Review of the revised manuscript by Schild et al.
Report for the responsible Editor

By Marie-José Gaillard

Dear Editor, dear authors

I focused mainly on the authors’ responses to my comments on the first submitted
version of the manuscript, and on the implementation of the related revisions. I did
read the entire revised manuscript but only partly commented the manuscript for
revisions that still need to be done. I provide here general comments on issues that I
think require revisions. The authors will have to implement the revisions consistently
throughout the text, figures, tables and figure/table captions, and not only in places
where I have commented in the revised manuscript. I did not check the authors’
responses to the other reviewers but have seen that the authors have considered those
comments in the revision.

General comments

The authors have made substantial revisions that were necessary such as deleting the
southern hemisphere from the reconstruction and producing REVEALS estimates
based on pollen records from several sites within areas (grid cells) of various sizes
and for time windows of various lengths. This leads to more acceptable results. I
appreciate the hard work made to finalize this revision, but there are still
misunderstandings that needs to be clarified in the paper.

1.0ne of my major concerns is the calculation of REVEALS mean estimates based
on the REVEALS reconstructions for several sites within grid cells and several pollen
counts within time windows, i.e. the step that the authors call “aggregation” in space
and time.

For the “aggregation” in space the authors calculate the mean of the individual site
REVEALS estimates without any weighting by the K coefficient that is dependent of
basin size (the larger the basin, the heavier the weighting should be for each taxon,
and vice versa). Such a weighting is implemented in Sugita’s REVEALS computer
program but not in REVEALSInR. In Sugita’s method, the REVEALS estimates from
individual sites within a grid cell are weighted with the taxon-specific “pollen
dispersal-deposition coefficient K” of all pollen taxa involved, se e.g. Li et al. (2017).
This should be clarified under METHODS.

For the “aggregation” in time the authors similarly calculate the mean of the
individual counted level REVEALS estimates. The reliability of REVEALS estimates
depends, among other things, on the size of the pollen count. In this context, the usual
size of pollen counts (often around 1000, seldom more, quite often around 500 and
sometimes less) is a low pollen count. This implies that all REVEALS estimates in
the Schield et al. REVEALS dataset are of relatively low reliability and calculating
the mean of these REVEALS estimates does not make them more reliable. All earlier
continental Holocene REVEALS reconstructions have worked with time windows of
such a length that it would maximize the size of the counts without using too long
time windows (generally maximum 500 years). The compromise to make depends on
the aim of the study. One has then to sum pollen counts within each time window and
use this new pollen count for the REVEALS application to obtain the REVEALS
estimates for the time window (see e.g. Githumbi et al., 2022). This procedure is very
different from calculating mean REVEALS estimates and is statistically the correct
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way to do. I understand that it would be a huge work to redo the work in this
way for this manuscript. But this should be listed as one of the many differences
between this REVEALS dataset and earlier ones. I do not know whether the error
on REVEALS estimates as calculated by REVEALSinR (see my point below) is
sensitive to the size of pollen counts. I guess not, but I can’t find anything about this
issue in the REVEALSInR original paper or elsewhere. In that case, this is also an
aspect that makes REVEALS applications using REVEALSinR weaker if the size of
pollen counts is not considered in the error estimate on REVEALS results.

2. Another major difference between implementation of the REVEALS model with
the computer programs of Sugita and REVEALSinR of Theuerkauf et al. (2016) is
the calculation of the uncertainties (errors) on the REVEALS estimates. The
REVEALS standard error accounts for the standard errors (or deviations) of the
relative pollen productivities for the individual pollen taxa and on the number of
pollen counted; i.e. the size of the pollen count matters. The error calculated in
REVEALSInR does not consider the RPP errors. I do not mean that the errors from
the REVEALSInR program are wrong, but it is a pity not to use the errors on RPPs
as this parameter is very influential on the final REVEALS estimate of plant cover.
This difference between the two applications should at least been mentioned.

3. 80% pollen source area: this information should be presented as an alternative to
estimate the size of the region that is represented by REVEALS estimates of plant
cover. Sugita (2007a) who developed the REVEALS model assumes that Zmax is
the size of the region represented by REVEALS estimates (see also Li et al.,
2017). Zmax can only be assumed (you assumed it to be 1000 km over the entire
study region) and the region from which most of the pollen are coming (in your case
80%) can be estimated. See also Hellman et al., 2008b (in VHA) who assumed Zmax
to be 400 km (distance from the pollen site) in S Sweden and the 90% source area
(200 km) was considered to be the area from which most of the pollen came. One
should therefore state that the assumed value for Zmax influences the estimate
of X% pollen source area. Please, also specify what dispersal model you use, the
Gaussian Plume Model or the Lagrangian Stochastic Model, for estimating your
80% pollen source area, which makes also a difference (see Theuerkauf et al.,
2016).

Two additional comments, minor but still important:

4. Avoid the term reconstruction for pollen percentages or raw pollen data. These
are simply data, pollen% are not a reconstruction of vegetation, they are proxy data
of vegetation, while a traditional narrative interpreting the pollen percentages using
various kind of information is a reconstruction, as REVEALS-based estimates of
plant cover is a reconstruction of past plant cover. I advise you to revise this
throughout the manuscript, text and Figures. I made comments in the manuscript
about that, but not everywhere. Using “reconstruction” for pollen data is misleading,
and makes the text difficult to understand in some places.

5. I would use the terms “(total) tree pollen” and “(total) tree cover” instead of
“forest cover” when it refers to pollen % and REVEALS-based estimates of tree
cover. It is important to be clear in terms of what you are comparing the satellite
vegetation (forest cover) with. If you choose to follow my advice, revise the
manuscript consequently. I made comments in the manuscript about that, but not
everywhere.

In conclusion:
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I miss a description of your new REVEALS dataset for the N Hemisphere in
comparison to the earlier continental REVEALS dataset for Europe, China and N
America. What is different and what are the improvements.

1.In terms of what is different in the methodology, please see my major comments
above, and specific comments in the revised manuscript. Do not forget that you
use different chronologies than those used in earlier reconstructions. They might not
be so different, but we do not know. The best solution is to describe all the
differences in methodology already in the METHODS section, in the part
describing REVEALSInR and in the part describing how you “aggregate” site-
specific and level (time)-specific REVEALS estimates to mean REVEALS
estimates (level-specific meaning using single analysed levels/samples to run
REVEALS.

2. In my view, the improvements in your REVEALS dataset are:

-You have included in your synthesis the pollen records from the northern hemisphere
between Europe and China, those sites that were included in Cao et al (2019)
REVEALS reconstruction, and applied REVEALS on them in accordance with the
methodology you use for the rest of the Northern Hemisphere.

-Further, it would be informative to know how many pollen records you use overall
and in specific continents (Europe, China, N America) for which earlier REVEALS
reconstructions exist. For Europe, compare with Serge et al. (2023). In terms of RPP,
you should also mention if you use more RPP values than in earlier studies and also
clarify that your RPP synthesis is made in a different way (different rules) than those
by Githumbi et al. (2022) for Europe and Li et al. (2018) for China. For China, the
improvement is that you have added new recent RPP values from recent papers.

-Finally, your new REVEALS dataset should be presented as an alternative dataset
that is more flexible that the earlier continental ones as it allows users to
amalgamate the REVEALS estimates in space choosing various sizes of grid
cells, and in time choosing various length of time windows. It should be stated,
however, that mean REVEALS estimates over space do not weight the K coefficient
according to lake/bog size, and that mean REVEALS estimates over time are not as
reliable as REVEALS estimates based on the total pollen count in a time window (see
my comment above). With flexibility you loose reliability. This should be clarified
for the users.
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Abstract. With rapid anthropogenic climate change future vegetation trajectories are uncertain. Climate-vegetation models
can be useful for predictions but need extensive data on past vegetation for validation and improving systemic understanding.
Even though pollen data provide a great source of this information, the data is compositionally biased due to differences in
taxon-specific relative pollen productivity (RPP) and dispersal.

Here we present a Northern Hemisphere reconstruction of quantitative regional vegetation cover from a global-sedimentary
pollen data set for the last 50-14 ka using the REVEALS model to correct for taxon- and basin-specific biases. n—a-first
For the reconstruction, we used-previousty-published——expanded on a previously published synthesis of continental RPP

values. For-a-second-reconstruction;-we-statistically-optimized RPP-valuesfor commen-taxa-with-the-goal-ef improving

The data sets include taxonomic compositions as well as reconstructed forest cover for each original pollen sample. Relative

80% pollen sources areas were also—ealeutated—calculated for large lakes and are included in the data setof-the-eriginal

REVEALS+un. Additional metadata includes modeled ages, age model sources, basin locations, types and sizes.

The improvements in forest cover reconstructions with the REVEALS reconstruction using eriginalfoptimized-parameters
Crey NO7 A d-Oece A d-O A

ange—from—H0%(Australia—and-OeceaniatAustralia—and-Oeeanta)to—S58/65continental RPP values range from 24% (North
America) to 72% (Europe/Nerth-Ameriea) relative to the mean absolute error (MAE) in-of the pollen-based reconstruction.

on<—were—considerabb—more o n—reduetne—MAE-when—more—record rd-RPP-estimates—were—avatlable

i 5 atterThe dataset can be used as a grid with binned and aggregated samples (adjustable script provided
on Zenodo; https://zenodo.org/doi/10.5281/zenodo.12800290) or as individual timeseries if the record’s basin size exceeds 50

ha.

This improved quantitative reconstruction of vegetation cover is invaluable-beneficial for the investigation of past vegetation

dynamics and modern model validation. By collecting more RPP estimates for-taxa-in-the-Seuthern-Hemisphere-especially in


https://zenodo.org/doi/10.5281/zenodo.12800290
as an assumed measure of the area represented by REVEALS estimates using pollen records from large lakes. See also my major comments in a separate document 

Do not use the term "reconstruction" for pollen %. These are no reconstructions, it is just pollen data in %. See major comment in separate document.

See my major comment on aggregations in separate document.

improved compared to what? I would talk of an "alternative (but not comparable) REVEALS reconstruction dataset to earlier continental REVEALS datasets for Europe, China and N America. In contrast to the earlier datasets, it can be used for various spatial and temporal scales depending on the aim of the study."

of "past plant cover and total tree cover" from etc....
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North America and adding more records to existing pollen data syntheses, reconstructions may be improved even further. Both

reconstructions-are-The REVEALS reconstruction is freely available on PANGAEA (see Data availability section).

1 Introduction

Anthropogenic climate change is driving vegetation shifts that could lead to disruptions in ecosystem functions and services,
and even trigger feedback effects with other earth system elements (IPCC, 2023; Armstrong McKay et al., 2022). Predicting
these changes through modeling is challenging. A sufficient mechanistic understanding of vegetation dynamics and interactions
with climate is needed, which requires validation and testing of model data with extensive vegetation data across climatic tran-
sitions akin-comparable to those anticipated in the future (Dearing et al., 2012). Given the relatively brief duration of available
instrumental climate and vegetation data, there is a clear need for long-term environmentat-vegetation records derived from pa-

leoecological archives that cover broader climatic gradients than modern datasets (Dearing et al., 2010; Dallmeyer et al., 2023).

Pollen data as a direct proxy for paleo-vegetation is especially useful for comparisons with modeled data as it can be used
to reconstruct land-use (Fyfe et al., 2015; Davis et al., 2015), biomes (Woodbridge et al., 2014; Prentice et al., 1996), and
climate (Herzschuh et al., 2023a, b; Bartlein et al., 2011; Viau et al., 2012). The compilation of pollen data syntheses is es-
sential to aid this purpose (Anderson et al., 2006; Gaillard et al., 2010; Strandberg et al., 2014). Several subcontinental and
continental collections of pollen data already exist, spanning regions such as Europe, North America, Africa, Siberia, and
China (Fyfe et al., 2009a; Whitmore et al., 2005; Vincens et al., 2007; Cao et al., 2014, 2020) and have been integrated
into the global database Neotoma (Williams et al., 2018). To allow for a broader application of pollen data, LegacyPollen
2.0 (Li et al., 2024b) offers a global, harmonized pollen dataset that underwent taxonomic standardization, metadata veri-
fication and consistent age modeling (Li et al., 2022a, 2021; Herzschuh et al., 2022). This taxonomic harmonization trades
off higher taxonomic resolution of some datasets for equivalence, resulting in overall comparability useful for analyses at
large spatial scales. Despite advances in harmonization, the use of pollen data remains limited due to the fact that pollen
compositions do not accurately reflect vegetation (Davis, 1963; Prentice, 1985; Prentice and Webb III, 1986). This limita-
tion arises from variations in taxon-specific parameters tike-such as relative pollen productivity (RPP) and pollen dispersal
characteristics, leading to discrepancies between the pollen record and real-actual past vegetation. This hinders quantitative
vegetation assessment as taxa with high pollen productivity and efficient pollen dispersal tend to be overrepresented in the
pollen record, while those with low pollen productivity and less effective dispersal are underrepresented. These factors, to-
gether with the compositional nature of pollen data, result in a non-linear relationship between pollen and vegetation (Prentice
and Webb III, 1986). Approaches such as the R-value model (Davis, 1963; Webb et al., 1981) and the extended R-value
model (Parsons and Prentice, 1981) were created to address this issue and were refined with Sugita’s (2007) model for “Re-
gional Estimates of Vegetation Abundance from Large Sites” (REVEALS) . By accounting for taxon-specific RPP and fall

speed values, as well as basin-specific parameters such as basin size and type, REVEALS models quantitative vegetation

cover in relevant-peHen-souree-areas-the region surrounding a basin from pollen compositions. The model has been applied


The new REVEALS dataset is freely .....

Which models? Do you mean dynamiv vegetation models? 

what should be comparable to those anticipated in the future? And what does "those" refer to? Try to rewrite, this does not make sense....

estimates regional vegetation cover from pollen counts
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in several regional-scale studies

Nielsen et al., 2012; Mazier et al., 2015; Hellman et al., 2008) and multlple validations have demonstrated its aeeuﬁeym

in approximating actual vegetation (Sugita et al., 2010; Hellman et al., 2008; Soepboer et al., 2010; Mazier et al., 2012), even

though the model’s performance heavily relies on accurate taxon-specific parameters. While Wieczorek and Herzschuh (2020)
and Githumbi et al. (2022)provide a comprehensive compilation of RPP and fall speed values for taxa of the Northern Hemi-
sphere, the overall availability of RPP studies is still limited and regional variations in RPP values exist (Harris et al., 2020;

Brostrom et al., 2008; Li et al., 2017; Mazier et al., 2012). This makes the application of REVEALS on larger scales particularly

challenging. Only some (sub-) continental REVEALS reconstructions are available for Europe (Frondman-et-al;2015;: Rebertset-al2018:
Trondman et al., 2015; Roberts et al., 2018; Githumbi et al., 2022; Serge et al., 2023), Asia (Cao et al., 2019; Li et al., 2022b, 2023, 2024a

and North America Pawsen-et-al5;2048)}Dawson et al., 2024). Currently, no global or Northern Hemispheric quantitative veg-

etation cover reconstructions using REVEALS exist.

With its importance for the assessment of biome stability, carbon storage, climatic feedbacks, and land-use-change, forest

cover is an often reconstructed variable

regions-or-on-global-sealesgrid-cell based validations exist for the Northern Hemisphere.

Here we present globalreconstructed quantitative vegetation cover for the Northern Hemisphere from the LegacyPollen2.0
dataset - an updated global taxonomically and temporally standardized fossil pollen dataset of 3728-3680 palynological records
- using REVEALS spanning primarity-the-last-50k—years;-with-some-records-reaching-baeck-even—furtherthe last 14k years.
The data sets were created using ex1st1ng estimates of taxon- spemﬁc parametersa&éalseﬂpphedﬂﬁﬂp&m&&&eiﬁppfeaeh%e

optimized-parameters-inetude-. The REVEALS reconstruction includes corrected vegetation compositions as well as recon-

structed forest cover.

2 Methods
2.1 Pollen Data Set

The pollen data synthesis LegacyPollen2.0 (Li et al., 2024b) includes 3728-3680 temporally resolved records (time-series)

distributed globally. Data were collected from individual publications and the Neotoma Paleoecology Database which includes
data from the European Pollen Database, the QUAVIDA data base for Australasia, the Latin American Pollen Database, the

e.g. Fyfe et al., 2015; Githumbi et

. Due to the global availability of remote sensing data on contemporary forest cover, it also offers good opportunities for the vali-
dation of reconstructions (Hjelle et al., 2015; Roberts et al., 2018). Yet, only Serge et al. (2023) and Pirzamanbein et al. (2014)

use this opportunity for extensive validation and even improvement of reconstructions from European pollen records. No


Write "While Li et al. (2017), W & H(2020), and Githumbi et al. (2022) provide comprehensive compilations of RPP etc..... for taxa of China, the Northern Hemisphere, and Europe, respectively, the overall availability......"


90 . Anoverview of Neotoma records included in LegacyPollen 2.0 and this reconstruction can be found in S1.
Sediment and peat cores used for the creation of pollen data are of lacustrine, peat and marine origin. For the REVEALS
reconstruction only lake and peat records in the Northern Hemisphere were used (n = 2732) Analogous to the preceding Lega-
cyPollen 1.0 dataset (Herzschuh et al., 2022), the data synthesis involved revising age modeling and taxonomic harmonization
for consistency of records. Spatial data coverage of records in the reconstruction is densestin-North-America(1H32-dense in
95 Europe (1275 records) and Europe-{1451)—-sparserNorth America (1016 records) and sparsest in Asia (706)-and-very-seattered
Hm%ﬁm%ﬁ%fﬂﬂé%ﬂ&dﬁﬁs&a}mﬂd—geeaﬂﬁ% 441) (see Fig. 1). The recordsprimarity-span-the-tast-56
~_sample density decreases with age (see Fig. 2).
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Figure 1. Pollen record locations in the Legacy Vegetation dataset. Colors indicate record type (large lake > 50 ha). Record density is highes
highest in Europe and Eastern North America, and lowest in Afriea-Northern and Austratia-and-OceaniaCentral Asia.

2.2 Implementing REVEALS

The REVEALS model ("Regional Estimates of Vegetation Abundance from Large Sites") estimates quantitative vegetation
100 coverage from pollen assemblages using site and taxon-specific parameters (Sugita, 2007). Based on wind speed and taxon-
specific fall speed, pollen dispersal is modeled in ring sources around the basin and deposition over the basin is integrated to
give pollen influx. Together with RPP this dispersal factor is used to correct original pollen counts to better represent real-actual
vegetation (see Equation 1 and Table 1). By running the model with variations of relative pollen productivity (RPP) values, a

statistical distribution of results is calculated.


Why not separate large and small bogs? Or did you include only small bogs? In that case clarify
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Figure 2. Temporal coverage of records in the Legacy Vegetation dataset per continent. Bins are +666-500 years wide. Sample count decreases

with age with-aneticeable-droptr-and Europe has the most samples at26-ka-BPoverall.

ni g/ A f;m” gi(2)dz
m ~ (Zmaz
Zj:l(”j,k/aj fR 9i(2)dz)

The REVEALS model follows a set of assumptions. Firstly, neither directionality nor pollen transport through agents other than

V= (1)

Table 1. Algebraic terms in the REVEALS equation (see Equation 1)

Function term  explanation-definition

Vi vegetation estimate of taxon i
N,  pollen counts of taxon i at site k
«;  relative pollen productivity of taxon i
R basin radius
Zmaez ~ Maximum extent of regional vegetation
z distance from a point in the center of a basin

g;  dispersal and deposition function for taxon i

wind are considered in the model. Additionally, it is assumed that the basin is circular with no source of pollen within the basin
radius. The peatland and bog sites used in our reconstructions inherently violate this assumption. Nevertheless, the quantitative
reconstruction of vegetation cover from peatland cores is possible by using Prentice’s deposition model (Prentice, 1985, 1988)
instead of Sugita’s deposition model (Sugita, 1993) in the dispersal and deposition function (see Eq. 1; Sugita, 2007). Previous
studies show that results from small bogs are still reliable when aggregated, while results from large bogs tend to deviate from


which is due to the fact that large bogs violate one of the assumptions of the REVEALS model (the basin surface should not be covered by vegetation) (Sugita, 2007).


those of large lakes (Frondman-et-al;2015: Mazieret-als2042)(Trondman et al., 2015; Mazier et al., 2012; Trondman et al., 2016)
. Using peatland records for reconstructions is, therefore, appropriate —All-sitesthat-were-notelassified-aslakes-wererun-with

peatland-settingswhen spatially averaging multiple sites. We use the implementation of REVEALS from the R package RE-
115 VEALSIinR (Theuerkauf et al., 2016).

2.2.1 Parameters

or Githumbi et al. (2022).

120

2.2.1 Parameters and Model Settings

For each taxon, values for RPP (with uncertainties provided as standard deviation) and fall speeds are used. When-available;
we-tse-continent-speetfie-values-in-ourreconstruetionfollowing-We made use of the synthesis of Northern Hemisphere RPP
and fall speed values by Wieczorek and Herzschuh (2020). Several RPP studies published since this synthesis were added to the
compilation (Geng et al., 2022; Li et al., 2022b; Wang et al., 2021; Huang et al., 2021; Zhang et al., 2021a, b; Wan et al., 2020

. The methods by Wieczorek and Herzschuh (2020) were followed fore study selection and calculation of synthesis values. An
overview of original values and synthesized values can be found in Appendix A and B respectively.

When available, we use continent-specific values in our reconstruction. For taxa with no continental values present, we use
northern-hemispherie-Northern Hemispheric values. If no values exist for a taxon, RPP is set to a constant (RPP = 1, 0=0. 25)

125 2023; Jian

130 and fall speeds are filled with mean continental fall speeds

Continental RPP values are available for the majority of pollen counts in all three continents (see Fig. 3). The fraction of pollen
counts for which RPP-estima
{see-Fig-3)-standard RPP values were assumed is highest in North America but still < 10%. For each site, the REVEALS model

also requires information on basin type, basin size and original pollen counts, all of which were collected in the LegacyPollen
135 2.0 dataset (Li et al., 2024b). Apart from taxon- and basin-specific parameters the REVEALS model requires several constant

parameters to be set, which can be found in Table 2.

2.2.2 Modifications in REVEALSinR

We calculate the radius of relevant-the 80% pollen source area by finding the radius in which the median influx of all taxa is
80% of the total influx (as defined by the total influx in the maximum extent of regional vegetation chosen). This is calculated

140 by employing the lake deposition model in REVEALSinR (Theuerkauf et al., 2016). Starting from z the deposited pollen

is calculated per taxon. This is assumed to be the total pollen each taxon deposits. In a step-wise process the radius around the
basin is increased and the deposited pollen relative to the total influx at z is calculated for each taxon. We define our 80%


What is Zmax in this case? Has it the same definition as in Sugita (2007). How do you know Zmax to start with? I don't get it. I understand how REVEALSinR calculates 80% pollen source area (as explained in the original paper on REVEALSinR), but I don't understand your explanation. As far as I understand Theuerkauf et al., 2016 use an assumed Zmax of 100 km. You should specify it. See also my major comments in separate documenr,

Only Trondman et al. 2016 has tested this empirically, delete the other two references. Sugita 2007 tested it for small lakes via simulations. 

Say in a few words what is the major difference in REVEALSinR compared to REVEALS applications using Sugita's programs; The most important difference is the calculation of errors (SE in Sugita's program, error estimates in REVEALSinR, you call them SD, I do not know why). See also my major comments in seperate document.

pollen records from small bogs is, therefore etc.... Pollen records from large bogs should be avoided. 

..... see Sugita (2007) and for REVEALS applications on continental scales see e.g. Li et al. (2017), Githumbi et al. (2022), Serge et al. (2023), and Dawson et al. (2024). 
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Table 2. Static model parameters and model settings for REVEALS runs using REVEALSinR (Theuerkauf et al., 2016).

Parameter Values and settings used in model run
atmospheric model unstable atmosphere

dispersal model gaussian plume

wind speed 3m x s

maximum extent of regional vegetation (region cutoff) 1000 km

number of RPP variations 2000
peatland basin radius 100 m
function to randomize pollen counts rmultinom_reveals

North America 4

Europe - _

ASia- _

0 25 50 75 100
fraction of pollen counts (%)

RPP source . continental . hemispheric . standard values

Figure 3. Pereentage-Regional source of RPP values for percentage of pollen counts per continentfor-which-RPP-estimates-are-available. A

higher-majority of pollen counts is covered by continental RPP values with the highest fraction in Europe. Only a small percentage of pollen

counts has only hemispheric RPP information-in-the Northern-Hemisphere-compared-values available. No available RPP values lead to the
eontinents-use of the Seuthern-Hemispherea standardized RPP value of 1:£0.25.

ollen source radius as the radius where the median of the relative influx of all taxa reaches 80%. The primary objective of this

calculation is to provide a clear understanding of the scale of the source area for users unfamiliar with pollen data. It highlights

the regional nature of lacustrine pollen data and demonstrates the influence of lake size on this source area.

We also reduced computational effort in REVEALSinR by implementing a maximum number of steps in the lake model
used to model mixing in the basin. The number of steps was set to 500 unless n falls below that maximum value for
n = basin radius/10 for basins with a radius of at least 1000 m and n = basin radius/2 for basins with a radius smaller

than 1000 m.


In my understanding this is Zmax sensu Sugita 2007a and b, and it is assumed to be 1000 km. If I understand Theuerkauf et al. correctly the region cutoff would be the 80% pollen source area, as suggested in the 60ies by Prentice and Webb. It is one among several suggestions of what is the "region" when it comes to REVEALS estimates of plant cover. Sugita (2007a) who developed the model says that the "region" is Zmax. Zmax can be calculated (see e.g. Hellman et al. 2008b), however the size of the region best represented by REVEALS estimates of plant cover has been tested empirically only by Hellman et al. (2008b in Veg Hist & Arch.), and this only for two sizes of areas.  

This is also an assumption for the "region" best represented by REVEALS estimates of plant cover, as much as it is an assumption to say that Zmax is the "region" size. This should be validated empirically. It has unfortunately been done only by Hellman et al. 2008b, see comment above. I don't mean that you should do this test in this study, I say only that it is important to say that the size of the "region" represented by REVEALS estimates is still an assumption.

from large lakes!

Weird sentance..... You mean "percentage of the total pollen counts for which either continental mean RPPs, hemispheric mean RPPs or "standard value" were used. The standard value (1+-0,5) is used when no RPP is available for a specific taxon". Right? Delete the remaining part of the caption, it's obvious from the graph what it tells.....
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2.3 Reconstruction of forest cover and validation

Forest cover was reconstructed by summing up percentages of arboreal taxa (see S+S2: List of arboreal taxa) with Betulaceae,
Betula, and Alnus being classified as arboreal at sites below 70° N. The mean reconstructed compositional coverages from

the REVEALS results were used for the forest cover reconstructions. REVEALS results were then rasterized to aggregate and

include records from smaller basins as well. Reconstructed time series were averaged in 500 year bins and then rasterized
in grids of differing spatial resolution. A grid cell was classified as having a valid reconstruction when it contained records
from at least one large lake (>= 50 ha) or at least two small basins following Serge et al. (2023). Standard deviations of

the REVEALS estimates were aggregated by applying the delta method by Stuart and Ord (1994), using the same equation as

Wieczorek and Herzschuh (2020). We provide a script for rasterization with adjustable temporal and spatial resolution for users

of the dataset on Zenodo (https://zenodo.org/doi/10.5281/zenodo.12800290). For validation, the reconstructed forest cover of

the past 500-years—was-100 years was rasterized and compared to modern remote sensing forest cover. Only valid grid cells as

defined above were used for validation. Average tree canopy cover within-pelen-source-areas-of-all-sitesfor all grid cells was
extracted from the Landsat Global Forest Cover Change (GFCC) data set from the temporal average of the years 2000, 2005,

2010 and 2015 (Sexton et al., 2013; Townshend, 2016). An openness correction was applied to sites containing urban areas
and paved surfaces within the 80% pollen source areas (PSA) to correct for areas without any pollen sources and thus impreve
ensure comparability to modern remote sensing forest cover (see Equations 2-4). For this, the percentage of unvegetated land
cover classes for the year 2015 in the ESA CCI land cover data set was used (ESA, 2017, see Table 3). Areas covered by water
or ice are already considered as missing values in the remote sensing forest cover data set and do not need to be corrected for.

Forest cover was validated site-wise-for each grid cell and mean absolute error (MAE) and correlation coefficients calculated

for each continent. No openness correction was applied to the reconstruction values in the final dataset. Validation for a 2x2°
rid 1s included in the results section. Further validations using 1°,5°, and 10° resolution are included in the supplementa
material (S3: Validation results for different spatial resolutions).

Table 3. Unvegetated land cover classes in ESA CCI LC chosen for the openness correction.

Name Code
Urban areas 190
Bare areas 200
Consolidated bare areas 201

Unconsolidated bare areas 202

unvegetated classes = {190, 200,201,202} )


https://zenodo.org/doi/10.5281/zenodo.12800290
See my major comments in separate document. Using single counts (often quite low) is not recommended for REVEALS reconstructions. Calculating mean REVEALS estimates based on REVEALS reconstructions all using low pollen counts does not improve the reliability of the REVEALS estimates.
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2.4 Optimization
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3 Data summary
3.1 80% Pollen Source Areas

Using REVEALSand-original-RPP-values, radii of relevant80% pollen source areas were calculated for all-sites-large lakes(see
Fig. 4). The relevantpollensouree-areasradii indicate in which area 80% of the deposited pollen originated from (see Section
200 2.2.2) and yield an understanding of which area the pollen record is representative of—Fhe-, which is especially useful when

individual time series from large lakes are being used for analyses. The 80% pollen source areas are roughly a function of basin
size (see Fig. 5) and range between 68-km-and-729-155 km and 762 km. The median 80% pollen source radius is $6-225 km

including all basins-and-138-km-ineluding-only-takes-large lakes.
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Figure 4. Map indicating the size-of relevant pollen source areas for al-recordslarge lakes. Many small basins in Europe lead to smaller 80%
pollen source areas. Several large basins and correspondingly large 80% pollen source areas exist in Asia. In general the 80% pollen source

areas highlight the regional nature of the pollen record signal.
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Figure 5. Seatter-plot-Scatterplot of basin diameter and 80% pollen source radius-area of a-subset-of-large lakes in the REVEALS records

with-original RPP-valuesdata set. larger-In general, larger basins have larger pollen source areas with the relationship between basin-diameter
and 80% pollen source radius being roughly logarithmic.
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3.2 Reconstructed compositions

Pollen REVEALS

Betula
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Cyperaceae
Ericales
Picea
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Quercus
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cover (%)
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Quercus
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Figure 6. Average continental taxonomic coverages per reconstruction for the 8 most common taxa per continent. Compesitional-differeneces

Differences are more-pronounced-in-especially evident for Pinus, Artemisia, and Betula, which all have decreased coverages after the Nerthern
Hemisphere-due-to-the-avaitabitity-application of mere RPP-valuesREVEALS, as well as Poaceae and Cyperaceae with increased coverages.
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vegetation cover.

Here we compared these reconstructed compositions ameng-each-otherand-with-to the original pollen composition.
Differences in composition afeespeelaﬁy—appafeﬂ{—fefbetween Pollen data and REVEALS are apparent for all continents of

the Northern Hemisphere. F

Some clear examples include: increases of Cyperaceae
glvgl\llvc\gg\t}ygg\t,sw decreases of Qﬂ%uﬁﬂ%fﬂ%ﬂfﬁﬂdﬁ*ﬂme%%%ﬂm—w&&repmm

Hemispherie-studies-were-used-Betula in Europe, decreases of Pinus in all continents, and increases of Acer in North America
with the application of REVEALS and its intended correction of taxon-sepcific biases (see Fig. 3-and-Appendix-A)Theseare

3.3 Reconstructed forest cover

Using the compositional data available from the original pollen data -the REVEALSrun-with-eriginal RPP-values;-and the RE-

VEALS runwith-eptimized RPP-values{seeseetion3:3), we reconstructed forest cover for all sites and samples and rasterized
the result with different spatial resolutions. The temporal trend in Northern Hemisphere forest cover is the same for al-three

both reconstructions. Forest cover increases from 26-14 ka BP until roughly 6 ka BP and decreases again towards the present

(see Fig. 7). REVEALS reconstructed forest cover is generally lower than forest cover from original pollen compositions. On

average forest cover values from the REVEALS run with-eriginal/foptimized-RPP-values-are roughlyH/9are roughly 14.54%
lower than values from original pollen compositions. The temporal trends in Asia and North America are positive, whereas
forest cover in Europe has its maximum around 6 ka BP and has been decreasing since.
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Figure 7. Globat-Northern Hemisphere and continental average forest cover from +6x+92x2° grid cell means for raw pollen data ;-the
REVEALS reconstruction—with-original RPP-values;-and the REVEALS reconstruction with-optimized-RPP-values(Northern Hemisphere

and continental averages from different grid cell resolutions are available in S2: Reconstruction results for different spatial resolutions).

Remotely sensed global average forest eever—clover for the grid cells with valid pollen reeerdltocations-—coverage is indicated with the
diamond. Temporal trends are the same, but absolute forest cover is reduced in the REVEALS reconstructions compared to the original

pollen data. FeresteoverfromREVEALS-Both reconstructions with-optimized RPP-istoweststill overestimate forest cover.

is also where data coverage is best in North America (see Fig. 8). Within REVEALSreconstructions; forest-cover-isredueed
mere—n—Density of valid grid cells is very high in Europe, where forest cover increases until roughly 6 ka BP and then
decreases. Data coverage in Asia is sparse, but valid grid cells indicate higher forest cover on the Southeastern coast and in

the boreal biome. Rather open areas exist at the Tibetan Plateau and at very high latitudes. The forest cover derived from

tion using-optimized-RPP-vatuesis generally lower. However, areas-in-northeastern-Siberia;-China;-and-eastern-North-America

remain-strongly-forestedthe difference between Pollen and REVEALS forest cover is smaller in North America than in Europe
and Asia.
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and the REVEALS reconstruction for 5 example time slices (reconstructions with eptimized-RPP-valuesdifferent grid cell sizes are available

Figure 8. Reconstructed forest cover in +9x+02x2° grid cells from raw pollen data ;

in the in S2: Reconstruction results for different spatial resolutions). Valid cells are filled and include reconstructions from at least one large

lake (> 50 ha) or several smaller basins. Forest cover in Eastern North America is generatty-higher than in the- Nerthern-HemisphereEurope
and Asia. Reduetionsof- REVEALS reconstructed forest cover with-the REVEALS-is generally lower than raw pollen reconstructionsare

3.4 Validation with gridded data sets

3.4.1 Validation-with-eomplete-datasets

Remote sensing forest cover within relevant pollen source areas was used to validate the modern, reconstructed forest cover

from the original pollen data and be

—the REVEALS run for each grid

cell. Here we present validation of gridded data with a 2° spatial resolution. Validations with additional spatial resolutions

differ only marginally and are included in the supplementary materials (S3: Validation results for different spatial resolutions).

Forest cover reconstructed from original pollen data is predominantly higher than remote sensing forest cover with a glebal
mean absolute error (MAE) of 34-39%-33.05% in the Northern Hemisphere (see Fig. 10a). As reconstructed forest cover is
much lower for beth-REVEALSruns-the REVEALS reconstruction (see Fig.7), MAE-values-areredueced-for-both REVEALS
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Thisisfurtherreduced-to14-36%using-the-optimized RPP-valaesthe MAE value is reduced significantly to 19.73% (see Fig.
275 9a).
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Figure 9. Remote sensing forest cover (LANDSAT) and modern reconstructed forest cover from Pollen s REVEAES-with-original-RPP

vataesand REVEALS (< 100 years BP) in 2x2° grid cells with eptimized-RPP-values—globalty-mean absolute errors (aMAE) and fer
at-eentinents—correlation coefficient (bR) per group. Reconstructed forest cover from the original pollen data tends to overestimate ob-

served (remote sensing) forest cover. Fhisis-improved-Improvements with the REVEALS run-using-original RPP-values-and-even-more-so

reconstruction are especially high in Europe. Validations with different grid cell sizes are available in the REVEALSrun-using-optimized
RPP-vataessupplement (S3: Validation results for different spatial resolutions).

Continental mean absolute errors (MAE) in forest cover from original pollen data range from +2:44%(Afriea)rto-44-2224.61%
Asia) to 37.49% forest cover (North America, see Fig. 9b). All continental MAE values are lower for the REVEALS recon-

struction with-eriginal- RPP-values-and range from 4+2:33%—(Africa)t0-28-739.44% (Europe) to 27.27% (North America). The

280 improvement is largest in Europe (5872% relative to the initial MAE of the pollen-based reconstruction, see Fig. 9 and 10)
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285

runwith-optimized RPP-valaesREVEALS reconstructed forest cover also has higher correlation coefficients in all continents.
The REVEALS run, therefore, produced the-reconstructed forest cover that corresponds best-with-better remote sensing for-

290 runs. Nevertheless, forest cover still tends to be overestimated.

‘ Pollen

REVEALS
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forest cover error (%)
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Figure 10.

-Forest cover reconstruction error per continent anet
REVEALSfor a gridded 2x2° reconstruction. Fhe-absotuite MAE reduetionis-shownin-Mean errors decreased with the texttabels—Exeept
for-Australia-and-Oeeania;the-REVEALS reconstruction wi

for all
continents but are still generally higher-> 0 (overestimation of forest cover). Lowest errors are present in the Northern-HemisphereEurope

Spatial patterns are present for the errors of al-three-both forest cover reconstructions (see Fig. 11). In the-Southern

295 overestimated-by-the-pollen-based-reconstruetion—tn-Europe the REVEALS reconstructions-manage-reconstruction manages to
reduce errors extensively. In easteraNorth-Americasomerecordsstit-tend-Eastern and coastal Northwestern North America, the
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REVEALS reconstruction still tends to overestimate forest coverﬂeﬂ—wﬁh%he—appheaﬁe&ef—l%%édrs—dﬂdﬂﬁemp&mmg
taln North

- This could be due to a lack of continental RPP values.

America, few RPP studies are available (see Appendix A) and more taxa are assigned hemispheric or standardized values than

Pollen

reconstruction error [ .

(% tree cover) -3 0 30 60

Figure 11. Map of the reconstruction error (in % forest cover) for forest cover reconstructed from Pollen - REVEALS-with-eriginal-RPP
vataes-and REVEALS data. Remaining errors with eptimized-RPP-vatuesthe overall better REVEALS reconstructions are especially high in

North America (Northern West Coast, Labrador Peninsula).

The large difference between forest cover reconstructed from original pollen compositions and remote sensing forest cover
could be due to the difference in the signal that is recorded. Remote sensing forest cover records the canopy, whereas pollen
data also records the vegetation present below the tallest canopy. Several layers of trees could, therefore, increase the percent-
age of arboreal taxa recorded. Even though this comparison between these data sources may not be straightforward, it is still
necessary for this large-scale validation of reconstruction as few other vegetation data is available globally. Additionally, it is
more likely that the overestimation of forest cover in the initial pollen data is due to the higher production of pollen by trees
than by non-arboreal taxa. This leads to an overrepresentation of arboreal taxa in the pollen record. By using REVEALS, the

pollen productivity of taxa is taken into account and corrected for. The proportion of arboreal taxa is therefore strongly reduced

in the vegetation compositions reconstructed using REVEALS.
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4 Dataset applications and limitations

Our reconstructed quantitative vegetation cover datasets using REVEALS provide global-coverage reconstructions of taxo-
nomic compositions as well as forest cover and-extend-to-50-ka-BPand-beyondin Europe, Asia, and North America and extend
340 to 14 ka BP. The reconstructions made use of taxon-specific parameters and were, thus, able to correct some of the compo-
sitional biases present in pollen compositions. Notably, the error in modern reconstructed forest cover was reduced compared
to pollen-based reconstructions on all continents which shows that improvements in forest cover reconstructions from beth

REVEALS applications are considerable.

345 Reconstruction results are also similar to available large-scale pollen-based vegetation reconstructions. Increases in forest

cover in northern and eastern Asia up until the Holocene thermal maximum as seen in our results are consistent with recon-
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structions by Cao et al. (2019) and Tian et al. (2016). The reconstructed spatial patterns of forest cover in China with low forest

cover in the North China plain and the Tibetan Plateau and a higher forest cover along the east coast and the south agree with

previous reconstructions as well (Li et al., 2023, 2022b, 2024a). Results for European forest cover also roughly correspond

with previous REVEALS applications and show an increase of forest cover after the last glacial maximum until roughly 4ka-BP

ka BP (Githumbi et al., 2022; Fyfe et al., 2015; Serge et al., 2023; Strandber:

. The gridded reconstruction by Serge et al. (2023) was even validated with modern remote sensing forest cover and showed a

good fit.

The REVEALS forest cover reconstructions presented here offer valuable insight into past vegetation changes. The global

dataset provides an opportunity to explore past vegetation dynamics, gaining a deeper understanding of responses, trajectories,

and potential feedback mechanisms. Given the increasing discussions surrounding the possibility of tipping events in vegetation

cover (Armstrong McKay et al., 2022; Lenton and Williams, 2013), this could be of considerable use. While a reconstruction

of exact tree lines is not trivial with pollen data, the application of REVEALS and subsequent biomization improve treeline
reconstructions as shown by Binney et al. (2011). Additionally, this dataset can address unanswered questions about Holocene
vegetation dynamics, including the deglacial forest conundrum (Balmeyeretal;2022)(Dallmeyer et al., 2022; Strandberg et al., 2022)
. It also serves as a valuable tool for validating models with coupled climate and vegetation, retying-which rely on extensive
time series and vegetation data for accurate predictions (Ballmeyer-etal;2623)—(Dallmeyer et al., 2023; Dawson et al., 2024).
Comparing modeled vegetation to reconstructed vegetation could help uncover missing dynamics in coupled climate-vegetation

models. New insights gained from these applications could enhance our ability to predict future changes.

However, the reconstructions are associated with some of the limitations of sedimentary pollen data. This includes age

uncertainty, temporal mixing, and irregular spatial and temporal resolution of records. Age uncertainty is already treated as best

as possible through consistent age modeling of the pollen dataset (Li et al., 2022a, 2021). Nevertheless, in general, replicating

sediment and peat cores could provide more accurate estimates.

Moreover, there is uncertainty surrounding the success of the compositional reconstructions. As global compositional vegeta-

tion data is not readily available, using remote sensing forest cover poses as the best option for validation. Even with an accurate

forest cover reconstruction, uncertainties persist regarding the abundance of individual taxa due to the aggregated nature of the

forest cover measure. To address this, global syntheses of forest and other plant inventories or compositional remote sensing

products could offer better validation.
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Another challenge lies in validating the results with past vegetation data. It is uncertain whether RPP values have remained

stable over time, and historical compositional data are not only scarce but likely too recent to test this assumption (Baker et al.,
2016). Vegetational compositions from sedimentary ancient DNA could provide a solution. Local aDNA vegetation signals
could be averaged across multiple records within a pollen source area to generate a comparable reconstructed vegetation com-

position using a different proxy and to compare to pollen-based results (Niemeyer et al., 2017).

To ensure the correct utilization of the dataset and to obtain reliable analysis results, several key considerations should
be followed. Firstly, rasterization mitigates individual errors by temporal and spatial averaging, This process is particularly
useful in reducing the variance that might arise from individual measurements, providing a more reliable representation of the
underlying signal The reliability of reconstructions varies among different taxa due to the quality of RPP values, and this is
explicitly documented in a supplementary file that outlines the sources of RPP values (see Section Code and Data availability).
Reconstructions of taxa with continental RPP values are the most reliable, followed by those based on hemispheric data, with
standardized RPP values being the least reliable. This hierarchy should be taken into account when interpreting the results.
Higher certainty is associated with forest cover reconstruction, as it is based on aggregation among taxa. Reconstructions of
temporal forest cover trends are reliable, as evidenced by high correlation coefficients, despite a tendency for absolute values
to be overestimated, particularly in North America. For individual time series, the reliability of data varies with the size of the
lakes from which samples were taken. Only data derived from large lakes (> 50 ha) are reliable for site-wise analyses. This
distinction is clearly indicated with validity flags in the dataset. Reconstructions from smaller basins should not be used alone.

5 Conclusions

We present data sets of reconstructed compositional vegetation and forest cover from-a-globatly-distributed-in the Northern
Hemisphere from a sedimentary pollen data set using the REVEALS model. We used published-(originab-continental-synthesized
RPP values for enereconstraction—while-in-a-second-reconstruction,-we-optimized-continental RPP-valuesfor common-taxa
by-incorporating remote sensing forest-eover datareconstruction and made use of hemispheric or standardized values, when
continental ones were not available. This approach allowed us to address some of the inherent biases in pollen composi-

s. Considerable improvement in the reconstruction of

reconstruetionsachieved in all continents. Improvements were smallest in North America, which suggest a need for further RPP
studies.

Accurate data on past vegetation is invaluable for the validation of coupled climate-vegetation models and the testing of hy-
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potheses on feedback effects and vegetation dynamics. This knowledge is essential for modeling and predicting vegetation

trajectories under anthropogenic climate change.

6 Code and data availability

The produced datasets are freely available from PANGAEA-GHerzschuh-et-al-2023e;-Sehild-et-al-2023Zenodo (https://doi.
org/10.5281/zenodo.12800159).

Input data from LegacyPollen 2.0 is available on PANGAEA as-wel-(https://doi.pangaea.de/10.1594/PANGAEA.965907, Li
et al. 2024b).

The code used to produce the datasets is-and adjustable rasterization code are freely available from Zenodo (https://doi.org/10.
5281/zenodo.10191859, https://doi.org/10.5281/zenodo.12800291, Schild and Ewald 2023).
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268441315 1 Africa
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1426968032 1 Asia

A2 1028 Eurson
0.18727252 0555 Europe
19.7593317 4.94 Europe
11.6005902 2.924 Europe
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0.10892858 0.4357143 Europe
6.48965812 1645 Europe
0.75915903 235 Europe
0.83090779 1.0533333 Eurene
0.0546875 0.21875 Europe



0.53271905 1 Indopacific
1.86489233 1 Indopacific
0.39986185 1 Indopacific
1.32091314 1 Indopacific
1.88815046 1 Indopacific
0.14668529 0.5866667 North-America
111892262 28 North-America
143191981 1 North-America
3.99593442 1 South-America
0.25 1 South-America
3.99999539 1 South-America
3.99998911 1 South-America
0.25682559 1 Seuth-America
4 1 Seuth-America
0.25293954 1 Seuth-America



Appendix A:_Original RPP values

Taxon Continent RPP SE  reference study DOIL

Acer Asia 0.0869  0.0621 LiM. etal. 2022 https://doi.org/10.1016/j.quaint.2022.03.010
Alnus Asia 0.85 153 Geng et al. 2022 https://doi.org/10.3389/fev0.2022.837857
Amaranthaceae Asia 21.01 247 Geetal. 2015 hitps;//doi /j.issn.1001-7410.2015.04
Amaranthaceae Asia 357 081 Lietal. inprep (inLietal 2018) https://doi.org/10.3389/fpls.2018.01214
Amaranthaceae Asia 0.18 016  Lietal. 2017a hitps://doi 007/500334-017-0636-
Amaranthaceae Asia 5.379 1.077  Wang and Herzschuh 2011 https://doi.org/10.1016/j.revpalbo.2011.09.004
Amaranthaceae Asia 112 147 Zhangetal. 2020 hitps;//doi 007/s00334-020-00779-
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taxon level RPP SD n Vg RPP S n vy RPP SD n vg REP sb n Vg
Acer genus  0.087 0062 1 0.019 023 0043 3 0056 H = - 0056 0152 0.037 3 0038
Alnus genus 085 183 1 0021 | 8492 0215 4 0.02 21 012 1 0021 6538 0154 6 0.02
Artemisia genus 12842 0309 9 0.011 433 1592 2 0018 135 024 1 0016 | 10504 0353 12 0012
Betula genus 7492 0127 6 0.016 494 0443 6 0024 6188 0149 4 0038 6361 0362 18 0024
Camellia genus 0.583 0.019 1 0.023 z H = N - = z - 0.583 0.019 1 0.023
Carpinus genus 1.542 0303 1 0.018 3093 0284 3 Q042 : = : B 2705 0226 4 0034
Castanea genus 3.998 0163 3 0.009 H B : - H - : - 3998  0.163 3 0009
Castanopsis genus 1944 0.17 1 0.007 N H - N z = N = 19.44 017 1 0.007
Corylus genus 317 0.141 2 0.012 1053 0.029 3 0.025 - = - - 1813 0.087 3 0.019
Cryptomeria genus z < 0015 N B : : : = : B R = 1 0015
Cyclobalanopsis genus 2411 0136 1 0.011 : = : - - = : B 2411 0.136 1 0011
Fraxinus genus 105 0178 2 002 183 0303 3 0022 : EE B 1616 0195 5 0021
Hippophae genus 1838 121 1 0.017 N B - : S = : B 18.38 121 1 0017
Humulus enus 163 1 1 001 =z - - N - - N - 16.3 1 1 0.01
llex genus 6,707 0583 1 0011 N B : R : = : = 6707 0583 1 0011
Juglans enus 2.803 113 3 0.033 : - - 0036 - - E 2803 0113 3 0034
Larix genus 28 0181 4 Q012 5725 1165 2 0126 N = - 0126 3002 0596 6 021
Liquidambar enus 2.255 117 1 0.031 - - - - - - B 225 0117 1 0031
Mallotus genus 10.848 1711 1 001 z = z N < = N = 10848 1711 1 0.01
Malus ENus 0.087 0.037 1 0.028 z = z z z - z z 0.087 0.037 1 0.028
Nitraria genus z < = 0016 N B : R : = : = R = 1 0016
Pigcea enus 164 0.601 2 0.09 1645  0.153 4 0.056 28 0 1 0056 3.04 0154 1 0.09
Pinus genus 16475 0691 10 0048 | 10.86  0.798 4 0038 H = - 0028 1458 0476 16 0043
Potenti genus 14 0.2 1 B N B : R : = : = 14 0.2 1 z
Quercus enus 2131 0.052 7 0.021 2924 0.098 5 003% 2.08 043 1 0032 2547 0056 15 0023
R naron genus 248 0.21 1 0.016 N B : B S = : B 248 027 1 0016
Salix genus 0.23 0.11 1 0.022 039  0.058 3 0028 0683 0147 3 0019 057  0.081 6 0024
Sapguisorba genus 2407 35 1 0.012 N B : R : = : B 24.07 35 1 0012
Selaginella genus - : B 0.041 : = : - - B : E B - 1 0041
Symplocos genus 0.214 0039 1 0.039 N B : R : = : B 0214 0.039 1 0039

rin genus 3.394 0216 1 0.019 = = = - - = z = 3394 0216 1 0019
Thalictrum genus 28 04 1 001 N = : : 465 03 1 0012 3725 025 2 0011
Tilia genus 04 0.1 1 0.029 117 0131 2 0032 - - - 0044 0.93  0.087 3 0036
Ulmus genus 2,025 0312 3 0.022 N B - 0032 : = : B 2025 0312 3 0022
Vitex genus z z = 0.016 z = z z = z = - E 1 0.016
Abies genus - - = = 6875 1442 2 0.12 - = N 0.12 6.875 1.442 2 0.12
Aeseulus genus : N = B N B - 002 S = : B z - 1 0029
Fagus genus - S B = 235 0107 3 0057 - - - 0057 235 0107 3 0057
Juniperus genus : H B B .94 128 1 0016 20,67 154 1 0016 | 14305 1001 2 0016
Populus genus - : B = 3.42 16 1 0025 0.67 85 2 002 1587  5.692 3 0026
Pterocarya genus z < B B N B - 0042 : = : B R = 1 0042
Rumex genus - : B = 577 0.031 3 0018 279 0172 2 0014 1817 0.089 4 0016
Sambucus genus z < = B 13 012 1 0013 : = : B 13 012 1 0013
Urtica genus z z = = 10.52 031 1 0.007 - H N = 10.52 031 1 0.007
Equisetum genus : : B B N B - B 0.09 002 1 0021 0.09 002 10021
Tsuga genus =z - = = =z = = = - H = 0.064 - - 1 0.064
Altingiaceae family — 2.25% 0.117 1 0.031 N = = N z = N = 2255 0117 1 0.031
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