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Abstract. With the booming big data techniques, large-sample hydrological analysis on streamflow regime is becoming 

feasible, which could derive robust conclusions on hydrological processes from a big-picture perspective. However, there is a 

lack of not a comprehensive global large-sample dataset for components of the streamflow regime yet. This paper presents a 

new time series dataset on global streamflow indices calculated from daily streamflow records after data quality control. The 

dataset contains 79 indices over seven major components of streamflow regime (i.e., magnitude, frequency, duration, changing 15 

rate, timing, variability, and recession) of 41263 river reaches globally on yearly and multiyear scales.of 5548 river reaches 

globally . Streamflow iThe indices values until 2022 are  time seriescovered in the dataset are available until 2021. Time span 

of the time series dataset is from 1806 to 2022 with an average length of 36 years.,  the lengths of which vary from 30 to 215 

years with an average of around 66 years. Restricted-access streamflow data of typical river basins in China are included in 

the dataset. Compared to existing global datasets, this global dataset covers more stations and more indices, especially those 20 

characterizing the frequency, duration, changing rate, and recession of streamflow regime. . With the dataset, research on 

streamflow regime will become easier without spending time handling raw streamflow records. This comprehensive dataset 

will be a valuable resource to the hydrology community to facilitate a wide range of studies, such as studies of hydrological 

behaviour of a catchment, streamflow regime prediction in data-scarce regions, as well as variations in streamflow regime 

from a global perspective. 25 

 The dataset can be accessed at https://doi.org/10.57760/sciencedb.07227. 

 

1 Introduction 

Streamflow regime plays a vital role not only in human life and activities but also in the native biodiversity, ecosystem integrity, 

and biogeochemical cycles (Poff et al., 1997; Paine, 2019; Palmer and Ruhi, 2019). Because of the effects of anthropogenic 30 

activities and climate change especially in the last decades, streamflow regimes of many rivers worldwide have been changing, 

threatening the water security (Torabi Haghighi et al., 2021; Tonkin et al., 2018; Chen et al., 2023b; Chen et al., 2021). A large 

number of studies have been done to reveal the streamflow regime shifts, their causes and consequences (Worku et al., 2014; 

Brouziyne et al., 2021; Sauquet et al., 2021; Lane and Kay, 2021; Yin et al., 2018). Palmer and Ruhi (2019) found that the 

dam buildingconstruction, diversion or abstraction of water, clearing of land, and climate change increasingly degraded the 35 

river ecosystems by altering their streamflow regimes. Barichivich et al. (2018) indicated that the streamflow regime shifts 

over the Amazon basin in magnitude and frequency, which has caused major human suffering and disturbance to the rainforest 

ecosystems, are driven by strengthened Walker circulation.  
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In order to analyse the streamflow regime shifts, the critical components of the streamflow regime, i.e., magnitude, frequency, 

duration, timing, and rate of change, were proposed to characterize the entire range of streamflow regime and specific 40 

hydrologic phenomena (Poff and Ward, 1989; Poff et al., 1997; Richter et al., 1996). By using indices of these components, 

features of streamflow regime can be considered explicitly, and therefore theseindices of components have beenare widely 

used (Olden and Poff, 2003; Worku et al., 2014; Palmer and Ruhi, 2019; Shih et al., 2022; Jacobson et al., 2022; Harmon et 

al., 2022; Wasko et al., 2020). Besides, inspired by thisIn past decades, more and more indices, signatures, and components 

have beenare proposed to represent different aspects of streamflow regime (Clausen and Biggs, 2000; Baker et al., 2004; Clark 45 

et al., 2009; Botter et al., 2013; Mcmillan et al., 2017; Gnann et al., 2021a). For example, Baker et al. (2004) presented a new 

flashiness index based on daily streamflow to characterize the flashiness of streamflow regime, which was later widely used 

(Gnann et al., 2021b). However, except for several basic indices of magnitude and frequency like the annual maximum 

streamflow (Do et al., 2017; Barichivich et al., 2018), there are few large-sample and global studies on other components such 

as timing, variability, and rate of change. Gudmundsson et al. (2018) found that there was no any study analysing time series 50 

of the variability (e.g., standard deviation, coefficient of variation, Gini coefficient, and the inter quartile range) and timing 

(e.g., the timing of annual minimum flow, day of minimum 7-day mean streamflow, and day of maximum 7-day mean 

streamflow) of daily streamflow on a global scale.  

Large-sample hydrology is a way to go beyond individual case studies and to draw robust conclusions on hydrological 

processes from a big-picture perspective (Gupta et al., 2014; Addor et al., 2020). Currently, due to the increasing availability 55 

of large-sample hydrology datasets, as well as the booming big data techniques, more and more large-sample hydrological 

studies have been appearing, significantly advancing the hydrology science (Sun et al., 2021; Troin et al., 2022; Lane et al., 

2022; Goeking and Tarboton, 2022; Nearing et al., 2021; Gnann et al., 2021a; Gudmundsson et al., 2021). To perform large-

sample hydrological analysis, large-sample hydrological datasets based on gauged flow recordsdata are mostly needed. Addor 

et al. (2017) presented the CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) dataset, which 60 

synthesized various datasets (including meteorological forcing and gauged daily streamflow time series) to describe attributes 

of catchments and catchment behaviours in the contiguous United States. Afterwards, diverse versions of CAMELS or 

CAMELS-like datasets were presented for different countries, such as the Great Britain (Coxon et al., 2020), Chile (Alvarez-

Garreton et al., 2018), Brazil (Chagas et al., 2020), Australia (Fowler et al., 2021), Central Europe (Klingler et al., 2021), 

France (Delaigue et al., 2022), and Germany (Ebeling et al., 2022). Indices datasets of streamflow regime have also been 65 

developed on both Besides, there are also regional (like ADHI by Tramblay et al. (2021)) scale and global scale (like GSIM 

by Do et al. (2018) and Gudmundsson et al. (2018))(Do et al., 2018; Gudmundsson et al., 2018)streamflow indices datasets 

(Tramblay et al., 2021) and global streamflow indices and metadata archive (GSIM) for analyses on regional and global 

streamflow characteristics (Do et al., 2018; Gudmundsson et al., 2018). Unfortunately, many original records of gauged 

streamflow are not open access, and are forbidden to be shared due to certain policies. In contrast, the data products derived 70 

from restricted-access streamflow records are usually allowed to be shared. Thus, streamflow indices datasets not only facilitate 

the research on streamflow regimes, but also are good alternatives when the original records of streamflow are hard to access 

(Tramblay et al., 2021; Mcmillan et al., 2017).  

GSIM covers time-series indices of more than 30000 stations worldwide, which represents the water balance, the seasonal 

cycle, low flows, and floods, with the latest streamflow indices valuesdata until 20167. It is without doubt one of the most 75 

popular datasets which facilitate large-sample research on global streamflow. However, GSIM only includes the streamflow 

regime components that characterize the magnitude, timing, and variability without , but does not includinge components 

characterizing the frequency, duration, changing rate, and recession of streamflow regime. In fact, these components are very 

useful forto fully characterizinge the streamflowflow regime, understanding its functions, and analyanalysingse its variations. 

TFor instance,he frequency and duration of streamflow regime are crucial to studies on various flow events the frequency and 80 
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duration of streamflow regime are very important in describing various flow events. Gehrke et al. (1995) discoveredfound that 

in the Murray-Darling river system, the altered frequencies of high and low flow events have a significant impact on the species 

diversity of fish communities. Colls et al. (2019) analysed examined the frequency and duration of zero flow events over 33 

Mediterranean streams in NE Iberian Peninsula and foundindicted that longer duration of zero flow events significantly 

decreases gross primary production by promoting heterotrophy. Changing rate is an important factor affecting the lives of 85 

aquatic species. For example, rapid changes of river stage caused by hydroelectric facilities will damage downstream aquatic 

species by wash-out and stranding (Cushman, 1985). Besides, the increase of changing rate during storms will result in elevated 

concentrations of pollutants, which is harmful to the lives of aquatic species reviewed the changing rate of streamflow regime 

below hydroelectric facilities and found that the rapid changes of river stage has damaged aquatic species by wash-out and 

stranding. (Palmer and Ruhi, 2019). added that the increase of changing rate during storms results in elevated concentrations 90 

of pollutants, which is also harmful to the lives of aquatic species. The recession of streamflow reflects the low-flow behaviour 

of a catchment and plays a vital role in both flow-biota-ecosystem processes nexus and water management. For instance, 

Boggaart et al. (2016) used streamflow recession patterns to unravel the role of climate and humans in landscape co-evolution. 

Rood et al. (1995) did a study on the recession of streamflow and presentindicated that the accelerated flood recession had 

resulted in the failure of seedling establishment and the decline of riparian cottonwoods along the St. Mary River. The 95 

importance of analysing flood recession has also been emphasized to mitigate flood risks and optimize water utilization in the 

Huaihe River Basin (Cheng et al., 2021) indicated that analysis on recession of flood is critical for flood risk reduction and 

water use in the Huaihe River Basin. In this regard, a more comprehensive indices dataset than GSIM is needed. Actually, 

Tramblay et al. (2021) presented the African Database of Hydrometric Indices (ADHI, 1950–2018) with a more comprehensive 

streamflow indices, but it is geographically limited to the Africa. There is a lack of ano comprehensive global large-sample 100 

dataset ofof different componentss of streamflow regime, which hinders research on streamflow regime, especially on a global 

scale. 

In this paper, we collected and merged daily streamflow records from 9 data sources into one collection, and then performed 

a data quality control on the collection. After that, a new global streamflow indices time series dataset was developed. The 

spatiotemporal coverage, quality, metadata, and sample values of the dataset are also shown in the following 105 

sections.augmented the gauged daily streamflow data from Global Runoff Data Centre (GRDC) by collecting streamflow data 

from India-Water Resources Information System (WRIS), Arctic Great Rivers Observatory (ArcticGRO), and China 

Hydrological Yearbooks (CHY) to build a daily streamflow data collection. After that, quality control was done to guarantee 

reasonable values as well as a longer record length. Next, indices spanning 7 components of streamflow regime, i.e., magnitude, 

frequency, duration, changing rate, timing, variability, and recession, were defined and calculated to build a new global 110 

streamflow indices dataset. Finally, an exemplary analysis on the temporal concentration of streamflow on a global scale was 

presented to illustrate the use of the dataset.  

2 Data compilationData sources and processing 

1.12.1 Data collectioncollecting  

The daily streamflow records used for the establishment of a global streamflow indices time series dataset were collected from 115 

9 data sources, i.e., Global River Discharge Centre (GRDC), U.S. Geological Survey (USGS) National Water Information 

System, National Water Data Archive of Canada (HYDAT), National Water Agency of Brazil (ANA), the Chilean Centre for 

Climate and Resilience Research (CCCRR), Arctic Great Rivers Observatory (ArcticGRO), China Hydrological Yearbooks 

(CHY), India Water Resources Information System (WRIS), and Australia Water Data from Australian Bureau of Meteorology 

(BOM) (see Table 1 for details). data of the daily streamflow data collection are from Global Runoff Data Centre (GRDC) at 120 
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https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html and other three sources, i.e., India-Water 

Resources Information System (WRIS) at https://indiawris.gov.in/wris/#/, Arctic Great Rivers Observatory (ArcticGRO) at 

https://arcticgreatrivers.org/, and China Hydrological Yearbooks (CHY).  These data sources are all publicly available except 

the CHY. The original records of streamflow in CHY are restricted-access and hard to collect, and thus only some streamflow 

data of some typical river basins werewere collected including . 30 stations in 7 largest river basins in China.  Among these 125 

data sources, USGS, HYDAT, ArcticGRO, and BOM provide quality flags of records.The total amount of hydrological stations 

in the data collection is 15408 

, the summary of these stations is shown in Fig. 1.  GRDC and ArcticGRO are international datasets having multiple countries’ 

records, and some records may overlap with records from other national datasets. The duplicated data can to some extent 

interfere with users' utilization of the data. We calculated the distances between each station in the international datasets and 130 

each station in the national datasets. When this distance was less than 60m (approximately 0.0005 degrees on the equator), 

these two stations were considered the potential identical station. After that, a further inspection was performed to verify 

whether these two stations were the same station according to the name of river and station. A total of 1895 duplicated stations 

were found including 8 stations in ArcticGRO, 321 stations in ANA, 324 stations in BOM, 68 stations in CCCRR, 2 stations 

in CHY, 439 stations in HYDAT, and 733 stations in USGS. We retained stations with longer record length and removed 135 

duplicate stations with shorter record length. A total of 41263 stations were retained and then merged into a streamflow records 

collection. 

Apart from the streamflow records, there are metadata of each station in every data source. However, the fields of metadata 

vary among different data sources. Some metadata have many fields while the others only have basic fields. For the purpose 

of standardization, fields of metadata of our collection include station ID, data source, river name, station number, country, 140 

latitude, longitude, contributing area, altitude, start year, end year, years, days, and missing ratio. 

The Americas and Europe witness extensive streamflow records with high spatial coverage density and long record length 

(Figure 1a). In contrast, there are relatively few records in Asia and Africa. Around 20000 stations (50%) have streamflow 

records with lengths more than 30 years (Figure 1b), and more than 2000 stations’ (5%) record lengths are larger than 100 

years. The stations with a more than 100 years record length are mainly It should be noted that 9171 stations have daily 145 

streamflow records, while the others only have basic information of stations without daily streamflow records. The daily 

streamflow record lengths vary from 1 to 215 years.  

The GRDC is very comprehensive in terms of the record length and spatial coverage of gauged daily streamflow data. The 

spatial density and record lengths of streamflow time series in the Americas, Europe, Southern Africa, Western Africa, and 

Oceania are high and long (Fig.1a). There are 10711 hydrological stations in GRDC, out of which 8552 stations have daily 150 

streamflow records. The daily streamflow records range from 1806 to 2021 and the lengths vary between 1 and 215 years. 

However, although there are enormous stations in Asia included in GRDC, almost all of their record lengths are shorter than 

10 years, which largely reduces their value for hydrological analyses. Therefore, we combined GRDC with ArcticGRO, CHY, 

and WRIS to build an augmented data collection. India-WRIS provides water resources data and information of watersheds in 

India for planning, development, and integrated water resources management. It includes 4648 stations, but only 570 stations 155 

have daily streamflow records. The daily streamflow records ranging from 1960 to 2021 are used to build the data collection. 

ArcticGRO provides essential data about the biogeochemistry and discharge of the largest Arctic rivers. It covers 16 stations 

with daily streamflow records ranging from 1927 to 2021 and the record lengths vary from 5 to 95 years. 33 stations from 

CHY with daily streamflow records ranging from 1947 to 2020 are used to build the data collection. The record lengths vary 

from 1 to 73 years. These stations are of typical river basins and located in 7 largest river basins in China, i.e., Yangtze River 160 
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Basin, Yellow River Basin, Huai River Basin, Haihe River Basin, Songhua River Basin, Liao River Basin, and Pearl River 

Basin.   

In our streamflow data collection, streamflow record lengths at more than 700 stations are more than 100 years, most of which 

are distributed in the United StatesNorth America and Europe. About 6000 stations (67%) are of lengths between 30-100 years, 

while the others (33%) are of lengths less than 30 years (Fig.1b). As for the temporal distribution of numbersavailability of 165 

stations with gauged daily streamflow datastreamflow records in different years, the number of stations with available records 

increases from 1900 to 197887 at a peak of around 180007500, and then keeps fluctuating but relatively stable from 1979 to 

2015, followed by a decrease from 2016 to 2022 at a bottom of 12000 (Figure 1c). Overall, the streamflow records collection 

has 41263 stations with an average record length of 36 years. The time span of the collections is from 1806 to 2022. 

and it drops from 1987 to 2021 at a bottom of nearly 1400 (Fig.1c). 170 

Table 1. Summary of nine measured streamflow data sources  

Database 
Spatial 

coverage 

Time 

span 

Included 

catchments 
Data access Quality fFlag 

Global River 

Discharge 

Centre (GRDC) 

Globe 
1806-

2022 
8458 https://www.bafg.de/GRDC/EN/Home/homepage_node.html  - 

U.S. Geological 

Survey (USGS) 

National Water 

Information 

System 

US and 

Canada 

1857-

2022 
19269 https://waterdata.usgs.gov/nwis? 

A: value has 

been 

validated to 

be published 

A:e: value 

was 

estimated 

and validated 

to be 

published 

P and P:e: 

Provisional 

data 

National Water 

Data Archive 

(HYDAT) 

Canada 
1860-

2022 
5786 

https://www.canada.ca/en/environment-climate-

change/services/water-

overview/quantity/monitoring/survey/data-products-

services/national-archive-hydat.html  

A: Partial 

Day 

(numeric 

value 1) 

B: Ice 

Conditions 

(numeric 

value 2) 

D: Dry 

(numeric 

value 3) 

E: Estimated 

(numeric 

https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://waterdata.usgs.gov/nwis?
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html
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Database 
Spatial 

coverage 

Time 

span 

Included 

catchments 
Data access Quality fFlag 

value 4) 

S: Sample(s) 

collected this 

day (numeric 

value 5) 

National Water 

Agency (ANA) 
Brazil 

1901-

2022 
3691 https://www.ufrgs.br/lsh/products/ana-data-acquisition/ - 

the Chilean 

Center for 

Climate and 

Resilience 

Research 

(CCCRR) 

Chile 
1913-

2018 
767 https://www.cr2.cl/datos-de-caudales/ - 

Arctic Great 

Rivers 

Observatory 

(ArcticGRO) 

The 

largest 

Arctic 

rivers 

1927-

2022 
17 https://arcticgreatrivers.org/ 

A: certified 

data 

P: 

provisional 

data 

China 

Hydrological 

Yearbooks 

(CHY) 

China 
1947-

2020 
30 No public access - 

India Water 

Resources 

Information 

System (WRIS) 

India 
1960-

2021 
161 https://indiawris.gov.in/wris/#/ - 

Australia Water 

Data Online, 

Australian 

Bureau of 

Meteorology 

(BOM) 

Australia 
1881-

2022 
4977 http://www.bom.gov.au/waterdata/  

A (flag 10): 

best available 

B (flag 90): 

compromised 

to represent 

the parameter 

C (flag 110): 

estimated 

value 

E (flag 140): 

https://www.ufrgs.br/lsh/products/ana-data-acquisition/
https://www.cr2.cl/datos-de-caudales/
https://arcticgreatrivers.org/
https://indiawris.gov.in/wris/#/
http://www.bom.gov.au/waterdata/
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Database 
Spatial 

coverage 

Time 

span 

Included 

catchments 
Data access Quality fFlag 

quality is not 

known 

F (flag 210): 

poor quality 

or missing 

Flag “-1” 

also presents 

to indicate 

missing 

value 
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 175 

Figure 1. A summary of the streamflow records data collection. (a) shows the spatial distribution and, record lengths, and sources 

of daily flow streamflow recordstime series. (b) illustrates number of stations with  available for different record record lengths, and 

stations without gauged streamflow data are not included. (c) shows number of stations with records in every yearwith gauged 

streamflow data available every year from 1900 to 20221. Refer to https://doi.org/10.57760/sciencedb.07227 for vector graphic that 

shows all the stations clearly without overlap since the vector graphic can be zoomed in infinitely without losing any detail. 180 

2.2 Data quality 

2.2.1 Quality flag of records 

Data quality control is necessary before the use of data as poor-quality data are misleading. Some data providers have inspected 

the data before publication and attached data quality flags to the published data, while the others have not. Data quality flags 

represents data quality and thus are important to quality control. The flags vary among different data providers (Table 1). For 185 

the purpose of standardization, the original flags were translated into four flags in our streamflow records collection, i.e., 

reliable, suspect, no flag, and missing (see Table 2 for the rules). As for the databases without quality flags, available records 

were flagged as no flag while missing records were flagged as missing. Data quality control 

For records with poor-quality flag or no flag, some scholarsstudies, like Gudmundsson et al. (2018), performed automatic 

detection methods to identify and remove unreasonable streamflow values, including consecutive equal values and outliers. 190 

However, the criteria for judging whether data is unreasonable primarily rely on subjective assumptions. To the best of our 

knowledge, the applicability and possible impacts of such criteria have not been assessed yet. It is still disputable whether and 

how many correct values are erroneously flagged as incorrect and removed (Crochemore et al., 2020; Tramblay et al., 2021). 
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The mistakes will diminish the utility of the data. For example, some extreme flood events may be flagged as outliers and 

removed, resulting in an underestimation of flood. Therefore, we did not perform disputable automatic detection methods. A 195 

reliable automatic detection method was applied as follows. 

Considering possible mistakes made by instruments and humans, negative daily streamflow values may occur in the 

streamflow records collection, which are undoubtedly wrong values. If a daily streamflow value is a negative number, this 

value will be removed and flagged as missing. Besides, if quality flags are initially absent in time series where there are 

negative values, the whole time series will be flagged as suspect.  A total of 40842 negative streamflow values were detected 200 

and removed.  

In addition to each record, quality flags were also attached to each station according to the criteria in Table 3. There are 235 

million records (43%) showing reliable, 221 million records (41%) showing no flag, 6.9 million records (1%) showing suspect, 

and 79 million records (15%) showing missing (Figure 2a).  Numbers of stations with flags A, B, C, D, E are 6952 (17%), 

7094 (17%), 8772 (21%), 6571 (16%), and 11874 (29%) respectively (Figure 2b). Quality flags of records were used to assess 205 

the quality of indices that were calculated based on the records in the following text. Quality flags of stations were designed 

to allow users to pick appropriate stations whose records’ quality meets users’ quality control requirements.  

Table 2. Translation of quality control flags of the original databases to flags of the streamflow records collection. 

Data Source Original Quality Flag Reliable Suspect No Flag Missing 

USGS 

A: validated data 

A:e: estimated and validated data 

P and P:e: Provisional data 

A, A:e P, P:e   

HYDAT 

A: Partial Day  

B: Ice Conditions 

D: Dry  

E: Estimated  

S: Sample(s) collected this day 

B, D, S A, E   

ArcticGRO 
A: certified data 

P: provisional data 

A P   

BOM 

A: best available 

B: compromised to represent the parameter 

C: estimated value 

E: quality is not known 

F: poor quality or missing 

-1: missing value 

A, B C E F, -1 

 

Table 3. Criteria for quality control flags of stations. Note that when one station's records meet multiple criteria simultaneously, the 210 

highest-level flag is applied. 

Flag Criterion 

A (or numeric value 1) More than 95% of record flags are reliable 

B (or numeric value 2) More than 95% of record flags are reliable or no flag 

C (or numeric value 3) Less than 10% of record flags are missing 

D (or numeric value 4) Less than 20% of record flags are missing 
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E (or numeric value 5) At least 20% of record flags are missing 

 

 

Figure 2. Numbers of (a) records and (b) stations with each quality flag.  

 215 

2.2.2 Temporal coverage and missing ratio 

In the streamflow records collection, In order to build a high-quality, long time series, and reliable global streamflow indices 

dataset, data quality control on the data collection is needed before further calculations. An Automatic detection method was 

applied to identify the suspect observations according to three quality control criteria detailed below, and modifications were 

done to the suspect observations:  220 

1. Considering possible mistakes made by instruments and humans, negative daily streamflow values may occur in the data 

collection, which is non-physical and must be revised. If a daily streamflow value is a negative number, this value will be 

regarded as a suspect value, and then this value will be changed into an average value of the two adjacent values. A 

negative value detected in the time series of Jenapur at Brahmani, India from WRIS is shown for the purpose of illustration 

(Fig.2a).  225 

 If there are more than 10 consecutive equal values bigger than 0 and 50th percentile of daily streamflow in corresponding 

year, they will be regarded as suspect values, and then they will be changed into missing values. There are many reasons 

for the consecutive equal values. It may occur because of instrument failure, i.e., damaged sensors and ice jams, or flow 

regulations (Gudmundsson et al., 2018). Moreover, it also happens when the day-to-day fluctuations of streamflow are 

below the sensitivity of the employed sensor (Gudmundsson and Seneviratne, 2016). Because this issue usually occurs 230 

during the low flow period, we choose the 50th percentile of daily streamflow as the threshold to exclude those abnormal 

cases. The selection of 10 days is according to Gudmundsson et al. (2018). Consecutive equal values found in the time 

series of Etemba at Omaruru, Namibia from GRDC are shown for the purpose of illustration (Fig.2b). 

2. According to Gudmundsson et al. (2018), if log(Q+0.01) is bigger or smaller than the mean value of log(Q+0.01) plus or 

minus 6 times the standard deviation of log(Q+0.01), where Q  is a daily streamflow value and the mean value and standard 235 

deviation are calculated in a 5-day window centred on the calendar day of Q, the Q will be regarded as an outlier and 

changed into an average value of the two adjacent values. Following Gudmundsson et al. (2018), the 6 standard-deviation 

threshold is reasonable, because it keeps a balance between screening out outliers that could come from instrument 

malfunction and retaining the extreme floods or low flows. An outlier detected in the time series of Luanxian at Luanhe 

River, China from CHY is presented for the purpose of illustration (Fig.2c). 240 
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Figure 2. Three example time series illustrating issues detected by the three quality control criteria (highlighted in red). (a) shows 

the negative value detected in the time series of Jenapur at Brahmani, India from WRIS. (b) presents the consecutive equal values 

found in the time series of Etemba (64733002) at Omaruru, Namibia from GRDC. (c) illustrates one outlier in the time series of 

Luanxian at Luanhe River, China from CHY. The common logarithmic axis is used in (b) and (c). 245 

After automatic detection and modification of suspect observations, a final data quality control is applied. That is, the time 

series with the date of latest records before 2000 or lengths shorter than 30 years were removed, since they are outdated and 

less convincing for streamflow regime analyses. In the end, 5548 time series were remained for the calculation of indices.  

The availability of daily streamflow data after data quality control is shown in Fig.3. more than 6000Nearly 1500 stations have 

a record length of 72 32 years from 1950 1990 to 20221 with missing ratios less than 5%, and around 800 stations have a 250 

record length of 102 years from 1920 to 2022 with missing ratios less than 5% (Figure 3a). As for year of the latest record, 

approximate 12000 stations’ records end in 2022, while around 17000 stations’ records are absent after 2000 (Figure 3b). only 

5% missing data, and around 3000 stations have a record length of 52 years from 1970 to 2021 with 10% missing data (Fig.3a). 

At approximate 800 stations, their streamflow records are not available since 2013 (Fig.3b). By comparison, at more than 4000 

stations, streamflow records are available even after 2017. At around 2400 stations, the latest streamflow records are available 255 

till 2020 or 2021.  

Figure .3c shows the number of stations for every year from 1900 to 2022 with different missing ratios of records the number 

of stations available every year from 1900 to 2021 with various missing data rates. All curves in Fig.3c show similar trends. 

The number of stations gradually rises from 1900 to its peak inat around 197885, and then keeps fluctuating but relatively 

stable from 1979 to 2013, followed by a decrease from 2014 to 2022. More than 80% of stations with records have no missing 260 

records for every year from 1900 to 2022 (Figure 3c). Furthermore, more than 50% of stations have a record length of more 

than 30 years and have no missing records for every year from 1900 to 2022. There are around 15000 stations having no 

missing records for every year from 1975 to 2018.  
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and then it keeps slightly dropping until around 2010, followed by a drastic decrease until 2021. With regard to the missing 265 

data rate, the stations numbers are around 4500 with missing data rate < 1% and around 4700 with missing data rate < 5% in 

1980-2005. In 2020, there are still around 1200 stations available with missing data rate < 1%.  
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Figure 3. Temporal coverage and missing ratio of streamflow records. Availability of daily streamflow data after data quality 

control. (a) shows the cumulative number of stations corresponding to different missing ratios of records in different time spans. (b) 

shows the cumulative number of stations corresponding to different years of the latest streamflow record. (c) and (b) show the 

cumulative distribution of stations corresponding percentage of days with streamflow data in different record lengths and year of 

the latest streamflow data, respectively. (c) presents number of stations foravailable  every year from 1900 to 20221 with 275 
differentvarious missing ratios of recordsdata rates. 

 

3 Streamflow indices 

1.23.1 Indices definition and calculation and calculation 

Table 41 describes 79 streamflow time-series indices that characterize seven components of streamflow regime, i.e., magnitude, 280 

frequency, duration, changing rate, timing, variability, and recession on yearly and multi-year scales. These indices were 

calculatedcalculated based on from the streamflow records data collection after the data quality control, and , and mmost of 

them wereare computed with the Toolbox for Streamflow Signatures in Hydrology (TOSSH, available at the address: 

https://github.com/TOSSHtoolbox/TOSSH) (Gnann et al., 2021b). Only data in years with less than 5% missing data are 

included in indices calculation.  285 

The magnitude of streamflow regime can reflects the amount of streamflow from various perspectives. The cCorresponding 

indices include: (ⅰ) maximums of consecutive 1, 3, 7, and 30 day streamflow averages and their percentages, which indicate 

the magnitude and concentration of high flows and floods; (ⅱ) minimums of consecutive 1, 7, and 30 day streamflow averages, 

which indicate the magnitude of low flows; (ⅲ) various percentiles of streamflow; (ⅳ) monthly and /annual mean flow, which 

areis usually used for water resources analysis; (ⅴ) high and /low flow event threshold (Clausen and Biggs, 2000; Olden and 290 

Poff, 2003); (ⅵ) runoff and /baseflow magnitude (Horner, 2020), which indicates the magnitude of difference between the 

maximum and the minimum of runoff and /baseflow.  

The frequency of streamflow regime is how often a flow of specific magnitude recurs over some specified time intervals (Poff 

et al., 1997). The corresponding indices include the ratios of days with streamflow reaching specific thresholds to the total 

days and the numbers of streamflow events (floods, high flows, low flows and so on) with various thresholds. The duration is 295 

the period of time during which a streamflow event lasts. Annual mean durations of streamflow events are calculated as indices.  

The changing rate, or flashiness, means how fast and frequently streamflow alters from one magnitude to another (Poff et al., 

1997; Baker et al., 2004). A flashy river basin has a very quick and sensitive response to incoming water like precipitation 

with rapidly rising and falling hydrographs, and its streamflow rises and falls very rapidly. The Richards-Baker flashiness 

index (Baker et al., 2004), and the mean and median of all positive/negative differences between consecutive daily streamflow 300 

values (The Nature Conservancy, 2009) are used to quantify the flashiness of streamflow. Rising limb density is an index that 

describes the flashiness of the catchment response; for example, a small value means a smooth hydrograph (Sawicz et al., 

2011).  

The timing of streamflow regime is the temporal distribution of streamflow in a year (Court, 1962), which is charactered by 

the start date of flood season, half flow date, half flow interval, momentary maximum date, and minimum consecutive 7 day 305 

flow date in the indices dataset. To calculate the half flow date and half flow interval, the start of the water year is needed 

(Court, 1962). Although it is widely used that the start of the water year is 1 October in the Northern Hemisphere and 1 July 

in the Southern Hemisphere, the actual starts of the water year vary greatly even in different river basins of one hemisphere 

because of different geographical features, climates and so on. In the indices dataset, we use the start date of flood season as 

the start of the water year. The start date of the flood season for a specific station is the median of start dates of consecutive 310 

180 days,  of which the streamflow average is the biggest  in one calendar year.  

https://github.com/TOSSHtoolbox/TOSSH
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The indices of variability characterize the variability of streamflow regime from different perspectives (Gudmundsson et al., 

2018). (ⅰ) Variance of streamflow time series provides information on the total variability of streamflow. (ⅱ) Coefficient of 

variation of streamflow provides a relative measure of variability that is independent of the mean flow. (ⅲ) Quartile-based 

coefficient of variation of streamflow time series provides information about the width of the distribution centre and is less 315 

sensitive to outliers. (ⅳ) Ratio of the maximum to median of streamflow quantifies the deviation of maximum. (ⅴ) The Gini 

coefficient is an index to measure the inequality among values of flow duration curve (Gudmundsson et al., 2018). (ⅵ) Slope 

of flow duration curve is an index of the variability of the seasonal water balance, which shows the difference between high 

and low flows (Mcmillan et al., 2017). Besides, it is also sensitive to vertical redistribution of soil water between quick flow 

and slow flow. (ⅶ) Slope of distribution of peaks is an index for measuring the differences between peak discharges (Euser 320 

et al., 2013). (ⅷ) Variability index was a measure for variability among values of flow duration curve (Lane and Lei, 1950). 

A river with higher variability index tend to have higher percentage of surface runoff and lower water storage (Estrany et al., 

2010). 

Recession is a component of streamflow regime which characterizes the recession of streamflow. The smoothed minima 

baseflow separation method of the UK Institute of Hydrology (UKIH) (1980) is used for baseflow separation required in the 325 

calculation of recession indices. Recession indices include baseflow index and baseflow recession constant. Generally, a river 

with low baseflow index value has a great number of floods and low flows, and its streamflow regime is highly variable (Singh 

et al., 2019). Baseflow index has been commonly used in regional low flow studies, impacts of climate change on groundwater 

resources, and flood responses of river basins to storm events. Baseflow recession constant is a proxy for drainage efficiency 

of baseflow after being recharged, which is related to the watershed hydraulic conductivity, soil porosity, and hydraulic 330 

gradient (Safeeq et al., 2013). According to Safeeq et al. (2013), a river basin with high baseflow recession constant has a 

shallow subsurface flow-dominated fast draining system, whereas a river basin with low baseflow recession constant has a 

groundwater-dominated slow draining system.  

Table 41. Streamflow indices for seven components of the streamflow regime. Index name means the variable name used in the 

indices time series dataset. There are two temporal resolutions. Y (yearly) means one value for one year of the time series, and MY 335 

(multi-year) means one value for the whole time series.  

Category Index name Units Resolution Definition 

Magnitude 

Qmax1, Qmax3, Qmax7, 

Qmax30 
m3/s Y, MY 

Maximums of consecutive 1, 3, 7, and 30 days streamflow 

averages. For example, Qmax7 means the maximum of 

consecutive 7-day streamflow averages (Olden and Poff, 2003).  

Qmax1p, Qmax3p, 

Qmax7p, Qmax30p 
- Y 

The percentages of the maximums of consecutive 1, 3, 7, and 30 

days streamflow accumulation amounts, which are the 

maximumss divided by the total of annual streamflow 

accumulation amounts and then multiplied by 100. 

Qmin1, Qmin7, Qmin30 m3/s Y, MY 
Minimums of consecutive 1, 7, and 30 days streamflow averages 

(Olden and Poff, 2003). 

Q1st, Q5th, Q10th, Q25th, 

Q50th, Q75th, Q90th, 

Q95th, Q99th 

m3/s Y, MY 

The 1st, 5th, 10th, 25th, 50th 75th, 90th, 95th, and 99th percentiles of 

daily streamflow (The Nature Conservancy, 2009; Olden and 

Poff, 2003). For example, Q50th means the median of streamflow 

time series. 

Qmean1, Qmean2, 

Qmean3, Qmean4, 

Qmean5, Qmean6, 

Qmean7, Qmean8, 

Qmean9, Qmean10, 

Qmean11, Qmean12, 

Qmean 

m3/s Y, MY 
Monthly and annual mean flows. For example, Qmean6 means 

the monthly mean flow of June; Qmean is the annual mean flow. 

Qhigh, Qlow m3/s MY 

High and low flow event thresholds. QHigh equals 9 times Q50th 

(Clausen and Biggs, 2000); Qlow equals 0.2 times Qmean (Olden 

and Poff, 2003). 

RM, BM m3/s Y 

Runoff magnitude and baseflow magnitude. RM and BM are the 

differences between the maximum and minimum of streamflow 

and baseflow respectively (Horner, 2020).  

Frequency FreH, FreL, FreZ - Y 
Frequencies of high flow (FreH), low flow (FreL), and zero flow 

(FreZ) days. FreH is the ratio of days with streamflow bigger than 
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Category Index name Units Resolution Definition 

Qhigh to the total days; FreL is the ratio of days with streamflow 

less than Qlow to the total days; FreZ is the ratio of days with zero 

streamflow to the total days (Addor et al., 2018). 

Fre1st, Fre5th, Fre95th, 

Fre99th 
- Y 

Frequencies of days with streamflow bigger than or smaller than 

thresholds of the 1st, 5th, 95th, and 99th streamflow percentiles. 

Fre1st /Fre5th is the ratio of days in one year with streamflow less 

than the 1st/5th percentile of the whole multiyear streamflow time 

series to the days of one year; Fre95th /Fre99th is the ratio of days 

in one year with streamflow bigger than the 95th/99th percentile of 

the whole multiyear streamflow time series to the days of one 

year.  

NumH, NumL, NumZ - Y 
Numbers of  streamflow events with thresholds of Qhigh, Qlow, 

and zero (Olden and Poff, 2003).  

Num1st, Num5th, 

Num95th, Num99th 
- Y 

Numbers of streamflow events with thresholds of the 1st, 5th, 95th, 

and the 99th percentile of the whole multiyear streamflow time 

series (Olden and Poff, 2003). 

Duration 

DurH, DurL, DurZ, days Y 
Mean duration of streamflow events with thresholds of Qhigh, 

Qlow, and zero  (Westerberg and Mcmillan, 2015). 

Dur1st, Dur5th, Dur95th, 

Dur99th 
days Y 

Mean duration of streamflow events with thresholds of the 1st, 5th, 

95th, and 99th percentiles of the whole multiyear streamflow time 

series. 

Changing 

rate 

RBFI - Y, MY Richards-Baker flashiness index (Baker et al., 2004). 

RLD - Y, MY 
Rising limb density (RLD) is a ratio of the number of rising limbs 

to the number of rising hydrograph (Sawicz et al., 2011). 

RRmean, RRmedian, 

FRmean, FRmedian 
m3/s Y 

RRmean and RRmedian are the mean and median of all positive 

differences between consecutive daily streamflow values in a 

year; FRmean and FRmedian are the mean and median of all 

negative differences between consecutive daily streamflow values 

in a year (The Nature Conservancy, 2009). 

Timing 

FSS 

days 

since 1 

January 

Y, MY 

FSS is the start date of flood season, which is defined as the start 

date of the consecutive 180 days whose streamflow average is the 

biggest in specific calendar year. It is calculated as the following: 

calculate a sliding average streamflow time series by applying 

sliding average method to the whole streamflow time series with 

a sliding window of 180 days; found the maximums of every 

calendar year in the averaged streamflow time series; start dates 

of corresponding sliding windows are FSSs of every calendar 

year. 

HFD days Y, MY 

Half flow date (HFD) is the date on which half of a water year's 

total streamflow has passed since start of the water year (Court, 

1962). 

HFI days Y, MY 

Half flow interval (HFI) is the time span between the date on 

which a quarter of a water year's total streamflow has passed since 

start of the water year and the date on which three quarters of a 

water year's total streamflow has passed since start of the water 

year (Court, 1962). 

MMD 

days 

since 1 

January 

Y, MY 
Momentary maximum date (MMD) is the date when the 

maximum streamflow occurs (Court, 1962).  

MC7FD 

days 

since 1 

January 

Y, MY 

Minimum consecutive 7- day flow date (MC7FD) is the date when 

the minimum of consecutive 7- day flow averages occurs 

(Gudmundsson et al., 2018). 

Variability 

VY - Y, MY 
Variance of streamflow time seriesdaily streamflow (Clausen and 

Biggs, 2000). 

COVY - Y, MY 
Coefficient of variation of daily streamflowstreamflow time series 

(Clausen and Biggs, 2000). 

QCV - Y, MY 

QCV means quartile-based coefficient of variation of daily 

streamflowstreamflow time series, which is calculated as (Q75th-

Q25th)/Q50th. 

RMM - Y, MY Ratio of Qmax1 to Q50th. 

GNC - Y, MY Gini coefficient (Gudmundsson et al., 2018). 

SFDC - Y, MY 

Slope of flow duration curve (SFDC) is the slope of flow duration 

curve between 33rd and 66th percentiles of streamflow (Mcmillan 

et al., 2017). 

SDP - MY 

SDP is the slope of distribution of peaks, which is the slope 

between the 10th and 50th of a flow duration curve constructed by 

only includconsidering hydrograph peaks (Euser et al., 2013). 

VI - Y, MY 
Variability index (VI) is the standard deviation of the common 

logarithms of streamflow determined at 10% intervals from 10% 
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Category Index name Units Resolution Definition 

to 90% of the flow duration curve (Lane and Lei, 1950; Estrany 

et al., 2010). 

Recession 

BFI - Y, MY 

Baseflow index (BFI) is the ratio of baseflow volume to 

streamflow volume over a specific time period (Singh et al., 

2019).  

BRC - Y, MY 

BRC is baseflow recession constant. Hydrograph recession 

assuming exponential recession behaviour is given by 𝑄𝑡 =
𝑄0𝑒

−𝑘𝑡 , where 𝑄𝑡  is the streamflow at time 𝑡  (day), 𝑄0  is the 

streamflow at the beginning of the recession, and 𝑘 is the BRC 

(Safeeq et al., 2013). The master recession curve, which combines 

individual recession segments, is constructed by using the adapted 

matching strip method and then used for the calculation of BRC 

(Posavec et al., 2006). 

Note: For most indices, the calculation on multi-year scale is using the same algorithm as the calculation on yearly scale  except 

that the used time series is the whole multi-year time series rather than one year’s segment. For indices including FSS, HFD, 

HFI, MMD, and MC7FD, the multi-year values are the medians of yearly values. 

3.2 Quality flags of yearly indices 340 

According to the quality of streamflow records used for indices calculation, every yearly index value is accompanied by a 

quality flag for quality control. The purpose that we define the flags is to provide a space for individuals with different research 

objectives to have a free choice. They can use only the highest-quality indices values out of caution, or they can take some 

risks and add some relatively low-quality indices values in order to increase the sample size. Quality flags of yearly indices 

values were determined according to corresponding streamflow records and the same criteria as is shown in Table 3. 345 

 

1.43.3 Example streamflow indices time series 

To give a first impression of streamflow indices time series, Fig. 4 shows some example streamflow indices time series for the 

seven components of the streamflow regime of Nashwaak River at Durham Bridge, Canada at yearly resolutionon a yearly 

scale as an example. It is obvious that the Qmax1 and Qmean areis increasing as well as the Qmean while Qmin7 has no 350 

obvious trend. The RM also shows, which accompanies an upward trend of RM. These trends indicate that the magnitude of 

high flow is increasing. Moreover, the Num99th and Dur99th are also increasing, which means the number and lasting time of 

flood are rising too. To make matters worse, the RBFI and RRmean are obviously climbing as well, too. In contrast, the FRmean 

is decreasing. It means the streamflow regime of Nashwaak River is becoming more and more flashy with a higher rising-

dropping speed of floods. Besides, the BFI also shows a downward trend, which indicates worse flow regulations of the river 355 

basin. In conclusion, these shifts of the streamflow regime components show that the floods have grown in intensity and 

therefore flood forecasting and protection are becoming more important there. 
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Figure 4. Example streamflow indices time series for seven components of the streamflow regime of Nashwaak River at Durham 360 
Bridge, Canada at yearly resolutionon a yearly scale. RPlease refer to Table 41 for the definitions names and units of indices.  

4 A comparative analysisAn exemplary application  

Studies on streamflow regime on a global scale are mainly focused on the magnitude of streamflow. There are few or even no 

global-scale studies on other components of streamflow regime. Therefore, several studies’ results about trends in annual mean 

and extreme streamflow were selected for comparisons with our dataset’s. Figure 5 shows trends in yearly indices of mean 365 

and extreme streamflow during 1970 to 2022 derived from our dataset.  Noticeable clusters of upward trends in annual mean 

streamflow appear in the east part of the US near the Great Lakes and the northwest part of Europe (Figure 5a). The results are 

in accord with the results of Gudmundsson et al. (2019) and Yang et al. (2021) but show more details as our collection have 
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more stations (more than 40000 stations) compared to around 30000 stations of Gudmundsson et al. (2019) and around 20000 

stations of Yang et al. (2021). The spatial pattern of annual maximum streamflow is also in line with those in Do et al. (2017) 370 

and Yin et al. (2018)’s papers but have a higher resolution because a larger number of stations are included (Figure 5f). It is 

noticeable that the signs of trends in different percentiles and mean of streamflow are consistent in most of regions. When one 

index shows an upward trend, it is highly probable that other indices will also exhibit an upward trend, and vice versa. However, 

there are some differences between the magnitude of changes in different indices values. The absolute values of relative change 

per decade of Qmin1 are obviously larger than those of other indices (Figure 5b). In contrast, the absolute values of relative 375 

change per decade of Qmax1 are noticeably smaller than those of other indices (Figure 5f). As the percentile increases, the 

absolute value of relative change per decade tends to decrease. It indicates that the low flow is more sensitive to the changing 

environment compared to high flow. The low flow of rivers is more vulnerable to the threat of drying up, and the regulation 

of streamflow during low flow period should be strengthened to ensure the ecological functions as well as water supply. 

(Gudmundsson et al., 2019; Yin et al., 2018; Yang et al., 2021; Do et al., 2017; Wasko et al., 2020; Beck et al., 2015)380 

 

Figure 5. Trends in annual mean and percentiles of streamflow during 1970 to 2022. Relative change per decade is the trend in 

yearly index multiplied by ten years and then divided by the multi-year index value. The trends were calculated using Sen’s slope 

estimator. See Gocic and Trajkovic (2013) for details. Refer to Table 4 for the definitions of indices.  

 385 

An example investigation into the trend and abrupt change of temporal concentration of streamflow on a global scale has been 

done to illustrate a use of the streamflow indices time series dataset. Fig. 5 shows the trends and abrupt change points of half-

flow interval (HFI) time series on a global scale with a 95% confidence level. The trends were tested using the Mann-Kendall 

trend test (Kendall, 1948) and calculated using the Sen’s slope method (Sen, 1968).The abrupt change points were detected by 
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combining the results of Pettitt test (Pettitt, 1979) and the heuristic segmentation algorithm (Bernaola-Galván et al., 2001) after 390 

detrending. The HFI is an index that quantifies the temporal concentration of streamflow. A small HFI means a half of yearly 

discharge is generated in a short time, and thus reflects a concentrated streamflow regime. It is obvious that near and in the 

Arctic, almost all rivers’ HFIs show significant upward trends, which means streamflow of those rivers has been less 

temporally concentrated (Fig. 5a). Feng et al. (2021) found that the zero flow days of Arctic rivers are declining strongly, while 

the yearly discharge accelerations altered very slightly, which implies that the streamflow of Arctic rivers is becoming more 395 

evenly distributed within a water year. The causes are likely the reservoir operations and the earlier snowmelt because of the 

climate change (Tan et al., 2011; Suzuki et al., 2020; Adam et al., 2007). 

It is also noticeable that in the northern part of Australia, the HFIs tend to have an upward trend, while in the southern part, 

the HFIs tend to have a downward trend. Actually, there is a downward trend in annual total rainfall in southern part of 

Australia and a upward trend in northern part of Australia, and the trend pattern of annual total streamflow is the same as 400 

annual total rainfall (Zhang et al., 2014; Zhang et al., 2016). The trends of HFIs in Australia are probably due to the change of 

precipitation, but the cause of the change of precipitation is still under discussion (Dey et al., 2019). Besides, there are clusters 

of significant trends of HFIs in the US, middle part of South America, South Africa, Europe, China, and India. There are also 

clusters of significant abrupt change points of HFIs as shown in Fig. 5b. In South America, a cluster of significant abrupt 

change points occurs in 2010 to 2019, which may be attributed to the strong tropical Atlantic warming and tropical Pacific 405 

cooling as well as the deforestation (Barichivich et al., 2018). In Europe, most of the significant abrupt change points are 

before 1970.  indicated that strong shifts in the streamflow patterns on a continental scale have occurred in Europe after around 

1960, which agrees with our finding. Actually, Europe has experienced pronounced changes inclimate (Fontrodona Bach et 

al., 2018) and land cover (urbanization, reforestation, and afforestation; see Fuchs et al. (2013)) since the 1960s, which 

probably caused the abrupt change points. 410 
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Figure 5.  The (a) trends and (b) abrupt change points of half-flow interval time series on a global scale. All data shown have passed 

the significance test with a 95% confidence level.  

5 Data availability 

The global streamflow indices time series dataset is available for download at https://doi.org/10.57760/sciencedb.07227  415 

https://www.scidb.cn/en/s/M32eEb (Chen et al., 2023a)(Chen et al. 2023). There are two folders corresponding to two different 

data storage ways. One is "MAT" for the files with .mat extension, which is a binary data container format used in the 

MATLAB. The other is "CSV" for the files with .csv extension, in which the data are stored as a delimiter-separated text 

format. Apart from these, there is a file named "station_catalogue.csv". It contains the basic information and multi-year 

streamflow indices of every hydrological station. There are two folders corresponding to two different data storage ways. One 420 

is "MAT" for the files with “.mat” extension, which are a binary data container format used in the MATLAB. The other is 

"CSV" for the files with “.csv” extension, in which the data are stored as a delimiter-separated text format. Apart from these, 

https://doi.org/10.57760/sciencedb.07227
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there is a file named "station_catalogue.csv". It contains the basic information and multi-year streamflow indices of every 

hydrological station and corresponding river reach (Table 25). 

 425 

Table 25. The fields and definitions in "station_catalogue.csv".  

Field  Definition 

nono  station ID number station ID number 

no_orino_ori  station ID number in the original data source station ID number in the original data source 

databaseriver  the database where records come from river name 

riverstation  river name station name 

stationcountry  station name country code (ISO 3166) 

countrylatitude  country code (ISO 3166) latitude (decimal degree) 

latitudelongitude  latitude (decimal degree) longitude (decimal degree) 

longitudearea  longitude (decimal degree) catchment size (if available, km2)  

areaaltitude  contributing area upstream of the gauge location (if available) in square kilometre height of gauge above sea level 

(m)  

altitudestart  height of gauge above sea level (meter)  the start year of the time series 

startend  the start year of the time series the end year of the time series 

endyears  the end year of the time series length of time series (years); years = end - start + 1 

yearsmiss  length of time series; years = end - start + 1 percentage of missing values in original streamflow records 

daysQmean  number of days with records  long-term average discharge (m3/s) 

missQmean1  percentage of missing values in original streamflow records (%) the long-term average discharge in January (m3/s) 

flagQmean2  quality flag of station; see relevant paper for details the long-term average discharge in February (m3/s) 

Qmax1Qmean3  the maximum of daily streamflow (cubic meter per second) the long-term average discharge in March (m3/s) 

MMDQmean4  date when Qmax1 occurred the long-term average discharge in April (m3/s) 

Qmax3Qmean5  the maximum of consecutive 3-day streamflow averages (cubic meter per second) the long-term average discharge 

in May (m3/s) 

Qmax7Qmean6  the maximum of consecutive 7-day streamflow averages (cubic meter per second) the long-term average discharge 

in June (m3/s) 

Qmax30Qmean7  the maximum of consecutive 30-day streamflow averages (cubic meter per second) the long-term average 

discharge in July (m3/s) 

Qmin1Qmean8  the minimum of daily streamflow (cubic meter per second) the long-term average discharge in August (m3/s) 

Qmin7Qmean9  the minimum of consecutive 7-day streamflow averages (cubic meter per second) the long-term average discharge 

in September (m3/s) 

MC7FDQmean1

0 

 the first day of consecutive 7 days of Qmin7 the long-term average discharge in October (m3/s) 

Qmin30Qmean1

1 

 the minimum of consecutive 30-day streamflow averages (cubic meter per second) the long-term average 

discharge in November (m3/s) 

Q1stQmean12  the 1st percentile of daily streamflow (cubic meter per second) the long-term average discharge in December 

(m3/s) 

Q5thQmax1  the 5th percentile of daily streamflow (cubic meter per second) the maximum of daily streamflow (m3/s) 

Q10thQmax3  the 10th percentile of daily streamflow (cubic meter per second) the maximum of consecutive 3-day streamflow 

average (m3/s) 

Q25thQmax7  the 25th percentile of daily streamflow (cubic meter per second) the maximum of consecutive 7-day streamflow 

average (m3/s) 

Q50thQmax30  the 50th percentile of daily streamflow (cubic meter per second) the maximum of consecutive 30-day streamflow 

average (m3/s) 

Q75thQmin1  the 75th percentile of daily streamflow (cubic meter per second) the minimum of daily streamflow (m3/s) 

Q90thQmin7  the 90th percentile of daily streamflow (cubic meter per second) the minimum of consecutive 7-day streamflow 

averages (m3/s) 

Q95thQmin30  the 95th percentile of daily streamflow (cubic meter per second) the minimum of consecutive 30-day streamflow 

averages (m3/s) 

Q99thQ1st  the 99th percentile of daily streamflow (cubic meter per second) the 1st percentile of daily streamflow (m3/s) 

QmeanQ5th  long-term average discharge (cubic meter per second) the 5th percentile of daily streamflow (m3/s) 

Qmean1Q10th  the long-term average discharge in January (cubic meter per second) the 10th percentile of daily streamflow (m3/s) 

Qmean2Q25th  the long-term average discharge in February (cubic meter per second) the 25th percentile of daily streamflow 

(m3/s) 

Qmean3Q50th  the long-term average discharge in March (cubic meter per second) the 50th percentile of daily streamflow (m3/s) 

Qmean4Q75th  the long-term average discharge in April (cubic meter per second) the 75th percentile of daily streamflow (m3/s) 
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Field  Definition 

Qmean5Q90th  the long-term average discharge in May (cubic meter per second) the 90th percentile of daily streamflow (m3/s) 

Qmean6Q95th  the long-term average discharge in June (cubic meter per second) the 95th percentile of daily streamflow (m3/s) 

Qmean7Q99th  the long-term average discharge in July (cubic meter per second) the 99th percentile of daily streamflow (m3/s) 

Qmean8Qhigh  the long-term average discharge in August (cubic meter per second) high flow event threshold (m3/s) 

Qmean9Qlow  the long-term average discharge in September (cubic meter per second) low flow event threshold (m3/s) 

Qmean10RBFI  the long-term average discharge in October (cubic meter per second) Richards-Baker flashiness index  

Qmean11RLD  the long-term average discharge in November (cubic meter per second) rising limb density 

Qmean12FSS  the long-term average discharge in December (cubic meter per second) the start month of flood season  

QhighHFD  high flow event threshold (cubic meter per second) half flow date (days) 

QlowHFI  low flow event threshold (cubic meter per second) half flow interval (days) 

RBFIMMD  Richards-Baker flashiness index  momentary maximum date (days since 1 January) 

RLDMC7FD  rising limb density minimum consecutive 7-day flow date (days since 1 January) 

FSSVY  the start month of flood season  variance of streamflow time series 

HFDCOVY  half flow date (days) coefficient of variation of streamflow time series 

HFIQCV  half flow interval (days) quartile-based coefficient of variation of streamflow time series 

VYRMM  variance of streamflow time series ratio of maximum to median of streamflow time series 

COVYGNC  coefficient of variation of streamflow time series Gini coefficient 

QCVSFDC  quartile-based coefficient of variation of streamflow time series slope of flow duration curve 

RMMSDP  ratio of maximum to median of streamflow time series slope of distribution of peaks 

GNCVI  Gini coefficient variability index 

SFDCBFI  slope of flow duration curve baseflow index 

SDPBRC  slope of distribution of peaks baseflow recession constant 

 

6 Conclusions and perspective 

This paper presents a new global discharge streamflow indices time series dataset for large-sample hydrology, whichand is 

designed to characterize the especially beneficial for hydrological analysis on streamflow regime comprehensively. It includes 430 

79 indices over 7 components of streamflow regime (i.e., magnitude, frequency, duration, changing rate, timing, variability, 

and recession) of 412635548 river reaches globally on yearly and multiyear scales. Before the establishmentbuild of indices 

indices dataset, streamflow records and metadata from nine databases were collected and merged into one data collection. Data 

quality control was performed by removing duplicate and unreasonable records, and attaching quality flags to all records and 

stations. Quality flags were also attached to each yearly index value in the indices dataset.  A comparative analysis was 435 

performed on the trends in annual mean and percentiles of streamflow on a global scale. The results show that our dataset’s 

results are in accord with the results of existing studies, but our results have a higher resolution because a larger number of 

stations are included. Our results also indicate that the low flow is more sensitive to the changing environment compared to 

high flow. 

the data collection of 15408 hydrological stations was constructed with data from GRDC, WRIS, ArcticGRO, and CHY. After 440 

that, data quality control was done on the data collection by applying an automatic detection method to identify and modify 

unreasonable values and to remove stations with record length less than 30 years as well as stations with the latest streamflow 

record date before 2000. A simple investigation into the trend and abrupt change of temporal concentration of streamflow on 

a global scale was conducted as a use case of the streamflow indices dataset. Significant clusters are found in both trends and 

abrupt changes globally. Further investigations are needed to reveal the causes, which is beyond the scope of this study. 445 

Compared to available similarexisting datasets, ourthe new indices dataset has several advantages. Firstly, it includes more 

indices, which canould characterize streamflow regime more comprehensively. In contrast withO widely used GSIM, the 

newur indices dataset covers indices that characterize the frequency, duration, changing rate, and recession of streamflow 
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regime, which are not included in GSIM or completely incorporated in other global-scale datasets. To the best of our knowledge, 

our dataset is the most comprehensive global-scale indices dataset in terms of streamflow indices coverage. . Secondly, it 450 

includes a larger number (41263) of stations with longer time series (from 1806 to 2022) compared to existing streamflow 

indices datasets. By comparison, GSIM includes 30959 stations with yearly indices time series from 1806 to 2016. The 

additional stations are mainly located in the US and China.  

new river reaches and their hydrological data, especially the restricted-access hydrological data in China are included. The 33 

hydrological stations cover typical river reaches of 7 largest river basins in China. Thirdly, it has longer time series which ends 455 

up no earlier than 2000. The new indices dataset has indices characterizing the frequency, duration, changing rate, and 

recession of streamflow regime, which are very important indices to study, for example, flow regime changes. This dataset 

will greatly facilitate large-sample studies on both global and regional scales on a great number of hydrological issues related 

to streamflow regime, such as:As for the indices of magnitude, timing, and variability, the new indices dataset includes more 

indices, representing more comprehensive characterizing of such streamflow components. For example, the slope of flow 460 

duration curve, slope of distribution of peaks, and variability index, which represent the variability of seasonal water balance, 

peak discharges, and flow duration curve respectively, are included in the new dataset.  (1) calibration, evaluation, and 

improvement of hydrological models for water resource assessment; (2) estimation of impacts of factors (like vegetation 

greening and snow melting caused by climate change) on streamflow regime components; (3) construction, training, and 

evaluation of machine learning models for hydrological forecasting and catchment classification; (4) assessment of impacts of 465 

streamflow regime shifts on biogeochemical cycles (like soil erosion) and ecological functions of streamflow; (5) analysis on 

the  spatiotemporal pattern of streamflow regime shifts and attribution; and (6) identification of nonstationary of streamflow 

indices and its attribution. 

The indices time series in the new dataset are available till 2021, with lengths varying from 30 to 215 years and an average 

length of around 66 years. By comparison, taking GSIM as an example, the indices time series in GSIM are between 1806 and 470 

2016 with lengths varying from 1 to 208 years and an average length of around 38 years. Besides, more than 3500 stations’ 

indices time series of the new dataset are available after 2017. With regard to China’s hydrological data, most other datasets 

neither include such number of stations nor the latest records in the past two decades. For instance, all indices time series of 

GSIM are not available after 2004 and the time spans are from 1947 to 2004 with an average length of 12 years. Comparatively, 

all indices time series of this new dataset are available until 2020 and the time spans are from 1947 to 2020 with an average 475 

length of 54 years.(Beck et al., 2015; Gudmundsson et al., 2018; Tramblay et al., 2021; Yang et al., 2021; Yin et al., 2023) 

This new dataset is more comprehensive and covers most common indices for streamflow regime analyses on a global scale. 

With the dataset, large-sample studies, such as research on streamflow regime, will become easier without spending time 

collecting and handling raw streamflow records. This new dataset is a valuable source to the hydrology community to fill the 

gap of research on the variability, timing, changing rate, etc. of daily streamflow from a big-picture perspective. Moreover, in 480 

some cases related to hydrological risks analysis, catchment classification, hydrological model calibration and so on, the new 

dataset can be also useful if no original records are available.  
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