 801 

assessments, we assessed monthly values and spatial patterns of our ET measurements with five other 802 

satellite-based ET products named MOD16, AVHRR, GLEAM, GBAF (Sun et al., 2023). To enhance 803 

the validity of our assessments, we assessed monthly values and spatial patterns of our ET measurements 804 

with five other satellite-based ET products named MOD16, AVHRR, GLEAM, FLUXCOM and PML 805 

(Figure 7 and 8). 806 

The evapotranspiration is calculated with VISEA using shortwave downwards radiation, and 807 

intermediate variables including daily air temperature and net radiation. The calculated 808 

evapotranspiration generally matches local measurements and other model calculated values well but we 809 

found significant biases (Figures 6 and 7). These biases largely arise from inaccuracies in the input ERA5-810 

Land shortwave radiation (Figure 3), improper application of the VI-Ts method (Figure 4), and 811 

uncertainties in daily net radiation (Figure 5). Below we detail the origin of the biases. 812 

Incoming shortwave radiation from ERA5-Land is employed to derive the available energy for 813 

vegetation coverage and bare soil (Eq. 20 and 21), which are the main parameters for calculating daily 814 

ET (Eq. 22). While ERA5-Land is widely utilized as a reanalysis dataset, offering near-real-time land 815 

variables by integrating model data with global observations based on physical laws. However, the 816 

accuracy of shortwave radiation from ERA5-Land seems compromised in savannas (Figure 3) due to the 817 

challenges associated with simulating radiation transmission under land-use changes and aerosol 818 
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pollution from natural or anthropogenic sources.14 and 15), which are the main parameters for calculating 819 

daily ET (Eq. 16). While ERA5-Land is widely utilized as a reanalysis dataset, offering near-real-time 820 

land variables by integrating model data with global observations based on physical laws. However, the 821 

accuracy of shortwave radiation from ERA5-Land seems compromised in savannas (Figure 3) due to the 822 

challenges associated with simulating radiation transmission under land-use changes and aerosol 823 

pollution from natural or anthropogenic sources (Babar et al., 2019; Martens et al., 2020). 824 

Air temperature is an important parameter in determining the daily evaporation fraction of bare soil 825 

(Eq. 14), canopy surface resistance (Eq. A1), aerodynamic resistance of the bare soil (Eq. A9), 826 

atmospheric emissivity (B1), available energy for vegetation coverage and bare soil (Eq. 20 and 21). 827 

Since air temperature is not measured directly by satellites, many other ET product use therefore ground 828 

observations, land model or reanalysis data. In contrast, VISEA derives the air temperature from the 829 

negative linear relationship between vegetation index (VI) and surface temperature (Ts) using the VI-Ts 830 

method (section 2.1.3). It gives very good results under grass land, open shrubland and woody savannas 831 

landcover types, as shown in Figure 4. However, in regions where the vegetation index and temperature 832 

data in adjacent grid cells show small variations, such as dense forests and bare lands and deserts. Also, 833 

in regions with freezing temperatures, the VI-TS method does perform well, because warmer temperature 834 

is related to increased vegetation, opposite the other regions, where there is a negative. 835 

Another source of bias stems from our VISEA model, is the daily net radiation’s uncertainties. which 836 

are primarily attributed to the input shortwave radiation and air temperature, as indicated by the energy 837 

budget equation (Eq. 17).  838 

The ET calculation in VISEA relies solely on vegetation coverage Air temperature is an important 839 

parameter in determining the daily evaporation fraction of bare soil (Appendix B), canopy surface 840 

resistance, aerodynamic resistance of the bare soil (Appendix D) and atmospheric emissivity (Appendix 841 

E), available energy for vegetation coverage and bare soil (Eq. 14 and 15). Since air temperature is not 842 

measured directly by satellites, many other ET product use therefore ground observations, land model or 843 

reanalysis data. In contrast, VISEA derives the air temperature from the negative linear relationship 844 

between vegetation index (VI) and surface temperature (Ts) using the VI-Ts method (section 2.1.3). It 845 

gives very good results under grass land, open shrubland and woody savannas landcover types, as shown 846 

in Figure 4. As previously explained, the VI-Ts method relies on the negative linear correlation between 847 

the Vegetation Index (VI) and surface temperature (Ts) within a 5 × 5 grid. Therefore, both the variance 848 

of VI values across these grid cells and the negative correlation are essential for calculating the air 849 

temperature (Nishida et al., 2003). However, in regions where the vegetation index and temperature data 850 

in adjacent grid cells show small variations, such as dense forests and bare lands and deserts. Also, in 851 

regions with freezing temperatures, the VI-TS method does perform well, because warmer temperature is 852 

related to increased vegetation, opposite the other regions, where there is a positive correlation between 853 

the vegetation index and surface temperature (Cui et al., 2021). 854 

Another bias source of the VISEA model is the uncertainties of daily net radiation, notably originating 855 

from input downward shortwave radiation from ERA5-Land (Figure 2) and VI-Ts estimated air 856 
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temperature (Figure 4). The energy budget equation (Eq. 11) and these two figures indicate that net 857 

radiation shows more uncertainties than shortwave radiation and air temperature. At the same time, 858 

assuming a linear relationship between cloud coverage (Eq. 12 and 13) and the calculation of downwards 859 

longwave radiation (Eq. 14 and 15) may be an oversimplification that could introduce uncertainties. Since 860 

available energy for evapotranspiration (ET) depends on net radiation (Eq. 16), addressing these 861 

uncertainties is crucial for enhancing overall model accuracy (Brutsaert, 1975; Huang et al., 2023). Future 862 

refinements will contribute to a more precise daily net radiation estimation within the VISEA model. 863 

The VISEA model calculates ET primarily based on vegetation coverage, utilizing it as an indirect 864 

constraint andto estimate evapotranspiration. However, this model does not explicitly account for directly 865 

incorporate variables related to water availability. This approach overestimates evapotranspiration (ET), 866 

which is a critical factor in ET processes. In tropical regions with excessively high , where there is an 867 

abundance of solar radiation (available energy. Additionally, VISEA), the model tends to overestimate 868 

ET due to its emphasis on vegetation coverage without adequately accounting for the actual water 869 

available for evapotranspiration. This methodology, while effective in capturing the influence of 870 

vegetation on ET under varied conditions, can lead to overestimations in areas where energy availability 871 

significantly exceeds water availability, typical of many tropical regions. Our analysis and subsequent 872 

discussion aim to highlight this characteristic of the VISEA model, acknowledging its implications for 873 

ET estimations in such energy-rich, water-variable environments. 874 

Furthermore, the VISEA model exhibits a tendency to underestimate ET in colder areasregions within 875 

the 60°N to 90°N latitude range, such as the western regionsterritories of Canada, which is attributed. 876 

This underestimation is primarily due to the model's failureinability to account forincorporate evaporation 877 

from frozen surfaces ininto its ET calculations.    These discrepancies arise from several factors: 878 

inaccuracies in the ERA5-Land shortwave radiation data (illustrated in Figure 3), the misapplication of 879 

the VI-Ts method (explained in Figure 4), and the uncertainties in daily net radiation (depicted in Figure 880 

5). Designed to amalgamate bare soil and full vegetation coverage as depicted in Equation 1, the VISEA 881 

model encounters difficulties in accurately estimating ET at higher latitudes, especially in conditions of 882 

reduced solar radiation. These challenges are predominantly linked to the uncertainties associated with 883 

ERA5-Land shortwave radiation data, further compounded by increased cloudiness levels in these 884 

regions, as highlighted by Babar et al. (2019). Such uncertainties have a substantial impact on the model's 885 

performance at higher latitudes, affecting its reliability in these conditions. 886 

In our efforts to enhance the model, we are planning to refine the model's treatment of frozen surfaces 887 

and bare lands, aiming to improve accuracy in colder and arid regions. Future works include 888 

improvements that need to be made to reduce the bias in ET, refine the VI-TS method, explore additional 889 

factors like aerosols and land use changes, and enhance spatial resolution. 890 

Despite these challenges, our analysis confirms the VISEA model's ability to provide valuable ET 891 

estimates during the growing season, evidenced by a high Nash-Sutcliffe efficiency (NSE) of 0.4 and a 892 

correlation coefficient (R) of 0.9 when compared against local measurements. These findings support the 893 
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model's applicability for ET estimation in the 60°N to 90°N latitude range, highlighting its effectiveness 894 

and relevance during the vegetative growth period. 895 

We recognize that variations in the temporal coverage of ET products can introduce variability into 896 

our comparisons. To mitigate this, we have deliberately chosen validation datasets spanning from 2001 897 

to 2020, achieving a uniform analysis timeframe. This selection enabled us to utilize a diverse range of 898 

ET products, effectively minimizing the influence of temporal discrepancies on our comparative analysis. 899 

Concentrating on this two-decade interval has allowed us to robustly evaluate spatial and inter-annual ET 900 

variability, significantly reducing potential biases associated with differing dataset durations. This 901 

method enhances the clarity of our validation approach, solidifies the reliability of our comparisons, and 902 

ensures our analysis accurately reflects long-term ET dynamics. 903 

The VISEA ET product provides near-real-time global evapotranspiration (ET) data with a mere one-904 

week delay and a daily resolution of 0.05 degrees, making it a valuable asset for the research community. 905 

It empowers researchers by providing access to information on land surface water consumption in near-906 

real-time, which is crucial for monitoring and predicting droughts, and enables decision-makers to make 907 

well-informed choices. This not only enhances research efficiency but also supports more effective and 908 

expedited actions within the scientific and environmental research community.  909 

The accuracy of the VISEA model could be enhanced by incorporating additional satellite and climate 910 

data with higher resolution and improved accuracy. Moreover, the delay in providing ET data could be 911 

reduced to three days or less by integrating real-time updated satellite and climate data. In response to 912 

the suggestion to conclude our discussion with specific recommendations for future research directions, 913 

we recognize the importance of addressing the identified gaps and uncertainties. We propose exploring 914 

the development of alternative methods for estimating air temperature and net radiation to provide more 915 

accurate and reliable models. Additionally, incorporating variables such as soil moisture and water 916 

availability into the model could further refine its precision. By integrating these suggestions, we aim to 917 

outline a comprehensive roadmap for future research that builds upon our findings, significantly 918 

contributing to the enhancement of environmental modelling and prediction within the field. 919 

6. Conclusion  920 

In recent decades, several ET products using satellites have been developed, but few of them 921 

provide near-real-time global terrestrial ET estimates. Despite being updated at the fastest rate, the 922 

MOD16 ET dataset still encounters a delay of more than two weeks. In this study, we provide a satellite-923 

based near-real-time global daily terrestrial ET estimates by incorporating near-real-time updated hourly 924 

shortwave radiation data from ERA5 and MODIS land products at a spatial resolution of 0.05°. The 925 

assessments indicate that near-real-time ET estimation with VISEA achieves comparable accuracy to 926 

other existing data products and offers a significantly shorter time frame for daily data availability.  927 

The new VISEA aligns well with measurements at 149 tower flux sites distributed globally in both 928 

daily and monthly time scales. It exhibits superior accuracy compared to the other five ET products for 929 
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DNF land cover types and demonstrates competitive accuracy forcorrelation coefficients and Nash-930 

Sutcliffe efficiencies (NSEs) across most land cover types but exhibits higher biases. However, like the 931 

other five ET products, it encounters greater uncertainties for the SAV land cover type. In the comparison 932 

of the multiple-year average spatial distribution of other monthly ET products and GPCC precipitation, 933 

VISEA aligns with GPCC and other ET estimates in most areas worldwide, indicating its adherence to 934 

the water balance in those regions.consistently demonstrates spatial patterns aligned with GPCC in most 935 

areas, featuring elevated values in tropical rainforest regions and lower values in arid and semi-arid zones. 936 

This alignment underscores VISEA's proficiency in portraying the spatial distribution of 937 

evapotranspiration, offering valuable insights into water consumption dynamics across diverse 938 

geographical regions. However, VISEA exhibits slightly higher estimates in the Sahara region and lower 939 

estimations in the western Canada. In future studies, the VISA ET algorithm can be enhanced by 940 

incorporating more precise models for the radiation estimation in savanna and the evaporation from the 941 

frozen surface. These improvements will greatly contribute to enhancing the overall accuracy of the 942 

algorithm. The satellite-based near-real-time global daily terrestrial ET estimates could be beneficial for 943 

meteorology and hydrology applications requiring real-time data, especially in coordinating relief efforts 944 

during droughts. 945 

7. Code Availability  946 

Python code to synthesise the results and to generate the figures of VISEA results and the codes for 947 

generating the global ET products can be obtained through the public repository at 948 

https://doi.org/10.6084/m9.figshare.24647721.v1 (Huang, 2023c).  949 

8. Data Availability  950 

The VISEA ET data can be obtained from https://data.tpdc.ac.cn/en/data/236e33bf-e66b-4682-bbc1-951 

274de1dcbcd3 (Huang, 2023a)(Huang, 2023a). 952 

8.1 Input data 953 

MOD11C1 can be obtained at https://e4ftl01.cr.usgs.gov/MOLT/MOD11C1.061/. MOD09CMG can be 954 

obtained at https://e4ftl01.cr.usgs.gov/MOLT/MOD09CMG.061/. MCD43C3 can be obtained at 955 

https://e4ftl01.cr.usgs.gov/MOTA/MCD43C3.061/. MOD13C1 can be obtained at 956 

https://e4ftl01.cr.usgs.gov/MOLT/MOD13C1.061/. MCD12C1 can be obtained at 957 

https://e4ftl01.cr.usgs.gov/MOLT/MOD21C1.061/. ERA5-Land shortwave radiation data can be 958 

obtained at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form.  959 

8.2 Evaluation data 960 

FLUXNET2015 flux towers data (FLUXNET2015: CC-BY-4.0 33) can be obtained at 961 

https://fluxnet.org/data/download-data/. The GLEAM 3.8a ET dataset was obtained from 962 

https://www.gleam.eu/#downloads (an email is required to receive a password for the SFTP). The 963 

GBAFFLUXCOM ET dataset was acquiredfreely available (CC4.0 BY licence) from https://www.bgc-964 
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jena.mpg.de/geodb/projects/fluxcom.org/EF-Download/ the Data.php. Portal (an email is required to are 965 

receive a password for the FTP). MOD16 ET with the resolution of 0.05° was obtainedfreely downloaded 966 

from 967 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1k968 

mALB/Previous/. Additionally, the AVHRR ET dataset with 1° was sourced from 969 

http://files.ntsg.umt.edu/data/ET_global_monthly_ORIG/Global_1DegResolution/ASCIIFormat/. 970 

Lastly, the PML ET dataset was obtained from https://www.tpdc.ac.cn/zh-hans/data/48c16a8d-d307-971 

4973-abab 972e9449627c.  972 

The precipitation from Global Precipitation Climatology Centre (GPCC) data was as obtained at 973 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-global-and-974 

regional?tab=form. The precipitation from Global Unified Gauge-Based Analysis of Daily Precipitation 975 

(CPC) was obtained at https://downloads.psl.noaa.gov/Datasets/cpc_global_precip/precip.2022.nc 976 

Other data that supports the analysis and conclusions of this work is available at 977 

https://figshare.com/articles/dataset/Satellite-based_Near-Real 978 

Time_Global_Daily_Terrestrial_Evapotranspiration_Estimates/24669306 (Huang, 2023d)(Huang, 979 

2023d). 980 
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Appendix  982 

Appendix A. Determining the vegetation fraction calculation: 983 

𝑓𝑣𝑒𝑔 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
                                                                     (A1) 984 

where the 𝑁𝐷𝑉𝐼 is the Normalized Difference Vegetation Index and can be calculated as:  985 

𝑁𝐷𝑉𝐼 =  
𝑅𝑛𝑖𝑟−𝑅𝑟𝑒𝑑

𝑅𝑛𝑖𝑟+𝑅𝑟𝑒𝑑
                                                                          (A2) 986 

where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  is the 𝑁𝐷𝑉𝐼  of the bare soil without plants and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  is the 𝑁𝐷𝑉𝐼  of the full 987 

vegetation cover, 𝑅𝑛𝑖𝑟  is the near-infrared reflectance and 𝑅𝑟𝑒𝑑  is the red reflectance. The daily 988 

reflectance 𝑅𝑛𝑖𝑟 and 𝑅𝑟𝑒𝑑 were measured by MODIS reflectance data MOD09CMG (Fig. 1). Based on 989 

Tang et al. (2009), we set 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 = 0.22 and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 = 0.83. Missing observation for the daily 990 

MOD09CMG calculated 𝑁𝐷𝑉𝐼  data was filled with the 16-day averaged 𝑁𝐷𝑉𝐼  values in the 991 

MOD13Q1data product (Fig. 1). 992 

  993 



 

46 
 

Appendix B. Determining the instantaneous EF: 994 

Combining Eq. 1 and 4, we fist calculated the instantaneous evaporation fraction, 𝐸𝐹𝑖 as:  995 

𝐸𝐹𝑖 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔

𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑖 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙
𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑖                                          (B1) 996 

where the superscript i stands for the instantaneous value of the parameter, 𝐸𝐹𝑣𝑒𝑔
𝑖  and 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  are the 997 

instantaneous full vegetation coverage and bare soil 𝐸𝐹 , respectively. 𝐸𝐹𝑣𝑒𝑔
𝑖  can be expressed as a 998 

function of instantaneously parameters as ( Nishida et al., 2003):  999 

𝐸𝐹𝑣𝑒𝑔
𝑖 =

𝛼 ∆𝑖

∆𝑖+γ(1+𝑟𝑐 𝑣𝑒𝑔
𝑖 /2𝑟𝑎 𝑣𝑒𝑔

𝑖 )
                                                         (B2) 1000 

where α is the Priestley-Taylor parameter, which was set to 1.26 for wet surfaces (De Bruin, 1983); ∆𝑖 is 1001 

the slope of the saturated vapor pressure, which is a function of the temperature (Pa K-1); 𝛾  is the 1002 

psychometric constant (Pa K-1); 𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous surface resistance of the vegetation canopy (s 1003 

m-1); 𝑟𝑎 𝑣𝑒𝑔
𝑖  is the instantaneous aerodynamics resistance of the vegetation canopy (s m-1). 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  was 1004 

expressed by Nishida et al. (2003) as a function of the instantaneous soil temperature and the available 1005 

energy based on the energy budget of the bare soil:  1006 

𝐸𝐹𝑠𝑜𝑖𝑙
𝑖 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑠𝑜𝑖𝑙 

𝑖

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑎 

𝑖

𝑄𝑠𝑜𝑖𝑙0 
𝑖

𝑄𝑠𝑜𝑖𝑙 
𝑖                                                              (B3) 1007 

where 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖  is the instantaneous maximum possible temperature at the surface reached when the land 1008 

surface is dry (K), 𝑇𝑠𝑜𝑖𝑙 
𝑖  is the instantaneous temperature of the bare soil (K), 𝑇𝑎 

𝑖 is the instantaneous air 1009 

temperature, 𝑄𝑠𝑜𝑖𝑙0 
𝑖 is the instantaneous available energy when 𝑇𝑠𝑜𝑖𝑙 

𝑖  is equal to 𝑇𝑎 
𝑖  (W m-2).  1010 

  1011 
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Appendix C. Determining of decoupling factor: 1012 

𝛺𝑖
∗ is the value of the decoupling factor, Ω, for wet surface. According to Pereira (2004), Ω and 𝛺∗ can 1013 

be expressed as: 1014 

 1015 

 1016 

Ω = 
1

1+
𝛾

∆+𝛾

𝑟𝑐
𝑟𝑎

                                                       (C1) 1017 

𝛺∗=
1

1+
𝛾

∆+𝛾 

𝑟∗

𝑟𝑎

                                                       (C2)   1018 

𝑟∗=
(Δ+𝛾)𝜌𝐶𝑝𝑉𝑃𝐷

Δ𝛾(𝑅𝑛−𝐺)
                                                    (C3) 1019 

where 𝑟𝑐  is the surface resistance (s m-1); 𝑟𝑎 is the aerodynamic resistance (s m-1); the calculation details 1020 

of instantaneous and daily  𝑟𝑐  and 𝑟𝑎 for vegetation and soil are explained in Appendix A. 𝑟∗ is the critical 1021 

surface resistance when the actual evapotranspiration equals the potential evaporation (called equilibrium 1022 

evapotranspiration, s m-1); 𝜌 is the air density (kg m-3); 𝐶𝑝 is the specific heat of the air (J kg-1 K-1); 𝑉𝑃𝐷 1023 

is the vapor pressure deficit of the air (Pa). ∆ is the slope of the saturated vapor pressure (Pa K-1).  1024 

  1025 
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Appendix D. Determining the resistances of vegetation canopy and bare soil surface 1026 

The canopy surface resistance of the vegetation, denoted as 𝑟𝑐 𝑣𝑒𝑔 (s m-1), was determined using the 1027 

relationship established by Jarvis et al. (1976)(1976), is equivalent to:  1028 

1

𝑟𝑐 𝑣𝑒𝑔
 =

𝑓1 (𝑇𝑎)𝑓2 (𝑃𝐴𝑅)𝑓3 (𝑉𝑃𝐷)𝑓4 (𝜑)𝑓5 (𝑐𝑜2)

𝑟𝑐𝑀𝐼𝑁
+

1

𝑟𝑐𝑢𝑡𝑖𝑐𝑙𝑒
                                      (A1D1) 1029 

The minimum resistance 𝑟𝑐𝑀𝐼𝑁 (s m-1) is defined as 33 (s m-1) for cropland and 50 (s m-1) for forest 1030 

as determined by Tang et al. (2009); the canopy resistance related to diffusion through the cuticle layer 1031 

of leaves 𝑟𝑐𝑢𝑡𝑖𝑐𝑙𝑒  is set at 100,000 (s m-1) in the Biome-BGC model is according to White et al. (2000). 1032 

The relationships involving air temperature 𝑇𝑎, 𝑓1(𝑇𝑎) and photosynthetic active radiation PAR, 𝑓2(𝑃𝐴𝑅) 1033 

expressed by the functions provided Jarvis et al. (1976): 1034 

𝑓1 (𝑇𝑎) = ( 
𝑇𝑎−𝑇𝑛

𝑇𝑜−𝑇𝑛
) ( 

𝑇𝑥−𝑇𝑎

𝑇𝑥−𝑇𝑎
)

(
𝑇𝑥−𝑇𝑜
𝑇𝑜−𝑇𝑛

)
                                                             (A2) 1035 

The minimum resistance 𝑟𝑐𝑀𝐼𝑁 (s m-1) is defined as 33 (s m-1) for cropland and 50 (s m-1) for forest 1036 

as determined by Tang et al. (2009); the canopy resistance related to diffusion through the cuticle layer 1037 

of leaves 𝑟𝑐𝑢𝑡𝑖𝑐𝑙𝑒  is set at 100,000 (s m-1) in the Biome-BGC model is according to White et al. (2000). 1038 

The relationships involving air temperature 𝑇𝑎, 𝑓1(𝑇𝑎) and photosynthetic active radiation PAR, 𝑓2(𝑃𝐴𝑅) 1039 

expressed by the functions provided Jarvis et al. (1976): 1040 

𝑓1 (𝑇𝑎) = ( 
𝑇𝑎−𝑇𝑛

𝑇𝑜−𝑇𝑛
) ( 

𝑇𝑥−𝑇𝑎

𝑇𝑥−𝑇𝑎
)

(
𝑇𝑥−𝑇𝑜
𝑇𝑜−𝑇𝑛

)
                                                             (D2) 1041 

 1042 
The minimum, optimal, and maximum temperatures for stomatal activity are denoted as 𝑇𝑛, 𝑇𝑜 and 1043 

𝑇𝑥, respectively. As per Tang et al. (2009), 𝑇𝑛 is set to 275.85 K, 𝑇𝑜 to 304.25 K, and 𝑇𝑥 to 318.45 K. The 1044 

expression for the function 𝑓2(𝑃𝐴𝑅) is provided below: 1045 

𝑓2 (𝑃𝐴𝑅) =  
𝑃𝐴𝑅

𝑃𝐴𝑅+𝐴
                                                                               (A3D3) 1046 

where 𝑃𝐴𝑅 is photosynthetic active radiation per unit area and time (μ mol m-2 s-1) calculated by 1047 

incoming solar radiation multiplied by 2.05 (White et al., 2000); 𝐴 is a parameter related to photon 1048 

absorption efficiency at low light intensity, which was set to 152 μ mol m-2 s-1 20; Nishida32 found that 1049 

in Eq. A1D1 the following functions can be omitted without great loss of accuracy: the functions 1050 

depending on vapor pressure deficit, 𝑓3 (𝑉𝑃𝐷), leaf water potential 𝑓4 (𝜑) and carbon dioxide vapor 1051 

pressure, 𝑓5 (𝐶𝑂2).  1052 

The photosynthetic active radiation per unit area and time (PAR), measured in μ mol m⁻² s⁻¹, is 1053 

computed by multiplying incoming solar radiation by 2.05, as outlined by White et al. (2000). The 1054 

parameter A, associated with photon absorption efficiency at low light intensity, is established at 152 μ 1055 

mol m⁻² s⁻¹. Nishida et al. (2003) observed that, in Eq. A1, the functions tied to vapor pressure deficit 1056 
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𝑓3 (𝑉𝑃𝐷), leaf water potential 𝑓4 (𝜑), and carbon dioxide vapor pressure 𝑓5 (𝐶𝑂2) can be omitted without 1057 

significant loss of accuracy(2000). The parameter A, associated with photon absorption efficiency at low 1058 

light intensity, is established at 152 μ mol m⁻² s⁻¹. Nishida et al. (2003) observed that, in Eq. D1, the 1059 

functions tied to vapor pressure deficit 𝑓3 (𝑉𝑃𝐷), leaf water potential 𝑓4 (𝜑), and carbon dioxide vapor 1060 

pressure 𝑓5 (𝐶𝑂2) can be omitted without significant loss of accuracy. Tang et al. (2009) employed this 1061 

canopy resistance approach to estimate evapotranspiration (ET) at a 500 meter resolution in the Kalam 1062 

river basin. The evaluation of their results indicated that the simplification of these calculations did not 1063 

significantly impact the final accuracy of ET estimates. Additionally, Huang et al. (2017, 2021, and 2023) 1064 

evaluated this method for 0.05 degree ET assessments across China. The evaluation results also 1065 

demonstrated that the reduction in vapor pressure deficit (VPD) and leaf water potential had minimal 1066 

effects on the final ET estimates. 1067 

The aerodynamic resistance of the canopy, denoted as 𝑟𝑎 𝑣𝑒𝑔 (s m⁻¹), is computed for forest cover, 1068 

grassland, and cropland using the empirical formulae presented by Nishida et al. (2003) for both 1069 

instantaneous and daily values. 1070 

1

𝑟𝑎 𝑣𝑒𝑔 (𝑓𝑜𝑟𝑒𝑠𝑡)
= 0.008𝑈50𝑚                                                                  (A4D4) 1071 

The wind speed at a height of 50 meters above the canopy (𝑈50𝑚) is used to determine the 1072 

aerodynamic resistance for grassland and cropland, as follows: 1073 

1

𝑟𝑎 𝑣𝑒𝑔 (𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 & 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑)
= 0.003𝑈1𝑚                                                           (A5D5) 1074 

where 𝑈1𝑚 is the wind speed 1m above the canopy (m s-1). The wind speed as a function of the 1075 

height z, 𝑈(𝑧) can be calculated by the logarithm profile of wind. A recent study  found that the velocity 1076 

log law does not apply to a stratified atmospheric boundary layer (Cheng et al., 2011). Thus A4D4 and 1077 

A5D5 are valid under neutral boundary layer conditions. Since 𝑟𝑎 𝑣𝑒𝑔 is calculated differently for forests 1078 

(Eq. A4D4) and grasslands/croplands (Eq. A5D5), we used the land cover classes from the yearly 1079 

International Geosphere-Biosphere Programme (IGBP) (MCD12C1) to identify the land cover and choice 1080 

the different equation of 𝑟𝑎 𝑣𝑒𝑔. 𝑈50𝑚 and 𝑈1𝑚 were calculated by the logarithm profile of wind:  1081 

𝑈(𝑧) = 𝑈𝑠ℎ𝑒𝑎𝑟 ln [
(𝑧−𝑑)

𝑧0
]/𝑘                                                             (A6D6) 1082 

where 𝑈𝑠ℎ𝑒𝑎𝑟  is the shear velocity (m s-1); 𝑧 is the height (m); 𝑑 is the surface displacement (m); 𝑧0 1083 

is the roughness length, we followed Nishida et al. (2003), set as 0.005 m for bare soil and 0.01 m for 1084 

grassland; 𝑘 is the von Kármán's constant and set as 0.4 following Nishida (Nishida et al., 2003). The 1085 

shear velocity 𝑈𝑠ℎ𝑒𝑎𝑟  was calculated as: 1086 

𝑈𝑠ℎ𝑒𝑎𝑟 =  𝑈1𝑚 𝑠𝑜𝑖𝑙  
0.4

ln (
1

0.005
)
                                                              (A7D7) 1087 

  where the 𝑈1𝑚 𝑠𝑜𝑖𝑙  is the wind speed of bare soil at 1 m height (m s-1), it was calculated as: 1088 
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 𝑈1𝑚 𝑠𝑜𝑖𝑙 = 1/0.0015 𝑟𝑎 𝑠𝑜𝑖𝑙                                                                 (A8D8) 1089 

The Vegetation Index-surface Temperature (VI-TS) diagram (Nishida et al., 2003) can be utilized to 1090 

compute the instantaneous air temperature. This is achieved by utilizing MODIS instantaneous surface 1091 

temperature/emissivity data (MOD11C1) and daily-calculated NDVI as input parameters. 1092 

The aerodynamic resistance of the bare soil, denoted as 𝑟𝑎 𝑠𝑜𝑖𝑙  (s m⁻¹), was determined by Nishida 1093 

et al. (2003). This calculation assumes that the maximum surface temperature of bare soil 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥  (K) 1094 

happens when the sum of latent heat flux and sensible heat flux of the bare soil, referred to as the available 1095 

energy of bare soil 𝑄𝑠𝑜𝑖𝑙 (W m-2), is utilized as the sensible heat flux, while the latent heat flux is set to 1096 

zero. 1097 

𝑟𝑎 𝑠𝑜𝑖𝑙 =
𝜌𝐶𝑝( 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥−𝑇𝑎)

𝑄𝑠𝑜𝑖𝑙 
                                                                      (A9D9) 1098 

𝑟𝑎 𝑠𝑜𝑖𝑙  is the aerodynamic resistance of the bare soil, (s m-1), 𝜌 is the air density, kg m-3; 𝐶𝑝 is the 1099 

specific heat of the air, (J kg-1 K-1); 𝑇𝑎 is the air temperature (K), 𝑄𝑠𝑜𝑖𝑙 is the available energy of bare soil 1100 

(W m-2).  1101 

To compute the canopy surface resistance of bare soil, denoted as 𝑟𝑐 𝑠𝑜𝑖𝑙  (s m⁻¹), we adhere to the 1102 

methodologies outlined in the works of Griend and Owe (1994) and Mu et al. (2007): 1103 

𝑟𝑐 𝑠𝑜𝑖𝑙 = 𝑟𝑡𝑜𝑡 − 𝑟𝑎 𝑠𝑜𝑖𝑙                                                                (A10D10) 1104 

𝑟𝑡𝑜𝑡 =
1.0

 (
𝑇𝑎

293.15
)

1.75101300

𝑃
    

∗ 107.0                                                    (A11D11) 1105 

The total aerodynamic resistance 𝑟𝑡𝑜𝑡 (s m⁻¹) is composed of the aerodynamic resistance over the 1106 

bare soil 𝑟𝑎 𝑠𝑜𝑖𝑙 (s m⁻¹), with atmospheric pressure 𝑃 set at 101,300 Pa. 1107 

  1108 
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Appendix BE. The calculation of atmospheric emissivity for clear sky 1109 

As per Brutsaert (1975), the atmospheric emissivity 𝜀𝑎
𝑑 for clear sky under standard humidity and 1110 

temperature conditions is 1111 

𝜀𝑎
𝑑 = 1.24 × (𝑒𝑎

𝑑/𝑇𝑎
𝑑)1/7                                                          (B1E1) 1112 

where 𝑒𝑎
𝑑  represents the daily water vapor pressure (kPa). To calculated 𝑒𝑎

𝑑 , it is necessary to 1113 

compute the slope of the saturated vapor (∆) as:   1114 

 ∆ =  
4098 [0.6108 exp[

17.27𝑇𝑎
(𝑇𝑎+237.3)

]

(𝑇𝑎+237.3)2                                                              (B2E2) 1115 

VPD is the vapor pressure deficit of the air (kPa), which is expressed as: 1116 

VPD = 𝑒0(𝑇𝑎) − 𝑒𝑎                                                          (B3E3) 1117 

𝑒0(𝑇𝑎) = 0.6108 exp [
17.27𝑇𝑎

(𝑇𝑎+237.3)
]                                               (B4E4) 1118 

𝑒𝑎 =  𝑒0(𝑇𝑑𝑒𝑤)                                                                    (B5E5) 1119 

𝑒0(𝑇𝑑𝑒𝑤)  = 0.6108 exp [
17.27𝑇𝑑𝑒𝑤

𝑇𝑑𝑒𝑤+237.3
  ]                                              (B6E6) 1120 

The expression within parentheses denotes the independent variable, where, 𝑒0(𝑇𝑎) represents the 1121 

saturation vapor pressure (kPa) at the air temperature 𝑇𝑎  (℃); 𝑒𝑎  is the actual vapor pressure (kPa); 1122 

𝑒0(𝑇𝑑𝑒𝑤) is the saturation vapor pressure (kPa) at the dew point temperature 𝑇𝑑𝑒𝑤 (℃). For forest, water 1123 

surface, and cropland 𝑇𝑑𝑒𝑤  is set to the minimum air temperature during the day. In arid regions such as 1124 

bare soil and non-irrigated grassland, 𝑇𝑑𝑒𝑤  may be 2-3 ℃ lower than 𝑇𝑚𝑖𝑛 . Therefore, 2 ℃ is subtracted 1125 

is subtracted from 𝑇𝑚𝑖𝑛  in arid and semiarid areas to derive 𝑇𝑑𝑒𝑤 . While these simplifications might 1126 

introduce a bias in the final calculated ET value, our initial results indicate that the effect is negligible. 1127 
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