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Abstract 

Accurate information on forest tree species composition is vital for various scientific applications, as well as for forest 

inventory and management purposes. Country-wide, detailed species maps are a valuable resource for environmental 

management, conservation, research, and planning. Here, we performed the classification of 16 dominant tree species/genera 

in Poland using time series of Sentinel-2 imagery. To generate comprehensive spectral-temporal information, we created 10 

Sentinel-2 seasonal aggregations known as Spectral-Temporal Metrics (STMs) within Google Earth Engine (GEE). STMs 

were computed for short periods of 15-30 days during spring, summer, and autumn, covering multi-annual observations from 

years 2018 to 2021. The Polish Forest Data Bank served as reference data, and, to obtain robust samples with pure stands 

only, it was validated through automated and visual inspection based on very high resolution orthoimagery, resulting in 4500 

polygons, serving as training and test data. The forest mask was derived from available land cover datasets in GEE, namely 15 

ESA World Cover and Dynamic World. Additionally, we incorporated various topographic and climatic variables from GEE 

to enhance classification accuracy. The Random Forest algorithm was employed for the classification process, and an area-

adjusted accuracy assessment was conducted through cross-validation and test datasets. The results demonstrate that the 

country-wide forest stand species mapping achieved an accuracy exceeding 80%, however it varies greatly depending on 

species, region and observation frequency. We provide freely accessible resources including the forest tree species map, 20 

training and test data: https://doi.org/10.5281/zenodo.10180469 (Grabska-Szwagrzyk, 2023).  

1. Introduction 

Information of forest tree species composition is essential for many scientific applications as well as the purposes of the forest 

inventory and management, such as estimating timber volume, modelling biodiversity, conservation, monitoring of 

disturbances or carbon and biomass estimation (Hanewinkel et al., 2013; Loiselle et al., 2003; Gillis et al., 2005; Boisvenue 25 

and White, 2019). In recent times, use of remote sensing data has greatly improved forest monitoring and management. One 

such powerful source of data is Sentinel-2 mission, which offers high-resolution and frequent data for mapping tree species. 

While Sentinel-2 data have been increasingly employed for mapping species composition, most studies focus on smaller 

regional scales (Immitzer et al., 2016; Puletti et al., 2017; Karasiak et al., 2017; Persson et al., 2018; Grabska et al., 2019; 

Immitzer et al., 2019; Hościło and Lewandowska, 2019; Bolyn et al., 2018; Grabska et al., 2020; Lechner et al., 2022; 30 

Shirazinejad et al., 2022; Axelsson et al., 2021; Wessel et al., 2018; Melnyk et al., 2023) or classify broad forest classes/species 

https://doi.org/10.5281/zenodo.10180469
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groups over larger regions (Waser et al., 2021; Breidenbach et al., 2021; Schindler et al., 2021; Rüetschi et al., 2021). For 

larger areas, discrimination of tree species has been performed with the use of Landsat (Turlej et al., 2022; Bonannella et al., 

2022). Furthermore, continent-scale studies have utilized high-resolution hyperspectral and field data to develop models for 

tree species classification, evaluating both general and site-specific models (Marconi et al., 2022). At the national scale, 35 

Sentinel-2 time series were successfully used to map seven dominant tree species in Germany (Welle et al., 2022) or map larch 

plantations in Wales (Punalekar et al., 2021). In studying tree species composition for larger regions, additional environmental 

variables, for instance topographic predictors, have been found to improve classification accuracy (Waser et al., 2021; Grabska 

et al., 2020; Ye et al., 2021). Other datasets used as auxiliary variables include climatic variables (Hermosilla et al., 2022), 

soils (Hemmerling et al., 2021), phenological metrics (Kollert et al., 2021; Hermosilla et al., 2022), spectral indices (Schindler 40 

et al., 2021; Ye et al., 2021; Hemmerling et al., 2021; Praticò et al., 2021) and textural metrics (Ye et al., 2021; Hemmerling 

et al., 2021).  

Still, the accurate mapping of forest tree species with remote sensing data remains a challenge (Fassnacht et al., 2023). 

Particularly, studying species composition in large areas presents significant problems, such as generating good quality 

predictors from satellite imagery (Grabska et al., 2020). The frequent cloud cover or topographic effects in mountainous 45 

regions may limit the number of cloud-free observations or disturb the surface reflectance values (Schindler et al., 2021). 

Additionally, larger areas exhibit greater environmental variability, including variations in topography, climate, and 

phenology, which can significantly impact species classification accuracy. The optimal image acquisition dates which are 

crucial in improved species recognition (Grabska et al., 2019; Immitzer et al., 2019) may substantially differ between regions. 

Other challenge in large-scale classification is the limited availability of reference data, especially for less common species 50 

(Zeug et al., 2018), leading to poorer performance for underrepresented species (Hemmerling et al., 2021; Marconi et al., 2022; 

Ahlswede et al., 2022). Finally, species classification for large regions requires handling high-volume spatial datasets, which 

may be difficult to process using locally installed, monolithic software. Google Earth Engine (GEE), the - for research purposes 

- freely accessible cloud-based platform, enables parallel processing of large spatial datasets (Tamiminia et al., 2020; Gorelick 

et al., 2017). GEE provides the access to entire, pre-processed Sentinel-2 collections and other environmental datasets as well 55 

as tools for processing and classification (Tamiminia et al., 2020). Previous studies have demonstrated the potential and 

versatility of GEE in forest classification, emphasizing its role in addressing the challenges encountered in large-scale mapping 

(Forstmaier et al., 2020; Chen et al., 2017; Praticò et al., 2021). Different approaches have been used to produce seamless and 

cloud-free satellite composites for mapping tree species composition, with multiple studies emphasizing the importance of a 

multi-temporal approach for accurate tree species classification (Immitzer et al., 2019; Grabska et al., 2019; Hościło and 60 

Lewandowska, 2019; Persson et al., 2018; Kollert et al., 2021). However, there are variations in optimal timing for different 

seasons, and applying a single seamless image composition at a country-wide scale is not feasible. Thus, researchers often 

employ temporal aggregations such as spectral-temporal metrics (STM) calculated for a season, year, or multi-annual periods. 
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Here, we present classification of 16 forest tree species/genera for the entire area of Poland. Given the availability of several 

years of Sentinel-2 imagery, we propose, based on our previous findings (Grabska et al., 2020, 2019), a novel approach that 65 

utilizes short-period (15-30 days) seasonal STM using mean values derived from multiple years. This strategy aims to focus 

on critical periods characterized by dynamic phenological changes while avoiding gaps in imagery that are commonly 

encountered when using single-year data. We used GEE for pre-processing and classification of the Sentinel-2 time series, 

along with additional environmental variables.    

2. Data and methods 70 

2.1 Study area 

Poland’s forests cover an area exceeding nine million hectares – 9,265,000 ha according to the Central Statistical Office; 

(December 31, 2021) or 9,464,000 ha according to the standard adopted for international assessments, taking into account land 

related to forest management (Zajączkowski et al., 2022). This accounts for approximately 30% of the country's total land area 

(Figure 1). In terms of ownership, public forests hold the majority share at 80.7% (with 76.9% of forests managed by the State 75 

Forests, 2% belonging to National Parks, and 1.8% of communes’ properties and others), followed by private forests at around 

19.3%. The dominant species is the Scots pine (Pinus sylvestris), covering 58.5% of the forested area across all ownership 

types, according to the National Forest Inventory (NFI) reports (Biuro Urządzania Lasu i Geodezji Leśnej, 2022). The second 

most prevalent genus is Quercus, primarily Robur and Pedunculate species, accounting for 8.0%. Birch (Betula pendula) 

represents 6.8% and alder species (Alnus spp.) 5.7% of tree species. In the mountainous regions in southern Poland, Norway 80 

spruce (Picea abies), silver fir (Abies alba), and common beech (Fagus sylvatica) are the most common species, covering 

5.3%, 3.3%, and 6.2%, respectively. It is worth noting that European larch (Larix decidua) shares are usually not reported 
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separately but in combination with pine species. Still, larch is also among prevalent species in Poland – based on data from 

the Polish Forest Data Bank (FDB), the share of larch in Poland's State Forests land property is approximately 2%.  

 85 

Figure 1 Forest cover in Poland Elevation from EU-DEM; forest mask derived in this study. 

2.2. Workflow 

We developed an approach to classify 16 tree species in Poland using Sentinel-2 time series within the GEE platform. Polish 

FDB was used as reference data for training, validation and test samples. We created four seasonal STMs (means) from multi-

annual observations (2018-2021), performed pre-processing in GEE, and clipped them to the forest mask derived from existing 90 

land cover datasets. Classification involved the Random Forest (RF) classifier with a 10-fold cross-validation technique, and 

accuracy metrics were computed using test samples. To handle class imbalances, we implemented two strategies: proportional 

and unproportional allocation. Additionally, we compared accuracy between areas influenced by overlapping and non-

overlapping Sentinel-2 orbits. 
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2.3. Reference data processing 95 

The reference data was gathered from publicly accessible FDB, in which forest management units (forest stands) are 

represented by polygons. Each polygon contains information on species share expressed by values ranging from 1 to 10, with 

ten indicating homogenous coverage by a particular species. Nonetheless, the precise spatial distribution of these species within 

the polygons remains uncertain. In addition, the FDB does not cover private forests.  

From FDB, polygons representing pure stands with a single species dominance of 90% or more, and with trees older than 10 100 

years were selected. However, due to frequency of some species in Polish forests, we used other thresholds and additional 

conditions. Given the large number of reference stands of Scots pine, we randomly chose 10% of pure stands with 100% share 

of this species, however other pine species uncommon in Poland underwent the same processing procedures as other examined 

species. On the other hand, due to an insufficient number of reference samples for less common species such as poplar (Populus 

spp.), black locust (Robinia pseudoacacia), hornbeam (Carpinus betulus), ash (Fraxinus excelsior), maple (Acer spp.), lime 105 

(Tillia sp.), and Douglas fir (Pseudotsuga menziesii), additional FDB stands with a 60-80% share of these species were 

included. The next step involved precise adjustments of reference samples to the actual forest mask derived from two available 

land cover datasets in GEE, i.e. any samples or their parts falling outside of forest mask were removed. Specifically, we utilized 

the ESA WorldCover 2021 product ("ESA/WorldCover/v200"; (Zanaga et al., 2022)), selecting only value 10 (i.e., tree cover), 

and the Dynamic World dataset ("GOOGLE/DYNAMICWORLD/V1", (Brown et al., 2022)) calculated from summer 2021 110 

imagery and aggregated to mean, with a tree probability threshold set at 0.6. Both datasets were employed, as based on our 

tests, the ESA World Cover product tends to overestimate forests in certain areas, while the DynamicWorld dataset, generated 

dynamically from available Sentinel-2 observations, may be prone to errors due to frequent cloud cover. In the next step, image 

segmentation on the Sentinel-2 STM was performed (Harmonized Level-2A data; ‘COPERNICUS/S2_SR_HARMONIZED’), 

utilizing mean values from summer 2021. This segmentation process was carried out using Simple Non-Iterative Clustering 115 

(SNIC; (Achanta and Süsstrunk, 2017)) algorithm in GEE limited to the previously selected FDB stands within the forest mask 

area, with the aim to delineate spectrally homogeneous patches. Segments obtained in this step were intersected with the FDB 

stands, and for further processing only segments larger than 0.5 hectares that encompassed more than 60% of the stands were 

selected. Subsequently, the resulting segments were visually checked using very high-resolution orthoimagery.  

Finally, 4500 polygons were obtained representing 16 species/genera (Table 1). They were divided into training (2999; 120 

corresponding to approx. 400 thousands training pixels) and test polygons (1501). The training data was further divided into 

training (90%) and validation (10%) and 10-fold cross-validation was employed to calibrate the model. The examples of 

reference samples for each examined class are illustrated in Figure 2. 
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Table 1 Classes and species classified in our study with the number of reference polygons and pixels 

Class Species No. of 

polygons  

 

No. of pixels Share of the total 

reference pixels 

[%] 

Percentage of 

polygons from 

stands with 60-

80% species 

share [%] 

Pine  Pinus sylvestris  

Pinus nigra 

Pinus strobus 

Pinus rigida 

Pinus banksiana 

1036 183 768 30.9 0 

Oak Quercus robur 

Quercus petraea 

Quercus rubro 

512 79 713 13.4 0 

Beech Fagus sylvatica 301 43 018 7.2 0 

Alder Alnus glutinosa 

Alnus incana  

477 37 792 6.4 0 

Birch Betula pendula 

Betula pubescens 

419 38 744 

 

6.5 0 

Larch Larix Decidua 256 25 153 4.2 0 

Spruce Picea abies 419 51 615 8.7 0 

Fir Abies alba 171 29 319 4.9 0 

Hornbeam Carpinus betulus 134  19 376 3.3 66 

Poplar Populus alba 

Populus tremula 

Populus nigra 

176  22 146 3.7 51 

Ash Fraxinus Excelsior 164 16 894 2.8 48 

Maple Acer pseudoplatanus 

Acer platanoides 

Acer campestre 

122 12 454 2.1 67 

Lime Tillia cordata 

Tilia platyphyllos 

60 6 567 1.1 67 

Douglas fir Pseudotsuga menziesii 124 12 946 2.2 29 

Black locust Robinia pseudoacacia 86 9 644 1.6 55 

Dwarf mountain pine Pinus mugo 43 5 165 0.9 0 

 125 
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Figure 2 Examples of reference samples for each analysed tree species/genera shown in (spring) very high resolution orthoimagery: a) pine; 

b) spruce; c) fir; d) Douglas fir; e) larch; f) oak; g) beech; h) birch; i) alder; j) hornbeam; k) maple ; l) ash; m) poplar; n) lime; o) black locust; 

p) dwarf mountain pine. Orthoimagery is openly available at Polish Geoportal (https://mapy.geoportal.gov.pl/; Head Office of Geodesy and 

Cartography). 130 

2.4. Satellite imagery processing and additional variables 

Regarding satellite imagery predictors, numerous studies have demonstrated the significance of a multi-temporal approach in 

accurately distinguishing tree species (Immitzer et al., 2019; Grabska et al., 2019; Hościło and Lewandowska, 2019; Persson 

et al., 2018; Kollert et al., 2021). For instance, our previous study on species classification in a smaller area highlighted the 

https://mapy.geoportal.gov.pl/
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optimal timing for distinguishing forests tree species in temperate zones, which varies during the spring and autumn seasons 135 

(Grabska et al., 2019). At a national scale, however, applying a single seamless image composition for the entire growing 

season is impractical. While seasonal STMs can provide important phenological information (Müller et al., 2015), areas with 

frequent cloud-cover may still experience difficulties in acquiring high-quality observations for all needed temporal time steps 

(Grabska et al., 2020). Different approaches to calculate Sentinel-2 based STMs were employed, such as utilizing seasonal 

metrics calculated over two to four months (Praticò et al., 2021) or testing long-term, seasonal, and monthly composites (Nasiri 140 

et al., 2023).  

Here, we employed seasonal Sentinel-2 (L2A) Spectral-Temporal Metrics (STM) calculated in GEE for four periods: (1) the 

second half of April, (2) May, (3) June/July, and (4) October from the years 2018-2021. For each period, one seasonal STM 

from multi-annual observations was calculated. The specific periods for each season and year are provided in Table 2. They 

were selected based on findings from our previous studies (Grabska et al., 2019, 2020; Grabska-Szwagrzyk and Tymińska-145 

Czabańska, 2023). The spring imagery was chosen to capture the greening-up phase, while autumn imagery was selected to 

represent the period when leaves undergo colour changes. Furthermore, we decided to include two spring STMs, one early and 

one late spring, as our previous study revealed significant differences among deciduous species in this period. For instance, on 

a smaller site, there was an 8-18 day gap between early leafing species like larch and birch, and late leafing species like alder 

and oak (Grabska-Szwagrzyk and Tymińska-Czabańska, 2023). Moreover, we included a summer STM, as it represents a 150 

relatively stable and certain period and allows to utilize a greater number of images. In the previous study on forest tree species 

classification in the Polish Carpathians, bands from July STM were among the most important variables (Grabska et al., 2020). 

The dates were slightly modified due to meteorological conditions in particular years and therefore phenology variations, as 

well as missing observations in some cases (Table 2). 

All available Sentinel-2 images from the Harmonized Level-2A collection captured during these periods and with cloud cover 155 

below 40% were pre-processed, including cloud, cloud shadow and dark pixel masking based on the Sentinel-2 cloud 

probability dataset (based on the Sentinel2-cloud detector, see https://github.com/sentinel-hub/sentinel2-cloud-detector) also 

available in GEE (‘COPERNICUS/S2_CLOUD_PROBABILITY’). The number of clear observations for each period varied 

largely due to cloud cover as well as overlapping Sentinel-2 orbits (Figure 3).  

Table 2 Periods of Sentinel-2 imagery used in analysis.  160 

Name  2018 2019 2020 2021 

Early spring   04/15 – 05/10* 04/20 – 05/10 04/20 – 05/10 05/05 – 05.25  

Late spring  05/10 – 05/30 05/15 – 06/05 05/15 - 06/05 05/25 – 06/15 

Summer  06/10 – 07/10 06/10 – 07/10 06/10 – 07/10 06/10 – 07/10 

Autumn  10/25 – 11/10 10/20 – 11/05   10/20 – 11/05 10/25 – 11/10 
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*Period increased due to not enough observations  

The pre-processed imagery was then clipped to match the actual forest mask, ensuring that only relevant areas were considered 

for analysis. In addition, the Normalized Difference Vegetation Index (NDVI) was calculated to mitigate the potential impact 

of disturbances on the obtained results and remove recent clear cuts, ensuring that only areas with healthy vegetation were 

considered. Specifically, based on tests, the pixels with NDVI values below 0.6 from the summer 2021 STM were excluded 165 

from the analysis (Figure 4). Final step employed calculating mean reflectance values for each pixel, and for each specific 

season, based on the seamless Sentinel-2 imagery.   

Additional variables for classification included environmental datasets available in GEE. They included: elevation data 

(reprocessed 30m SRTM data: "NASA/NASADEM_HGT/001"), WorldClim variables ("WORLDCLIM/V1/BIO"): 

temperature and precipitation (bio1, bio12, bio17), soils ("OpenLandMap/SOL/SOL_GRTGROUP_USDA-170 

SOILTAX_C/v01") and Terra Climate ('IDAHO_EPSCOR/TERRACLIMATE') maximum air temperature for 2018 (see 

Table A1 in the appendix).  

 

Figure 3 Number of cloud-free observations in the analysed periods combined for all years. 

 175 

Figure 4 Procedure for obtaining forest mask used in this study on the example of part of Kraków, southern Poland: a) Sentinel-2 image 

(NIR, VIS R, VIS G); b) Sentinel-2 clipped to ESA World Cover v200 dataset extracted tree cover class; 3) Sentinel-2 clipped to ESA World 

Cover, Dynamic World and NDVI thresholding; 4) high resolution CIR orthoimage with borders of the calculated forest mask.  



10 

 

2.5. Classification and accuracy assessment. 

Classification for the entire area of Poland was performed using approx. 400,000 sample pixels, employing a 10-fold cross-180 

validation technique. RF classifier (Breiman, 2001) was used within the GEE, with the number of trees set to 200. This 

algorithm was chosen because it is reported to be insensitive to overfitting and outliers in training samples (Belgiu and Drăgu, 

2016). Moreover, RF is commonly used in vegetation mapping studies for large areas (Rüetschi et al., 2021; Hermosilla et al., 

2022). Among the classification algorithms available in GEE, RF has been reported to be less computationally intensive than 

SVM (Bonannella et al., 2022) and to outperform other algorithms (Praticò et al., 2021). Accuracy assessment included 185 

estimation of area-adjusted confusion matrices, producer’s accuracy (PA), user’s accuracy (UA), F1-score, which is a weighted 

harmonic mean of UA and PA, and overall accuracy (OA). For this task, 1501 test polygons (see section 2.3) were utilized. 

To ensure the robustness of accuracy assessment, a stratified random sampling approach based on species was adopted, as 

recommended by Olofsson et al. (2014) and based on our previous research (Grabska et al., 2020). Furthermore, we tested the 

unproportional allocation approach which is commonly employed when dealing with substantial class imbalances (Marconi et 190 

al., 2022; Maxwell et al., 2018; Jackson and Adam, 2021). 

In recognition of class imbalance, a two-fold strategy was implemented. The first approach involved proportional allocation, 

while the second approach involved an unproportional dataset. The sample size for less common species was increased through 

oversampling, whereas undersampling was employed to the most common class, Pinus. In both approaches, the size of the 

sample was approximately 20,000 pixels (see Table A2 in the appendix) and a minimum sampling distance of 20 meters was 195 

used. Finally, regarding the significant differences in number of observations between Sentinel-2 orbit overlapping and non-

overlapping areas, further analyses were conducted to evaluate the impact of observation frequency on accuracy. This included 

the calculation of OA separately for overlapping and non-overlapping areas in both sampling approaches.  

3. Results and discussion 

3.1. Overall accuracy of the tree species maps and variable importance 200 

On average, the classification process yielded high OA, achieving values of approximately 80% or higher. Employing a 10-

fold cross-validation, the average OA was equal to 83.3%, ranging between 79.3 and 84.9%. Subsequently, the species map 

with the best performance in terms of OA from the initial step was validated with approximately 20,000 pixels in two 

approaches: proportional and unproportional. The proportional approach demonstrated an OA of 89.6%, while in the 

unproportional approach a lower accuracy of 84% was achieved. This decline in accuracy when transitioning from proportional 205 

to unproportional samples allocation is reasonable, as more samples represent less-common species, usually underperforming 

the most common ones.  

OA varied between regions with overlapping and non-overlapping Sentinel-2 orbits. The following OAs were obtained: 86.7% 

for not-overlapping areas and 90.1% for overlapping area using proportional allocation, and 83.8% and 84.1% using 
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unproportional allocation respectively. Although the difference using unproportional allocation seems to be low, limited 210 

number of clear observations may increase the uncertainty of estimations (Schindler et al., 2021). In studies which utilize 

Landsat imagery, the number of clear observations plays a vital role in classification accuracy improvement (Turlej et al., 

2022). Furthermore, in mapping large areas accuracy metrics are not expected to be uniform in space due to high species and 

environmental diversity. Examples of selected regions with low and high accuracies are illustrated in Figure 5. Numerous 

environmental and forest-related factors can impact the results. For example, heterogeneous forest structure with high diversity 215 

in age and species (Figure 5A) result in misclassifications and require further examination and addressing. Also, 

misclassification occurs more often in the mountainous areas, particularly in the Carpathian forests due to higher species and 

environmental diversity and topography effects (Figure 5B). High accuracy is observed in areas featuring a combination of 

various species but composing pure stands with a similar forest structure (Figure 5C) as well as in locations where dense black 

locust stands are present (Figure 5D). 220 

The variable importance analysis (see Figure A1 in the appendix) revealed the highest contributions from environmental 

variables such as maximum temperature, annual precipitation, mean annual temperatures, and elevation, similar to findings in 

other studies for large areas (Hermosilla et al., 2022). Among the periods used to calculate STMs, bands from autumn appeared 

to be the highest ranked, followed by early spring bands. Notably, visible, red-edge and SWIR bands showed stronger 

importance. On the other hand, the soils dataset exhibited notably lower importance compared to other predictors, despite 225 

previous reports indicating soils as more significant than climatic variables in temperate tree species distribution (Walthert and 

Meier, 2017). However, it is important to note that these findings may vary across regions and be scale-dependent, and more 

detailed soil information could enhance the accuracy of the results. 

3.2. Tree species distribution and accuracy 

The obtained map of forest tree species/genera reveals the share and spatial distribution of forests in Poland. Pine-dominated 230 

stands are the most common, accounting for 47.5% of the total forest cover in the country. Several other common species 

prevalent across Polish forests are birch occupying 11.7% of the forested areas, along with alder at 9%, beech at 8.1%, and 

oak at 7.2%. Other common species include spruce (3.7%) and fir (2.8%), predominantly occurring in mountainous areas in 

the southern Poland. Additionally, larch-dominated stands are relatively common (3.6%), along with ash (1.7%), hornbeam 

(1.1%) and poplar (1%). Several other species each hold a share of less than 1% in the overall forest composition, including 235 

Douglas fir, maple, and black locust. Lastly, lime and dwarf mountain pine have a more marginal presence in the obtained 

map.  

The comparison of the results with official statistics shows some discrepancies. Firstly, the share of pine in our map is 

underestimated by more than 10 percentage points, which may result from several factors. One possible reason is the 

misclassification of pine as spruce or other coniferous trees, which accounts for 0.65% of the reference data, particularly in 240 

mountainous regions. Additionally, the share of pine is decreasing in recent years due to shifts in forest management practices, 
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such as the transition from monocultures to stands with more diversified species composition (Tomaś and Jagodziński, 2019). 

Furthermore, pine has been susceptible to disturbances in recent years, which may have led to misclassifications (Hemmerling 

et al., 2021). Another species with share lower in our map than reported is spruce (3.6% vs 5.3%), which, in recent years is 

exposed to significant disturbances and dieback, particularly in the Western Carpathian mountains and Białowieża forest 245 

(Grodzki, 2010; Bałazy, 2020; Kamińska et al., 2021). Consequently, the share of spruce is also decreasing. On the other hand, 

certain species like alder and birch are seemingly more common than in the official reports. The larger share of birch may be 

attributed to the fact that this species are common on abandoned agricultural land, it is also regarded as pioneer and successional 

species (Hynynen et al., 2010).  The area analysed in our study might include former agricultural lands where forest succession 

takes place,  a process that is very common in different parts of Poland (Shahbandeh et al., 2022; Kolecka et al., 2017; Zgłobicki 250 

et al., 2020; Majchrowska, 2013). Abandoned areas with forest succession, however, are not included in the official reporting 

for forests. Also, while very young forests have been excluded from our analysis, the visual inspection indicates frequent 

misclassifications of younger stands covered with broad-leaved trees as alder, which may be one of the reasons for its 

overestimation. 



13 

 

 255 

Figure 5 Examples of classification (middle) compared with high-resolution orthoimagery (left) and dominant species from Forest Data 

Bank (right): a) Czarna Białostocka forest district, NE Poland lowlands; b) Baligród forest district; SE Poland, Bieszczady mountains; c) 

Kłodawa forest district, NW Poland lowlands; d) Sulechów forest district; W Poland lowlands. Orthoimagery is openly available at Polish 

Geoportal (https://mapy.geoportal.gov.pl/; Head Office of Geodesy and Cartography). 

https://mapy.geoportal.gov.pl/
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In terms of species accuracy, the most abundant species in Poland, pine, was classified with the highest accuracy, exceeding 260 

90% F1-score (Figure 6). Other species demonstrating F1-score of 80% or higher included dwarf mountain pine, alder, beech, 

fir, spruce, oak and larch. With the exception of dwarf pine mountain, these species are common in forests of Poland. On the 

other hand, the classification of poplar, Douglas fir, maple, lime, hornbeam, and ash revealed relatively poor accuracy levels, 

below 60%. Surprisingly, rare species such as black locust achieved high classification accuracy around 75%. Confusion 

matrix reveals the frequent misclassifications (Table 3). Typically, broad-leaved species such as ash, hornbeam and lime are 265 

misclassified – ash and lime as oak and hornbeam as oak and beech species; while coniferous Douglas fir – as pine. Similarly, 

in the study of Hemmerling et al. (2021), less common species with relatively high accuracy was black locust. This is a result 

of its unique spectral-temporal properties, as usually it leaves out later than other broad-leaved and is characterized by 

flowering in late spring (Rusňák et al., 2022; Somodi et al., 2012). It is promising result, taking into account the invasiveness 

of this non-native species in Europe (Richardson and Rejmánek, 2011). The visual inspection also indicates that frequent 270 

misclassifications include younger stands, such as oak, misclassified as other broad-leaved species, e.g. alder. Importantly, the 

age structure within the examined species differs largely (based on FDB), with average values between approx. 50 years old 

for birch, larch and alder; around 70 for spruce and pine and above 80 for beech, oak and fir. Furthermore, the species 

classification in young forests, characterized by the distinguished spectral characteristics than the mature ones, is challenging. 

Finally, not all species occurring in Poland were classified. 275 

 

Figure 6 F1-score for 16 analysed species in two approaches: proportional samples allocation and unproportional allocation with down 

sampling of pine and oversampling of other classes. 
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Table 3 Area-adjusted confusion matrix for the unproportional samples allocation (populated by estimated proportions of area). 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Beech (1) 7.51 0.12 0.28 0.00 0.46 0.01 0.08 0.13 0.02 0.01 0.17 0.01 0.08 0.01 0.02 0.00 

Birch (2) 0.07 7.14 0.35 0.02 0.07 0.02 0.01 0.01 0.02 0.21 0.29 0.05 0.34 0.01 0.01 0.00 

Oak (3) 0.85 1.16 10.77 0.00 0.81 0.01 0.21 0.16 0.27 0.13 0.21 0.00 0.40 0.00 0.10 0.00 

Douglas f. 

(4) 

0.00 0.01 0.00 0.61 0.00 0.25 0.01 0.00 0.00 0.01 0.01 0.12 0.00 0.04 0.00 0.00 

Hornbea

m (5) 

0.27 0.03 0.10 0.00 1.12 0.00 0.03 0.14 0.15 0.00 0.09 0.00 0.02 0.00 0.00 0.00 

Fir (6) 0.03 0.00 0.00 0.08 0.01 5.50 0.00 0.00 0.00 0.01 0.01 0.13 0.00 0.18 0.00 0.00 

Ash (7) 0.03 0.03 0.06 0.00 0.06 0.00 0.46 0.07 0.08 0.00 0.34 0.00 0.02 0.00 0.04 0.00 

Maple (8) 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.42 0.01 0.00 0.05 0.00 0.01 0.01 0.00 0.00 

Lime (9) 0.00 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Larch 

(10) 

0.03 0.54 0.02 0.01 0.01 0.07 0.00 0.00 0.01 3.57 0.03 0.16 0.04 0.05 0.00 0.00 

Alder (11) 0.15 0.90 0.13 0.00 0.10 0.01 0.15 0.03 0.03 0.01 7.29 0.04 0.06 0.03 0.08 0.00 

Pine (12) 0.00 0.28 0.01 0.22 0.00 0.14 0.00 0.00 0.00 0.20 0.03 29.56 0.02 0.44 0.02 0.06 

Poplar 

(13) 

0.00 0.16 0.06 0.00 0.05 0.00 0.02 0.01 0.06 0.01 0.02 0.00 0.91 0.00 0.00 0.00 

Spruce 

(14) 

0.01 0.00 0.00 0.08 0.00 0.90 0.00 0.00 0.00 0.03 0.00 0.51 0.00 7.43 0.00 0.08 

Black l. 

(15) 

0.00 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.66 0.00 

Dwarf p. 

(16) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.68 

Prop (ref) 8.98 10.42 11.82 1.02 2.70 6.89 0.97 0.97 1.03 4.19 8.58 30.57 1.91 8.20 0.93 0.82 

Prop 

(map) 

8.88 8.60 15.09 1.05 1.96 5.93 1.18 0.54 0.43 4.53 9.01 30.97 1.29 9.04 0.80 0.69 

PA 83.6 68.5 91.1 60.3 41.4 79.9 47.0 43.0 38.3 85.3 85.0 96.7 47.4 90.6 70.8 83.6 

UA 84.6 83.0 71.4 58.2 57.0 92.8 38.5 77.7 91.5 78.8 80.9 95.4 70.3 82.2 82.9 99.2 

3.3 Limitations in large-area species mapping and proposed solutions 280 

In the country-wide or other large-extent mapping cases, there are several challenges and limitations. Larger regions are often 

characterized by higher diversity of species and environmental conditions. Certain species occur only in spatially limited areas 

– for example, in Poland, Silver fir is typical for the mountain areas only, while oaks and hornbeams tend to occur more often 

in the lowlands. In addition, due to the variability in meteorological conditions, the optimal period for classification of specific 
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species may differ largely among regions, particularly during the spring when processes of leaf unfolding take place, and 285 

autumn while leaf coloring occur. Furthermore, these optimal periods may vary from year-to-year due to variations in spring 

temperatures and other meteorological conditions (Grabska-Szwagrzyk and Tymińska-Czabańska, 2023). Future research 

should also consider specific periods of imagery acquisition when aimed to distinguish different species, i.e. covering periods 

when particular species exhibit the highest phenological variations. It would be profitable to use multiple autumn (e.g. early 

and late autumn) STMs, however it is very challenging due to insufficient number of clear observations during this time of the 290 

year.  

One solution may be the division of the study area into smaller regions – in the country-wide or other large-extent mapping of 

species composition, the subdivision to smaller parts may play an important role, also due to computational power; similarly 

as in the study from Pazúr et al. (2022) or Hermosilla et al. (2022). However, another question arises how to define the optimal 

borders of smaller regions to achieve higher accuracy of the obtained map, which is rarely discussed in studies focused on 295 

remote sensing-based classification. 

Another methodological challenge is the underrepresentation of clear observations in some regions. In this study, we employed 

short-period seasonal STMs from Sentinel-2 time series rather than one seasonal mean, as the information from specific periods 

of growing season is crucial in distinguishing species. In calculation of seasonal means, multi-annual observations were used, 

still, for some regions the underrepresentation of clear observations occurs. It may have significant impact on map accuracy 300 

in regions of lower observation frequency. In the case of Poland, it is particularly observed in the places where two orbits do 

not overlap, specifically for autumn (Figure 3). This issue should be addressed in studies on species classification for larger 

regions using Sentinel-2 or similar satellite constellations.  

As a result of abovementioned factors, the design of robust training, test and validation datasets is challenging. Finally, in 

certain regions such as privately-owned forests or lands not officially reported as forests (e.g., successional forests that have 305 

emerged on previously abandoned agricultural lands), there is no reference data available. These areas tend to exhibit greater 

complexity, making the task of assessing classification accuracy particularly demanding.  

4. Conclusions  

We have obtained the first national-scale forest tree species map for Poland, achieving an accuracy exceeding 80%. This was 

accomplished through a novel approach that involved the calculation of Sentinel-2 seasonal STMs spanning multiple years. 310 

The resulting map is an important dataset for both forest management and the scientific community, facilitating tasks like 

modeling biodiversity and monitoring non-native and invasive species. It can enhance our understanding of forest ecosystems 

and support more informed and precise forestry and conservation effort. Unlike other existing data sources, such as the FDB, 

which primarily provide information about the share of species within forest stands, this new map offers a view of tree species 
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distribution at a finer scale. Furthermore, our map provides a unique advantage over traditional forest inventories like NFI, 315 

which offers point-based data rather than continuous spatial representation of species distribution.  

5. Data availability 

We provide freely accessible resources including the forest tree species map, training and validation data: 

https://doi.org/10.5281/zenodo.10180469 (Grabska-Szwagrzyk, 2023). The map can be explored online: https://ee-

aweaksbarg.projects.earthengine.app/view/speciesmappl    320 
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Appendix  485 

Table A1: Variables used for classification. 

Group Predictor 

Early 

spring 

Blue 

Green  

Red 

RE1 

RE2 

RE3 

NIR1 

NIR2 

SWIR1 

SWIR2 

Late spring Blue 

Green  

Red 

RE1 

RE2 

RE3 

NIR1 

NIR2 

SWIR1 

SWIR2 

Summer Blue 

Green  

Red 

RE1 

RE2 

RE3 

NIR1 

NIR2 
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SWIR1 

SWIR2 

Autumn Blue 

Green  

Red 

RE1 

RE2 

RE3 

NIR1 

NIR2 

SWIR1 

SWIR2 

Topography Elevation 

Climate Annual mean temperature (bio01) 

Annual precipitation (bio12) 

Precipitation of driest quarter (bio17) 

Maximum temperature in spring 2018 

Soils Soils 

  

 

Table A2: Number of test pixels for accuracy assessment in two approaches – proportional and not proportional.  

 Estimated proportions  Proportional Not proportional 

Pinus 59% 11 800 5900 

Quercus 8% 1600 2400 

Betula 6.8% 1360 2040 

Fagus 6.2% 1240 1860 

Alnus 5.7% 1140 1710 

Picea 5.3% 1060 1600 

Abies 3.3% 660 1320 

Larix 2% 400 800 

Carpinus 1.3% 260 520 

Populus  1% 200 400 

Fraxinus <1% 100 200 

Pseudotsuga <1% 100 200 

Acer <1% 100 200 

Robinia pseudoacaccia <1% 100 200 
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Tilia <1% 100 200 

Pinus mugo <1% 100 200 

 490 
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Figure A1. Importance of variables used in classification.  

 


