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Response to Liu Mingliang 

essd-2023-495 

Title: Satellite-based Near-Real-Time Global Daily Terrestrial Evapotranspiration Estimates 

Author(s): Lei Huang et al. 

MS type: Data description paper 

In the reply, the reviewers’ comments are in italics, our response is in normal text, and quotes from the 

manuscript are in blue. 

_____________________________________________________________________________         

I still doubt the advantage of this study from other earlier data products. The authors claim that this new 

products can estimate ET in within a week rather than other products delays of more than two weeks 

(L617-619), while this new data product is not near-real time at all (only covers 2001-2022) and there is 

no operational platform provides this (near-real time) service. The descriptions on the equations are still 

confusing in many places (the organization of equations in the text and appendix need rearrangement). 

Some equation numbers in Fig 1 are wrong. The comparisons (and evaluations) between ET products from 

this study and GPCC precipitation is not direct and no robust conclusions could produced from this 

comparison (although authors claim that there are matched spatial pattern as described in L730-734, 

other models or products could have the same results). This paper did a good job in comparing this data 

products with others and observations from fluxnet, while it could do a better job to fix the problems (i.e. 

decrease the biases) since the method itself (VISEA) had already been developed well before this paper. 

Re: we thank the reviewers!  

We have updated our ET data product up to March 20, 2024. All current data can be accessed online 

at https://doi.org/10.11888/Terre.tpdc.300782. We are committed to continuously updating this dataset, 

ensuring that the latest ET data will be consistently and promptly made available. Further, we have 

included a description of the operational platform that supports this dataset at lines 735-740: 

The VISEA code for calculating daily ET is written in C and can be executed on Windows 10 using an Intel(R) 

Core (TM) i7-8565U CPU @ 1.80GHz, 1.99 GHz, 16.0 GB RAM with Visual Studio 2019, or compatible 

platforms. Additionally, it can run on high-performance computing servers equipped with an Intel(R) 

Xeon(R) CPU E5-2680 in a CentOS environment. The system is scalable, supporting configurations ranging 

from 20 nodes and 656 CPUs down to fewer nodes and CPUs as required. 

We have reorganized and clarified the descriptions of equations within the text and appendix. These 

changes can be found at lines 141-178：  
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2.1.1 Daily evaporation fraction calculation  

Combining Eq. 1, 2 and 3, we calculated the instantaneous evaporation fraction, 𝑬𝑭𝒊 as:  

𝐸𝐹𝑖 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔

𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑖 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙
𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑖                                          (4) 

𝐸𝐹𝑣𝑒𝑔
𝑖  and 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  are the instantaneous full vegetation coverage and bare soil 𝐸𝐹 , respectively. 𝐸𝐹𝑣𝑒𝑔
𝑖  can be 

expressed as a function of instantaneous parameters (Nishida et al., 2003):  

𝐸𝐹𝑣𝑒𝑔
𝑖 =

𝛼 ∆𝑖

∆𝑖+γ(1+𝑟𝑐 𝑣𝑒𝑔
𝑖 /2𝑟𝑎 𝑣𝑒𝑔

𝑖 )
                                                         (5) 

where α is the Priestley-Taylor parameter, which was set to 1.26 for wet surfaces (De Bruin, 1983);  ∆𝑖  is the 

instantaneous slope of the saturated vapor pressure, which is a function of the temperature (Pa K-1); 𝛾  is the 

psychometric constant (Pa K-1); 𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous surface resistance of the vegetation canopy (s m-1); 

𝑟𝑎 𝑣𝑒𝑔
𝑖  is the instantaneous aerodynamics resistance of the vegetation canopy (s m-1). 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  was expressed by 

Nishida et al. (2003) as a function of the instantaneous soil temperature and the available energy based on the 

energy budget of the bare soil:  

𝐸𝐹𝑠𝑜𝑖𝑙
𝑖 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑠𝑜𝑖𝑙 

𝑖

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑎 

𝑖

𝑄𝑠𝑜𝑖𝑙0 
𝑖

𝑄𝑠𝑜𝑖𝑙 
𝑖                                                              (6) 

where 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖  is the instantaneous maximum possible temperature at the surface reached when the land surface 

is dry (K), 𝑇𝑠𝑜𝑖𝑙 
𝑖  is the instantaneous temperature of the bare soil (K), 𝑇𝑎 

𝑖 is the instantaneous air temperature, 𝑄𝑠𝑜𝑖𝑙0 
𝑖 is 

the instantaneous available energy for bare soil when 𝑇𝑠𝑜𝑖𝑙 
𝑖  is equal to 𝑇𝑎 

𝑖  (W m-2).  

As the assumption of noon time instantaneous evaporation fraction 𝐸𝐹𝑖  equals daily average evaporation fraction, 

𝐸𝐹𝑑, thus,  𝐸𝐹𝑖 =  𝐸𝐹𝑑, caused a 10%-30% underestimation of daily ET (Huang et al., 2017; Yang et al., 2013), we 

introduced a decoupling parameter to covert 𝐸𝐹𝑖  into 𝐸𝐹𝑑  (Huang et al., 2021; Tang et al., 2017; Tang and Li, 2017). 

The superscript "𝑑" means daily and "𝑖" means instantaneous. This new decoupling parameter-based evaporation 

faction is developed from Penman-Monteith and McNaughton-Jarvis mathematical equations:  

𝐸𝐹𝑑  = 𝐸𝐹𝑖 ∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

Ω∗𝑖

Ω∗𝑑

Ω𝑑

Ω𝑖                                                          (7) 

where Ω is the decoupling factor that represents the relative contribution of radiative and aerodynamic terms to the 

overall evapotranspiration (Tang and Li, 2017), 𝛺𝑖
∗ is the value of the decoupling factor, Ω , for wet surfaces. 

According to Pereira (2004),  the calculation details of Ω and 𝛺∗ are presented in Appendix B. 

For full vegetation-covered areas, the decoupling parameter based daily 𝐸𝐹𝑣𝑒𝑔
𝑑  is expressed as: 
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𝐸𝐹𝑣𝑒𝑔
𝑑 =

𝛼 ∆𝑖

∆𝑖+γ(1+
𝑟𝑐 𝑣𝑒𝑔

𝑖

2𝑟𝑎 𝑣𝑒𝑔
𝑖 )

(
∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

𝛺𝑣𝑒𝑔 
∗ 𝑖

𝛺𝑣𝑒𝑔 
∗ 𝑑

𝛺𝑣𝑒𝑔 
 𝑑

𝛺𝑣𝑒𝑔 
𝑖 )                                (8) 

where 𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous canopy resistance (s m-1), 𝑟𝑎 𝑣𝑒𝑔

𝑖  is the instantaneous aerodynamic resistance (s m-

1). Determining these resistances are presented in Appendix C. For bare soil, the decoupling parameter based daily 

𝐸𝐹𝑠𝑜𝑖𝑙
𝑑  is calculated as:  

𝐸𝐹𝑠𝑜𝑖𝑙
𝑑 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖 −𝑇𝑠𝑜𝑖𝑙 

 𝑖  

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥 
 𝑖  −𝑇𝑎 

 𝑖  
𝑄𝑠𝑜𝑖𝑙 0 

 𝑖

𝑄𝑠𝑜𝑖𝑙 
 𝑖  (

∆𝑑

∆𝑑+𝛾

∆𝑖+𝛾

∆𝑖

𝛺𝑠𝑜𝑖𝑙 
∗ 𝑖

𝛺𝑠𝑜𝑖𝑙 
∗ 𝑑

𝛺𝑠𝑜𝑖𝑙 
 𝑑

𝛺𝑠𝑜𝑖𝑙 
𝑖 )                       (9)  

Thus, 𝐸𝐹𝑑  is expressed as:  

𝐸𝐹𝑑 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔 

 𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑑 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙 
 𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑑                             (10) 

The same energy balance equations are used for calculating both instantaneous values 𝑄𝑖 , 𝑄𝑣𝑒𝑔 
 𝑖  and 𝑄𝑠𝑜𝑖𝑙 

 𝑖  and daily 

values 𝑄𝑑, 𝑄𝑣𝑒𝑔
𝑑  and 𝑄𝑠𝑜𝑖𝑙

𝑑  but with parameters adjusted for each timeframe. The details of the calculation for the 

daily values are outlined below.  
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We have corrected the equation numbers in Figure 1 to ensure accuracy and clarity. 

 

Figure 1. Schematic of VISEA algorithm. The ovals in the top row are the databases, and the square boxes 

are the algorithms, and parallelograms are the parameters. The numbers in the parenthesis are the 

equation to determine the parameters. 
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In our previous studies (Huang et al., 2021 & 2023b), we have continually focused on enhancing the 

accuracy of the VISEA model, specifically by improving the calculations of daily evaporation fraction and 

daily net radiation in China. Our current efforts aim to integrate these improvements, expand our study 

to a global territorial scale, and evaluate VISEA's performance internationally. We are also preparing to 

publish both the refined algorithms and the global-scale ET data. 

Our primary goal is to demonstrate the model reliability on a global scale, and we are committed to 

ongoing enhancements. Future updates will specifically target reducing biases and further improving the 

overall performance 

 

L44-46: this claim is problematic since one (i.e. GPCC) is precipitation while another one is ET, so they are 

difference things even though they have high correlations. 

Re: We understand the concern about comparing fundamentally different variables. However, the 

purpose of this comparison is to validate the spatial distribution of our estimated ET by showing its 

reasonable correlation with known precipitation patterns.  Similar methodologies have been employed in 

several notable studies, for example: Mu et al., 2007 evaluated the MOD16 data product by comparing 

precipitation distributions with estimated ET in their Figures 8 and 9 as shown below: 
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Another example is by Zhang et al., 2019 who compared the distribution of estimated ET and Gross 

Primary Production (GPP) in their  Figure 9. 
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These comparisons demonstrate that the spatial patterns of estimated ET align with other environmental 

variables and support the validity of the ET estimations. 

References: 

Mu, Q., Heinsch, F., Zhao, M., and Running, S.: Development of a global evapotranspiration algorithm 

based on MODIS and global meteorology data, Remote Sensing of Environment, 111, 519–536, 

https://doi.org/10.1016/J.RSE.2007.04.015, 2007. 

Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., and Yang, Y.: Coupled estimation of 

500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017, 

Remote Sensing of Environment, 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019. 

 

L168: add "temperature" after "air". 

Re: We have added temperature after “air” at lines 139-140 
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In the next section, we will detail how VISEA calculates the daily 𝐸𝐹, and 𝑄 in Eq. 3, daily air 

temperature and daily land surface temperature. 

 

The connections between equ. 6 & 7 is not clear, equation B2 might be inserted between these two 

equations not need explanations. 

Re: We have repositioned Equations B1 to B3 between Equations 6 and 7, as they are closely 

interconnected and provide necessary context for understanding the relationship between these 

equations at lines 142-156: 

Combining Eq. 1, 2 and 3, we calculated the instantaneous evaporation fraction, 𝐸𝐹𝑖 as:  

𝐸𝐹𝑖 = 𝑓𝑣𝑒𝑔
𝑄𝑣𝑒𝑔

𝑖

𝑄𝑖  𝐸𝐹𝑣𝑒𝑔
𝑖 + (1 − 𝑓𝑣𝑒𝑔)

𝑄𝑠𝑜𝑖𝑙
𝑖

𝑄𝑖  𝐸𝐹𝑠𝑜𝑖𝑙
𝑖                                          (4) 

𝐸𝐹𝑣𝑒𝑔
𝑖  and 𝐸𝐹𝑠𝑜𝑖𝑙

𝑖  are the instantaneous full vegetation coverage and bare soil 𝐸𝐹, respectively. 𝐸𝐹𝑣𝑒𝑔
𝑖  can 

be expressed as a function of instantaneous parameters (Nishida et al., 2003):  

𝐸𝐹𝑣𝑒𝑔
𝑖 =

𝛼 ∆𝑖

∆𝑖+γ(1+𝑟𝑐 𝑣𝑒𝑔
𝑖 /2𝑟𝑎 𝑣𝑒𝑔

𝑖 )
                                                         (5) 

where α is the Priestley-Taylor parameter, which was set to 1.26 for wet surfaces (De Bruin, 1983); ∆𝑖 is 

the instantaneous slope of the saturated vapor pressure, which is a function of the temperature (Pa K-1); 

𝛾 is the psychometric constant (Pa K-1); 𝑟𝑐 𝑣𝑒𝑔
𝑖  is the instantaneous surface resistance of the vegetation 

canopy (s m-1); 𝑟𝑎 𝑣𝑒𝑔
𝑖  is the instantaneous aerodynamics resistance of the vegetation canopy (s m-1). 

𝐸𝐹𝑠𝑜𝑖𝑙
𝑖  was expressed by Nishida et al. (2003) as a function of the instantaneous soil temperature and the 

available energy based on the energy budget of the bare soil:  

𝐸𝐹𝑠𝑜𝑖𝑙
𝑖 =

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑠𝑜𝑖𝑙 

𝑖

𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖 −𝑇𝑎 

𝑖

𝑄𝑠𝑜𝑖𝑙0 
𝑖

𝑄𝑠𝑜𝑖𝑙 
𝑖                                                              (6) 

where 𝑇𝑠𝑜𝑖𝑙 𝑚𝑎𝑥
𝑖  is the instantaneous maximum possible temperature at the surface reached when the 

land surface is dry (K), 𝑇𝑠𝑜𝑖𝑙 
𝑖  is the instantaneous temperature of the bare soil (K), 𝑇𝑎 

𝑖 is the instantaneous 

air temperature, 𝑄𝑠𝑜𝑖𝑙0 
𝑖 is the instantaneous available energy for bare soil when 𝑇𝑠𝑜𝑖𝑙 

𝑖  is equal to 𝑇𝑎 
𝑖  (W m-

2).  

 

Fig. 8: replace "CPCC" with "GPCC" and suggest add "precipitation" after "GPCC" since only this one is 

not ET but precipitation. 

Re: we have replaced "CPCC" with "GPCC" and added "precipitation" after "GPCC" in Figure 8. 
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Figure 8. The spatial distribution of the multi-year average (a-g), the zonal mean (h) and inter-annual 

variation (i) of (a) GPCC precipitation (2001-2019), (b) VISEA (2001-2020), (c) GLEAM (2001-2020), (d) 

FLUXCOM (2001-2016), (e) AVHRR (2001-2006), (f) MOD16 (2001-2014) and (g) PML (2003-2018) ET data.  

 

L178: incomplete sentence. 

Re: We have rewritten this sentence at line 166: 
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According to Pereira (2004),  the calculation details of Ω and 𝛺∗ are presented in Appendix B. 

 

Fig.1: the equation numbers are not consistent with the text. 

Re: We have corrected the equation numbers of Figure 1. 

 

Figure 1. Schematic of VISEA algorithm. The ovals in the top row are the databases, and the square boxes 

are the algorithms, and parallelograms are the parameters. The numbers in the parenthesis are the 

equation to determine the parameters. 
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L185: The "Thus" connection is not clear. Equ. 9: how instantaneous Q, Qsoil and Qveg (and its defination 

in equ. 8) are calculated? 

Re: The sentence has been rewritten as follows at lines 176-178: 

The same energy balance equations are used for calculating both instantaneous values 𝑄𝑖, 𝑄𝑣𝑒𝑔 
 𝑖  and 

𝑄𝑠𝑜𝑖𝑙 
 𝑖  and daily values 𝑄𝑑, 𝑄𝑣𝑒𝑔

𝑑  and 𝑄𝑠𝑜𝑖𝑙
𝑑  but with parameters adjusted for each timeframe The details 

of the calculation for the daily values are outlined below. 

All equations should be consistent and the name of physical variables should be defined, such as the 

cloud in equ. 12 and Qsoil 0 . 

Re: The definition of 𝐶𝑙𝑜𝑢𝑑𝑑 in Eq. 15 is added at line 198-200 

where 𝐶𝑙𝑜𝑢𝑑𝑑 is the daily clearness index and 𝐾𝑡 is  (Chang and Zhang, 2019; Goforth et al., 2002) 

𝐾𝑡 =  
𝑅𝑑

𝑑

𝑅𝑎
𝑑                                                                            (14) 

where  𝑅𝑎
𝑑 is the daily extraterrestrial radiation calculated by the FAO (1998).  

𝑄𝑠𝑜𝑖𝑙0 
𝑖  is defined at line 156  

𝑄𝑠𝑜𝑖𝑙0 
𝑖 is the instantaneous available energy for bare soil when 𝑇𝑠𝑜𝑖𝑙 

𝑖  is equal to 𝑇𝑎 
𝑖  (W m-2) 

 

L208-210: I don't know what logic is there 

Re: These sentences have been rewritten at lines 203-211: 

According to the land surface energy budget, the daily available energy of vegetation coverage area, 𝑄𝑣𝑒𝑔
𝑑  

and bare soil 𝑄𝑠𝑜𝑖𝑙
𝑑  can be calculated following the study of Huang et al. (2023b): 

𝑄𝑣𝑒𝑔
𝑑 = (1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4                  (15) 

𝑄𝑠𝑜𝑖𝑙
𝑑 = (1 − 𝐶𝐺)(1 − 𝑎𝑙𝑏𝑒𝑑𝑜𝑑)𝑅𝑑

𝑑 +  (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 − 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4           (16) 

The daily mean air temperature, 𝑇𝑎
𝑑  can be extended by a sin and cos function based on the instantaneous 

air temperature 𝑇𝑎
𝑖  which was calculated using the linear correlation between vegetation index (VI) and 

surface temperature (Ts) method. Thus, (1 + 𝐶𝑙𝑜𝑢𝑑𝑑)𝜀𝑎
𝑑𝜎 𝑇𝑎

𝑑 4 is the daily downward longwave radiation 

(W m-2), and 𝜀𝑠
𝑑𝜎𝑇𝑠

𝑑 4 is the daily upward longwave radiation (W m-2), where 𝐶𝐺 is an empirical coefficient 

ranging from 0.3 for a wet soil to 0.5 for a dry soil (Idso et al., 1975).   
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L401-403: the description is vague since Fig. 3 shows comparisons between fluxnet and ERA, nothing 

related to MODIS products (besides the land cover). 

Re: Additional information is provided at lines 390-394:  

We chose to utilize 0.05° MODIS data for its detailed land surface information, daily time step, and global 

coverage, which is essential for accurate and near-real-time ET calculations. Although ERA5 data is at a 

coarser 0.1° resolution, it provides necessary atmospheric inputs that can be effectively interpolated to 

match the MODIS resolution without significant loss of accuracy. As illustrated in Figures 3 and 4, our tests 

confirm that this method achieves accurate ET despite the resolution differences. 

 

L554-590: most of the results are not new and should avoid to say which model "overestimate" or 

"underestimate" without compare with the ground truth. 

Re: we have rewritten these paragraphs at lines 564-600: 

The VISEA ET product demonstrates consistent spatial distribution patterns among the six ET products 

across various years in terms of annual means (a-g) and latitude zonal means (h). These patterns closely 

align with the precipitation distribution data from GPCC. Furthermore, VISEA ET also exhibit similar spatial 

distributions compared to other ET products, particularly in the extremes of the distribution, below the 

5th percentile and above the 95th percentile (Figure S6, S7). The highest ET values, approximately 1,500 

mm year-1, are predominantly in equatorial low-latitude regions with the corresponding high precipitation 

levels of approximately 2,500 mm year-1. These regions include South America (Amazon Basin), Central 

Africa (Congo Basin), and Southeast Asia (encompassing Indonesia, Malaysia, parts of Thailand, and the 

Philippines), which have tropical rainforest climates. Remote sensing data support the ET estimates and 

align with findings from previous studies, such as Chen et al. (2021) and Zhang et al. (2019), who reported 

that the multi-year average annual ET is nearly 1,500 and the precipitation is approximately 2,500 mm 

year-1. Also, Panagos et al. (2017) report similar multi-year average annual ET and precipitation rates. 

In this analysis, barren lands (BAR) such as the Sahara, Arabian, Gobi, and Kalahari deserts, along with 

large areas of Australia, and snow and ice (SI) regions including significant parts of Canada, Russia, and 

the Qinghai-Tibet Plateau in China, are characterized by notably low evapotranspiration (ET). These 

regions typically experience less than 400 mm year-1 of annual ET, paralleled by minimal yearly 

precipitation ranging from 200 to 400 mm year-1, according to GPCC data. Comparative ET rates for other 

land cover types generally range from 400 to 1,400 mm year-1, closely following the GPCC precipitation 

amounts of 600 to 1,600 mm year-1.  
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In regions experiencing moisture-limited evapotranspiration (ET), the scarcity of available water is the 

primary constraint. Conversely, in areas where sufficient water is available, ET is energy-limited, and 

factors such as cloud cover or shading restrict the absorption of solar radiation, affecting the 

evapotranspiration rate. Panel (i) in Figure 8 illustrates inter-annual monthly variations over the past two 

decades. It shows how VISEA and other satellite-based ET products, alongside GPCC precipitation data, 

capture the rhythmic patterns of ET. These data reveal distinctive seasonal fluctuations and highlight the 

significant inter-annual climate variability. Among these products, FLUXCOM consistently shows ET values 

10-20 mm month-1 higher than those of other ET products. GLEAM and MOD16 exhibit similar ET 

estimations, closely paralleling each other, as do PML and VISEA. Notably, after 2007, both GLEAM and 

MOD16 reported higher ET estimations than PML and VISEA in November, December, January, and 

February. For the same months, PML consistently records lower ET estimations than VISEA.  

Analysis across the datasets reveals how ET estimates respond to extreme climate events, providing 

insights into the variability and resilience of these models. For instance, during the 2011-2012 drought in 

the Horn of Africa—one of the most severe droughts in recent decades—both ET estimations and GPCC 

precipitation data showed significant declines. Similarly, the prolonged California drought from 2012 to 

2016 also saw a considerable decrease in ET values, aligning with the reduced precipitation levels captured 

by GPCC. 

 

Fig.8: need dig into more details on the differences in long-term trends and the variations in the years 

with extreme climate events. 

Re: we have added more details on the differences in long-term trends and the variations in the years 

with extreme climate events at lines 590-600: 

Among these products, FLUXCOM consistently shows ET values 10-20 mm month-1 higher than those of 

other ET products. GLEAM and MOD16 exhibit similar ET estimations, closely paralleling each other, as do 

PML and VISEA. Notably, after 2007, both GLEAM and MOD16 reported higher ET estimations than PML 

and VISEA in November, December, January, and February. For the same months, PML consistently 

records lower ET estimations than VISEA.  

Analysis across the datasets reveals how ET estimates respond to extreme climate events, providing 

insights into the variability and resilience of these models. For instance, during the 2011-2012 drought in 

the Horn of Africa—one of the most severe droughts in recent decades—both ET estimations and GPCC 

precipitation data showed significant declines. Similarly, the prolonged California drought from 2012 to 
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2016 also saw a considerable decrease in ET values, aligning with the reduced precipitation levels captured 

by GPCC. 

 

L591-612: the arguments are statistical weak and the mismatch of spatial (and temporal) pattern between 

VISEA and precipitation can not support the conclusion that VISEA is better than another model. Authors 

need discuss the effects of soil moisture on ET, besides the precipitation events. 

Re: This part is modified by adding a discussion on the effects of soil moisture on ET, besides the 

precipitation events at lines 609-629: 

Figure 9 presents the daily ET from VISEA and GLEAM, alongside precipitation data from the GPCC across 

the Yangtze River Basin from August 26th to September 2nd, 2022. During this period, a significant drought 

was observed in the region, which began in July and showed signs of abating by late August and early 

September, according to Zhang et al. (2023). VISEA ET illustrates the evolving drought conditions, with 

notably low ET levels (below 1 mm day-1) across the basin from August 26th to 28th, as shown in panels (a-

c). A marked increase in precipitation on August 29th, evident in panels (s) and (u), correlates with an 

uptick in ET values (surpassing 1 mm day-1) throughout the basin, visualized in panels (d-f). Although 

GLEAM generally captures the fluctuations in ET—both decreases and increases—during this period, it 

consistently reports much higher ET values than VISEA. The panel (y) graph in Figure 9 shows the 

precipitation and the ET calculated by VISAE and GLEAM after an 11 mm rainfall on August 29th. The ET of 

VISEA increased and the deceased, which is expected because ET and soil moisture are positively 

correlated. The GLEAM does not follow the expected pattern shown in panel y.    This comprehensive 

analysis highlights the interdependence of precipitation and ET and underscores the importance of 

considering soil moisture dynamics to fully understand the hydrological processes within the Yangtze River 

Basin during extreme weather events. 

 

Beyond precipitation, soil moisture is a critical regulator of ET, particularly during droughts and their 

recovery phases. Acting as a buffer, soil moisture tempers ET rates during dry periods and amplifies them 

after rainfall, as noted in late August. This buffering capacity results in a delay between precipitation 

events and subsequent ET changes, which is key to understanding drought recovery dynamics. VISEA’s 

data accurately reflect these variations in precipitation, demonstrating its effectiveness in tracking daily 

ET fluctuations and its reliability for near-real-time monitoring of ET during hydrological extremes. 
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L630-631: rephrase since it mixed the information from observations (shortwave downwards radiation) 

and estimated variables such as air temperature (pixel scale). 

Re: we have rewritten this sentence at lines 647-650: 

The VISEA model uses gridded ERA5-Land shortwave downward radiation as its energy input. Utilizing this 

input, along with MODIS land surface products, VISEA calculates gridded daily air temperature and net 

radiation. These two important intermediate variables are essential for estimating daily ET. 

 

L653-655: incomplete sentence. 

we have rewritten this sentence at lines 668-670: 

As previously explained, the VI-Ts method relies on the negative linear correlation between the 

Vegetation Index (VI) and surface temperature (Ts) within a 5 × 5 grids’ window. Therefore, both the 

variance of VI values across these grid cells and the strength of their negative correlation are crucial for 

accurately calculating air temperature. 

 

L655-657: unclear. 

Re: we have rewritten this sentence at lines 668-676: 

As previously explained, the VI-Ts method relies on the negative linear correlation between the 

Vegetation Index (VI) and surface temperature (Ts) within a 5 × 5 grids’ window. Therefore, the variance 

of VI values across these grid cells and the strength of their negative correlation are crucial for accurately 

calculating air temperature (Nishida et al., 2003). However, the VI-Ts method is less effective in regions 

like dense forests, bare lands and deserts, where the vegetation index and temperature data vary little 

across the 5 × 5 grids’ window. Also, in regions with freezing temperatures, the VI-TS method does not 

perform well because warmer temperature is related to increased vegetation, which is the opposite of 

warmer areas, where there is a positive correlation between the vegetation index and surface 

temperature (Cui et al., 2021). 

 

L691-693: The logic is not clear. Does it mean this model can only be used from 60N-90N? 

Re: we have rewritten this sentence at lines 696-710: 

While the VISEA model provides evapotranspiration (ET) globally, its best ET is between 60°N and 90°S, as 

evidenced by a Nash-Sutcliffe efficiency (NSE) of 0.4 and a correlation coefficient (R) of 0.9 in Figure 6. 

VISEA model tends to underestimate ET in colder regions within the 60°N to 90°S latitude range, such as 

the western territories of Canada. This underestimation is primarily due to the model's inability to 
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incorporate evaporation from frozen surfaces into its ET calculations. These discrepancies arise from 

several factors: inaccuracies in the ERA5-Land shortwave radiation data (illustrated in Figure 3), the 

misapplication of the VI-Ts method (explained in Figure 4), and the uncertainties in daily net radiation 

(depicted in Figure 5). Designed to amalgamate bare soil and full vegetation coverage, as shown in 

Equation 1, the VISEA model encounters difficulties in accurately estimating ET at higher latitudes, 

especially in conditions of reduced solar radiation. These challenges are predominantly linked to the 

uncertainties associated with ERA5-Land shortwave radiation data, further compounded by increased 

cloudiness levels in these regions, as highlighted by Babar et al. (2019). Such uncertainties substantially 

impact the model's performance at higher latitudes, affecting its reliability in these conditions. 

Nevertheless, VISEA's ET estimates compare favorably with other ET data products in cold regions above 

60°N, as indicated by the latitude zonal mean comparison in Figure 8. 

 

L843-845: it's still very strange to claim that VPD and leaf water potential "can be omitted" from the 

calculation of canopy resistant. Which factor could affect stomata conductance then? 

Re: we have rewritten this sentence at lines 828-836: 

In this study, we follow the methodologies originally developed by Tang et al. (2009) and Nishida (2003), 

with the goal of enhancing the VISEA model to accurately estimate daily scale evaporation fraction and 

net radiation. These efforts build on earlier work by Huang et al. (2017, 2021, and 2023b) that introduced 

vapor pressure deficit (VPD) and leaf water potential in calculating canopy resistance. However, 

comparative analyses between VISEA and other models, such as PML and MOD16—particularly PML, 

which integrates VPD as a limiting factor in estimating GPP and ET—show that VISEA maintains accuracy 

without significant biases. It is important to note that none of the ET models in our comparison directly 

incorporate leaf water potential into their canopy resistance calculations. We are committed to 

addressing these gaps in our future studies. 

 


