The authors provided an explanation for each questions raised and added details and corrections to the manuscript that made some findings clearer, making it certainly suitable for publication. I would just like to ask the authors, if possible, to also include the two explanations (in blue) below in the manuscript before proceeding to publication. Thanks.

Eq. 2 allows to calculate M_e from M_w, what is the error on M_e?
The standard deviation of 0.246 for the between-event residuals (random effects) can be used to quantify the uncertainty of M_e from equation 2. It is important to note that due to the simplicity of the linear model and the large population of data used for the regression (~750000 data points), the uncertainty of the median model defined by c_1 and c_2 is very low. When evaluating the uncertainty of the median model using:

$$\text{var}\left[M_e\right]_M=J_o^T[\text{var Cov}] J_o\quad(\text{eq}_a)$$

which includes the Jacobian matrix (J_o) and the variance-covariance matrix (varCov), the standard deviation of the variance of M_e regression in (eq_a) for $M_w=6$ and 9 is 0.007 and 0.039, respectively.

The scaling of the obtained M_e against SPUD M_e(HF) seems to be close to 1:1. A simple statistical test (Student's t-test) could be useful to show if there is a significative difference from 1 of the slope for M_e(HF) and also for M_e(BB). For M_e(HF), a Student's t-test shows that the null-hypothesis that the slope is 1 cannot be rejected at 95% confidence (slope=1.0019, SE=0.0331, DF=363); for M_e(BB), the null hypothesis can be rejected (slope=0.8958, SE=0.0271, DF=363).