Responses to Reviewer 3

Please note that your comments are provided in green text and our responses are marked in blue text. Our major modifications in the revised manuscript are marked as red text.

This paper addresses the question of predicting the bulk density of soils, its absence in soil databases limiting our ability to move from soil mass characteristics (quantities per unit mass of soil) to characteristics expressed in relation to a volume of soil or to a surface area of soil for a given soil thickness. This is an extremely important subject. The soil databases have bulk density values for a minority of soils stored there, but enough to make the study possible of how it is possible to predict, using pedotransfer functions (PTFs), the bulk density using other characteristics of these soils for which the bulk density values are available. The objective is to have tools for predicting the bulk density using soil characteristics that are much more easily accessible than the bulk density. Here, the measured and predicted values of bulk density are then used to compute the stock of soil organic carbon. The latter are discussed according to the characteristics of the PTFs used and the characteristics of the soils, including their environmental characteristics. This is an article which deserves to be published in “Earth System Science Data” but which must first be corrected both in substance and form according to the comments which follow.

Response: Many thanks for your positive feedbacks as well as suggestive comments on our manuscript. We have carefully revised the manuscript based on your comments and suggestions and we hope that the revised manuscript has been greatly improved thanks to your help. Please find our point-to-point responses to your concerns below.
I did not find a presentation of the way used to discuss the “accuracy” of the prediction of the bulk density and then of the soil organic carbon (SOC) content. This requires to be improved (see also comments along the text). “Accuracy” is discussed using the R2 and RMQS values alone. I recommend going deeper in this area. This should be a major point of the discussion.

Response: Thanks for your helpful comments. The use of “accuracy” is confusing and therefore we have replaced it by “model performance” in the revised manuscript. In addition to R² and RMSE, we have added relative error (RE) as you suggested for the evaluation of model performance (in Lines 185-190). In addition, we have added relevant discussion on the model performance of PTFs under different BDine levels and land covers to provide more insightful information for the readers. Please find detailed responses to these specific comments below. Hope you are satisfied with our revision.

There are a certain number of assertions in the discussion section: “better choice for improving BD prediction” (better than what?) (Line 240); “can be an efficient tool” (To what respect?) (Line 247), “greatly improved” (improved but not greatly) (Line 250); “performed better” (this should be more appropriately discussed) (Line 278); “would be accurate enough” (enough with respect to what consideration?) (Line 282). Such assertions that are not clearly supported by facts cannot be accepted.

Response: Thanks for your detailed comments regarding our statements. We have revised all the relevant assertions to make our statements more objective and to avoid confusions.

Former Line 240, new Lines 293-294: “a better choice for improving BD prediction than earlier published PTFs based on algebraic equations.”.

Former Line 247, new Lines 301-303: (instead of “can be an efficient tool”). “The comparison between global PTFs and local PTFs performances shows that local PTFs can improve the efficiency for imputing missing data using a large soil database (Padarian et al., 2019; Sanderman et al., 2020).”.

Response: Thanks for your helpful comments. The use of “accuracy” is confusing and therefore we have replaced it by “model performance” in the revised manuscript. In addition to R² and RMSE, we have added relative error (RE) as you suggested for the evaluation of model performance (in Lines 185-190). In addition, we have added relevant discussion on the model performance of PTFs under different BDine levels and land covers to provide more insightful information for the readers. Please find detailed responses to these specific comments below. Hope you are satisfied with our revision.

There are a certain number of assertions in the discussion section: “better choice for improving BD prediction” (better than what?) (Line 240); “can be an efficient tool” (To what respect?) (Line 247), “greatly improved” (improved but not greatly) (Line 250); “performed better” (this should be more appropriately discussed) (Line 278); “would be accurate enough” (enough with respect to what consideration?) (Line 282). Such assertions that are not clearly supported by facts cannot be accepted.

Response: Thanks for your detailed comments regarding our statements. We have revised all the relevant assertions to make our statements more objective and to avoid confusions.

Former Line 240, new Lines 293-294: “a better choice for improving BD prediction than earlier published PTFs based on algebraic equations.”.

Former Line 247, new Lines 301-303: (instead of “can be an efficient tool”). “The comparison between global PTFs and local PTFs performances shows that local PTFs can improve the efficiency for imputing missing data using a large soil database (Padarian et al., 2019; Sanderman et al., 2020).”.
Former Line 250, new Lines 304: We wrote “substantially” instead of “greatly”.

Former Line 278, new Lines 346-348: We feel that the demonstration by the scatter plots is clear enough. We reformulated as “Looking into the scatter plots shown in Fig. 5, we can observe that the ML-PTFs performed much better than earlier published PTFs for topsoil samples with high BD (and low SOC content) while limited difference was found for soil samples with low BD (and high SOC content).”.

Former Line 282: “would be accurate enough”, new Lines 350-354: We reformulated the demonstration as following “As a result, the best earlier published PTF (PTF-4) performed quite similar to the best ML-PTF (local-RFFRFS) when considering the topsoil samples with a wide range of SOC stock. This last result suggests that earlier published PTFs could be useful default tools to estimate BD which is subsequently used for SOC stock calculation. One of the advantages of these earlier published PTFs is their simplicity; another obvious advantage is that they require less numerous learning points than ML-PTFs to be fitted and validated.”.

The authors do not use always the same abbreviation for the bulk density and the different pedotransfer functions (see comments along the text). There are also other abbreviations which vary in the text (see also comments along the text). This does not make easy reading and understanding the text. Please homogenize all the abbreviations throughout the whole text.

Response: Thank you for this important comment. We have carefully checked and homogenized all the abbreviations throughout the whole text in the revised manuscript.

There are several (too many) writing errors which reflect a lack of proofreading of the manuscript before submitting it. There is even an equation that is wrong in the text even though the calculations appear to have been carried out correctly. (Eq. 3, Line 174). There are enough co-authors to take care of this
proofreading work. Please see comments along the text. It is not pleasant for reviewer’s work.

Response: We are sorry and we apologise for leaving so many writing errors in the original manuscript. The revised manuscript has been carefully checked regarding the grammars and equations. Thank you very much for your patience and your help in pointing out all the relevant issues below.

Legends of Figures and Tables require to be much more informative.
Response: Thanks for your suggestion. We have added more descriptions in the captions of figures and tables. They are more informative in the revised manuscript.

Title: The discussion is restricted to the discussion of the topsoil bulk density (i.e. 0-20 cm). The question of the prediction of the bulk density concerns both the topsoil and subsoil horizons. I have no problem with focusing the prediction on the topsoil when the objective is predicting the soil organic carbon content because the stock is mainly located in the topsoil horizons. However, this should be indicated more explicitly in the title by using “topsoil bulk density” instead of “soil bulk density”. Then, I am wondering about the singular form for “pedotransfer function”. It would be more appropriate to use the plural form “pedotransfer functions”.
Response: Thanks for pointing out this important issue. Since the LUCAS Soil database only collected data at topsoil (0-20 cm), the PTFs fitted in this manuscript were restricted to topsoil in both the results and discussion. Indeed, we have mentioned the limitation of our study on only focusing on topsoil as well as the importance for building depth-specific ML-PTFs for BD when more soil profiles data is available (in Lines 358-365). We agree with your suggestion on the title, and we revised it as “European topsoil bulk density and organic carbon stock database (0-20 cm) using machine learning based pedotransfer functions”. Hope you are happy with our revision.
Line 35: “Additionally, BD plays a crucial role in calculating SOC storage” I recommend starting with a sentence more general like “Additionally, BD plays a crucial role in computing stock of water, chemical elements or compounds by soil surface unit or soil volume unit and then focusing on SOC stocks.

Response: Thanks for your nice suggestion. We have revised it as your suggested in Lines 37-39: “Additionally, BD plays a crucial role in computing stock of water, chemical elements (e.g., soil organic carbon, SOC) or compounds by soil surface unit or soil volume unit, making it even more essential in soil studies.”.

Lines 38 & 39: “to acknowledge … cover patterns” This sentence is correct if you are speaking about the topsoil bulk density. For the subsoil bulk density, the latter closely varies according to soil texture. Please the authors should restrict to topsoils.

Response: We have restricted this statement to topsoil (in Line 41) as you suggested.

Line 46: SOC is soil organic carbon content. Please the authors should add “content” to “SOC” and also to “clay, silt, sand” everywhere in the whole text.

Response: Thanks for your suggestion. We have added “content” after SOC, clay, silt, sand throughout the manuscript.

Lines 79 & 80: “data under comparable environmental conditions” Very vague. Please, it is required to be more specific.

Response: Similar environmental conditions would be more appropriate here and we have revised it accordingly in Lines 83-84 and detailed what “environmental conditions” means in this context as below “similar environmental conditions (i.e. in the present case similar predictors feature space, including soil properties, elevation, land cover and climate conditions).”.
Line 83: “accuracy” What is “accuracy” in this paper. How is it expressed, discussed? See other comments about that point.
Response: You’re right, accuracy is a vague term including many aspects. We prefer the generic term “performance”. This wording is commonly accepted for ML predictions and includes indicators as R^2, root mean square error, relative error, and other indicators. We rewrote as in Lines 87-88: “...how the performances (e.g., R^2, root mean square error, relative error) of PTFs based BD prediction impact the quality of SOC stock remains poorly explored.”.

Line 96: All throughout the text the word “soil” is used when it is the “topsoil” (0-20 cm) which is discussed. It is necessary to avoid such an ambiguity.
Response: Thanks for this suggestion. We replaced soil by topsoil in all the relevant positions.

Line 99: What do the authors mean by “a single laboratory”. If the analyses were performed in a single laboratory, please give information about this laboratory.
Response: Thanks for your suggestion, we have added the relevant information in Line 104: “Standard laboratory analysis was conducted in an accredited laboratory (Kecskemét, Hungary).”.

Lines 100 & 100: “-3” and “–1” require to be written in superscript.
Response: Thanks for pointing out these typos. All the relevant typos have been corrected in the revised manuscript.

Line 120: “Traditional” Is it appropriate? I do not think so. I would suggest using “Earlier published PTFs” or “PTFs from the literature”. I do not understand in why these PTFs would be “traditional”. And what tradition are we talking about? Unclear and not adapted.
Response: Thanks for this nice suggestion. We agree with your that “Earlier published PTFs” would be clearer and we have revised it accordingly throughout the manuscript.

Line 125: In table 2, four models are presented and numbered 1, 2, 3 and 4 when there are mentioned as PFT-1, PFT-2, PFT-3 and PFT-4 in Figure 5 (Line 207) and Figure 6 (Line 2014). I mention here that the correct abbreviation for “pedotransfer function” is “PTF” and not “PFT” as mentioned in Figures 5 and 6. What is BD in Table 2? BDfine? SOM content is defined as % by reference to soil mass or soil volume? Same question for the SOC content.

Response: Thanks for your great patience. We have named the earlier published PTFs as PTF-1, PTF-2, PTF-3 and PTF-4 in Table 2. The same abbreviations have been used in the whole revised manuscript. We have also corrected the typo of “PFT” in Figure 5. The BD\text{fine} and CF_{\text{volumefraction}} have been carefully used in the revised manuscript. SOM and SOC contents are defined as % by reference to soil mass. This information has been added in Table 2.

Line 134: “Here, 16 predictor variables” when there are 15 predictors mentioned in Table 3. Please check.

Response: Sorry for this mistake. We have corrected it as 15 predictor variables in Line 147.

Line 135: Table 3. I do not understand using the three clay, silt and sand contents together (RFFull) when they are not independent predictor variables, their sum being equal to 100. For RFRFS, sand content is not used. Please explain. “Elevation” in the table when it is “DEM” in the text (Line 116). Please homogenize. “EC” in the table when it is “CEC” in the text (Line 101)/ Please homogenize. “ELE” for probably “elevation” when it is not defined in the text. This is confusing.

Response: We added this text to the caption of Table 3: “RF\text{Full} uses all potential
predictors, even if they may be redundant of multi-collinear (typical case of the use of clay, silt and sand contents together). RF_{FRFS} applies forward recursive feature selection thus eliminating both multi-collinearity and irrelevant covariates (e.g., one particle size fraction (sand) is left out).". Please note the fact that sand is out is linked to the fact that clay and sand generally have the strongest negative correlation because they are at the extreme of the textural triangle whereas silt usually has weaker correlations with other fractions. This is also understandable from a sedimentology point of view. The abbreviation of elevation (ELE) has been defined in Line 126. EC has been corrected as CEC in Table 3. All the abbreviations have been carefully checked in the revised manuscript.

Lines 136 & 137: “Furthermore, we adopted … performance”. Please give at least one reference.
Response: We have added two relevant references in Lines 157-158 as you suggested.

Lines 160 to 167: I recommend discussing errors using relative errors. Is the error 5%, 10%, 15% or more of the predicted value? Is there any relationship between the relative error and the type of land use? The discussion of the prediction quality would be thus much more relevant.
Response: We have added relative error (RE) as one of the indicators for evaluating the performance of PTFs (in Lines 185-190). We have added RE in the Figure 5 and Figure 7 (former Figure 6), and also added a new Figure 6 to demonstrate the RE variations among different BD levels and land covers. The results showed that the magnitude of RE depended on BD_{fine} levels in Lines 236-243: “The summary of RE variations under different BD_{fine} levels and land covers using best earlier published PTF (PTF-4) and ML-PTF (local-RF_{FRFS}) is shown in Fig. 6. The results indicated that local-RF_{FRFS} (RE of 29%) performed much better than PTF-4 (RE of 37%) for the topsoil with low BD_{fine} (<0.8 g cm^{-1}}
The improvement of RE for other BD_{fine} levels was rather limited (ΔRE of 1-3%). The highest RE (30-57% for PTF-4, 25-50% for local-RFFRFS) was found for topsoil with low BD_{fine} for the whole validation set and each land cover. Across land covers, the RE generally decreased greatly (15-24% for PTF-4, 14-20% for local-RFFRFS) for topsoil with low-median BD_{fine} (0.8-1 g cm^{-3}), and then to its lowest (7-9% for both PTF-4 and local-RFFRFS) for topsoil with median-high BD (1-1.2 g cm^{-3}). A slight increase of RE (14-16% for PTF-4, 11-17% for local-RFFRFS) was observed for topsoil with high BD_{fine} (>1.2 g cm^{-3}) for all the land covers.

RE also varied a lot among land covers for topsoil with low and low-median BD_{fine} in Lines 243-247: “Among different land covers, the cropland had the greatest RE for topsoil with low and low-median BD_{fine}, followed by others, woodland and grassland. For topsoil with median-high and high BD_{fine}, similar RE was found for all the land covers. Overall, the RE both PTF-4 and local-RFFRFS showed the worse performances for low BD_{fine} values, but the results were always better for local-RFFRFS, except for woodlands having BD_{fine}>1 where the RE was slightly better for PTF-4”.

We have also added relevant discussions on RE in Lines 314-325: “Looking into the RE for topsoil under different BD_{fine} levels (Fig. 6), it is clear that the fitted best PTFs (PTF-4 and local-RFFRFS) had the highest REs for topsoil with low BD_{fine} (<0.8 g cm^{-3}) despite that local-RFFRFS performed better. This partly results from the low BD_{fine} to calculate the RE, because BD_{fine} value is used as the reference 100% value in RE calculation. This is also likely due to the general trend of broad-scale predictions to smooth the variability and to overestimate the lowest values and to underestimate the higher values whatever the predicted variable is (e.g., Tifafi et al., 2018; Lemercier et al. 2022; Richer-de-Forges et al., 2023). Most important, many low BD_{fine} observed values are probably linked to large voids resulting in a large porosity, especially under disturbed topsoils. This explains why cropland topsoils exhibited such a large RE, likely due to the effect of soil tillage which cannot be predicted by our
covariates. This can also explain the decreasing trend of RE with the increase of BD_{\text{fine}} up to 1.2 g cm-3 whereas for the topsoil with high BD (>1.2 g cm-3), both local-RFF_{\text{FRFS}} and PTF-4 showed a slight increase in RE. Overall, the RE might appear a bit deceiving if we compare them to the precision that one may wish for monitoring changes in BD_{\text{fine}} for example as an indicator of compaction. We must state that this is clearly out of the scope of this study, which is to provide a wide database of reference values that can be used for broad-scale modelling.

Line 168: Is it BD or BD_{\text{fine}}? Same question for Line 177 and Figure 2. This really confusing.

Response: Thanks for your comment. We have specified the BD_{\text{fine}} here as well as in other texts, equations, figures and tables.

Line 174: Equation (3) appears to be wrong. How is expressed CF_{\text{volumefarction}}? Does it range from 0 to 1? From 0 to100? It should be “x (1 - CF_{\text{volumefarction}})” without dividing by 100 if CF_{\text{volumefarction}} ranges from 0 to 1 or “x (100 - CF_{\text{volumefarction}})/100” if CF_{\text{volumefarction}} ranges from 0 to 100. Required to be clarified and corrected.

Response: The CF ranges from 0 to 1, the unit of CF is \%/100 which has been specified in Line 198. The 100 at the end of the equation 3 is not used to correct the unit of CF, but for converting the final unit of SOC stock to kg m-2. Hope our explanation is clear. Please note that this equation (new Equation 4) have been revised for better understanding.

Line 178: “with BD ranging from 0.20 to 1.89”. This required to be discussed in the discussion section. For which type of topsoil do we encounter 0.20? Peat topsoils? And for 1.89? Stony topsoils? But are we talking about BD_{\text{fine}} or BD including gravels and stones? This remains confusing.

Response: Thanks for your suggestions. We have added the descriptions on
the lowest and highest BD_{fine} in Lines 203-206: “The topsoil sample with the lowest BD_{fine} (0.20 g cm^{-3}) was collected from Pine dominated mixed woodland with a SOC content greater than 137 g kg^{-1}. In contrast, the topsoil sample with the highest BD_{fine} (1.89 g cm^{-3}) was sampled at a sandy soil (sand and clay of 65\% and 11\%, SOC content of 31.9 g kg^{-1}) in cropland (common wheat).”. Hope our explanations are clear.

Line 180: “with the exception of clay soils”. First of all, you are talking about “topsoils” and not “soils” and then there are clayey topsoils in your dataset (see the triangle, Figure 2) and not so few. This requires to be rewritten.
Response: You are right. Indeed, the textural triangle is well covered. Thanks for your suggestion. We have restricted it to topsoil now and we have rewritten the sentences in Lines 207-208 as “As shown in the texture triangle, the selected topsoil samples covered a wide range of soil texture classes.”.

Line 193: “Elevation” here when it is for RFFRFS in Table 3. Please homogenize.
Response: Elevation has been replaced by ELE in relevant positions.

Lines 196 to 203 (and elsewhere in the text, Figures 5 and 6 included): The abbreviations ML-PTFs and T-PTFs are used in the text which is appropriate. I strongly suggest using local-RFFRFS-PTFs, local-RF-FULL-PTFs and so on for the other PTFs to homogenize and make easier text reading and understanding.
Response: Based on your previous suggestion, the earlier published PTFs have been named from PTF-1 to PTF-4, and the ML-PTFs have been named as global-RF_{FULL}, global-RF_{FRFS}, local-RF_{FULL} and local-RF_{FRFS}. Hope the current version is easier for reading and understanding.

Line 205: The legend is not informative enough. Please avoid mentioning “eight PTFs”. This does not bring any information.
Response: Thanks for this suggestion. The caption of Figure 4 has been revised as “Figure 4 Model performance indicator (R^2) of earlier published PTFs and ML-PTFs in BD_{fine} prediction. The performances of local RF models (local-RF$_{FULL}$ and local-RF$_{FRFS}$) change with the number of soil samples used for local modelling.”. Hope this caption is more informative.

Line 207: Figure 5. As mentioned above, this not “PFT” but “PTF”. The legend of the figure is not informative enough. Please avoid mentioning “eight PTFs”. This does not bring any information.

Response: We have corrected the typo of “PFT” as “PTF” in Figure 5. The caption of Figure 5 has been revised as “Figure 5 Scatter plots of BD_{fine} predictions using earlier published PTFs and ML-PTFs along with model performance indicators (RMSE, R^2 and RE). The lighter color means higher sample density. Please note that the best models are selected for local-RF$_{FULL}$ and local-RF$_{FRFS}$.”. Hope this caption is much informative.

Line 214: Figure 6. Similar comments as in Figure 5. SOC stocks are expressed in kg cm$^{-2}$ which is wrong. Probably should correspond to kg m$^{-2}$. When the authors write “observed SOC stocks”, I assume that they are speaking about values of SOC stocks which were computed using the measured values of SOC content and measured values of bulk density. And then, when they write “Predicted so stocks”, the values were computed using measured values of SOC content and the predicted values of bulk density. Whether I understood correctly or not, it is necessary to explain it clearly in the text.

Response: Sorry for this mistake, the unit of SOC stocks has been corrected as “kg m$^{-2}$”. Indeed, your understanding is correct and the relevant descriptions have been added in the caption of Figure 7 (former Figure 6): “Figure 7 Scatter plots of SOC stock predictions by earlier published PTFs and ML-PTFs along with model performance indicators (RMSE, R^2 and RE). The red points represent topsoil samples with SOC stock<3 kg m$^{-2}$ while the blue points...
represent topsoil samples with SOC stock ≥ 3 kg m⁻². Please note that observed SOC stock is computed using SOC content, \(\text{CF}_{\text{volumefraction}} \), \(\text{BD}_{\text{fine}} \) observations, and while predicted SOC stock is computed using SOC content, \(\text{BD}_{\text{fine}} \) predictions and \(\text{CF}_{\text{volumefraction}} \) transformed from \(\text{CF}_{\text{massfraction}} \) using \(\text{BD}_{\text{fine}} \) predictions suggested by Pacini et al. (2023).”.

Lines 249 to 252: This is not really true. The difference of R² is not “around 2.0”. The highest difference of R² recorded with T-PTFs and with the PTFs developed in the paper is 0.19 when we compare the smallest R² recorded with T-PTFs and the highest R² recorded with the PTFs developed in the paper (see values in Figure 5). On the other hand, the difference of R² recorded with T-PTFs and with the PTFs developed in the paper is 0.14 when we compare the highest R² recorded with T-PTFs and the highest R² recorded with the PTFs developed in the paper (see values in Figure 5). I recommend writing something like “ranged from 0.14 to 0.19” which more appropriate.

Response: Many thanks for your kind suggestion. We agree with you that “ΔR² of 0.14-0.19” would be more appropriate, and we have revised it in Line 305 in the revised manuscript.

Line 247: “can be an efficient tool” Meaning? Something with “can improve” would much more appropriate.

Response: Thanks for this suggestion. We have revised it in Lines 301-303 as “Therefore, the comparison between global PTFs and local PTFs performances shows that local PTFs can improve the efficiency for imputing missing data using a large soil database (Padarian et al., 2019; Sanderman et al., 2020).”.

Lines 270 & 271: “with a higher SOC commonly”. “with a higher SOC content commonly” is more correct. And “higher” than what? “larger” than what? “greater” than what? The use of the comparative form requires to say to what
you compare.
Response: Thanks for your suggestions. We have added content after SOC in the whole manuscript to make it clear. To avoid confusion, we have revised the sentences not to make them “comparative” in Lines 338-340: “For instance, a soil sample with a high SOC content commonly has a large pore space due to the large amount of organic matter, leading to a low BD\textsubscript{fine} (Perie and Ouimet, 2008; Chen et al., 2018).”.

Line 280 “>3 kg cm-2” Quite high. I assume this is “3 kg m-2”
Response: Thanks for pointing out this typo and we have corrected it in the revised manuscript. Similar typos also have been carefully corrected in the whole manuscript.

Line 280: “would be accurate enough” Why? Based on what? This requires to be clarified.
Response: We agree with your comment that our statement is confusing here. We have revised it in Lines 352-353: “This last result suggests that earlier published PTFs could be useful default tools to estimate BD\textsubscript{fine} which is subsequently used for SOC stock calculation.”. Hope this statement is clear now.

Line 280: “to topsoil” This is the only place where we are talking about topsoils and not soils.
Response: Many thanks for your previous relevant suggestions. We have replaced soil by topsoil in the revised manuscript to avoid confusion.

I did not check that all the references cited in the text were in the reference list and vice versa.
Response: Thanks again for all your helpful comments and suggestions above. We have carefully checked the references in the revised manuscript.