
1 
 

European topsoil bulk density and organic carbon stock database (0-
20 cm) using machine learning based pedotransfer functions 
Songchao Chen1,2#, Zhongxing Chen1,2#, Xianglin Zhang1,2,3, Zhongkui Luo2, Calogero Schillaci4, 
Dominique Arrouays5, Anne C. Richer-de-Forges5, Zhou Shi2 
1ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China 5 
2College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China 
3UMR ECOSYS, AgroParisTech, INRAE, Université Paris-Saclay, Palaiseau 91120, France 
4European Commission, Joint Research Centre, Ispra, 21026, Italy 
5INRAE, Info&Sols, Orléans, 45075, France 

 10 
# These authors contributed equally. 

Correspondence to: Zhou Shi (Email: shizhou@zju.du.cn) 

Abstract. Soil bulk density (BD) serves as a fundamental indicator of soil health and quality, exerting a significant influence 

on critical factors such as plant growth, nutrient availability, and water retention. Due to its limited availability in soil databases, 

the application of pedotransfer functions (PTFs) has emerged as a potent tool for predicting BD using other easily measurable 15 

soil properties, while the impact of these PTFs’ performance on soil organic carbon (SOC) stock calculation has been rarely 

explored. In this study, we proposed an innovative local modelling approach for predicting BD of fine earth (BDfine) across 

Europe using the recently released BDfine data from the LUCAS Soil 2018 (0-20 cm) and relevant predictors. Our approach 

involved a combination of neighbour sample search, Forward Recursive Feature Selection (FRFS) and Random Forest (RF) 

model (local-RFFRFS). The results showed that local-RFFRFS had a good performance in predicting BDfine (R2 of 0.58, root mean 20 

square error (RMSE) of 0.19 g cm-3, relative error (RE) of 16.27%), surpassing the earlier published PTFs (R2 of 0.40-0.45, 

RMSE of 0.22 g cm-3, RE of 19.11-21.18%) and global PTFs using RF with and without FRFS (R2 of 0.56-0.57, RMSE of 

0.19 g cm-3, RE of 16.47-16.74%). Interestingly, we found the best earlier published PTF (R2=0.84, RMSE=1.39 kg m-2, RE 

of 17.57%) performed close to the local-RFFRFS (R2=0.85, RMSE=1.32 kg m-2, RE of 15.01%) in SOC stock calculation using 

BDfine predictions. However, the local-RFFRFS still performed better (ΔR2>0.2) for soil samples with low SOC stock (<3 kg m-25 
2). Therefore, we suggest that the local-RFFRFS is a promising method for BDfine prediction while earlier published PTFs would 

be more efficient when BDfine is subsequently utilized for calculating SOC stock. Finally, we produced two topsoil BDfine and 

SOC stocks datasets (18,945 and 15,389 soil samples) at 0-20 cm for LUCAS Soil 2018 using the best earlier published PTF 

and local-RFFRFS, respectively. This dataset is archived from the Zenodo platform at https://zenodo.org/records/10211884 

(Chen et al., 2023a).The outcomes of this study present a meaningful advancement in enhancing the predictive accuracy of 30 
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BDfine, and the resultant BDfine and SOC stock datasets for topsoil across the Europe enable more precise soil hydrological and 

biological modelling. 

1 Introduction 

Soil plays a pivotal role in supporting ecosystems and sustaining life on our planet (Rabot et al., 2018). Its physical properties 

are crucial for various disciplines such as agriculture, environmental science, and land management. Among these properties, 35 

soil bulk density (BD) holds particular significance as it serves as a fundamental indicator of soil health, structure, and water 

holding capacity. BD directly influences vital factors like plant growth, nutrient availability, and overall soil quality (Dam et 

al., 2005; Chen et al., 2018; Schillaci et al., 2021). Additionally, BD plays a crucial role in computing stock of water, chemical 

elements (e.g., soil organic carbon, SOC) or compounds by soil surface unit or soil volume unit, making it even more essential 

in soil studies. Nonetheless, the uncertainty in SOC stock estimates arises due to the variations in methods used to substitute 40 

for missing BD data (Benites et al., 2007; Dawson and Smith, 2007; Wiesmeier et al., 2012; Chen et al., 2023b). It is important 

to acknowledge that BD in topsoil exhibits considerable variations across different geographical regions due to factors like 

diverse soil types, climate conditions, vegetation cover, and land cover patterns (Hollis et al., 2012; Lark et al., 2014; Li et al., 

2019). These regional disparities underscore the need for a comprehensive understanding of BD in soil research and its 

implications for various aspects of ecosystem functioning and management. 45 

Characterizing the spatial distribution of BD across a diverse and extensive continent like Europe presents a complex challenge 

(Chen et al., 2018; Nasta et al., 2020; Palladino et al., 2022; Panagos et al., 2024). Conventional soil sampling and laboratory 

analyses are time-consuming, costly, and impractical at a broad scale (Makovníková et al., 2017). In response to this challenge, 

the development of pedotransfer functions (PTFs) has emerged as a powerful approach (Van Looy et al., 2017). PTFs are 

mathematical models that estimate soil properties, such as BD, based on readily available and easily measurable soil data (e.g., 50 

SOC, clay, silt, and sand). These functions serve as invaluable tools for predicting soil properties at unvisited locations, 

facilitating regional soil mapping, and enhancing our understanding of soil dynamics across vast areas (Chen et al., 2018; 

Schillaci et al., 2021; Palladino et al., 2022). Furthermore, the incorporation of globally available predictor variables, such as 

topography and land cover, showed a promise in enhancing the effectiveness and applicability of PTFs for gap-filling of BD 

data (Ramcharan et al., 2017; Bondi et al., 2018; Patton et al., 2019). 55 

In the early stage, PTFs predominantly employed regression techniques due to their simplicity (Gupta and Larson, 1979; Rawls 

and Brakensiek, 1985). However, with advancements in science and technology, a wide range of models have been developed 

for deriving PTFs, particularly for continuous predicted variables. These methods encompass linear regression, generalized 

linear models, generalized additive models, regression trees, artificial neural networks, support vector machines, gradient 

boosted model, and random forests (RF) (Van Looy et al., 2017; Chen et al., 2018). The utilization of these advanced 60 

techniques has substantially improved the accuracy of BD prediction (Table 1). 

Table 1 Summary of previous studies on using PTFs for BD prediction across scales. R2 indicates the determination coefficient. 
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ID Scale Sample size Model R2 Reference 

1 Landscape 164 
Naive-BN 

Hierarchical-BN 

0.26 

0.42 
Taalab et al. (2015) 

2 National 2,462 

MLR 

RF 

RR 

ANN 

0.41 

0.62 

0.60 

0.61 

Katuwal et al. (2020) 

3 National 1,357 GBM 0.53 Chen et al. (2018) 

4 Regional 169 
k-NN 

BRT 

0.32 

0.30 
Ghehi et al. (2012) 

5 National 485 GBM 0.67 Jalabert et al. (2010) 

6 Regional 495 
ANN 

MLR 

0.71 

0.63 
Yi et al. (2016) 

7 National 188 

MLR 

MLR-BS 

ANN 

0.21 

0.38 

0.48 

Schillaci et al. (2021) 

MLR, multiple linear regression; RF, random forest; RR, regression rules; ANN, artificial neural networks; GBM, generalized boosted 
models; BRT, boosted regression trees; BN, Bayesian network; k-NN, k-nearest neighbour; MLR-BS, multiple linear regression (stepwise 
variable selection) 65 
 

PTFs have emerged as an alternative approach to address the scarcity of BD data (Van Looy et al., 2017). They have been 

implemented and tested in diverse regions and countries, providing a practical and cost-effective means for predicting BD 

using readily available soil properties. However, it is noteworthy that the majority of previous studies utilizing machine 

learning (ML) and PTFs for BD prediction have been conducted at regional or national scales, with limited research focusing 70 

on the intercontinental scale (Taalab et al., 2015; Shiri et al., 2017; Katuwal et al., 2020). Despite the accomplishments of 

PTFs in BD estimation, a gap emerges when transitioning to global modelling (a fixed model to predict all the unknown 

samples) endeavours. The reliance on global models, while useful in capturing broad patterns, often faces constraints in 

delivering accurate predictions at finer scales (Gupta et al., 2018). These global models may fail to account for the nuanced 

spatial and environmental variations that play a pivotal role in determining BD across different landscapes. While numerous 75 

studies have harnessed ML based PTFs (ML-PTFs) to improve the model performance for BD at national and regional levels, 

the expansion of these methodologies to encompass continental contexts remains relatively limited (Nasta et al., 2020; Schillaci 

et al., 2021; Palladino et al., 2022). This gap underscores the need for a modelling approach that bridges the gap between 

broad-scale global modelling and context-specific requirements of diverse regions and ecosystems (Wang et al., 2024). This 

is where the concept of local modelling steps in. The local model adopts a dynamic modelling strategy: it firstly selects a part 80 

of similar samples close to each unknown sample in the predictor space, then it fits a predictive model using the selected 

similar samples (not the whole data). Since the selected similar samples vary for each unknown sample, the corresponding 
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local model is different from others. Local modelling strategy enables the consideration of environmental relevance by 

clustering data under similar environmental conditions (i.e. in the present case similar predictors feature space, including soil 

properties, elevation, land cover and climate conditions), which aids in constructing specialized PTFs that capture soil-85 

environment relationships (Nocita et al., 2014; Chen et al., 2018). Thus, there is a compelling need for further investigations 

and developments in local modelling techniques to improving BD predictions. Furthermore, despite of the widely use of PTFs 

for predicting BD in SOC stock calculation from continental to global scales, how the performances (e.g., R2, root mean square 

error, relative error) of PTFs based BD prediction impact the quality of SOC stock remains poorly explored (Cotrufo et al., 

2019; Augusto and Boč, 2022; Wang et al., 2022; De Rosa et al., 2023). 90 

To address aforementioned issues, we investigated RF model in combination with variable selection and local modelling 

strategy, to evaluate the potential of different PTFs in BD prediction as well as SOC stock calculation. The main objectives of 

this study are as follows: 

(1) to compare the performances of earlier published PTFs and ML-PTFs for BD prediction; 

(2) to evaluate the potential of local modelling strategies for BD prediction; 95 

(3) to investigate the impact of PTFs-based BD prediction on the accuracy of SOC stocks calculation. 

2 Materials and methods 

2.1 Soil data 

The soil data were compiled from the Land Use and Coverage Area Frame Survey Soil (LUCAS Soil) campaigns conducted 

in 2009, 2015 and 2018 (Fernández-Ugalde et al., 2022; Panagos et al., 2022). The survey encompassed a stratified random 100 

sampling approach, which identified approximately 20,000 topsoil sampling locations across the European Union (EU) and 

the United Kingdom (UK) for each campaign. At each sampling site (circle of 4 m diameter plot), 5 topsoil samples (0–20 cm) 

were collected after the removal of the litter layer, and the land cover (LC) was recorded. These samples were then combined 

into a bulked composite topsoil sample for analysis. Subsequently, all topsoil samples underwent air-drying and sieving to less 

than 2 mm. Standard laboratory analysis was conducted in an accredited laboratory (Kecskemét, Hungary), including particle 105 

size fractions (clay content, silt content, sand content, %), coarse fragments (mass fraction, %/100), BD (whole mass, g cm-3), 

pH (in water), SOC content (g kg-1), carbonates (CaCO3, g kg-1), total nitrogen (N, g kg-1), extractable potassium (K, mg kg-1), 

cation exchange capacity (CEC, cmol(+) kg-1). For more comprehensive information about LUCAS Soil 2009/2015/2018, we 

refer to Orgiazzi et al. (2022). In the LUCAS Soil 2018 survey, topsoil sampling was conducted across all EU Member States 

and UK, employing the identical set of 25,947 locations that were targeted during the 2015 survey (Fernández-Ugalde et al., 110 

2022). However, due to the absence of particle-size fractions in LUCAS Soil 2018, we resorted to use the data from LUCAS 

Soil 2009/2015 by the unique identifier soil ID (Panagos et al., 2022). To ensure the reliability of the data, we excluded samples 

with soil particle fractions recorded as 0. Finally, 5,163 topsoil samples were retained for further analysis (Fig. 1). In the 
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following parts of the article, we define BDsample as the whole soil mass:volume ratio, and BDfine as the fine earth mass:volume 

ratio. 115 

  
Figure 1 Spatial distribution of 5,163 topsoil samples with estimated BDfine from LUCAS Soil 2018. The colors represent six 

BDfine levels and the histogram represents the relevant percentages for these BDfine levels. 

Since BDsample was measured for the whole mass and CF was measured as a mass fraction (CFmassfraction) in part of the topsoil 

samples of the LUCAS Soil 2015/2018, they cannot be used directly to accurately calculate SOC stock. Note that if the mass 120 

of fine fraction has been measured and recorded, as the total volume of the sample is known, the SOC stock can be calculated 

directly (Poeplau et al., 2017). However, in numerous locations, neither the mass of fine fraction nor BDsample were measured. 

This is why we needed to estimate and use BDfine and CFvolumefraction in order to calculate SOC stocks where BDsample was 

missing (Poeplau et al., 2017). To this aim, we used a recently released dataset for BDfine and CFvolumefraction by Pacini et al. 

(2023) based on BDsample and CFmassfraction from LUCAS Soil 2018. 125 

2.2 Predictor variables related to relief, climate, and land cover 

The elevation (ELE) was derived from Shuttle Radar Topography Mission (SRTM) 1-km Digital Elevation Model (Farr et al., 

2007). Climatic data, including mean annual precipitation (MAP) and mean annual temperature (MAT), were acquired from 

the WorldClim Version 2 at 1 km resolution (Fick and Hijmans, 2017). The Global-PET dataset at 1 km resolution was used 

to extract potential evapotranspiration (PET) and aridity index (AI) (Zomer et al., 2022). The land cover (LC) was directly 130 

derived from the records of LUCAS Soil 2018 during soil sampling campaign. 
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2.3 Earlier published PTFs 

We evaluated four earlier published PTFs that have been widely used to estimated BDsample or BDfine in previous studies at both 

local and broad scales (Adams, 1973; Atwood et al., 2017; Chen et al., 2018; Sun et al., 2020; Tao et al., 2023). For PTF-3 

and PTF-4, soil organic matter (SOM) content was determined by the conversion factor of 1.724 using SOC content. In the 135 

present study, we used these PTFs to estimate BDfine. The parameters in these PTFs were refitted by the Levenberg-Marquardt 

non-linear least-square method available in the minpack.lm R package based on our data (Bates and Watts, 1988; Zhu et al., 

1997; Elzhov et al., 2015). These refitted parameters of PTFs are present in Table 2. 

Table 2 Summary of four earlier published PTFs defined in the literature. 

Model Function 
Refitted coefficients 

References R2 
a b c 

PTF-1 𝐵𝐵𝐵𝐵 = 𝑎𝑎 ∗ %𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏 1.197 -0.229 / Atwood et al. (2017) 0.40 

PTF-2 𝐵𝐵𝐵𝐵 =
1

𝑎𝑎 + 𝑏𝑏 ∗ %𝑆𝑆𝑆𝑆𝑆𝑆 0.733 0.0982 / Chen et al. (2018) 0.45 

PTF-3 𝐵𝐵𝐵𝐵 =
100

%𝑆𝑆𝑆𝑆𝑆𝑆
0.244 − (100 − %𝑆𝑆𝑆𝑆𝑆𝑆)

𝑎𝑎

 1.231 / / 
Adams (1973) 

Sun et al. (2020) 
0.41 

PTF-4 𝐵𝐵𝐵𝐵 = 𝑎𝑎 + 𝑏𝑏 × exp (−𝑐𝑐 × %𝑆𝑆𝑆𝑆𝑆𝑆) 0.348 0.993 0.0882 Tao et al. (2023) 0.45 

BD, bulk density; depending on authors cited in references, BD has been considered as BD of fine fraction (BDfine) or BD of the whole 140 
sample (BDsample), both expressed in g cm−3; here, the refitted coefficients correspond to BDfine; SOM, soil organic matter content (% in soil 
mass); SOC, soil organic carbon content (% in soil mass). 

2.4 Global ML-PTFs 

To compare with earlier published PTFs, we used random forest (RF) to construct global ML-PTFs for predicting BDfine. RF 

is an ensemble learning method that aggregates predictions from multiple decision trees to obtain the final estimates of the 145 

target variable. In growing a decision tree, a random subsample of data is selected from the verification dataset, and a set of 

random predictor variables is used for splitting the subsampled data. Two parameters, ntree and mtry, were optimized by 10-

fold cross-validation. Here, 15 predictor variables, such as sand content, silt content, clay content, SOC content, ELE (Table 

3), were used to build the global RF model. 

Table 3 The variables used in RFFull and RFFRFS. For RFFRFS, the order of variables is listed by the descending importance. 150 

RFFull uses all potential predictors, even if they may be redundant of multi-collinear (typical case of the use of clay, silt and 

sand contents together). RFFRFS applies FRFS thus eliminating both multi-collinearity and irrelevant predictor variables (e.g., 

one particle size fraction (sand content) is left out). The abbreviations are detailed below: SOC, soil organic carbon content; 

CEC, cation exchange capacity; AI, aridity index; PET, potential evapotranspiration; MAP, mean annual precipitation; MAT, 
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mean annual temperature; ELE, elevation; LC, land cover. Clay, silt, sand, and CaCO3 are expressed in %; pH is pH in a 1:2.5 155 

soil:water mixture. 

Model Selected predictors Number of predictors 

RFFull clay, silt, sand, pH, SOC, CaCO3, N, K, CEC, AI, PET, MAP, MAT, ELE, LC 15 

RFFRFS SOC, N, pH, PET, MAP, LC, AI, MAT, ELE, CEC, clay, silt 12 

 

Furthermore, we adopted a recently proposed variable selection method, namely forward recursive feature selection (FRFS) 

to reduce the number of predictor variables while not losing model performance (Xiao et al., 2022; Zhang et al., 2023). FRFS 

employs a forward selection strategy, involving the following sequential steps: (1) initially, a RF model is fitted using all the 160 

n predictors, and their variable importance is calculated; (2) the most important predictor (only one) is selected to create an 

initial model, and its performance is assessed using 10-fold cross-validation with a single predictor in the pool; (3) subsequently, 

a series of models are constructed using two predictors, where the first predictor is chosen from the pool, and the second 

predictor is selected from the remaining predictors. The model performances are evaluated, and the model with the best 

performance is recorded; (4) the pool of predictors is then updated based on the predictors from the best-performing model in 165 

the previous step; (5) The process is iteratively repeated, progressively increasing the number of predictors from 3 to n. 

Ultimately, the predictors used in the model with the best performance are selected to form the final predictive model, as 

detailed in the work of Xiao et al. (2022). The R script for implementing FRFS is accessible at 

https://doi.org/10.5281/zenodo.7141020. In this study, FRFS was applied to select the most relevant predictors constructing 

the predictive models (Table 3). 170 

For clarity, in global modelling, we refer to the RF model using the full variables as global-RFFULL, and the combination of RF 

with FRFS as global-RFFRFS. 

2.5 Local ML-PTFs 

The development of local ML-PTFs consists of four steps: (1) use the Mahalanobis distance to calculate the distances of 

predictor variables between each sample to be predicted and all the samples in the database; (2) select k nearest neighbour 175 

samples to fit a RF model for each unknown sample; (3) predict the BDfine for each unknown sample using relevant RF models. 

Since the number of nearest neighbour samples (k) is an important parameter in the local model, we evaluated its effect on the 

model performance by testing k from 20 to 700 (20, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 

700). 

For clarity, we refer to the local modelling using the full variables as local-RFFULL, and for the combined use of RF and 180 

variables selected by global-RFFRFS, we refer it as local-RFFRFS. 
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2.6 Model evaluation 

Due to the large sample size, single random split is stable compared to k-fold cross-validation or repeated random split (Chen 

et al., 2021). Therefore, we used randomly split (80% for calibration and 20% for validation) to assess the model performance 

of earlier published PTFs and ML-PTFs. It is important to note that the same validation set was used to evaluate earlier 185 

published PTFs and ML-PTFs. The root mean square error (RMSE), determination coefficient (R2) and relative error (RE) 

were used as performance indicators on the validation set (Chen et al., 2022). These indices are defined as following Eq. (1), 

(2) and (3): 

RMSE = �1
𝑛𝑛
∑ (𝑆𝑆𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                                                                                                                          (1) 

R2 = 1 − ∑ (𝑂𝑂𝑖𝑖−𝑃𝑃𝑖𝑖)2
𝑛𝑛
𝑖𝑖
∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2𝑛𝑛
𝑖𝑖

                                                                                                                                                                     (2) 190 

RE = 1
𝑛𝑛
∑ |𝑂𝑂𝑖𝑖−𝑃𝑃𝑖𝑖|

𝑂𝑂𝑖𝑖
× 100%𝑛𝑛

𝑖𝑖=1                                                                                                                                                        (3) 

where n represents the number of observations, 𝑆𝑆𝑖𝑖 and 𝑃𝑃𝑖𝑖 are the observed and predicted BDfine for observation i, and �̅�𝑜 is the 

mean of the observed BDfine. A good model has RMSE and RE close to 0, and also higher R2 close to 1. 

2.7 The build-up of extended BDfine and SOC stock datasets for topsoil in Europe 

Since only part of LUCAS 2015/2018 had soil particle fractions and CaCO3, we used the unique samples ID to link the missing 195 

soil particle fractions and CaCO3 using LUCAS Soil 2009 for the same sampling sites. This operation is reasonable since soil 

particle fractions and CaCO3 will not have a notable change within a decade. The SOC stock (kg m-2) at a depth of 0-20 cm 

for LUCAS Soil 2018 was calculated by the SOC content (g kg-1), BDfine (g cm-3), CFvolumefraction (%/100), and depth (20 cm) 

as Eq. (4) (Poeplau et al., 2017). 

𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐𝑠𝑠 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 × 𝐵𝐵𝐷𝐷𝐷𝐷𝑠𝑠ℎ × (1 − 𝑆𝑆𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑛𝑛)/100                                                                                                            (4) 200 

3 Results 

3.1 Statistics of BDfine and its correlation with predictor variables 

Fig. 2 illustrates the histogram of BDfine values and their distribution in a ternary soil texture triangle. The dataset consists of 

5,163 topsoil samples with BDfine ranging from 0.20 to 1.89 g cm-3. The topsoil sample with the lowest BDfine (0.20 g cm-3) 

was collected from Pine dominated mixed woodland with a SOC content greater than 137 g kg-1. In contrast, the topsoil sample 205 

with the highest BDfine (1.89 g cm-3) was sampled from a sandy soil (sand and clay of 65% and 11%, SOC content of 31.9 g 

kg-1) in cropland (common wheat). Approximately half of the topsoil samples exhibited BDfine between 0.8 and 1.4 g cm-3, 

while less than 10% of the topsoil samples had BDfine exceeding 1.4 g cm-3. As shown in the soil texture triangle, the selected 

topsoil samples covered a wide range of soil texture classes. 
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Figure 2 Histogram of BDfine (a) and USDA soil texture triangle (b). The point colors shown in the texture triangle correspond 210 

to the colors present in the left histogram. The percentage of each bin is indicated over the bin in the histogram. 

Fig. 3 depicts the correlation matrix between BDfine and 15 predictor variables. BDfine exhibited positive correlations with pH 

and MAT, with correlation coefficients (r) greater than 0.25. On the other hand, BDfine showed notably high negative 

correlations with most of the other predictors. The most influential negative predictor was SOC content (r=-0.62), followed by 

N (r=-0.56), and CaCO3 (r=-0.33). Note that BDfine under various LC classes exhibited significant differences with mean BDfine 215 

of 1.16, 1.00, 0.78, and 1.02 g cm-3 for cropland, grassland, woodland and others, respectively. 
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Figure 3 Correlation plot among BDfine and predictors. The sizes of the circle represent the magnitudes of the correlation, and 

light and dark colors represents negative and positive correlation respectively. The abbreviations are detailed below: BDfine, 

bulk density of fine earth; CEC, cation exchange capacity; SOC, soil organic carbon content; AI, aridity index; PET, potential 220 

evapotranspiration; MAP, mean annual precipitation; MAT, mean annual temperature; ELE, elevation; LC, land cover. 

3.2 Selection of predictor variables 

Table 3 presents the predictor variables utilized in the RF model for predicting BDfine. In the global-RFFULL model, 15 predictor 

variables were included, namely clay content, silt content, sand content, pH, SOC content, CaCO3, N, K, CEC, AI, PET, ELE, 

MAP, MAT, and LC. On the other hand, the global-RFFRFS identified a subset of 8 predictor variables by FRFS that were 225 

deemed most important for BDfine prediction. These selected predictor variables, ranked in descending order of importance, 

were SOC content, N, pH, PET, MAP, LC, AI, and MAT. 

3.3 Comparison of ML-PTFs and earlier published PTFs in BDfine prediction 

In this study, we compared ML-PTFs with four earlier published PTFs in BDfine prediction (Fig. 4 and Fig. 5). The earlier 

published PTFs had model performances with RMSE of 0.22 g cm-3, R2 of 0.40-0.45, and RE of 19.11-20.75%. The global-230 

RF models had higher model performance with RMSE of 0.19 g cm-3, R2 between 0.57 and 0.58, and RE of 16.53-16.74% for 

global-RFFULL and global-RFFRFS respectively, whereas the later performed slightly better (see R2 values in Fig. 4). As for local 

models, it was clear that the model performance showed an increasing trend when the number of neighbour samples increased 

and some fluctuations were observed after the model performance reached a plateau. The number of neighbour samples were 

optimized at 350 and 400 for local-RFFRFS and local-RFFULL, respectively. Compared to global modelling, the best local-RFFRFS 235 

and local-RFFULL performed slightly better with R2 of 0.59-0.57 and RE of 16.28-16.47%. 

The summary of RE variations under different BDfine levels and land covers using best earlier published PTF (PTF-4) and ML-

PTF (local-RFFRFS) is shown in Fig. 6. The results indicated that local-RFFRFS (RE of 29%) performed much better than PTF-

4 (RE of 37%) for the topsoil with low BDfine (<0.8 g cm-3). The improvement of RE for other BD levels was rather limited 

(ΔRE of 1-3%). The highest RE (30-57% for PTF-4, 25-50% for local-RFFRFS) was found for topsoil with low BDfine for the 240 

whole validation set and each land cover. Across land covers, the RE generally decreased greatly (15-24% for PTF-4, 14-20% 

for local-RFFRFS) for topsoil with low-median BDfine (0.8-1 g cm-3), and then to its lowest (7-9% for both PTF-4 and local-

RFFRFS) for topsoil with median-high BDfine (1-1.2 g cm-3). A slight increase of RE (14-16% for PTF-4, 11-17% for local-

RFFRFS) was observed for topsoil with high BDfine (>1.2 g cm-3) for all the land covers. Among different land covers, the 

cropland had the greatest RE for topsoil with low and low-median BDfine, followed by others, woodland and grassland. For 245 

topsoil with median-high and high BDfine, a similar RE was found for all the land covers. Overall, the RE for both PTF-4 and 

local-RFFRFS showed the worse performances for low BDfine, but the results were always better for local-RFFRFS, except for 

woodlands with BDfine>1 where the RE was slightly better for PTF-4. 
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Figure 4 Model performance indicator (R2) of earlier published PTFs and ML-PTFs in BDfine prediction. The performances of 250 

local RF models (local-RFFULL and local-RFFRFS) change with the number of soil samples used for local modelling. 

  

Figure 5 Scatter plots of BDfine predictions using earlier published PTFs and ML-PTFs along with model performance 

indicators (RMSE, R2 and RE). The lighter color means higher sample density. Please note that the best models are selected 

for local-RFFULL and local-RFFRFS. 



12 
 

 

 

Figure 6 The variations of RE related to BDfine ranges of values (<0.8, 0.8-1, 1-1.2 and >1.2 g cm-3) and land covers using 255 

PTF-4 (a) and local-RFFRFS (b). The number under the land cover is the corresponding topsoil sample size. 

3.4 Comparison of ML-PTFs and earlier published PTFs in SOC stock calculation 

We investigated how using BDfine estimated by PTFs impacted the accuracy of SOC stock calculation (Fig. 7). We found that 

SOC stock calculation using BDfine predictions from four earlier published PTFs resulted in a good performance with RMSE 

of 1.39-1.89 kg m-2, R2 of 0.70-0.84, and RE of 17.57-19.46%, respectively. Meanwhile, the performance indicators of SOC 260 

stock calculation using BDfine prediction (RMSE of 1.32-1.36 kg m-2, R2 of 0.84-0.85, RE of 15.01-15.41%) exhibited always 

slightly better performances than the earlier published PTFs. However, the performances of the best earlier published PTF 

(PTF-4) were rather similar to those of the local-RFFRFS. Overall, the performances of the local-RFFRFS were the best. 
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Figure 7 Scatter plots of SOC stock predictions by earlier published PTFs and ML-PTFs along with model performance 

indicators (RMSE, R2 and RE). The red points represent topsoil samples with SOC stock<3 kg m-2 while the blue points 265 

represent topsoil samples with SOC stock≥3 kg m-2. Note that observed SOC stock is computed using SOC content, 

CFvolumefraction, BDfine observations, and while predicted SOC stock is computed using SOC content observations, BDfine 

predictions and CFvolumefraction transformed from CFmassfraction using BDfine predictions suggested by Pacini et al. (2023). 

3.5 Summary of the extended European topsoil BDfine and SOC stock database 

To enlarge the topsoil BDfine and SOC stock database (0-20 cm) for the Europe, we refitted the best ML-PTF (local-RFFRFS) 270 

and the best earlier published PTF (PTF-4) using all the 5,163 topsoil samples to predict topsoil samples without BDfine and 

then calculated SOC stock, which resulted in 15,389 and 18,945 topsoil samples predictions for the extended database 

respectively (less topsoil samples had all the required variables for the use of local-RFFRFS). As shown in Fig. 8, these extended 

topsoil BDfine and SOC stock databases are more regularly distributed across EU and UK compared to the points in Fig. 1. In 

EU and UK, BDfine in topsoil was primarily distributed within 1.0-1.2 g cm-3 (46-47%) while the SOC stock in topsoil was 275 

mainly comprised between 2 and 4 kg m-2. 
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Figure 8 Spatial distributions of 15,389 topsoil samples with BDfine (a) and SOC stock (b) from LUCAS 2018 Soil using local-

RFFRFS, and 18,945 topsoil samples with BDfine (c) and SOC stock (d) from LUCAS 2018 Soil using PTF-4. 

As shown in Fig. 9, in the database created by local-RFFRFS (15,389 topsoil samples), the topsoil samples under cropland had 

the highest median BDfine of 1.11 g cm-3, while woodland exhibited the lowest median BDfine at 0.84 g cm-3. Conversely, 280 

woodland had the highest median SOC stock at 6.21 kg m-2, while cropland showed the lowest median SOC stock at 3.06 kg 

m-2. As for the database built on PTF-4 (18,945 topsoil samples), cropland also had the highest median BDfine at 1.14 g cm-3 
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while woodland exhibited the lowest median BDfine at 0.86 g cm-3. In contrast, the SOC stock under woodland presented the 

highest median SOC stock at 6.96 kg m-2 while cropland had the lowest median SOC stock at 3.17 kg m-2. 

 
Figure 9 Variations of topsoil BDfine and SOC stock under different land covers using PTF-4 (a) and local-RFFRFS (b). 285 

4 Discussion 

4.1 The superiority of ML-PTFs in BDfine prediction 

In this study, using the LUCAS Soil and 15 predictor variables, we compared the model performance of four earlier published 

PTFs and four ML-PTFs for BDfine in topsoil (0-20 cm). Four earlier published PTFs showed a moderate model performance 

with R2 of 0.40-0.45, which is close to a recent developed Hollis-type PTF (R2 of 0.41, Hollis et al., 2012) that refitted by 290 

LUCAS Soil 2018 data (De Rosa et al., 2023). Our results underscored the efficacy of ML-PTFs in successfully predicting 

BDfine at a continental scale, yielding a substantial R² ranging from 0.57 to 0.59. It indicates that when adding more relevant 

predictor variables (e.g., N, pH, PET, MAP) in the topsoil database, ML-PTFs is a better choice for improving BDfine prediction 

than earlier published PTFs based on algebraic equations. Otherwise, earlier published PTFs are still the best choice to impute 

the missing data due to their simplicity (Van Looy et al., 2017). 295 

In addition to global PTFs that use all the soil samples, we introduced the local modelling strategy in PTFs which searched 

similar samples first and then built the relevant PTF for each unknown sample dynamically. Generally, the model performance 

of local PTFs (local-RFFULL and local-RFFRFS) for BDfine prediction continuously improved with the increasing number of 

neighbour samples, and then it reached a plateau when number of neighbour samples reached approximately 350 to 400 (Fig. 

4). Compared to the global PTFs (4,500 soil samples), the size of local PTFs were much smaller (350-400 soil samples) with 300 

slightly better model performance. Therefore, the comparison between global PTFs and local PTFs performances shows that 

local PTFs can improve the efficiency for imputing missing data using a large soil database (Padarian et al., 2019; Sanderman 

et al., 2020). 
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Comparing with the earlier published PTFs that were refitted using our data, the local-FRFRFS model substantially improved 

model performance in BDfine prediction (ΔR2 of 0.14-0.19). Our results suggest that ML-PTFs performed much better than 305 

earlier published PTFs for BDfine prediction. This resulted from the fact that most of ML models are able to handle non-linear 

and complex relationships between the predictor variables and the response variable so as to improve predictions compared to 

those of earlier published PTFs (Katuwal et al., 2020; Palladino et al., 2022). Meanwhile, the earlier published PTFs typically 

rely solely on SOC or SOM content for BDfine prediction. This approach maintains model simplicity but overlooks readily 

available predictor variables such as particle size fractions, MAT and MAP, which are also pertinent to BDfine prediction 310 

(Abdelbaki, 2018). Despite of the high diversity in landscapes and climates at a continental scale, the proposed local-FRFRFS 

model demonstrated similar or even superior performance compared to the ML-PTFs conducted at regional and national scales 

(Table 1). 

Looking into the RE for topsoil under different BDfine levels (Fig. 6), it is clear that the fitted best PTFs (PTF-4 and local-

RFFRFS) had the highest REs for topsoil with low BDfine (<0.8 g cm-3) despite that local-RFFRFS performed better. This partly 315 

results from the low BDfine to calculate the RE, because BDfine value is used as the reference 100% value in RE calculation. 

This is also likely due to the general trend of broad-scale predictions to smooth the variability and to overestimate the low 

values and to underestimate the high values whatever the predicted variable is (e.g., Tifafi et al., 2018; Lemercier et al. 2022; 

Richer-de-Forges et al., 2023). Most important, many low BDfine observations are probably linked to large voids resulting in a 

large porosity, especially under disturbed topsoil. This explains why cropland topsoil exhibited such a large RE, likely due to 320 

the effect of soil tillage which cannot be predicted by our predictor variables. This can also explain the decreasing trend of RE 

with the increase of BDfine up to 1.2 g cm-3 whereas for the topsoil with high BD (>1.2 g cm-3), both local-RFFRFS and PTF-4 

showed a slight increase in RE. Overall, the RE might appear a bit deceiving if we compare them to the accuracy that one may 

wish for monitoring changes in BDfine for example as an indicator of compaction. We must state that this is clearly out of the 

scope of this study, which is to provide a wide database that can be used for broad-scale modelling. 325 

4.2 Performance of FRFS and variable importance in BDfine prediction by ML-PTFs 

We reduced the number of predictor variables in RF model from 15 to 8 using the FRFS algorithm, and the model performance 

of global-RFFRFS for BDfine using FRFS selected variables was higher than global-RFFULL using full variables (Table 3). Though 

the local-RFFRFS (R2 of 0.59) only had marginal superiority over the local-RFFULL model (R2 of 0.58), it facilitated the reduction 

of variables, consequently enhancing prediction efficiency (Fig. 4 and 5). This outcome validates the capacity of FRFS to 330 

simplify the model complexity while concurrently enhancing predictive accuracy (Xiao et al., 2022; Liu et al., 2023; Zhang et 

al., 2023; Hu et al., 2024). Being a useful tool for gap-filling the missing data, an ideal PTF requires both high parsimony and 

good fit. If the developed PTF needs too many predictors variables, its practical applicability would be limited, as much fewer 

soil samples have all the required predictors variables. 
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4.3 The build-up of extended BDfine and SOC stock datasets in Europe 335 

We used the BDfine predictions from eight PTFs together with CFvolumefraction to calculate the SOC stock. The result showed that 

the model performances of SOC stock (R2 of 0.70-0.85) were much higher than those of BDfine (R2 of 0.40-0.59) (Fig. 5 and 

Fig. 7). It can be explained by the interdependence between BDfine and SOC content. For instance, a soil sample with a high 

SOC content commonly has a large pore space due to the large amount of organic matter, leading to a low BDfine (Perie and 

Ouimet, 2008; Chen et al., 2018). As shown in Fig.7, high SOC content and BDfine were always underestimated while the low 340 

SOC content and BDfine were overestimated. By multiplying these two negatively correlated variables, the predicted SOC stock 

could be closer to the observed SOC stock as the overestimation (underestimation) of BDfine can counterbalance the 

underestimation (overestimation) of SOC content, resulting in better model performance than BDfine. It is interesting to note 

that the model performance of best earlier published PTFs (PTF-4, R2 of 0.84) and ML-PTFs (local-RFFRFS, R2 of 0.85) was 

quite close in SOC stock prediction. This indicated that the improvement of BDfine prediction by ML-PTFs did not impact the 345 

accuracy of SOC stock prediction. Looking into the scatter plots shown in Fig. 5, we can observe that the ML-PTFs performed 

much better than earlier published PTFs for topsoil samples with high BDfine (and low SOC content) while limited difference 

was found for soil samples with low BDfine (and high SOC content). Compared to earlier published PTFs, ML-PTFs tended to 

predict SOC stock better for topsoil samples with low SOC stock (<3 kg m-2) while similar model performance can be found 

in topsoil samples with high SOC stock (≥3 kg m-2), which is evident in Fig. 5. As a result, the best earlier published PTF 350 

(PTF-4) performed quite similar to the best ML-PTF (local-RFFRFS) when considering the topsoil samples with a wide range 

of SOC stock. This last result suggests that earlier published PTFs could be useful default tools to estimate BDfine which is 

subsequently used for SOC stock calculation. One of the advantages of these earlier published PTFs is their simplicity; another 

obvious advantage is that they require less training soil samples than ML-PTFs to be fitted and validated. Otherwise, if enough 

data is available, ML-PTFs are suggested for more accurate BDfine prediction, especially for regions with low SOC stock such 355 

as dry land regions in Spain and Italy (Maestre et al., 2021; De Rosa et al., 2023; Wang et al., 2023). 

4.4 Limitations and perspectives 

It is essential to acknowledge that our developed PTFs for BDfine prediction was constructed based on LUCAS Soil data (0-20 

cm), confining its applicability to topsoil within the EU and UK (Orgiazzi et al., 2022, Panagos et al., 2022). However, the 

potential of their extrapolation capability to other regions or to deep soil (>20 cm) necessitates further evaluation. As more 360 

soil data become available from diverse regions as well as for deep soil (Lal, 2018; Tautges et al., 2019; Batjes et al., 2020; 

Yost et al., 2020; Palmtag et al., 2022; Armas et al., 2023), the proposed methodology can be further used to update the PTFs, 

thereby broadening their area of applicability (Chen et al., 2018; Meyer and Pebesma, 2021). In addition, when a depth-specific 

soil BDfine database is available, it will be important to develop depth-explicit ML-PTFs to account for the effects of climate 

and topography on BDfine at depths. 365 
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We acknowledge that our use of PTF-3 and PTF-4 is based on measured SOC contents and on a fixed Van Bemmelen factor 

(SOM=1.724×SOC, Sprengel, 1826; Van Bemmelen, 1890). One good reason to use this factor is that it enables a comparison 

with most of the studies predicting BDfine using SOC and other soil properties. One pitfall is that we know that the conversion 

factor from SOC to SOM is not constant (Pribyl, 2010). However, this conversion factor was only used for PTF-3 and PTF-4. 

Considering the equations used, changing this conversion factor for PTF-4 has no consequence on the predicted BDfine, neither 370 

on the model performance of the PTF for BDfine prediction. Changing it for PTF-3 will lead to lower performance. We have 

no clear indication to try to adapt the Van Bemmelen factor to the pedological context (neither the effect of SOC on BDfine) 

when we used fixed regressions such as PTF-3 and PTF-4. One advantage of ML-PTFs and especially of local ML-PTFs is 

that they can take into account interactions between soil properties. Therefore, the importance of SOC likely varies depending 

other local controlling factors such as clay content, climate or even the nature of the organic compounds, which could explain 375 

the strong effect of N. In other words, ML-PTFs were able to partially compensate for the effect of using a fixed conversion 

factor between SOC and SOM. It should be noted that the BDfine and CFvolumefraction used in this study have been transformed 

from BDsample and CFmassfraction by Pacini et al. (2023), which certainly introduced some uncertainty. However, for topsoil 

samples with CF close to 0, the uncertainty from data transformation is rather low. Since many cropland soils have CF close 

to 0, and they are the most sensitive to threats, the proposed PTFs for BDfine prediction would be helpful. 380 

Another possible source of error is linked to re-allocating some measured values from one LUCAS Soil sampling campaign 

to another one. Indeed, BD (whether BDfine of BDsample) is highly variable in space and time, and coarse fragments and SOC 

are highly variable in space. The location of sampling may have slightly change between LUCAS Soil campaigns for various 

reasons and the instructions recommend a distance <100m (Fernández-Ugalde et al., 2017). This latter case has no reason to 

induce a systematic bias. However, it increases the uncertainty (Munera-Echeverri et al., 2022). Finally, soils containing large 385 

amounts of large rocks are clearly excluded from the LUCAS Soil protocol, therefore one should keep this in mind not to 

extrapolate BDfine and SOC stocks predictions to rocky soils. 

If ones want to use PTFs based BDfine prediction to detect SOC stock changes, the impact of the performance of PTFs on the 

accuracy of SOC stock calculation remains unclear since the equivalent soil mass approach also require BDfine as input 

(Schrumpf et al., 2011; Wendt and Hauser, 2013). Therefore, this issue could be investigated in future studies. However, the 390 

most straightforward and unbiased way to measure SOC stocks by sampling remains the direct determination of the ratio fine-

earth mass:sample volume by sieving and weighting the fine soil from a sample of know volume. 

Most of the predictor variables that we used for ML-PTFs are prone to changes at different time scales. This is the case for all 

predictor variables derived from climate. Some soil predictor variables (e.g., SOC, pH) can change more-or-less rapidly under 

the effect of practices, LC changes and global changes. Finally, LC can change a given time, though some effect of past LC 395 

may remain for a given time. Though strong perturbations may have an immediate effect on BDfine, the time-scales at which 

most of these predictor variables influence or are just correlated to BDfine remain unclear. This opens the door to further 

questioning about the processes that govern the importance of these predictor variables on BDfine. Indeed, ML tools can be 
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used as simple predictors at a given time, or as tools to raise attention to the possible effects of some controlling factors and 

their changes, and to the processes involved in these effects. 400 

5 Data availability 

All the soil data used in this article are available at the following data sources: (1) Land Use and Coverage Area Frame Survey 

Soil (LUCAS Soil) 2009 via https://esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data (Panagos et al., 2022), (2) LUCAS 

Soil 2015 via https://esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data (Fernández-Ugalde et al., 2022), (3) LUCAS Soil 

2018 via https://esdac.jrc.ec.europa.eu/content/lucas-2018-topsoil-data (Panagos et al., 2022), (4) the European topsoil BDfine 405 

and SOC stock dataset (0-20 cm) in this paper is available at https://zenodo.org/records/10211884 (Chen et al., 2023a). 

6 Conclusions 

Using the largest extendable soil dataset for Europe, we have developed ML-PTFs for predicting BDfine at 0-20 cm across the 

EU and UK. In comparison with four earlier published PTFs, the best ML-PTF, namely local-RFFRFS, exhibited superior 

performance for BDfine prediction with percentage increase in R2 at 31.1-47.5%, percentage decrease in RMSE and RE at 13.6% 410 

and 14.8-23.1%, respectively. When the predicted BDfine was subsequently used for SOC stock calculation, we found that the 

best earlier published PTF preformed quite similar to the best ML-PTF, indicating the fact that earlier published PTFs would 

be useful for BDfine prediction when targeting in SOC stock calculation. However, for regions with low SOC stock (<3 kg m-

2), ML-PTFs are still recommended due to its high accuracy in SOC stock calculation. Finally, we established two 

comprehensive pan-European topsoil BDfine and SOC stock databases (0-20 cm) including 15,389 and 18,945 soil samples in 415 

LUCAS Soil 2018 using the best ML-PTF (local-RFFRFS) and earlier published PTF (PTF-4), respectively. Our study proposed 

a potential model to improve the performance of BDfine prediction, and the resultant topsoil BDfine and SOC stock datasets at 

0-20 cm across the EU and UK enable more precise soil hydrological and biological modelling at a continental scale. 
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