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Abstract. This article introduces the 2023 National Offshore Wind data set (NOW-23), which offers the latest wind resource

information for offshore regions in the United States. NOW-23 supersedes, for its offshore component, the Wind Integration

National Dataset (WIND) Toolkit, which was published a decade ago and is currently a primary resource for wind resource

assessments and grid integration studies in the contiguous United States. By incorporating advancements in the Weather Re-

search and Forecasting (WRF) model, NOW-23 delivers an updated and cutting-edge product to stakeholders. In this article, we5

present the new data set, which underwent regional tuning and performance validation against available observations and has

data available from 2000 through, depending on the region, 2019–2022. We also provide a summary of the uncertainty quan-

tification in NOW-23, along with NOW-WAKES, a 1-year post-construction data set that quantifies expected offshore wake

effects in the U.S. mid-Atlantic lease areas. Stakeholders can access the NOW-23 data set at https://doi.org/10.25984/1821404

(Bodini et al., 2020).10
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1 Introduction20

In this article, we present the work done to create a state-of-the-art wind resource data set for all United States offshore regions

(except for Alaska), called the 2023 National Offshore Wind data set (NOW-23). This work has been performed by the National

Renewable Energy Laboratory (NREL) and its partners, the University of Colorado Boulder and Veer Renewables.

In 2015, NREL produced the Wind Integration National Dataset (WIND) Toolkit (Draxl et al., 2015), a 7-year wind resource

data set (2007–2013) covering the contiguous United States. The WIND Toolkit was built using the Weather Research and25

Forecasting (WRF) mesoscale numerical weather prediction (NWP) model (Skamarock et al., 2019), and provided modeled

variables up to 200 m above the surface. Since its creation, the WIND Toolkit has become one of the most comprehensive and

commonly used data sets for wind resource assessment and grid integration studies in the United States, owing to the fact it has

been publicly available at no cost through Amazon Web Services. A wide variety of stakeholders, ranging from wind energy

developers and consultants, utilities, government organizations, and academic and research institutions, have taken advantage30

of the WIND Toolkit to foster wind energy development across the United States.

Since the release of the WIND Toolkit, extensive research in the field of NWP models has been completed, and many

advancements have been proposed and tested by the global atmospheric science community. Several field campaigns (e.g.,

Wilczak et al. (2015); Shaw et al. (2019); Fernando et al. (2019)) have been completed to collect observations useful to validate

and improve the capabilities of the WRF model. Growing research has assessed the sensitivity in the modeled wind resource35

to different model inputs and parameterizations (e.g., Hahmann et al. (2020)). Also, new state-of-the-art reanalysis products

(namely, ERA-5 (Hersbach et al., 2020)) have been released and can now be used as boundary conditions to feed the WRF

model. Finally, a broader scientific consensus agrees that data sets of at least 20 years are needed for a robust quantification of

the long-term wind resource at the site of interest.

Given the extensive success of the WIND Toolkit, NREL and its partners are committed to ensuring that the latest advance-40

ments in the atmospheric modeling community are provided to stakeholders. As such, a next-generation product to replace

the WIND Toolkit is needed to ensure the most accurate wind resource data are given to the U.S. wind energy community.

Given the current and expected future sparsity of offshore hub-height observations, a national state-of-the-art mesoscale mod-

eled wind resource data set represents an even more critical need to support the breadth of offshore wind energy analyses and

stakeholders that rely on such data.45

Here, we present NOW-23, a validated national offshore wind resource data set for the United States. The main final product

of this research effort is a WRF-based atlas of the offshore wind resource for all U.S. offshore waters, covering at least 20

years, which is made available at no cost to the public, with data at 5-minute temporal resolution, 2-km horizontal resolution,

and up to 500 m above the surface. In Section 2, we present the general modeling approach used to develop the NOW-

23 data set. Sections 3 through 10 describe the NOW-23 data set in each modeled offshore region. Section 11 describes50

our uncertainty quantification efforts. Section 12 introduces NOW-WAKES, a post-construction data set for the mid-Atlantic

domain. In Section 13, we provide instructions on how to access the NOW-23 data set, followed by our main conclusions. In the

appendix, we provide additional analyses on the seasonal and diurnal variability of the modeled wind resource, the variability
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Figure 1. Map of the regional WRF model domains used to build the NOW-23 data sets, masked at the limit of the exclusive economic zone

of the countries with jurisdiction on the offshore regions being considered.

of the mean wind speed at overlapping boundaries of neighboring regional domains, and a comparison of the mean wind speed

predictions with what was modeled by the previous-generation WIND Toolkit.55

2 Description of the WRF model simulations and general validation approach

To create the NOW-23 data set, we adopt a regional approach. For each offshore region, we perform a separate numerical

simulation, whose setup is selected (in most regions) through validation against available observations, so that the model can

be customized to account for regionally unique wind resource phenomena. Figure 1 shows the eight regional domains of the

NOW-23 data set. We note that WRF model domains have a rectangular shape. However, to limit the storage requirements for60

the NOW-23 data files, most of the regional data sets are masked (after the WRF model simulations are done) based on the

extension of the exclusive economic zone (EEZ), which is the area where a country has jurisdiction over natural resources,

including wind, roughly at 212 nautical miles from the coast.

Table 1 summarizes the main attributes for the WRF model simulations used to build NOW-23, and compares them with

those of the older WIND Toolkit. We run the simulations in 1-month segments, and then concatenate them at each grid cell65

in the post-processing phase. In doing so, we consider a spin-up period of 2 days (for example, the May 2015 run actually

starts on April 29, 2015) to let the model stabilize from the initial conditions imposed to the WRF model. The choice of using

1-month segments is dictated by the need to have a limited number of restart periods for grid applications, as every restart might
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Table 1. Main attributes of the NOW-23 data set, compared to those used in the older WIND Toolkit. Attributes in bold are the result of a

region-specific sensitivity analysis in NOW-23.

NOW-23 WIND Toolkit

Temporal extent 2000–2019/22 (varies with region) 2007–2013

WRF model version 4.2.1 3.4.1

Nesting 6 km, 2 km 18 km, 6 km, 2 km

Temporal resolution (output) 5-min 5-min

Vertical levels 61 41

Near-surface-level heights 12 m, 34 m, 52 m, 69 m, 86 m, 107 m, 134

m, 165 m, 200 m

15 m, 47 m, 80 m, 112 m, 145 m, 177 m

Reanalysis forcing ERA-5 ERA-Interim

Sea surface temperature forcing OSTIA ERA-Interim

Atmospheric nudging Spectral nudging on 6-km domain, applied

every 6 hours1

Spectral nudging on 18-km and 6-km do-

mains, applied every 6 hours

Planetary boundary layer scheme MYNN or YSU (varies with region) YSU

Surface layer scheme MYNN or MM5 (varies with region) MM5

Land surface model NOAH NOAH

Microphysics Ferrier

Longwave radiation Rapid Radiative Transfer Model

Shortwave radiation Rapid Radiative Transfer Model

Topographic database Global Multi-Resolution Terrain Elevation Data from the United States Geological Service

Land-use data Moderate Resolution Imaging Spectroradiometer 30s

Cumulus parameterization Kain-Fritsch

create false ramps, and by the desire to reduce the overall time needed to run the simulations, given the parallel computing

capabilities offered by NREL’s supercomputer where the simulations are performed. As will be detailed in later sections, we70

do not observe degraded performance with time in each calendar month. The choice of the 5-minute temporal resolution is also

dictated to accommodate needs of the grid integration community.

Table 1 shows that some some of the WRF model parameters were regionally tuned in NOW-23. In fact, many different setup

choices need to be made before running a WRF model simulation so that multiple simulations run with different setups will lead

to a range of modeled conditions. It is therefore essential to tune the WRF model setup to obtain accurate model predictions75

over the region of interest. For the majority of the regions modeled in this work, we considered and run multiple WRF model

setups (i.e., a WRF model ensemble) over a 1-year period and validated them against available observations to select the

1Nudging was not applied to the Mid-Atlantic, Great Lakes, North Pacific, and Hawaii regions. Tests showed that nudging does not have a significant

impact for offshore regions when using regional domains and monthly runs.
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configuration that is best suited for long-term offshore wind resource assessment in each region. To determine which set of

WRF model setups to consider in our validation experiments, we leveraged recent research in the area to understand which

choices strongly impact the WRF-modeled wind resource. A detailed list of the studies on the WRF-predicted wind speed80

sensitivity to the WRF model setup is included in Optis et al. (2020c). Here, we highlight the exhaustive effort by Hahmann

et al. (2020) to develop the New European Wind Atlas (NEWA) as well as an offshore analysis of the WRF model sensitivity

that NREL recently completed in partnership with Rutgers University Center for Ocean Observing Leadership (Optis et al.,

2020b). Based on the findings from recent literature on the topic, we identify the following five model setup choices as the most

influential on the WRF-predicted wind resource: the reanalysis forcing product, the planetary boundary layer (PBL) scheme,85

the sea surface temperature (SST) product, the land surface model (LSM), and the surface layer scheme. For each region where

we run a short-term WRF model ensemble, we consider a subset of setups resulting from the combination of the following

choices:

– Reanalysis forcing product: Reanalysis products are used as boundary conditions for the WRF model. We consider

the state-of-the-art ERA5 reanalysis product developed by the European Centre for Medium-Range Weather Forecasts90

(Hersbach et al., 2020) and the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2,

Gelaro et al. (2017)), developed by the National Aeronautics and Space Administration (NASA). Both these reanalysis

products have been widely used in wind-energy-related applications and represent some of the most advanced reanalysis

products available to date. Data from ERA5 are provided at hourly resolution and 0.25◦ × 0.25◦ horizontal resolution.

MERRA-2 also provides data at hourly resolution but at a coarser horizontal resolution, 0.50◦ × 0.625◦.95

– Planetary boundary layer scheme: The choice of the PBL scheme has critical consequences on how the WRF model will

model turbulent exchanges in the atmospheric boundary layer, and it is expected to have a significant impact on the wind

speed predictions. Here, we consider the Mellor–Yamada–Nakanishi–Niino (MYNN, Nakanishi and Niino (2009)) and

the Yonsei University (YSU, Hong et al. (2006)) PBL schemes. These parameterizations are widely considered the two

most popular PBL schemes in the WRF model, especially when considering wind-related applications; YSU was used100

in the WIND Toolkit, and MYNN in the NEWA (Dörenkämper et al., 2020).

– Sea surface temperature product: Because the focus of this research effort is on offshore wind, the choice of the sea

surface temperature product, which acts as a lower boundary condition for the WRF model, should also be assessed in

detail. We note that the same considerations apply to the Great Lakes, too. The first SST product we consider is the

Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data set produced by the UK Met Office (Donlon105

et al., 2012; Hirahara et al., 2016), which provides data at 1/20◦ horizontal resolution and is the standard product included

in both ERA5 and MERRA-2. Next, we consider the National Center for Environmental Prediction (NCEP) Real-Time

Global SST product (Thiébaux et al., 2003), at 1/12◦ horizontal resolution.

– Land surface model: The choice of the land surface model can have a significant impact on offshore waters near the

coast, as the LSM regulates the exchange of energy and water fluxes between the land surface and the atmosphere. We110

consider the Noah LSM and the updated Noah-Multiparameterization (Noah-MP) LSM (Niu et al., 2011).
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Table 2. List of the 16 WRF model ensemble members considered for NOW-23 setup selection and validation.

WRF model ensemble member name Reanalysis product PBL scheme SST product LSM Surface layer scheme

WRF1 ERA5 MYNN OSTIA NOAH MYNN

WRF2 ERA5 YSU OSTIA NOAH MM5

WRF3 ERA5 MYNN OSTIA NOAH-MP MYNN

WRF4 ERA5 YSU OSTIA NOAH-MP MM5

WRF5 ERA5 MYNN NCEP NOAH MYNN

WRF6 ERA5 YSU NCEP NOAH MM5

WRF7 ERA5 MYNN NCEP NOAH-MP MYNN

WRF8 ERA5 YSU NCEP NOAH-MP MM5

WRF9 MERRA-2 MYNN OSTIA NOAH MYNN

WRF10 MERRA-2 YSU OSTIA NOAH MM5

WRF11 MERRA-2 MYNN OSTIA NOAH-MP MYNN

WRF12 MERRA-2 YSU OSTIA NOAH-MP MM5

WRF13 MERRA-2 MYNN NCEP NOAH MYNN

WRF14 MERRA-2 YSU NCEP NOAH MM5

WRF15 MERRA-2 MYNN NCEP NOAH-MP MYNN

WRF16 MERRA-2 YSU NCEP NOAH-MP MM5

– Surface layer scheme: Finally, the surface layer scheme handles how fluxes of heat, momentum, and moisture move

from the surface to the boundary layer above. We consider the MM5 (Grell et al., 1994; Jiménez et al., 2012) and

MYNN (Olson et al., 2021) surface layer schemes. Both are built on the Monin–Obukhov similarity theory, but the

MYNN parameterization has been designed to specifically interface with the MYNN PBL scheme.115

We consider up to 16 WRF model ensemble members resulting from a combination of the choices above, as detailed in Table

2. Table 3 summarizes the ensemble members that are considered for model setup selection and validation in each NOW-23

region, and the selected setup that is used for the long-term model run, as detailed in the next sections.

In the majority of the offshore regions modeled in NOW-23, we leverage available offshore or coastal observations to

determine the best performing WRF model setup. All the observational data sets used in the development of NOW-23 are120

shown in the map in Fig. 2 and will be described in detail in the next sections for each offshore region. In general, we use data

from all the offshore lidars we have access to. We also consider observations collected by near-surface buoys from the National

Data Buoy Center (NDBC) and coastal radars, as resources allow.

We base our validation approach on the best practices detailed in Optis et al. (2020a) and, whenever possible, use multiple

error metrics between modeled and observed wind speed for our model validation and setup selection:125

– Bias.
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Table 3. WRF model ensemble members used for setup selection and validation in each NOW-23 region. The setup selected and used for the

long-term NOW-23 data set in each region is also highlighted.

WRF model North Mid South Gulf of Great South North

ensemble member name Atlantic Atlantic Atlantic Mexico Lakes Pacific Pacific Hawaii

WRF1 X (sel.) X (sel.) X X X (sel.) X X (sel.) X (sel.)

WRF2 X X (sel.) X (sel.) X X (sel.)

WRF3 X X X X X

WRF4 X X X X

WRF5 X X X X

WRF6 X X X X

WRF7 X X

WRF8 X X

WRF9 X X

WRF10 X X

WRF11 X X

WRF12 X X

WRF13 X X

WRF14 X X

WRF15 X X

WRF16 X X

– Centered (or unbiased) root-mean-square error (cRMSE).

– Pearson’s correlation coefficient (r).

– A comparison between the standard deviation of modeled and observed wind speed.

A perfect model setup would have zero bias, zero cRMSE, r=1, and a modeled wind speed standard deviation equal to that of130

the observed wind. To summarize the latter three metrics, we adopt the Taylor diagram (Taylor, 2001), which is a mathematical

diagram that graphically summarizes model skills in terms of cRMSE, r, and standard deviation on a single plot.

3 NOW-23 data set in the mid-Atlantic region

We start the description of the NOW-23 data set with the mid-Atlantic domain, an area with multiple publicly available obser-

vational data sets of hub-height offshore wind and therefore an ideal region to detail the validation approach adopted to develop135

NOW-23.
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Figure 2. Map of the observational data sets used to validate the NOW-23 data set.

For the mid-Atlantic region, we consider all the combinations resulting from the choices of reanalysis product, SST product,

PBL scheme, and LSM detailed in Section 2. We do not consider for this region the impact of the surface layer scheme due to

computational limitations; we use the MYNN surface layer option when the MYNN PBL scheme is used and the MM5 option

with the YSU PBL scheme. These combinations result in 16 different WRF model setups (Table 3), which are all run over 1140

year (using the general approach described in Section 2) from September 1, 2019, to August 31, 2020.

To select the best performing WRF model setup in the region, which will be used for the long-term NOW-23 data set, we

compare modeled wind speed from the 16 WRF model setups against observations collected by the three ZephIR ZX300M

floating lidars, shown in the map in Fig. 2. Two of the three lidars were deployed by the New York State Energy Research and

Development Authority (NYSERDA). The lidar on buoy E05 North is located at 39.97◦ N, 72.72◦ W; the buoy E06 South lidar145

is located at 39.55◦ N, 73.43◦ W. Wind speed and wind direction data for both lidars are available every 20 m from 20 m to

200 m above sea level and are publicly distributed at 10-minute resolution after proprietary quality checks have been applied

to the data. For both lidars, we use observations collected between September 4, 2019, and August 31, 2020. The third lidar

was deployed by Atlantic Shores Offshore Wind closer to the coastline at 39.27◦ N, 73.88◦ W. This lidar measures wind speed

every 20 m from 40 m to 200 m above the surface. For this instrument, we leverage observations from February 26, 2020 (the150

start of its deployment), to August 31, 2020.
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First, we assess the variability of the mean wind profiles across the 16 1-year WRF model ensembles (Fig. 3). We color code

the mean wind profiles in terms of the PBL scheme used by the various ensemble members because, as will be detailed later,

in some offshore regions we see a significant deviation in modeled wind speeds between the MYNN and YSU PBL schemes.

In the mid-Atlantic, the WRF model ensemble members that adopt the YSU PBL scheme model generally lower wind speeds155

compared to MYNN at all three lidar locations, with the largest deviations occurring below 100 m above ground level (a.g.l.),

with differences generally lower than 0.5 m s−1, on average. While the MYNN generally slightly overestimates wind speeds

below 50 m a.g.l., we find that all the considered setups underestimate wind shear, thus resulting in a slight negative bias higher

aloft.

We now dive deeper into the validation by assessing more quantitative performance metrics. All three lidars in this region160

provide good measurements at a wide range of heights of interest for wind energy development. To capture the WRF model

performance across all heights, we perform our model validation in terms of the rotor equivalent wind speed (REWS), which is

the wind speed corresponding to the kinetic energy flux through a turbine’s swept rotor area, when accounting for the vertical

shear. The REWS is calculated as

REWS =

(
n∑

i=1

WS3
i

Ai

A

)1/3

(1)165

where WSi is the wind speed at the height level i, n is the number of available heights across the wind turbine rotor disk, A is

the whole area of the turbine rotor disk, and Ai is the area of the i-th segment, i.e., the area for which WSi is representative.

Here, we consider the 10 MW turbine from Beiter et al. (2020) as representative of a typical commercial offshore turbine, with

a rotor diameter of 196 m and a hub height of 128 m. We consider horizontal layers in the turbine rotor disk equally spaced

every 20 m from 30 m to 190 m a.g.l., each associated with observed and modeled wind speed every 20 m from 40 m to 180170

m a.g.l. Finally, the top layer extends from 190 m to 226 m and is associated with the 200-m wind speed, given the lack of

lidar observations higher than 200 m a.g.l. While bigger turbines reaching higher heights are being installed in the region, the

highest height of lidar observations at 200 m limits our ability to consider larger machines here.

We calculate bias, cRMSE, correlation, and standard deviation in terms of observed and modeled 10-minute REWS from all

16 WRF model ensemble members and summarize results in the Taylor diagrams in Fig. 4. Ideally, a perfect member would175

be represented in the Taylor diagram by a point on top of the black star in each diagram, which represents the observed values.

At all three lidars, we find that the WRF model ensemble members that use MERRA-2 as reanalysis forcing (WRF9 through

WRF16, in red shades in the diagrams) show a significantly worse performance compared to the setups forced with ERA-5,

with larger cRMSE and lower correlation. Also, the setups that adopt the YSU PBL scheme (even numbers) have a slightly

better match with the standard deviation of the observed wind resource, but also a larger negative bias at all three offshore180

lidars compared to the MYNN setups (odd numbers), as already noticed from the mean wind profile comparison above. The

use of the NOAH LSM provides slightly better results than the NOAH-MP LSM in terms of correlation and cRMSE. Finally,

we see that the choice of the SST product does not have a significant impact on the validation metrics.

Finally, we evaluate whether our choice of using a 1-month WRF model re-initialization period has an impact on the model

performance. To do so, we take the wind speed modeled by the 1-year WRF1 setup and check whether its performance against185
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Figure 3. Mean wind speed profiles from the 16 WRF model ensemble members and observed values at the location of the (a) NYSERDA

E05 North lidar (from September 4, 2019 to August 31, 2020), (b) NYSERDA E06 South lidar (from September 4, 2019 to August 31, 2020),

and (c) Atlantic Shores lidar (from February 26, 2020 to August 31, 2020).

the observations from the two NYSERDA lidars gets worse in the latter part of each calendar month, again in terms of REWS.

For all metrics, we report no sign of performance degradation with time (figure not shown), which confirms the solidity of the

modeling approach used.

The validation results across all three lidars show that WRF1 and WRF3 are the best performing setups in the region. While

there is no clear winner between the two in terms of bias, WRF1 (i.e., the setup using the NOAH LSM) provides lower cRMSE190

and higher correlation compared to WRF3 (i.e., the setup using the NOAH-MP LSM), so we employ WRF1 for the long-term
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Figure 4. Taylor diagram of the 10-minute REWS from the 16 WRF model ensemble setups at the location of the (a) NYSERDA E05 North

lidar (from September 4, 2019 to August 31, 2020), (b) NYSERDA E06 South lidar (from September 4, 2019 to August 31, 2020), and (c)

Atlantic Shores lidar (from February 26, 2020 to August 31, 2020). For each diagram, a zoomed-in inset is also included.

NOW-23 simulation (Table 3), which covers the period from January 1, 2000, to December 31, 2020. We note that additional

details on the validation of the WRF1 model setup are provided in Pronk et al. (2022), where we assess the diurnal and annual

variability of the WRF1 model setup performance, and compare it to the skills of the ERA-5 reanalysis product used to force

WRF.195
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Figure 5. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the mid-Atlantic region. The red dashed line represents the

limit of the U.S. EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model

domain.

The 21-year mean wind speed at 160 m above sea level (a.s.l.) for the mid-Atlantic region is shown in Fig. 5. In Appendix

A, we show the diurnal and seasonal variabilities of the long-term wind resource. The mean wind speed is stronger on the

northeast portion of the domain, but the long-term averages are particularly good for offshore wind energy purposes in the

whole extension of the domain.

4 NOW-23 data set in the North Atlantic region200

We leverage the validation results from the mid-Atlantic region to infer conclusions about the WRF model setup to use for

the long-term wind resource modeling in the adjacent North Atlantic region, where we only have access to very limited hub-

height observations of wind speed. Given this scenario, and considering the limited computational resources available, in this

region we consider a single WRF model setup, using the same choices selected for the creation of the NOW-23 data set in the

mid-Atlantic region.205

No hub-height observational data sets are publicly available in this region. So, our model validation is constrained to values

of mean 40 m and 100 m wind speeds taken from February 19, 2016, through October 28, 2016, at the DeepCLiDAR off the

Maine coast (43.77◦ N, 69.33◦ W, Fig. 2), 1.26 km west of Monhegan Island (Viselli et al., 2019, 2022). This floating lidar is

a Windcube v2 offshore unit owned and operated by the University of Maine and samples wind speeds between 40 m and 200

12



6 7 8 9 10 11
Wind speed [m s 1]

102

4 × 101

6 × 101

2 × 102

He
ig

ht
 [m

 a
.s.

l.]

WRF
Lidar

Figure 6. Mean wind speed profiles from the WRF model run (WRF1 setup) and observed mean wind speed at 40 and 100 m a.s.l. at the

location of the DeepCLiDAR buoy, from February 19, 2016, through October 28, 2016.

m at 1 Hz resolution. The NOW-23 research team was not able to secure access to the raw lidar observations, so our validation210

is limited to the mean wind speed values as published in Viselli et al. (2022).

Due to the particularly small sample size of available observations, we only compare the observed and modeled mean 40 m

and 100 m wind speed at the DeepCLiDAR location over the deployment period of the lidar. We find good agreement between

modeled and observed data at 100 m a.s.l., whereas the model slightly overestimates wind speed at 40 m a.s.l (Fig. 6).

The limited validation confirms that the chosen WRF model setup has good agreement with the mean observations from the215

lidar at the considered location, so we use the WRF1 setup to create the NOW-23 simulation in this region (Table 3), which

covers the period from January 1, 2000, to December 31, 2020.

The 21-year mean wind speed at 160 m a.s.l. for the North Atlantic region is shown in Fig. 7. Its seasonal and diurnal

variabilities are shown in Appendix A. In this region, we find that the dominant gradient in mean wind speed is aligned with

the east-west direction, with stronger wind speeds observed further offshore. As observed in the mid-Atlantic region, the large220

mean wind speed values make this region well suited for offshore wind energy.

5 NOW-23 data set in the South Atlantic region

For the South Atlantic region, we consider 6 WRF model setup combinations resulting from the choices of PBL scheme,

surface layer scheme, and LSM, as detailed in Section 2. We do not consider for this region the impact of the SST (we only

consider the OSTIA product, which has shown larger accuracy than the NCEP product based on the sensitivity analysis in225

the mid-Atlantic region) and of the reanalysis product (because we found that ERA-5 has significantly better performance

than MERRA-2 in the mid-Atlantic region). We run all six setups (Table 3) across two sets of simulations (using the general

approach described in Section 2), one covering the whole year of 2015, and one covering the period from June 1, 2020, to

December 31, 2020.
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Figure 7. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the North Atlantic region. The red dashed line represents the

limit of the U.S. EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model

domain.

The main validation data set we use in this region is represented by observations collected by the U.S. Department of Energy230

(DOE) lidar located off the Virginia coast (36.87◦ N, 75.49◦ W) (Shaw et al., 2020). This lidar recorded observations from

December 11, 2014, to May 31, 2016. For our validation, we use data from the whole year of 2015 to ensure all seasons are

equally represented. Conversations with the instrument mentors at Pacific Northwest National Laboratory (PNNL) revealed

that only the lidar measurements at 90 m are unaffected by biases, so we limit the NOW-23 model validation to that height.

Whereas algorithms to bias-correct the lidar measurements at other heights have been developed, we prefer not to use them235

here to avoid introducing additional uncertainty in the validation.

Additionally, the Avangrid company performed a validation using proprietary data from their Kitty Hawk North lidar, covering

the period from June 1 to December 31, 2020. Finally, we note how both the Virginia and Kitty Hawk North lidars are near

the northern edge of our regional domain. Therefore, to improve the spatial coverage of the NOW-23 validation in the region,

we leverage observations from six NDBC buoys across the domain to validate modeled near-surface atmospheric stability,240

quantified in terms of the difference between air temperature and sea surface temperature, over 2015.

Figure 8 shows the mean modeled wind profiles over 2015 at the location of the Virginia lidar for the six WRF model setups,

as well as the mean 90 m wind speed from the DOE Virginia lidar over the same year. In general, a limited spread between

the different WRF model setups appears, and all setups provide a limited overestimation of mean wind speed at 90 m a.s.l.

compared to the lidar observations.245
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Figure 8. Mean modeled wind speed profiles from January 1, 2015 to December 31, 2015 from the six WRF model setups considered for

the sensitivity analysis, and mean observed winds at 90 m from the DOE Virginia lidar.
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Figure 9. Taylor diagram of the 90 m wind speed from the six WRF model ensemble setups at the location of the DOE Virginia lidar using

10-minute data. Data from January 1, 2015 to December 31, 2015. A zoomed-in inset is also included.

We formalize the regional validation with the Taylor diagram in Fig. 9, again at 90 m a.s.l, using wind speed at 10-minute

resolution. The diagram reveals that the WRF2 setup performs best in the South Atlantic domain, with a low bias of +0.11 m

s−1, the highest Pearson’s correlation coefficient (r = 0.83), lowest cRMSE (2.44 m s−1), and the best match with observed

wind speed standard deviation across all the WRF model ensemble members.
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Table 4. Frequency of near-surface stable conditions from NDBC buoy observations and the six WRF model ensemble members over 2015.

NDBC buoy Observed WRF1 WRF2 WRF3 WRF4 WRF5 WRF6

44014 34% 34% 33% 32% 33% 35% 35%

41025 8% 10% 7% 12% 8% 11% 13%

41013 20% 23% 20% 24% 20% 22% 25%

41004 15% 19% 15% 19% 18% 19% 23%

41008 34% 37% 32% 35% 35% 37% 41%

41009 19% 22% 17% 18% 18% 22% 24%

Avangrid’s Kitty Hawk North lidar data are proprietary, and therefore only the following qualitative results were shared with250

the NOW-23 team after the company compared the six WRF model setups against their lidar observations over the last seven

months of 2020:

– All WRF model ensemble members performed well in terms of their wind rose.

– Overall, ensemble members WRF2 and WRF4 performed the best for both wind speed and wind shear profiles.

– Some specific months were challenging to model for all considered ensemble members.255

Next, we leverage the more extensive spatial coverage of the NDBC buoys in the region to validate modeled atmospheric

stability near the surface, and we summarize these results in Table 4. We consider a positive difference between air temperature

(at ∼4 m a.s.l. for the NDBC buoys, 2 m a.s.l. for the WRF model simulations) and sea surface temperature as a proxy for

stable conditions, and report its observed and modeled temporal frequency over 2015 in the table. The WRF model setups

that use MYNN as a PBL scheme (WRF1, WRF3, WRF5, and WRF6) overestimate atmospheric stability. On the other hand,260

YSU-modeled stability (WRF2 and WRF4) is generally more aligned with observations across the whole region. This result,

if confirmed at hub heights, is consistent with the larger wind speed bias the MYNN setups have in the Taylor diagram. In fact,

under stable conditions, winds aloft can decouple from surface effects and greatly accelerate.

Finally, as done in the mid-Atlantic domain, we check for an impact of using a 1-month WRF model re-initialization period in

our simulations. To do so, we take the WRF2 setup for 2015 and check whether its performance against the DOE Virginia lidar265

observations gets worse in the latter part of each calendar month. For all metrics, we see no sign of performance degradation

with time (figure not shown), as already observed further north along the mid-Atlantic coast.

Our validation analysis across all considered instruments and atmospheric variables reveals that the WRF2 setup is the best

preforming one in this region, and therefore we use this setup for the NOW-23 long-term simulation, which covers the period

from January 1, 2000, to December 31, 2020. We note that this setup differs from the setup used in the adjacent mid-Atlantic270

region, so that some discontinuity at the interface between the two domains is expected. Such a difference should, however,

be limited in magnitude given the minimal difference between the mean wind profiles near the northern edge of the domain in

Fig. 8. This discrepancy is described in further detail in Appendix B.
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Figure 10. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the South Atlantic region. The red dashed line represents

the limit of the U.S. EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model

domain.

The 21-year mean wind speed at 160 m a.s.l. for the South Atlantic region is shown in Fig. 10. Wind speed is, on average,

stronger in the northern half of the domain, with a clear north-south gradient that leads to mean differences of more than 2 m275

s−1 between the northern and southern edges of the modeled region. We note that we had to limit the extent of the WRF model

domain for this large region to reduce computational requirements so that the northern portion of the domain does not reach

the limit of the U.S. EEZ. Appendix A shows the diurnal and seasonal variability of the 160 m wind resource.

6 NOW-23 data set in the Gulf of Mexico

For the Gulf of Mexico, we consider six ensemble members (Table 3). We only consider ERA-5 as reanalysis forcing and280

OSTIA as SST product for the same considerations listed for the South Atlantic domain. We test both the MYNN and YSU

PBL schemes, each associated with the MYNN and MM5 surface layer scheme, respectively. We also consider the impact of

the NOAH and NOAH-MP LSMs. We run the six ensemble members over year 2020.

Observational wind speed data needed for model setup choice and validation were provided by Shell at three different ZX300

lidars south of the Louisiana coast (Fig. 2). These lidars, named Mars, Ursa, and Appomattox, are located on separate floating285

oil platforms ∼50 m above the ocean and sample winds up through ∼150 m above the ocean surface. Data are available from

Mars and Ursa for all of 2020, whereas measurements at Appomattox are only available from January through August 2020.
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Figure 11. Taylor diagram of the 140 m wind speed from the six WRF model ensemble setups at the location of the (a) Appomattox (from

January through August 2020), (b) Ursa (whole year 2020), and (c) Mars (whole year 2020) lidars, using 10-minute data. For each diagram,

a zoomed-in inset is also included.

Several buildings and structures are present on the Shell oil platforms. To minimize their wake impacts on the lidar obser-

vations, we perform our validation at 140 m a.s.l. (i.e., the maximum common height between the lidars and the WRF model

simulations). Figure 11 shows the Taylor diagrams at the three lidars using 10-minute data. At all three locations, the WRF2290

setup outperforms the other five simulation setups, as it has the smallest bias (with still a limited tendency to under-forecast

wind speeds), the smallest cRMSE, and the highest correlation (between 0.7 and 0.8 at each lidar).
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Figure 12. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the Gulf of Mexico region. The red dashed line represents

the limit of the U.S. EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model

domain.

Our validation analysis shows that the WRF2 setup is the best preforming configuration in this region, and therefore we use

this setup for the long-term NOW-23 simulation, which covers the period from January 1, 2000, to December 31, 2020.

The 21-year mean wind speed at 160 m a.s.l. for the Gulf of Mexico region is shown in Fig. 12, and Appendix A shows295

the diurnal and seasonal variability of the modeled wind resource. We observe a clear east-west gradient, with faster winds on

the western side of the Gulf and slower winds on the eastern side. This general pattern has also been observed in other studies

(de Velasco and Winant, 1996; Zavala-Hidalgo et al., 2014).

7 NOW-23 data set in the Great Lakes

For the Great Lakes, we only consider three ensemble members (Table 3) by leveraging the results of the model validation in300

the other offshore regions. Therefore, we only consider ERA-5 as reanalysis forcing and OSTIA as SST product. We test both

the MYNN and YSU PBL schemes, each associated with the MYNN and MM5 surface layer scheme, respectively. We also

consider the impact of the NOAH and NOAH-MP LSMs. We run the three ensemble members for year 2012.

To select the best performing model setup in this region, we leverage observations from one lidar, whose location is shown

in the map in Fig. 2. The lidar was deployed in the middle of Lake Michigan and measured wind speed at 75, 90, 105, 125,305
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Figure 13. Mean wind speed profiles over the period from May 8, 2012, to December 17, 2012, from the three WRF model ensemble

members and lidar observations at the location of the Lake Michigan lidar.

150, and 175 m above the surface. For this instrument, we use 10-minute average observations from May 8, 2012, to December

17, 2012. We discard data at 175 m, as they are deemed unrealistic.

Figure 13 shows the mean wind profiles from the three WRF model ensemble members and the Michigan Lake lidar during

the period of record of the lidar observations. All three WRF model setups underestimate wind speed compared to the lidar

observations. The setup using the MYNN PBL scheme predicts higher wind speeds compared to the YSU setups in the lowest310

200 m, whereas YSU models stronger winds higher aloft. In any case, the difference between all models is rather limited at

all heights. We see slight differences between the WRF2 and WRF3 setups, an additional indication that using the NOAH or

NOAH-MP LSMs has a limited impact on the mean wind speed profiles, as observed for the other offshore regions.

We next consider the Taylor diagram (Fig. 14) at 105 m, using 10-minute data. For the modeled data, we linearly interpolate

wind speed at 100 m and 120 m to allow for a direct comparison with the lidar observations. All three considered WRF model315

setups show similar performance in terms of bias, correlation and cRMSE, but the WRF1 setup shows significantly better

results in terms of the comparison with the standard deviation of the observed wind speed.

Our validation analysis shows that the WRF1 setup is the best preforming configuration in this region, and therefore we use

this setup for the NOW-23 long-term simulation, which covers the period from January 1, 2000, to December 31, 2020.

The 21-year mean wind speed at 160 m a.s.l. for the Great Lakes region is shown in Fig. 15. Wind speed gets stronger near320

the center of the lakes, especially for the larger Lakes Michigan, Superior, and Huron. The magnitude of the mean wind speed

across the domain is similar to what is found in the northern portion of the U.S. East Coast. Appendix A describes the diurnal

and seasonal variability of the long-term modeled wind resource.

8 NOW-23 data set in the South Pacific region

The South Pacific (offshore California) was the first region to be considered for the development of this long-term wind325

resource data set as part of a BOEM-funded pilot project, and the development of the data set has been subject to revisions.
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Figure 14. Taylor diagram of the 105 m wind speed from the three WRF model ensemble setups at the location of the Lake Michigan lidar,

at 10-minute resolution. Data from May 8, 2012, to December 17, 2012. A zoomed-in inset is also included.

The development of the first version of a 20-year data set for the California Outer Continental Shelf (OCS), called “CA20,”

is described in Optis et al. (2020d). As detailed in the report, 16 WRF model ensemble members (Table 3) were considered

by tweaking the reanalysis forcing, PBL scheme, SST product, and LSM. The WRF model setup employed for the long-term

CA20 data set was selected based on a validation against available observations at that time (an array of near-surface NDBC330

buoys and coastal radars) and based on the validation results obtained in the mid-Atlantic region. As a result of this validation, a

20-year data set (January 1, 2000–December 31, 2019) was run using the ERA-5 reanalysis product, the MYNN PBL scheme,

the OSTIA SST product, the NOAH LSM, and the MYNN surface layer scheme.

The available measurements used to validate the CA20 model are less than ideal. In fact, the NDBC buoys only provide mea-

surements close to the surface, which are insufficient to determine the wind resource at the relevant heights for wind energy335

purposes. Coastal radars provide measurements at heights of interests, but the WRF model validation at their locations becomes

uncertain due to large meteorological gradients at the land-ocean interface. Also, results from the mid-Atlantic validation can-

not be directly applied to the U.S. West Coast, given the different domain-specific processes and features that might determine

a different optimal WRF model setup. When the CA20 data set was developed, the absence of floating lidar observations in the

California OCS was recognized as a significant limitation to the analysis and initial validation of CA20.340

Two floating lidars were deployed in the region in late 2020—one near the Humboldt wind energy lease area in the northern

part of the domain, and one near the Morro Bay wind energy lease area further south (Krishnamurthy et al., 2023). The

WRF model setup originally used in the CA20 data set was then run over the October 2020–September 2021 period and
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Figure 15. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the Great Lakes region. The red dashed line represents the

limit of the U.S. EEZ.

compared against the concurrent observations collected by the two lidars. This comparison revealed a significant bias in the

CA20 modeled data, especially at the Humboldt lidar location. This bias and its impact on energy assessments in the California345

OCS are described in Bodini et al. (2022).

Additional analysis (Bodini et al., 2024) has shown that the choice of the PBL scheme is responsible for the vast majority of

the bias in the CA20 data set. The MYNN PBL scheme overestimates the frequency of stable conditions, especially at Hum-

boldt, resulting in reduced vertical turbulent mixing, allowing for the acceleration of hub-height winds, more intense low-level

jets, and higher-amplitude inertial oscillations. Also, during synoptic-scale northerly flows driven by the North Pacific High350

and inland thermal low, simulations using the MYNN PBL scheme show a coastal warm bias in selected case studies, which

contributes to the modeled wind speed bias by altering the boundary layer thermodynamics via a thermal wind mechanism.

Further, we found that the YSU PBL scheme strongly reduces the bias at both Humboldt and Morro Bay. Given the strong

performance of the YSU-based runs in the South Pacific region, we reran the full long-term simulation in the region using the

YSU PBL scheme, and this version is the one included in the NOW-23 data set. The results of this in-depth analysis, additional355

validation against floating lidars and coastal radars, and description of the updated data set is presented in Bodini et al. (2024).

Here, we present a short summary of the main characteristics of the final NOW-23 data set for the South Pacific region for

consistency with what is described for the other offshore regions in the NOW-23 data set.
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Figure 16. Vertical profiles of bias, cRMSE, and r for the WRF2 setup at the locations of the Humboldt and Morro Bay lidars, calculated

from October 2020 through September 2021.

For the validation of the NOW-23 data set in this region, we leveraged the two floating lidars at Humboldt and Morro Bay

(Krishnamurthy et al., 2023) as well as the coastal wind profilers at McKinleyville and Bodega Bay (Fig. 2). Details about the360

instruments can be found in the reports that describe the validation efforts, as listed at the beginning of this section. We refer

to the reports listed above for a comprehensive description of the results of the validation performed at the various stages of

the development of the South Pacific data set. Here, we only include in Fig. 16 the vertical profiles of bias, cRMSE, and r for

the WRF2 setup, which is chosen for the final NOW-23 data set, at the locations of the Humboldt and Morro Bay lidars. The

setup shows a near-zero bias at all considered heights, which represents a great improvement compared to the bias found in365

the CA20 data set. Also, as done for the mid-Atlantic and South Atlantic domains along the U.S. East Coast, we verified that

using a 1-month WRF model re-initialization period in our simulations does not impact the validation metrics as time goes by

in each calendar month (figure not shown).

Table 3 details the WRF model setup that we select and use for the NOW-23 long-term WRF model simulation in the South

Pacific region, which covers the period from January 1, 2000, to December 31, 2022. The 23-year mean wind speed at 160 m370

a.s.l. for the South Pacific region is shown in Fig. 17, and its seasonal and diurnal variabilities are described in Appendix A.

Additionally, we show in Fig. 18 the difference in mean wind speed at 160 m a.s.l. between NOW-23 (2000–2022) and the

now-deprecated CA20 data set (2000–2019). We observe that NOW-23 models, on average, lower wind speed across the whole

region, with the largest difference (close to 1.5 m s−1), in northern California, near the Humboldt wind energy lease area.

9 NOW-23 data set in the North Pacific region375

No publicly available hub-height offshore wind speed observations exist in the North Pacific domain. Therefore, the WRF

model setup chosen for this region is based on the results obtained in the early stages of the NOW-23 development, when both

the sensitivity analyses in the South Pacific (for the CA20 data set) and mid-Atlantic domains pointed toward using a MYNN-
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Figure 17. Map of the 22-year (2000–2022) mean wind speed at 160 m a.s.l. for the South Pacific region. The red dashed line represents the

limit of the U.S. EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model

domain.

Figure 18. Map showing the difference in mean 160-m wind speed between the NOW-23 data set and the CA20 data set, calculated using

the full temporal extent of each data set (2000–2022 for NOW-23, 2000–2019 for CA20).

based WRF model setup. Thus, this setup (Table 3) is selected in the North Pacific region with no additional validation against
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Figure 19. Map of the 20-year (2000–2019) mean wind speed at 160 m a.s.l. for the North Pacific region. The red dashed line represents the

limit of the U.S. EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model

domain.

observations. In this region, NOW-23 covers the period from January 1, 2000, to December 31, 2019. The 20-year mean wind380

speed at 160 m a.s.l. for the North Pacific region is shown in Fig. 19.

Because the review of the first-generation CA20 South Pacific data set, generated using the MYNN PBL parameterization,

revealed a significant wind speed bias, we extend the review northward through the North Pacific coast. This preliminary

examination consists of a comparison between two WRF model simulations with different physics configurations, run for

year 2020. The first simulation mimics the setup of the main 20-year run for this region, and we compare that with a second385

simulation that uses the YSU PBL scheme and the MM5 surface layer parameterization. We find that the mean wind speed

findings are consistent with those in the South Pacific data set, with stronger wind speeds off the coast resulting from the

MYNN/MYNN (PBL scheme/surface layer parameterization) setup compared with that of YSU/MM5. Differences are larger

(>0.5 m s−1) off the southern coast of Oregon and decrease in magnitude in the northern half of the regional domain and in the

open ocean.390

While no hub-height observations of offshore wind in the region are available, model validation can be performed using near-

surface buoy data as well as coastal observations. Leveraging available observations will be essential to assess the accuracy of

the chosen WRF model setup in the region and will be subject to future work, pending funding availability. In the meantime,

NREL and its project partners warrant caution for the stakeholders interested in using the NOW-23 data set in this region.
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Figure 20. Map of the 20-year (2000–2019) mean wind speed at 160 m a.s.l. for the Hawaii region. The red dashed line represents the limit

of the U.S. EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model domain.

10 NOW-23 data set in Hawaii395

Similar to the North Pacific region, we conduct no validation for the Hawaii domain, where no observations of hub-height

offshore wind were publicly available when this regional analysis was initiated at the early stages of the project. The WRF

model setup used in the NOW-23 Hawaii data set is based on the results obtained in the South Pacific (for its now-deprecated

CA20 data set) and the mid-Atlantic domains. Table 3 details the WRF model setup that we select and use for the long-term

WRF model simulation in the Hawaii region, which covers the period from January 1, 2000, to December 31, 2019. The 20-400

year mean wind speed at 160 m a.s.l. for the Hawaii region is shown in Fig. 20. We find a larger spatial variability in the mean

offshore wind speed compared to the other offshore regions. In general, mean winds are stronger south of the Hawaii islands

and on the northern side of the archipelago. A strong wind resource is also observed in the channel between the islands of

Hawaii and Maui. Appendix A shows the variability of the long-term wind resource.

A floating lidar was deployed in the Hawaii region by PNNL in December 2022, and its data are publicly available. The405

observations collected by this instrument, together with other near-surface and onshore data sets, will be essential in assessing

the accuracy of the chosen WRF model setup in the region, and will be subject to future work, pending funding availability. In

the meantime, NREL warrants caution for the stakeholders interested in using this data set in this region.
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11 Uncertainty quantification

NOW-23 is a modeled data set, and, as such, it comes with inherent, unavoidable uncertainty. Ideally, a modeled data set would410

come with full uncertainty information, so that each user can make their informed decisions on whether the level of uncertainty

in a given region is acceptable for their specific application. As part of the NOW-23 development, significant effort was spent

to provide stakeholders with this uncertainty information. We tackle this aspect from different points of view, which are briefly

summarized in the next paragraphs. For each topic listed below, we refer to other peer-reviewed publications for a detailed

description of the analyses performed.415

11.1 Ensemble-based uncertainty

First, we focus on the characterization of what we call the ensemble-based uncertainty, or boundary condition and parametric

uncertainty, in modeled wind speed. When considering NWP models, the choices of the model setup and inputs have a direct

impact on the model wind speed prediction and therefore on its uncertainty. Estimating the boundary condition and parametric

uncertainty associated with modeled wind speed requires running a model ensemble, which can be computationally intensive420

for producing long-term data over large regions as for the NOW-23 data set. Therefore, we propose two alternative approaches

that use a short-term mesoscale ensemble (i.e., the 1-year WRF model ensemble we use for model setup selection in several

offshore regions) alongside a single model run for the desired long-term period (i.e., the 20+ year NOW-23 run). We quantify

hub-height wind speed boundary condition and parametric uncertainty from the short-term model ensemble as its normalized

across-ensemble standard deviation. Then, we use a gradient-boosting model and an analog ensemble approach to extrapolate425

the uncertainty to the full 20+ year period.

We test our proposed methods in the South Pacific domain (using the now deprecated MYNN-based CA20 data set) and

find that both approaches provide accurate estimates of long-term wind speed boundary condition and parametric uncertainty

(r2 > 0.75), with the gradient-boosting model performing slightly better than the analog ensemble. We also assess the physical

variability in the uncertainty estimates and find that wind speed uncertainty increases closer to land, stable and unstable cases430

have larger uncertainty than neutral conditions, and winter has a smaller boundary condition and parametric sensitivity than

summer. Finally, we report a median hourly uncertainty between 10% and 14% of the mean 100 m wind speed values across

the offshore wind energy lease areas in the region. The results of this analysis are described in detail in Bodini et al. (2021).

11.2 Model uncertainty compared to observations

While helpful from a modeling point of view, the assessment of the boundary condition and parametric uncertainty presents435

several limitations. In fact, the magnitude of this ensemble-based uncertainty is strictly connected to the (limited) number of

choices sampled within the considered model setups, so that only a limited component of the actual wind speed error with

respect to observations (our best proxy for the true wind speed) can be quantified from it. The full uncertainty in NWP-model-

predicted wind speed can be quantified only when direct observations of the wind resource are available. In this scenario, the

residuals between modeled and observed wind speed can be calculated, and the model error is quantified in terms of its bias440
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(i.e., the mean of the residuals) and uncertainty (i.e., the standard deviation of the residuals). The obtained model uncertainty

would then be added to the inherent uncertainty of the wind speed measurements.

We apply this approach in the mid-Atlantic region. Given the lack of long-term (20+ year) hub-height offshore wind speed

observations in the region (the same applies to all the U.S. offshore regions), we propose a methodological framework to

leverage both floating lidar and near-surface buoy observations to quantify uncertainty in the long-term modeled hub-height445

wind resource. We train and validate a machine learning technique to vertically extrapolate near-surface wind speed to hub

height using the available short-term lidar data sets in the region. We then apply this model to vertically extrapolate the long-

term near-surface buoy wind speed observations to hub height for comparison to the long-term NOW-23 data set. Using this

comprehensive approach, we find that the mean 20-year uncertainty (including the uncertainty coming from the observations

and from the application of the machine learning approach) in 140 m wind speed is slightly lower than 3 m s−1 across the450

considered region, with larger uncertainty in stable conditions. The results of this analysis are described in detail in Bodini

et al. (2023).

12 NOW-WAKES: a post-construction data set for the mid-Atlantic wind energy areas

A promising offshore wind resource is often located near large population centers, so that a rapid wind plant development

is expected. However, wind turbines and wind plants generate wakes, which are regions of reduced wind speed that may455

negatively impact downwind turbines and plants. As part of the NOW-23 data set, we developed NOW-WAKES, a 1-year post-

construction data set to model and assess the impact of offshore wakes from the upcoming wind plants in some of the lease

and call areas (as of 2019) in the mid-Atlantic region. We use WRF model and its Fitch wind farm parameterization (Fitch

et al., 2012) to calculate wake effects and distinguish between wakes generated within one plant and those generated externally

between plants. The strongest wakes, propagating 55 km, occur during stable stratification in summer, which coincides with460

peak grid demand in New England. The mean year-long wake impacts reduce power output by roughly 35%, with internal

wakes causing greater power losses (27% on average) than external wakes (14% on average). The results of this analysis are

described in detail in Rosencrans et al. (2023).

As part of the NOW-WAKES effort, we also investigate the uncertainty connected to some of the modeling choices made in

this 1-year analysis by using two different PBL schemes for these simulations: the MYNN PBL scheme and the new NCAR465

3DPBL scheme (Kosović et al., 2020; Juliano et al., 2022). The average losses in hub-height wind speeds within an ideal plant

differ between the two schemes by up to −0.20 to 0.22 m s−1, and correspondingly, capacity factors range from 39.5% to

53.8%. These results suggest that the choice of the PBL scheme can also contribute to uncertainty in modeled wakes, and

therefore we recommend including PBL variability in wind plant planning sensitivity and forecasting studies. The results of

this analysis are described in detail in Rybchuk et al. (2022).470
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13 Code and data availability

The whole NOW-23 data set is publicly available at no cost through Amazon Web Services (AWS) at https://doi.org/10.25984/

1821404 (Bodini et al., 2020). The data are stored as both HDF5 and WRG files. The same page also includes a link to the

NOW-23 WRF model namelists.

The HDF5 files are available for each offshore region at both 5-minute resolution and as hourly averages. The following475

variables are available in the HDF5 files:

– Wind speed at 10 m, 20 m intervals between 20 m and 300 m, 400 m, and 500 m (m s−1)

– Wind direction at 10 m, 20 m intervals between 20 m and 300 m, 400 m, and 500 m (◦ from N)

– Planetary boundary layer height (m)

– Pressure at 0 m, 100 m, 200 m, and 300 m (Pa)480

– Temperature at 2 m, 10 m, 20 m intervals between 20 m and 300 m, 400 m, and 500 m (◦C)

– Friction velocity at 2 m (m s−1)

– Surface heat flux (W m−2)

– Inverse Monin–Obukhov length at 2 m (m−1)

– Sea surface temperature (◦C)485

– Skin temperature (◦C)

– Relative humidity at 2 m (%)

– Roughness length (m)

To facilitate accessing, extracting, and manipulating data from the NOW-23 large files, NREL has developed the Resource

eXtraction (rex) tool. Instructions on how to install rex, as well as examples of its usage, can be found at nrel.github.io/rex.490

We note that rex allows for, among others, extraction of a subset of variables over a single location, a customized region, and

automatic interpolation of the wind speed data to an arbitrary height.

The WRG file format is an industry-standard format for publishing modeled wind resource data sets. In general, WRG

files provide wind rose information at a specific height at each modeled grid cell. This information is specified in a WRG by

providing Weibull fit parameters for reported wind speeds in a given sector. Considerable information is lost when pivoting495

to a WRG from the HDF5 format. Specifically, all temporal information (e.g., seasonal and diurnal trends) and other relevant

atmospheric parameters are discarded, with only wind speed and direction being preserved. Regardless, the WRG format has

been the industry standard for decades and is still actively used for offshore wind resource assessment. For the NOW-23 data
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Table 5. Data availability for the observational data sets used for NOW-23 validation.

Data set Publicly available? Link

NDBC buoys Yes https://www.ndbc.noaa.gov

NYSERDA E05, E06 floating lidars Yes https://oswbuoysny.resourcepanorama.dnvgl.com

Atlantic Shores floating lidar Yes https://erddap.maracoos.org/erddap/tabledap/

UMaine floating lidar Mostly not Mean data available in Viselli et al. (2022)

DOE Virginia floating lidar Yes https://a2e.energy.gov/ds/buoy/buoy.z01.a0

Michigan Mid-Plateau lidar No N/A

Shell Gulf of Mexico floating lidars No N/A

Morro Bay floating lidar Yes https://a2e.energy.gov/ds/buoy/lidar.z06.b0

Humboldt floating lidar Yes https://a2e.energy.gov/ds/buoy/lidar.z05.b0

NOAA coastal wind profilers Yes https://psl.noaa.gov/data/obs/data/

sets, NREL has provided WRG files calculated at 160 m and at 30◦ wind direction sector bins. An open-source codebase has

also been publicly released (github.com/NREL/wrg_maker) so that stakeholders can produce additional WRG files from the500

NOW-23 data set, if desired.

To further facilitate access to the NOW-23 data, Bodini et al. (2020) also includes sample data (in easily accessible .csv

format) at the locations of the lidars used to validate the NOW-23 data set (locations in Figure 2).

The NOW-23 data set can also be visualized and accessed through NREL’s Wind Resource Database (Pmaps-dev.nrel.gov/

wrdb/data-viewer). Any request for technical support on the NOW-23 data set can be directed to wrdb@nrel.gov.505

Some of the observations used for model validation are also publicly available. Details about the observational data sets used

are included in Table 5.

14 Conclusions

The NOW-23 data set is a cutting-edge, offshore-focused wind resource assessment data set that aims to support the growth of

the offshore wind energy sector in the United States. This comprehensive overview paper outlines the approach employed to510

generate and validate the data set for each U.S. offshore region (with the exception of Alaska). The national mean long-term

wind speed, depicted in Fig. 21, is derived by amalgamating all the regional domains.

Anticipated to replace NREL’s WIND Toolkit and become one of the most widely utilized data sets for offshore wind

resource assessment in the United States, the NOW-23 data set showcases the significance of conducting regionally focused

validation and selecting appropriate model setups based on multiple observational data sets. The analysis underscores the515

symbiotic relationship between NWP models and observations, emphasizing their interconnectedness. To mitigate the inherent

uncertainty in numerical models, an increased quantity of long-term observations is required, which can be facilitated through

the sharing of proprietary observational data sets. In assessing the costs and benefits of data-sharing initiatives, it is essential
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Figure 21. Mean long-term wind speed at 160 m from the NOW-23 data set, for all U.S. offshore regions (except for Alaska). The red dashed

lines represent the limit of the U.S. EEZ. The continuous black lines show where data from the regional domains were cut to create this

national-scale map.

for stakeholders to consider the long-term advantages that access to additional observational data sets can offer in terms of

enhanced numerical modeling.520

Further analysis and validation are needed for the NOW-23 data set in Hawaii and the North Pacific, subject to future work

contingent on funding availability. As more offshore observations become accessible, the current validation efforts can be ex-

panded to ensure the NOW-23 model setup is validated in regions of interest for present and future offshore wind energy lease

areas. Additionally, regular updates to the NOW-23 data set (pending funding availability) are desirable, enabling stakeholders

to employ the industry-standard measure-correlate-predict approach as they collect short-term observations in the future. Also,525

an analysis similar to what done to create NOW-WAKES can be replicated in different offshore regions. As offshore wind

turbines are built in the U.S., the simulated wake effects can and should be validated against any available observations. Lastly,

given the unsatisfactory performance of the MYNN PBL scheme on the U.S. West Coast, further analysis is warranted to inves-

tigate the causes of its failure in the region and propose and implement offshore-focused improvements to the parameterization

scheme.530

Appendix A: Seasonal and diurnal variability of long-term offshore wind speed in the NOW-23 data set

In all offshore regions modeled in NOW-23, we observe distinct seasonal and diurnal patterns in hub-height wind speed.
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On the U.S. East Coast, we observe consistent seasonal and diurnal cycles in hub-height wind speed. During the winter

months, winds are at their strongest, gradually weakening as we move into summer. The seasonal differences in wind speed

become more pronounced further offshore. A comparison of the month of January, which typically experiences the highest535

average wind speed, with August, when wind speed is at its lowest, reveals differences sometimes exceeding 6 m s−1 (Figs.

A1, A3, and A5). Additionally, a diurnal cycle is evident, with variations closer to the shore being more pronounced, likely

because of sea breeze effects. In the evenings, we observe stronger winds, while the morning hours tend to have lower wind

speeds (Figs. A2, A4, and A6).

We find similar results in the Gulf region, where winter months have the strongest winds, and summer months have the540

lowest wind speeds. The area with the largest deviation from the annual mean varies throughout the year, with the eastern side

of the Gulf experiencing the largest deviation in early winter and the western side experiencing it later in the season. A similar

transition occurs from east to west during the summer months (Fig. A7). On a diurnal basis, we observe stronger winds at night

and lower winds during the day, with the most significant deviations once again near the coast (Fig. A8).

When considering the Great Lakes region, we observe the same seasonal and diurnal cycles in hub-height wind speed as on545

the U.S. East Coast: the strongest winds occur in winter and early spring, while the lowest winds occur in summer, with greater

seasonal differences in lakes more to the south (Fig. A9). The diurnal cycle in this region is slightly delayed compared to the

U.S. East Coast, with stronger winds in the late evening and lower winds around midnight (Fig. A10).

In the North Pacific, we find consistent seasonal and diurnal cycles in hub-height wind speed. Once again, winter months

have the strongest winds, while summer months have the lowest winds, except for the southern part of the ocean west of the550

Oregon coast, where the annual cycle is opposite (Fig. A11). On a diurnal basis, we observe stronger winds in the afternoon

and early night, and lower winds in the late nights and early mornings, with the largest deviations near the coast (Fig. A12).

In the South Pacific, a different annual cycle emerges (Fig. A13), with strongest winds observed in the spring and early

summer, with the southern portion of the domain experiencing stronger winds earlier than northern California. On a diurnal

basis, we find similar results to what was observed in the adjacent North Pacific region, with stronger winds in the afternoon555

and early night (Fig. A14).

For Hawaii, the seasonal and diurnal cycles in hub-height wind speed are not as clear as in the other offshore regions. Winds

close to the islands are stronger in the summer and weaker in the winter. Further offshore, the seasonal variability becomes less

clear (Fig. A11). On a diurnal basis, we find stronger winds closer to the islands in the afternoon and early night, and lower

winds in the late night and early morning, with the largest deviations near the coast (Fig. A16).560

Appendix B: Wind speed differences between NOW-23 overlapping regional domain boundaries

When two NOW-23 WRF model domains are adjacent (North and mid-Atlantic, mid-Atlantic and South Atlantic, South At-

lantic and Gulf of Mexico, and North and South Pacific), there is some limited spatial overlap. In this section, we compare

the mean 160-m wind speed from neighboring domains in these limited overlapping regions to quantify the deviation between

regional data sets and provide guidance to NOW-23 stakeholders.565
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Figure A1. Maps showing the annual cycle in 160 m wind speed, expressed in terms of the difference for each month’s mean wind speed

from the overall mean, for the North Atlantic region.

In most cases, we find minimal differences between the NOW-23 regional data sets when they overlap, consistently well

within the model uncertainty. The deviation between the overlapping area from the mid-Atlantic and the North Atlantic regional

data sets (Fig. B1), which both use the same WRF model setup (with the MYNN PBL scheme), is smaller than 0.2 m s−1 in

either direction. Similarly, we observe limited differences in the overlapping region between the South Atlantic and the mid-

Atlantic domains (Fig. B2), which employ different WRF model setups. Near the coast, the difference is smaller than 0.2 m570

s−1 in either direction. The mean difference increases in the open ocean, in areas not directly relevant for offshore wind energy

purposes. Additionally, the South Atlantic data set slightly (<0.2 m s−1) models stronger wind speed compared to the Gulf of

Mexico domain (Fig. B3), with some larger differences near the south edge of Florida.

On the U.S. West Coast, a major difference appears, with the North Pacific data set modeling significantly stronger wind

speed compared to the South Pacific one (Fig. B4). This difference is mainly due to the fact the two regional data sets adopt575
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Figure A2. Maps showing the diurnal cycle in 160 m wind speed, expressed in terms of the difference for each UTC hour’s mean wind speed

from the overall mean, for the North Atlantic region.

different PBL schemes, which have been shown to produce significantly different results on the U.S. West Coast, as detailed in

the previous sections.

For these limited areas where the WRF model domains overlap, stakeholders can access NOW-23 data from both neighboring

regions for download. For all cases where mean differences are limited, the data from either region can be used with confidence.

Considering the overlap between the South Atlantic and Gulf of Mexico domains, it is reasonable to expect that the Gulf of580

Mexico regional data set provides the most accurate data in the overlapping area south of Florida, as it captures all the metocean

dynamics in the rest of the Gulf. Similarly, the South Atlantic domain is expected to be more accurate in the small region north

of Florida where its WRF model domain overlaps with the Gulf of Mexico. Cape Cod could also be considered as a natural
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Figure A3. Maps showing the annual cycle in 160 m wind speed, expressed in terms of the difference for each month’s mean wind speed

from the overall mean, for the mid-Atlantic region.

barrier influencing somewhat different metocean conditions to the north and south, suggesting that the North Atlantic data set

may be better suited for the region north of the Cape, while the mid-Atlantic domain could be preferred for the region south585

of the Cape. It is important to note, however, that we did not validate these scientific speculations by comparing the NOW-23

modeled data in the overlapping regions against observations, given the limited differences between the regional data sets. For

the overlap between the North and South Pacific domains, we would like to remind users that only the South Pacific domain
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Figure A4. Maps showing the diurnal cycle in 160 m wind speed, expressed in terms of the difference for each UTC hour’s mean wind speed

from the overall mean, for the mid-Atlantic region.

(and its WRF model configuration) underwent a regional tuning and validation, and therefore that setup should be preferred

for the region of overlap.590
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Figure A5. Maps showing the annual cycle in 160 m wind speed, expressed in terms of the difference for each month’s mean wind speed

from the overall mean, for the South Atlantic region.

Appendix C: Comparison between NOW-23 and the WIND Toolkit

Figure C1 presents a comparison of mean wind speeds between the NOW-23 data set and the 7-year (2007–2013) WIND

Toolkit for the offshore regions in the contiguous United States. We note that Hawaii was not part of the WIND Toolkit

domain, so a direct comparison between the NOW-23 data set and the WIND Toolkit for this region is not possible. NOW-

23 and the WIND Toolkit have many differences (e.g., different length of the period of record, different reanalysis forcing,595

different WRF model version). However, the magnitude of the differences in mean wind speed between the two data sets

seems largely connected, in most regions, to the PBL schemes being adopted in the two data sets. The WIND Toolkit used

the YSU PBL scheme across all regions, whereas, as described in this paper, NOW-23 uses either the MYNN or the YSU

PBL scheme based on the results of a region-specific validation. For the mid-Atlantic, North Atlantic, Great Lakes, and North

Pacific regions, the NOW-23 data set (with the MYNN PBL scheme) consistently models stronger wind speeds compared to600

the WIND Toolkit, with differences larger than 0.5 m s−1 in the mid-Atlantic and North Pacific domains, and even larger in
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Figure A6. Maps showing the diurnal cycle in 160 m wind speed, expressed in terms of the difference for each UTC hour’s mean wind speed

from the overall mean, for the South Atlantic region.

the North Atlantic and Great Lakes regions. In the South Atlantic and Gulf of Mexico regions, the wind speeds between the

NOW-23 data set (with the YSU PBL scheme) and the WIND Toolkit are similar across the majority of the domains. We note

how off the coast of Florida the NOW-23 data set exhibits stronger hub-height wind speeds, with differences larger than 0.5 m

s−1 compared to the WIND Toolkit. For the South Pacific region, despite both NOW-23 and the WIND Toolkit using the same605

PBL scheme (YSU), NOW-23 models stronger hub-height winds off the coast of central and southern California, with some

local differences on the order of 1 m s−1.
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Figure A7. Maps showing the annual cycle in 160 m wind speed, expressed in terms of the difference for each month’s mean wind speed

from the overall mean, for the Gulf of Mexico region.
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Figure A8. Maps showing the diurnal cycle in 160 m wind speed, expressed in terms of the difference for each UTC hour’s mean wind speed

from the overall mean, for the Gulf of Mexico region.
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Figure A10. Maps showing the diurnal cycle in 160 m wind speed, expressed in terms of the difference for each UTC hour’s mean wind
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Figure A11. Maps showing the annual cycle in 160 m wind speed, expressed in terms of the difference for each month’s mean wind speed

from the overall mean, for the North Pacific region.
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Figure A12. Maps showing the diurnal cycle in 160 m wind speed, expressed in terms of the difference for each UTC hour’s mean wind

speed from the overall mean, for the North Pacific region.
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Figure A13. Maps showing the annual cycle in 160 m wind speed, expressed in terms of the difference for each month’s mean wind speed

from the overall mean, for the South Pacific region.
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Figure A14. Maps showing the diurnal cycle in 160 m wind speed, expressed in terms of the difference for each UTC hour’s mean wind

speed from the overall mean, for the South Pacific region.
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Kosović, B., Munoz, P. J., Juliano, T., Martilli, A., Eghdami, M., Barros, A., and Haupt, S.: Three-dimensional planetary boundary layer pa-

rameterization for high-resolution mesoscale simulations, in: Journal of Physics: Conference Series, vol. 1452, p. 012080, IOP Publishing,

https://doi.org/10.1088/1742-6596/1452/1/012080, 2020.685

Krishnamurthy, R., García Medina, G., Gaudet, B., Gustafson Jr., W. I., Kassianov, E. I., Liu, J., Newsom, R. K., Sheridan, L. M., and

Mahon, A. M.: Year-long Buoy-Based Observations of the Air–Sea Transition Zone off the U.S. West Coast, Earth System Science Data,

15, 5667–5699, https://doi.org/10.5194/essd-15-5667-2023, 2023.

46

https://doi.org/10.1175/MWR-D-21-0164.1
https://doi.org/10.1088/1742-6596/1452/1/012080
https://doi.org/10.5194/essd-15-5667-2023


Figure A15. Maps showing the annual cycle in 160 m wind speed, expressed in terms of the difference for each month’s mean wind speed

from the overall mean, for the Hawaii region.
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Figure A16. Maps showing the diurnal cycle in 160 m wind speed, expressed in terms of the difference for each UTC hour’s mean wind

speed from the overall mean, for the Hawaii region.
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Figure B1. Map showing the difference in mean 160 m wind speed between the North Atlantic regional data set and the mid-Atlantic one,

in the region where their WRF model domains overlap.

Figure B2. Map showing the difference in mean 160 m wind speed between the mid-Atlantic regional data set and the South Atlantic one,

in the region where their WRF model domains overlap.
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Figure B3. Map showing the difference in mean 160 m wind speed between the South Atlantic regional data set and the Gulf of Mexico one,

in the region where their WRF model domains overlap.

 

Figure B4. Map showing the difference in mean 160 m wind speed between the North Pacific regional data set and the South Pacific one, in

the region where their WRF model domains overlap.
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Figure C1. Map showing the difference in mean 160 m wind speed between the NOW-23 data set and the WIND Toolkit, for the EEZ in the

contiguous U.S. where the two data sets overlap. The difference is calculated using the full temporal extent of each data set (2000–2019/22

for NOW-23, 2007–2013 for the WIND Toolkit).
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