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Abstract

Accurate information on forest tree species composition is vital for various scientific applications, as well as for forest
inventory and management purposes. Country-wide, detailed species maps are a valuable resource for environmental
management, conservation, research, and planning. Here, we performed the classification of 16 dominant tree species/genera
in Poland using time series of Sentinel-2 imagery. To generate comprehensive spectral-temporal information, we created
Sentinel-2 seasonal aggregations known as Spectral-Temporal Metrics (STMs) within Google Earth Engine (GEE). STMs
were computed for short periods of 15-30 days during spring, summer, and autumn, covering multi-annual observations from
years 2018 to 2021. The Polish Forest Data Bank served as reference data, and, to obtain robust samples with pure stands
only, it was validated through automated and visual inspection based on very high resolution orthoimagery, resulting in 4500
polygons, serving as training and test data. The forest mask was derived from available land cover datasets in GEE, namely
ESA World Cover and Dynamic World. Additionally, we incorporated various topographic and climatic variables from GEE
to enhance classification accuracy. The Random Forest algorithm was employed for the classification process, and an area-
adjusted accuracy assessment was conducted through cross-validation and test datasets. The results demonstrate that the
country-wide forest stand species mapping achieved an accuracy exceeding 80%, however it varies greatly depending on
species, region and observation frequency. We provide freely accessible resources including the forest tree species map,
training and test data: https://doi.org/10.5281/zenodo.10180469 (Grabska-Szwagrzyk, 2023).

1. Introduction

Information of forest tree species composition is essential for many scientific applications as well as the purposes of the forest
inventory and management, such as estimating timber volume, modelling biodiversity, conservation, monitoring of
disturbances or carbon and biomass estimation (Hanewinkel et al., 2013; Loiselle et al., 2003; Gillis et al., 2005; Boisvenue
and White, 2019). In recent times, use of remote sensing data has greatly improved forest monitoring and management. One
such powerful source of data is Sentinel-2 mission, which offers high-resolution and frequent data for mapping tree species.
While Sentinel-2 data have been increasingly employed for mapping species composition, most studies focus on smaller
regional scales (Immitzer et al., 2016; Puletti et al., 2017; Karasiak et al., 2017; Persson et al., 2018; Grabska et al., 2019;
Immitzer et al., 2019; Ho$cito and Lewandowska, 2019; Bolyn et al., 2018; Grabska et al., 2020; Lechner et al., 2022;
Shirazinejad et al., 2022; Axelsson et al., 2021; Wessel et al., 2018; Melnyk et al., 2023) or classify broad forest classes/species
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groups over larger regions (Waser et al., 2021; Breidenbach et al., 2021; Schindler et al., 2021; Riietschi et al., 2021). For
larger areas, discrimination of tree species has been performed with the use of Landsat (Turlej et al., 2022; Bonannella et al.,
2022). Furthermore, continent-scale studies have utilized high-resolution hyperspectral and field data to develop models for
tree species classification, evaluating both general and site-specific models (Marconi et al., 2022). At the national scale,
Sentinel-2 time series were successfully used to map seven dominant tree species in Germany (Welle et al., 2022) or map larch
plantations in Wales (Punalekar et al., 2021). In studying tree species composition for larger regions, additional environmental
variables, for instance topographic predictors, have been found to improve classification accuracy (Waser et al., 2021; Grabska
et al., 2020; Ye et al., 2021). Other datasets used as auxiliary variables include climatic variables (Hermosilla et al., 2022),
soils (Hemmerling et al., 2021), phenological metrics (Kollert et al., 2021; Hermosilla et al., 2022), spectral indices (Schindler
etal., 2021; Ye et al., 2021; Hemmerling et al., 2021; Pratico et al., 2021) and textural metrics (Ye et al., 2021; Hemmerling
etal., 2021).

Still, the accurate mapping of forest tree species with remote sensing data remains a challenge (Fasshacht et al., 2023).
Particularly, studying species composition in large areas presents significant problems, such as generating good quality
predictors from satellite imagery (Grabska et al., 2020). The frequent cloud cover or topographic effects in mountainous
regions may limit the number of cloud-free observations or disturb the surface reflectance values (Schindler et al., 2021).
Additionally, larger areas exhibit greater environmental variability, including variations in topography, climate, and
phenology, which can significantly impact species classification accuracy. The optimal image acquisition dates which are
crucial in improved species recognition (Grabska et al., 2019; Immitzer et al., 2019) may substantially differ between regions.
Other challenge in large-scale classification is the limited availability of reference data, especially for less common species
(Zeug et al., 2018), leading to poorer performance for underrepresented species (Hemmerling et al., 2021; Marconi et al., 2022;
Ahlswede et al., 2022). Finally, species classification for large regions requires handling high-volume spatial datasets, which
may be difficult to process using locally installed, monolithic software. Google Earth Engine (GEE), the - for research purposes
- freely accessible cloud-based platform, enables parallel processing of large spatial datasets (Tamiminia et al., 2020; Gorelick
etal., 2017). GEE provides the access to entire, pre-processed Sentinel-2 collections and other environmental datasets as well
as tools for processing and classification (Tamiminia et al., 2020). Previous studies have demonstrated the potential and
versatility of GEE in forest classification, emphasizing its role in addressing the challenges encountered in large-scale mapping
(Forstmaier et al., 2020; Chen et al., 2017; Pratico et al., 2021). Different approaches have been used to produce seamless and
cloud-free satellite composites for mapping tree species composition, with multiple studies emphasizing the importance of a
multi-temporal approach for accurate tree species classification (Immitzer et al., 2019; Grabska et al., 2019; Hoscito and
Lewandowska, 2019; Persson et al., 2018; Kollert et al., 2021). However, there are variations in optimal timing for different
seasons, and applying a single seamless image composition at a country-wide scale is not feasible. Thus, researchers often

employ temporal aggregations such as spectral-temporal metrics (STM) calculated for a season, year, or multi-annual periods.
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Here, we present classification of 16 forest tree species/genera for the entire area of Poland. Given the availability of several
years of Sentinel-2 imagery, we propose, based on our previous findings (Grabska et al., 2020, 2019), a novel approach that
utilizes short-period (15-30 days) seasonal STM using mean values derived from multiple years. This strategy aims to focus
on critical periods characterized by dynamic phenological changes while avoiding gaps in imagery that are commonly
encountered when using single-year data. We used GEE for pre-processing and classification of the Sentinel-2 time series,

along with additional environmental variables.

2. Data and methods
2.1 Study area

Poland’s forests cover an area exceeding nine million hectares — 9,265,000 ha according to the Central Statistical Office;
(December 31, 2021) or 9,464,000 ha according to the standard adopted for international assessments, taking into account land
related to forest management (Zajaczkowski et al., 2022). This accounts for approximately 30% of the country's total land area
(Figure 1). In terms of ownership, public forests hold the majority share at 80.7% (with 76.9% of forests managed by the State
Forests, 2% belonging to National Parks, and 1.8% of communes’ properties and others), followed by private forests at around
19.3%. The dominant species is the Scots pine (Pinus sylvestris), covering 58.5% of the forested area across all ownership
types, according to the National Forest Inventory (NFI) reports (Biuro Urzadzania Lasu i Geodezji Leénej, 2022). The second
most prevalent genus is Quercus, primarily Robur and Pedunculate species, accounting for 8.0%. Birch (Betula pendula)
represents 6.8% and alder species (Alnus spp.) 5.7% of tree species. In the mountainous regions in southern Poland, Norway
spruce (Picea abies), silver fir (Abies alba), and common beech (Fagus sylvatica) are the most common species, covering

5.3%, 3.3%, and 6.2%, respectively. It is worth noting that European larch (Larix decidua) shares are usually not reported
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separately but in combination with pine species. Still, larch is also among prevalent species in Poland — based on data from

the Polish Forest Data Bank (FDB), the share of larch in Poland's State Forests land property is approximately 2%.
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Figure 1 Forest cover in Poland Elevation from EU-DEM; forest mask derived in this study.

2.2. Workflow

We developed an approach to classify 16 tree species in Poland using Sentinel-2 time series within the GEE platform. Polish
FDB was used as reference data for training, validation and test samples. We created four seasonal STMs (means) from multi-
annual observations (2018-2021), performed pre-processing in GEE, and clipped them to the forest mask derived from existing
land cover datasets. Classification involved the Random Forest (RF) classifier with a 10-fold cross-validation technique, and
accuracy metrics were computed using test samples. To handle class imbalances, we implemented two strategies: proportional
and unproportional allocation. Additionally, we compared accuracy between areas influenced by overlapping and non-

overlapping Sentinel-2 orbits.
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2.3. Reference data processing

The reference data was gathered from publicly accessible FDB, in which forest management units (forest stands) are
represented by polygons. Each polygon contains information on species share expressed by values ranging from 1 to 10, with
ten indicating homogenous coverage by a particular species. Nonetheless, the precise spatial distribution of these species within

the polygons remains uncertain. In addition, the FDB does not cover private forests.

From FDB, polygons representing pure stands with a single species dominance of 90% or more, and with trees older than 10
years were selected. However, due to frequency of some species in Polish forests, we used other thresholds and additional
conditions. Given the large number of reference stands of Scots pine, we randomly chose 10% of pure stands with 100% share
of this species, however other pine species uncommon in Poland underwent the same processing procedures as other examined
species. On the other hand, due to an insufficient number of reference samples for less common species such as poplar (Populus
spp.), black locust (Robinia pseudoacacia), hornbeam (Carpinus betulus), ash (Fraxinus excelsior), maple (Acer spp.), lime
(Tillia sp.), and Douglas fir (Pseudotsuga menziesii), additional FDB stands with a 60-80% share of these species were
included. The next step involved precise adjustments of reference samples to the actual forest mask derived from two available
land cover datasets in GEE, i.e. any samples or their parts falling outside of forest mask were removed. Specifically, we utilized
the ESA WorldCover 2021 product ("ESA/WorldCover/v200"; (Zanaga et al., 2022)), selecting only value 10 (i.e., tree cover),
and the Dynamic World dataset ("GOOGLE/DYNAMICWORLD/V1", (Brown et al., 2022)) calculated from summer 2021
imagery and aggregated to mean, with a tree probability threshold set at 0.6. Both datasets were employed, as based on our
tests, the ESA World Cover product tends to overestimate forests in certain areas, while the DynamicWorld dataset, generated
dynamically from available Sentinel-2 observations, may be prone to errors due to frequent cloud cover. In the next step, image
segmentation on the Sentinel-2 STM was performed (Harmonized Level-2A data; ‘COPERNICUS/S2_SR_HARMONIZED”),
utilizing mean values from summer 2021. This segmentation process was carried out using Simple Non-Iterative Clustering
(SNIC; (Achanta and Stiisstrunk, 2017)) algorithm in GEE limited to the previously selected FDB stands within the forest mask
area, with the aim to delineate spectrally homogeneous patches. Segments obtained in this step were intersected with the FDB
stands, and for further processing only segments larger than 0.5 hectares that encompassed more than 60% of the stands were

selected. Subsequently, the resulting segments were visually checked using very high-resolution orthoimagery.

Finally, 4500 polygons were obtained representing 16 species/genera (Table 1). They were divided into training (2999;
corresponding to approx. 400 thousands training pixels) and test polygons (1501). The training data was further divided into
training (90%) and validation (10%) and 10-fold cross-validation was employed to calibrate the model. The examples of

reference samples for each examined class are illustrated in Figure 2.



Table 1 Classes and species classified in our study with the number of reference polygons and pixels

Class Species No. of  No. of pixels Share of the total Percentage of
polygons reference pixels polygons  from
[%0] stands with 60-

80% species
share [%0]

Pine Pinus sylvestris 1036 183 768 30.9 0
Pinus nigra
Pinus strobus
Pinus rigida
Pinus banksiana

Oak Quercus robur 512 79713 134 0
Quercus petraea
Quercus rubro

Beech Fagus sylvatica 301 43018 7.2 0

Alder Alnus glutinosa 477 37792 6.4 0
Alnus incana

Birch Betula pendula 419 38744 6.5 0
Betula pubescens

Larch Larix Decidua 256 25153 4.2 0

Spruce Picea abies 419 51615 8.7 0

Fir Abies alba 171 29319 4.9 0

Hornbeam Carpinus betulus 134 19376 3.3 66

Poplar Populus alba 176 22 146 3.7 51

Populus tremula
Populus nigra

Ash Fraxinus Excelsior 164 16 894 2.8 48

Maple Acer pseudoplatanus 122 12 454 2.1 67
Acer platanoides
Acer campestre

Lime Tillia cordata 60 6 567 11 67
Tilia platyphyllos

Douglas fir Pseudotsuga menziesii 124 12 946 2.2 29

Black locust Robinia pseudoacacia 86 9644 1.6 55

Dwarf mountain pine Pinus mugo 43 5165 0.9 0
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Figure 2 Examples of reference samples for each analysed tree species/genera shown in (spring) very high resolution orthoimagery: a) pine;
b) spruce; c) fir; d) Douglas fir; ) larch; f) oak; g) beech; h) birch; i) alder; j) hornbeam; k) maple ; I) ash; m) poplar; n) lime; o) black locust;
p) dwarf mountain pine. Orthoimagery is openly available at Polish Geoportal (https://mapy.geoportal.gov.pl/; Head Office of Geodesy and
Cartography).

2.4. Satellite imagery processing and additional variables

Regarding satellite imagery predictors, numerous studies have demonstrated the significance of a multi-temporal approach in
accurately distinguishing tree species (Immitzer et al., 2019; Grabska et al., 2019; Hoécito and Lewandowska, 2019; Persson

et al., 2018; Kollert et al., 2021). For instance, our previous study on species classification in a smaller area highlighted the
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optimal timing for distinguishing forests tree species in temperate zones, which varies during the spring and autumn seasons
(Grabska et al., 2019). At a national scale, however, applying a single seamless image composition for the entire growing
season is impractical. While seasonal STMs can provide important phenological information (Miiller et al., 2015), areas with
frequent cloud-cover may still experience difficulties in acquiring high-quality observations for all needed temporal time steps
(Grabska et al., 2020). Different approaches to calculate Sentinel-2 based STMs were employed, such as utilizing seasonal
metrics calculated over two to four months (Pratico et al., 2021) or testing long-term, seasonal, and monthly composites (Nasiri
etal., 2023).

Here, we employed seasonal Sentinel-2 (L2A) Spectral-Temporal Metrics (STM) calculated in GEE for four periods: (1) the
second half of April, (2) May, (3) June/July, and (4) October from the years 2018-2021. For each period, one seasonal STM
from multi-annual observations was calculated. The specific periods for each season and year are provided in Table 2. They
were selected based on findings from our previous studies (Grabska et al., 2019, 2020; Grabska-Szwagrzyk and Tyminska-
Czabanska, 2023). The spring imagery was chosen to capture the greening-up phase, while autumn imagery was selected to
represent the period when leaves undergo colour changes. Furthermore, we decided to include two spring STMs, one early and
one late spring, as our previous study revealed significant differences among deciduous species in this period. For instance, on
a smaller site, there was an 8-18 day gap between early leafing species like larch and birch, and late leafing species like alder
and oak (Grabska-Szwagrzyk and Tyminska-Czabanska, 2023). Moreover, we included a summer STM, as it represents a
relatively stable and certain period and allows to utilize a greater number of images. In the previous study on forest tree species
classification in the Polish Carpathians, bands from July STM were among the most important variables (Grabska et al., 2020).
The dates were slightly modified due to meteorological conditions in particular years and therefore phenology variations, as

well as missing observations in some cases (Table 2).

All available Sentinel-2 images from the Harmonized Level-2A collection captured during these periods and with cloud cover
below 40% were pre-processed, including cloud, cloud shadow and dark pixel masking based on the Sentinel-2 cloud
probability dataset (based on the Sentinel2-cloud detector, see https://github.com/sentinel-hub/sentinel2-cloud-detector) also
available in GEE (‘COPERNICUS/S2 CLOUD_ PROBABILITY’). The number of clear observations for each period varied

largely due to cloud cover as well as overlapping Sentinel-2 orbits (Figure 3).

Table 2 Periods of Sentinel-2 imagery used in analysis.

Name 2018 2019 2020 2021

Early spring 04/15 — 05/10* 04/20 — 05/10  04/20 — 05/10 05/05 — 05.25
Late spring 05/10 — 05/30 05/15-06/05  05/15 - 06/05 05/25 - 06/15
Summer 06/10 — 07/10 06/10 —07/10  06/10—-07/10 06/10 — 07/10
Autumn 10/25 - 11/10 10/20 - 11/05  10/20 — 11/05 10/25 - 11/10
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*Period increased due to not enough observations

The pre-processed imagery was then clipped to match the actual forest mask, ensuring that only relevant areas were considered
for analysis. In addition, the Normalized Difference Vegetation Index (NDVI) was calculated to mitigate the potential impact
of disturbances on the obtained results and remove recent clear cuts, ensuring that only areas with healthy vegetation were
considered. Specifically, based on tests, the pixels with NDVI values below 0.6 from the summer 2021 STM were excluded
from the analysis (Figure 4). Final step employed calculating mean reflectance values for each pixel, and for each specific
season, based on the seamless Sentinel-2 imagery.

Additional variables for classification included environmental datasets available in GEE. They included: elevation data
(reprocessed 30m SRTM data: "NASA/NASADEM_HGT/001"), WorldClim variables ("WORLDCLIM/V1/BIO"):
temperature and  precipitation (biol, biol2, biol7), soils ("OpenLandMap/SOL/SOL_GRTGROUP_USDA-
SOILTAX_C/v01") and Terra Climate ('IDAHO_EPSCOR/TERRACLIMATE') maximum air temperature for 2018 (see
Table Al in the appendix).

spring 1 spring 2 summer autumn

200
———km

Number of observations:

Bl < Bl <c Bl <s Bl <0 El<2 BN <15 B8 <20 B9 -<2 <30 > 30

Figure 3 Number of cloud-free observations in the analysed periods combined for all years.

Figure 4 Procedure for obtaining forest mask used in this study on the example of part of Krakow, southern Poland: a) Sentinel-2 image
(NIR, VIS R, VIS G); b) Sentinel-2 clipped to ESA World Cover v200 dataset extracted tree cover class; 3) Sentinel-2 clipped to ESA World
Cover, Dynamic World and NDVI thresholding; 4) high resolution CIR orthoimage with borders of the calculated forest mask.

9
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2.5. Classification and accuracy assessment.

Classification for the entire area of Poland was performed using approx. 400,000 sample pixels, employing a 10-fold cross-
validation technique. RF classifier (Breiman, 2001) was used within the GEE, with the number of trees set to 200. This
algorithm was chosen because it is reported to be insensitive to overfitting and outliers in training samples (Belgiu and Drigu,
2016). Moreover, RF is commonly used in vegetation mapping studies for large areas (Riietschi et al., 2021; Hermosilla et al.,
2022). Among the classification algorithms available in GEE, RF has been reported to be less computationally intensive than
SVM (Bonannella et al., 2022) and to outperform other algorithms (Pratico et al., 2021). Accuracy assessment included
estimation of area-adjusted confusion matrices, producer’s accuracy (PA), user’s accuracy (UA), F1-score, which is a weighted
harmonic mean of UA and PA, and overall accuracy (OA). For this task, 1501 test polygons (see section 2.3) were utilized.
To ensure the robustness of accuracy assessment, a stratified random sampling approach based on species was adopted, as
recommended by Olofsson et al. (2014) and based on our previous research (Grabska et al., 2020). Furthermore, we tested the
unproportional allocation approach which is commonly employed when dealing with substantial class imbalances (Marconi et
al., 2022; Maxwell et al., 2018; Jackson and Adam, 2021).

In recognition of class imbalance, a two-fold strategy was implemented. The first approach involved proportional allocation,
while the second approach involved an unproportional dataset. The sample size for less common species was increased through
oversampling, whereas undersampling was employed to the most common class, Pinus. In both approaches, the size of the
sample was approximately 20,000 pixels (see Table A2 in the appendix) and a minimum sampling distance of 20 meters was
used. Finally, regarding the significant differences in number of observations between Sentinel-2 orbit overlapping and non-
overlapping areas, further analyses were conducted to evaluate the impact of observation frequency on accuracy. This included

the calculation of OA separately for overlapping and non-overlapping areas in both sampling approaches.

3. Results and discussion

3.1. Overall accuracy of the tree species maps and variable importance

On average, the classification process yielded high OA, achieving values of approximately 80% or higher. Employing a 10-
fold cross-validation, the average OA was equal to 83.3%, ranging between 79.3 and 84.9%. Subsequently, the species map
with the best performance in terms of OA from the initial step was validated with approximately 20,000 pixels in two
approaches: proportional and unproportional. The proportional approach demonstrated an OA of 89.6%, while in the
unproportional approach a lower accuracy of 84% was achieved. This decline in accuracy when transitioning from proportional
to unproportional samples allocation is reasonable, as more samples represent less-common species, usually underperforming

the most common ones.

OA varied between regions with overlapping and non-overlapping Sentinel-2 orbits. The following OAs were obtained: 86.7%

for not-overlapping areas and 90.1% for overlapping area using proportional allocation, and 83.8% and 84.1% using

10
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unproportional allocation respectively. Although the difference using unproportional allocation seems to be low, limited
number of clear observations may increase the uncertainty of estimations (Schindler et al., 2021). In studies which utilize
Landsat imagery, the number of clear observations plays a vital role in classification accuracy improvement (Turlej et al.,
2022). Furthermore, in mapping large areas accuracy metrics are not expected to be uniform in space due to high species and
environmental diversity. Examples of selected regions with low and high accuracies are illustrated in Figure 5. Numerous
environmental and forest-related factors can impact the results. For example, heterogeneous forest structure with high diversity
in age and species (Figure 5A) result in misclassifications and require further examination and addressing. Also,
misclassification occurs more often in the mountainous areas, particularly in the Carpathian forests due to higher species and
environmental diversity and topography effects (Figure 5B). High accuracy is observed in areas featuring a combination of
various species but composing pure stands with a similar forest structure (Figure 5C) as well as in locations where dense black

locust stands are present (Figure 5D).

The variable importance analysis (see Figure Al in the appendix) revealed the highest contributions from environmental
variables such as maximum temperature, annual precipitation, mean annual temperatures, and elevation, similar to findings in
other studies for large areas (Hermosilla et al., 2022). Among the periods used to calculate STMs, bands from autumn appeared
to be the highest ranked, followed by early spring bands. Notably, visible, red-edge and SWIR bands showed stronger
importance. On the other hand, the soils dataset exhibited notably lower importance compared to other predictors, despite
previous reports indicating soils as more significant than climatic variables in temperate tree species distribution (Walthert and
Meier, 2017). However, it is important to note that these findings may vary across regions and be scale-dependent, and more

detailed soil information could enhance the accuracy of the results.

3.2. Tree species distribution and accuracy

The obtained map of forest tree species/genera reveals the share and spatial distribution of forests in Poland. Pine-dominated
stands are the most common, accounting for 47.5% of the total forest cover in the country. Several other common species
prevalent across Polish forests are birch occupying 11.7% of the forested areas, along with alder at 9%, beech at 8.1%, and
oak at 7.2%. Other common species include spruce (3.7%) and fir (2.8%), predominantly occurring in mountainous areas in
the southern Poland. Additionally, larch-dominated stands are relatively common (3.6%), along with ash (1.7%), hornbeam
(1.1%) and poplar (1%). Several other species each hold a share of less than 1% in the overall forest composition, including
Douglas fir, maple, and black locust. Lastly, lime and dwarf mountain pine have a more marginal presence in the obtained

map.

The comparison of the results with official statistics shows some discrepancies. Firstly, the share of pine in our map is
underestimated by more than 10 percentage points, which may result from several factors. One possible reason is the
misclassification of pine as spruce or other coniferous trees, which accounts for 0.65% of the reference data, particularly in

mountainous regions. Additionally, the share of pine is decreasing in recent years due to shifts in forest management practices,

11
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such as the transition from monocultures to stands with more diversified species composition (Tomas and Jagodzinski, 2019).
Furthermore, pine has been susceptible to disturbances in recent years, which may have led to misclassifications (Hemmerling
et al., 2021). Another species with share lower in our map than reported is spruce (3.6% vs 5.3%), which, in recent years is
exposed to significant disturbances and dieback, particularly in the Western Carpathian mountains and Bialowieza forest
(Grodzki, 2010; Batazy, 2020; Kaminska et al., 2021). Consequently, the share of spruce is also decreasing. On the other hand,
certain species like alder and birch are seemingly more common than in the official reports. The larger share of birch may be
attributed to the fact that this species are common on abandoned agricultural land, it is also regarded as pioneer and successional
species (Hynynen et al., 2010). The area analysed in our study might include former agricultural lands where forest succession
takes place, a process that is very common in different parts of Poland (Shahbandeh et al., 2022; Kolecka et al., 2017; Zgtobicki
et al., 2020; Majchrowska, 2013). Abandoned areas with forest succession, however, are not included in the official reporting
for forests. Also, while very young forests have been excluded from our analysis, the visual inspection indicates frequent
misclassifications of younger stands covered with broad-leaved trees as alder, which may be one of the reasons for its

overestimation.

12
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Figure 5 Examples of classification (middle) compared with high-resolution orthoimagery (left) and dominant species from Forest Data
Bank (right): a) Czarna Biatostocka forest district, NE Poland lowlands; b) Baligrod forest district; SE Poland, Bieszczady mountains; c)
Ktodawa forest district, NW Poland lowlands; d) Sulechéw forest district; W Poland lowlands. Orthoimagery is openly available at Polish
Geoportal (https://mapy.geoportal.gov.pl/; Head Office of Geodesy and Cartography).
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In terms of species accuracy, the most abundant species in Poland, pine, was classified with the highest accuracy, exceeding
90% F1-score (Figure 6). Other species demonstrating F1-score of 80% or higher included dwarf mountain pine, alder, beech,
fir, spruce, oak and larch. With the exception of dwarf pine mountain, these species are common in forests of Poland. On the
other hand, the classification of poplar, Douglas fir, maple, lime, hornbeam, and ash revealed relatively poor accuracy levels,
below 60%. Surprisingly, rare species such as black locust achieved high classification accuracy around 75%. Confusion
matrix reveals the frequent misclassifications (Table 3). Typically, broad-leaved species such as ash, hornbeam and lime are
misclassified — ash and lime as oak and hornbeam as oak and beech species; while coniferous Douglas fir — as pine. Similarly,
in the study of Hemmerling et al. (2021), less common species with relatively high accuracy was black locust. This is a result
of its unique spectral-temporal properties, as usually it leaves out later than other broad-leaved and is characterized by
flowering in late spring (Rusnak et al., 2022; Somodi et al., 2012). It is promising result, taking into account the invasiveness
of this non-native species in Europe (Richardson and Rejmanek, 2011). The visual inspection also indicates that frequent
misclassifications include younger stands, such as oak, misclassified as other broad-leaved species, e.g. alder. Importantly, the
age structure within the examined species differs largely (based on FDB), with average values between approx. 50 years old
for birch, larch and alder; around 70 for spruce and pine and above 80 for beech, oak and fir. Furthermore, the species
classification in young forests, characterized by the distinguished spectral characteristics than the mature ones, is challenging.
Finally, not all species occurring in Poland were classified.
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Figure 6 F1-score for 16 analysed species in two approaches: proportional samples allocation and unproportional allocation with down
sampling of pine and oversampling of other classes.
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Table 3 Area-adjusted confusion matrix for the unproportional samples allocation (populated by estimated proportions of area).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Beech (1) 751 0.12 0.28 000 046 001 008 013 002 001 017 0.01 0.08 001 002 0.00

Birch (2) 0.07 7.14 0.35 002 007 002 001 001 002 021 029 0.05 034 001 001 0.00

Oak (3) 085 1.16 10.77 000 081 001 021 016 027 013 021 0.00 040 0.00 010 0.00

Douglas f.  0.00 0.01 0.00 061 000 025 001 000 000 001 001 012 0.00 0.04 0.00 0.00

@

Hornbea 0.27  0.03 0.10 0.00 112 000 003 014 015 000 0.09 0.00 0.02 0.00 0.00 0.00
m (5)

Fir (6) 0.03 0.00 0.00 008 001 550 000 000 000 001 001 013 0.00 018 0.00 0.00

Ash (7) 0.03 0.03 0.06 000 006 000 046 007 008 0.00 034 0.00 0.02 000 0.04 0.00

Maple (8) 0.03  0.00 0.01 000 001 000 001 042 001 0.00 005 0.00 001 001 0.00 0.00

Lime (9) 0.00 0.00 0.01 000 002 000 001 001 039 000 0.00 0.00 0.00 0.00 0.00 0.00

Larch 003 054 0.02 001 001 007 000 000 001 357 003 0.16 0.04 005 0.00 0.00
(10)
Alder (11) 0.15 0.90 0.13 000 010 001 015 003 003 001 729 0.04 006 0.03 0.08 0.00

Pine (12) 000 0.28 0.01 022 000 014 000 000 000 020 003 295 0.02 044 0.02 0.06

Poplar 0.00 0.6 0.06 000 005 000 002 001 006 001 002 0.00 091 000 0.00 0.00
(13)
Spruce 0.01 0.00 0.00 008 000 09 000 000 000 003 000 051 0.00 743 000 0.08
(14)
Black I. 000 0.07 0.03 000 000 000 000 000 000 0.00 003 0.00 001 000 066 0.00
(19)
Dwarf p. 0.00 0.00 0.00 000 000 000 000 000 000 000 000 0.01 0.00 0.00 0.00 0.68
(16)
Prop (ref) 898 1042 118 102 270 689 097 097 103 419 858 3057 191 820 093 0.82

Prop 8.88 8.60 1509 105 196 593 118 054 043 453 901 3097 129 904 080 0.9
(map)

PA 83.6 685 91.1 603 414 799 470 430 383 853 850 967 474 906 708 83.6
UA 846  83.0 71.4 582 570 928 385 777 915 788 809 954 703 822 829 99.2

3.3 Limitations in large-area species mapping and proposed solutions

In the country-wide or other large-extent mapping cases, there are several challenges and limitations. Larger regions are often
characterized by higher diversity of species and environmental conditions. Certain species occur only in spatially limited areas
— for example, in Poland, Silver fir is typical for the mountain areas only, while oaks and hornbeams tend to occur more often

in the lowlands. In addition, due to the variability in meteorological conditions, the optimal period for classification of specific
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species may differ largely among regions, particularly during the spring when processes of leaf unfolding take place, and
autumn while leaf coloring occur. Furthermore, these optimal periods may vary from year-to-year due to variations in spring
temperatures and other meteorological conditions (Grabska-Szwagrzyk and Tyminska-Czabanska, 2023). Future research
should also consider specific periods of imagery acquisition when aimed to distinguish different species, i.e. covering periods
when particular species exhibit the highest phenological variations. It would be profitable to use multiple autumn (e.g. early
and late autumn) STMs, however it is very challenging due to insufficient number of clear observations during this time of the

year.

One solution may be the division of the study area into smaller regions — in the country-wide or other large-extent mapping of
species composition, the subdivision to smaller parts may play an important role, also due to computational power; similarly
as in the study from Pazur et al. (2022) or Hermosilla et al. (2022). However, another question arises how to define the optimal
borders of smaller regions to achieve higher accuracy of the obtained map, which is rarely discussed in studies focused on
remote sensing-based classification.

Another methodological challenge is the underrepresentation of clear observations in some regions. In this study, we employed
short-period seasonal STMs from Sentinel-2 time series rather than one seasonal mean, as the information from specific periods
of growing season is crucial in distinguishing species. In calculation of seasonal means, multi-annual observations were used,
still, for some regions the underrepresentation of clear observations occurs. It may have significant impact on map accuracy
in regions of lower observation frequency. In the case of Poland, it is particularly observed in the places where two orbits do
not overlap, specifically for autumn (Figure 3). This issue should be addressed in studies on species classification for larger
regions using Sentinel-2 or similar satellite constellations.

As a result of abovementioned factors, the design of robust training, test and validation datasets is challenging. Finally, in
certain regions such as privately-owned forests or lands not officially reported as forests (e.g., successional forests that have
emerged on previously abandoned agricultural lands), there is no reference data available. These areas tend to exhibit greater

complexity, making the task of assessing classification accuracy particularly demanding.

4. Conclusions

We have obtained the first national-scale forest tree species map for Poland, achieving an accuracy exceeding 80%. This was
accomplished through a novel approach that involved the calculation of Sentinel-2 seasonal STMs spanning multiple years.
The resulting map is an important dataset for both forest management and the scientific community, facilitating tasks like
modeling biodiversity and monitoring non-native and invasive species. It can enhance our understanding of forest ecosystems
and support more informed and precise forestry and conservation effort. Unlike other existing data sources, such as the FDB,

which primarily provide information about the share of species within forest stands, this new map offers a view of tree species
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distribution at a finer scale. Furthermore, our map provides a unique advantage over traditional forest inventories like NFI,

which offers point-based data rather than continuous spatial representation of species distribution.

5. Data availability
We provide freely accessible resources including the forest tree species map, training and validation data:

https://doi.org/10.5281/zen0do.10180469 (Grabska-Szwagrzyk, 2023). The map can be explored online: https:/ee-

aweaksbarg.projects.earthengine.app/view/speciesmappl
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Appendix A

490 Table Al: Variables used for classification.

Group Predictor

Early Blue

spring Green
Red
RE1
RE2
RE3
NIR1
NIR2
SWIR1
SWIR2
Late spring  Blue

Green
Red
RE1
RE2
RE3
NIR1
NIR2
SWIR1
SWIR2

Summer Blue

Green

22



Red
RE1
RE2
RE3
NIR1
NIR2
SWIR1
SWIR2

Autumn Blue

Green
Red

RE1

RE2

RE3
NIR1
NIR2
SWIR1
SWIR2

Topography Elevation

Climate Annual mean temperature (bio01)

Annual precipitation (bio12)

Precipitation of driest quarter (biol7)

Maximum temperature in spring 2018

Soils Soils

Table A2: Number of test pixels for accuracy assessment in two approaches — proportional and not proportional.

Estimated proportions Proportional Not proportional

Pinus 59% 11 800 5900
Quercus 8% 1600 2400
Betula 6.8% 1360 2040
Fagus 6.2% 1240 1860
Alnus 5.7% 1140 1710
Picea 5.3% 1060 1600
Abies 3.3% 660 1320
Larix 2% 400 800
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Carpinus 1.3% 260 520
Populus 1% 200 400
Fraxinus <1% 100 200
Pseudotsuga <1% 100 200
Acer <1% 100 200
Robinia pseudoacaccia <1% 100 200
Tilia <1% 100 200
Pinus mugo <1% 100 200
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Figure Al. Importance of variables used in classification.
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