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Abstract  22 

A new long-term emission inventory called the Inversed Emission Inventory for Chinese Air Quality (CAQIEI) was developed 23 

in this study by assimilating surface observations from the China National Environmental Monitoring Centre (CNEMC) using 24 

the ensemble Kalman filter and the Nested Air Quality Prediction Modeling System. This inventory contains the constrained 25 

monthly emissions of NOx, SO2, CO, primary PM2.5, primary PM10, and NMVOCs in China from 2013 to 2020, with a 26 

horizontal resolution of 15 km × 15 km. This paper documents detailed descriptions of the assimilation system and the 27 

evaluation results for the emission inventory. The results suggest that CAQIEI can effectively reduce the biases in the a priori 28 

emission inventory, with the normalized mean biases ranging from −9.1% to 9.5% in the a posteriori simulation, which are 29 

significantly reduced from the biases in the a priori simulations (−45.6% to 93.8%). The calculated RMSE (0.3 mg/m3 for CO 30 

and 9.4–21.1 μg/m  for other species, on the monthly scale) and correlation coefficients (0.76–0.94) were also improved from 31 

the a priori simulations, demonstrating good performance of the data assimilation system. Based on CAQIEI, we estimated 32 

China’s total emissions (including both natural and anthropogenic emissions) of the 6 species in 2015 to be as follows: 25.2 33 

Tg of NOx, 17.8 Tg of SO2, 465.4 Tg of CO, 15.0 Tg of PM2.5, 40.1 Tg of PM10, and 46.0 Tg of NMVOCs. From 2015 to 2020, 34 

the total emissions reduced by 54.1% for SO2, 44.4% for PM2.5, 33.6% for PM10, 35.7% for CO, and 15.1% for NOx, but 35 

increased by 21.0% for NMVOCs. It is also estimated that the emission reductions were larger during 2018–2020 (from -26.6% 36 

to -4.5%) than during 2015–2017 (from -23.8% to 27.6%) for most species. Particularly, the total Chinese NOx and NMVOC 37 

emissions were shown to increase during 2015–2017, especially over the Fenwei Plain area (FW) where the emissions of 38 

particulate matter (PM) also increased. The situation changed during 2018–2020 when the upward trends were contained and 39 

reversed to downward trends for both the total emissions of NOx and NMVOC, and the PM emissions over FW. This suggests 40 

that the emission control policies may be improved in  2018–2020 action plan. We also compared the CAQIEI with other air 41 

pollutant emission inventories in China, which verified our inversion results in terms of total emissions of NOx, SO2 and 42 

NMVOCs, and more importantly identified the potential uncertainties in current emission inventories. Firstly, the CAQIEI 43 

suggested higher CO emissions in China, with CO emissions estimated by CAQIEI (426.8 Tg) being more than twice the 44 
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amount in previous inventories (120.7–237.7 Tg). Significantly higher emissions were also suggested over the western and 45 

northeastern China for other air pollutants. Secondly, the CAQIEI suggested higher NMVOC emissions than previous emission 46 

inventories by about 30.4–81.4% over the North China Plain (NCP) but suggested lower NMVOC emissions by about 27.6–47 

0.0% over the Southeast China (SE). Thirdly, the CAQIEI suggested smaller emission reduction rates during 2015–2018 than 48 

previous emission inventories for most species except of CO. Particularly, China’s NMVOC emissions were shown to have 49 

increased by 26.6% from 2015 to 2018, especially over the NCP (by 38.0%), northeast China (by 38.3%), and central China 50 

(60.0%). These results provide us with new insight into the complex variations of the air pollutant emissions in China during 51 

two recent clean air actions, which has the potential to improve our understanding of air pollutant emissions in China and their 52 

impacts on air quality. The whole datasets are available at https://doi.org/10.57760/sciencedb.13151 (Kong et al., 2023).  53 

1 Introduction  54 

Air pollution is a serious environmental issue owing to its substantial impacts on human health, ecosystems, and climate 55 

change (Von Schneidemesser et al., 2015; Cohen et al., 2017; Bobbink et al., 1998). According to the World Health 56 

Organization, air pollution–induced strokes, lung cancer, and heart disease are causing millions of premature deaths worldwide 57 

every year (WHO, 2016). The fine particulate matter (PM2.5) in the atmosphere not only degrades visibility but also affects the 58 

radiative forcing of the climate, both directly and indirectly (Martin et al., 2004). After removal from the atmosphere through 59 

dry and wet deposition, air pollutants such as sulfur, nitrate, and ammonium contribute significantly to soil acidification, 60 

eutrophication, and even biodiversity reduction (Krupa, 2003; Hernández et al., 2016). 61 

China has experienced severe PM2.5 pollution in recent decades, due to its large emissions of air pollutants associated 62 

with rapid urbanization and high consumption of fossil fuels (Kan et al., 2012; Song et al., 2017). The annual concentrations 63 

of PM2.5 in 2013 reached 106, 67 and 47 μg/m  over the Beijing–Tianjin–Heibei, Yangtze River Delta, and Peral River Delta 64 

region, respectively, which were all higher than China’s national standard (35 μg/m ), and 5–10 times higher than that of the 65 

World Health Organization (10 μg/m ). To tackle this problem, strict emission control policies (so-called “clean air action 66 

plans”) have been proposed by China’s government, including the “Action Plan on the Prevention and Control of Air Pollution” 67 

from 2013 to 2017 (hereinafter called the “2013–2017 action plan”), and the “Three-year Action Plan for Winning the Bule 68 

Sky War” from 2018–2020 (hereinafter called the “2018–2020 action plan”). With the successful implementation of these two 69 

action plans, the air quality was substantially improved in China, as evidenced in both observational and reanalysis datasets 70 

(Li et al., 2020b; Zheng et al., 2017; Krotkov et al., 2016; Zhong et al., 2021; Li et al., 2017a; Kong et al., 2021). However, 71 

with the deepening of air pollution control, unexpected changes have occurred in China, bringing about new challenges for the 72 

mitigation of air pollution in the future. On the one hand, despite a significant decline in PM2.5 concentrations in China, severe 73 

haze still occasionally occurs during the wintertime (Zhou et al., 2022b; Li et al., 2017c). In addition, field measurements in 74 

cities over different regions of China consistently show different responses of aerosol chemical compositions to the emission 75 

control policies (Tang et al., 2021; Zhou et al., 2019; Wang et al., 2022; Zhang et al., 2020; Li et al., 2019a; Xu et al., 2019b; 76 

Lei et al., 2021; Zhou et al., 2022a). Compared with other aerosol species that showed substantial decreases during the clean 77 

air action plans, nitrate has shown a weaker response to the control measures, remaining at high levels and in some cases 78 

having even increased slightly. As a result, nitrate is playing an increasingly important role in heavy haze episodes in winter, 79 

and dominates the chemical composition of PM2.5 (Fu et al., 2020; Xu et al., 2019a), leading to a rapid transition from sulphate- 80 

to nitrate-driven aerosol pollution (Li et al., 2019a; Wang et al., 2019b). On the other hand, photochemical pollution has 81 

deteriorated in China, with ozone (O3) concentrations having increased substantially in eastern China during 2013–2017 (Li et 82 

al., 2019b; Lu et al., 2018; Lu et al., 2020; Wang et al., 2020b). 83 

These unexpected changes have raised considerable concern among the scientific community and policymakers regarding 84 

the overall effects of the clean air action plans, and how to coordinate the control of PM2.5 and O3 pollution. Addressing this 85 
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problem requires a comprehensive understanding of the effects of the clean air action plans on the emissions of different air 86 

pollutants. In this respect, previous studies have compiled several long-term air pollutant emission inventories in China using 87 

the bottom-up approach – for example, the Multi-resolution Emission Inventory for China (MEIC) developed by Tsinghua 88 

University for 2010–2020 (Zheng et al., 2018); the Air Benefit and Cost and Attainment Assessment System-Emission 89 

Inventory version 2.0 (ABaCAS-EI v2.0) developed by Tsinghua University for 2005–2021 (Li et al., 2023); the Regional 90 

Emission Inventory in Asia (REAS) for 1950–2015 developed by Kurokawa and Ohara (2020); the Emissions Database for 91 

Global Atmospheric Research (EDGAR) for 1970–2018 developed by Jalkanen et al. (2012); the Hemispheric Transport of 92 

Air Pollution (HTAP) Inventory for 2000–2018 developed by Crippa et al. (2023); and the Community Emissions Data System 93 

(CEDS) Inventory for 1970–2019 developed by Mcduffie et al. (2020). These emission inventories have provided the 94 

community with important insights into the long-term changes in the air pollutant emissions in China, thus playing an 95 

indispensable role in our understanding of the effects of the country’s clean air action plans on emissions and air quality. 96 

However, due to the lack of accurate activity data and emission factors, bottom-up emission inventories are subject to large 97 

uncertainties, particularly during the clean air action periods when the activity data and emission factors changed considerably 98 

and were difficult to track. Consequently, the estimated emission rates from different bottom-up emission inventories could 99 

differ by more than a factor of 2 (Elguindi et al., 2020). For example, the estimated emissions for the year 2010 from different 100 

bottom-up inventories were 104.9–194.5 Tg for carbon monoxide (CO), 15.6–25.4 Tg for nitrogen oxides (NOx), 22.9–27.0 101 

Tg for non-methane volatile organic compounds (NMVOCs), 15.7–35.5 Tg for sulfur dioxide (SO2), 1.28–2.34 Tg for black 102 

carbon (BC), and 2.78–4.66 Tg for organic carbon (OC), reflecting the large uncertainty in current bottom-up estimates of air 103 

pollutant emissions in China, which hinders the proper assessment of the effects of the clean air action plans. 104 

Inverse modeling of multiple air pollutant emissions (i.e., a top-down approach) provides an attractive way to constrain 105 

bottom-up emissions by reducing the discrepancy between the model and observation through the use of data assimilation. 106 

Numerous studies have confirmed the effectiveness of such a top-down method in verifying bottom-up emission estimates and 107 

reducing their uncertainties (e.g., Elbern et al., 2007; Henze et al., 2009; Miyazaki and Eskes, 2013; Tang et al., 2013; Koohkan 108 

et al., 2013; Koukouli et al., 2018; Jiang et al., 2017; Muller et al., 2018; Paulot et al., 2014; Qu et al., 2017. Based on long-109 

term satellite observations, the top-down method has also been used to track the long-term variations of emissions. For example, 110 

Zheng et al. (2019) estimated the global emissions of CO for the period 2000–2017 based on a multi-species atmospheric 111 

Bayesian inversion approach; Qu et al. (2019) constrained global SO2 emissions for the period 2005–2017 by assimilating 112 

satellite retrievals of SO2 columns using a hybrid 4DVar/mass balance emission inversion method; by assimilating satellite 113 

observations of multiple species, Miyazaki et al. (2020b) simultaneously estimated global emissions of CO, NOx, and SO2 for 114 

the period 2005–2018; and, most recently, a regional top-down estimation of PM2.5 emissions in China during 2016–2020 was 115 

carried out by Peng et al. (2023) by assimilating surface observations. These studies provide us with valuable clues for 116 

evaluating bottom-up emissions and improving our knowledge on the changes in emissions of different species in China during 117 

the clean air action plans. However, most of these studies focused on emission trends at the global scale, which involved the 118 

use of coarse model resolutions (>1°) that may be insufficient to capture the spatial variability of emission variations at the 119 

regional scale. Meanwhile, current long-term, top-down estimates mainly focus on single species and do not fully cover the 120 

two clean air action periods in China. Indeed, to date, there are still no long-term, top-down estimates of major air pollutant 121 

emissions in China that fully cover the two clean air action periods.  122 

In a previous study performed by our group, we developed a high-resolution air quality reanalysis dataset over China 123 

(CAQRA) for the period 2013–2020 to track the air quality trends in China during the clean air action periods (Kong et al., 124 

2021). In the present study, as a follow up to this work, we constrained the long-term emission trends of major air pollutants 125 

in China for 2013–2020 (which will be extended in the future on a yearly basis) by assimilating surface observations of air 126 

pollutants from the China National Environmental Monitoring Centre (CNEMC) using an ensemble Kalman filter and the 127 

Nested Air Quality Prediction and Forecasting System (NAQPMS). In the following sections, we present detailed descriptions 128 
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of the chemical data assimilation, the evaluation results of the inversed emission inventory, and the estimated emission trends 129 

of different air pollutants in China during the clean air action periods.  130 

2 The chemical data assimilation system 131 

We used the chemical data assimilation system (ChemDAS) developed by the Institute of Atmospheric Physics, Chinese 132 

Academy of Sciences, to constrain the long-term emission changes of different air pollutants in China, which was used in the 133 

development of CAQRA in our previous work (Kong et al., 2021). Since the chemical transport model (CTM) and the 134 

observations used in the top-down estimation were the same as those used in CAQRA, we only briefly describe these two 135 

components in the following two subsections, instead concentrating on providing a fuller description (in the third subsection) 136 

of the inversion scheme in ChemDAS.  137 

2.1 Chemical transport model 138 

The NAQPMS model was used as the forecast model to represent the atmospheric chemistry in this study, and the Weather 139 

Research and Forecasting (WRF) model was used as the meteorological model to provide the meteorological input data. 140 

NAQPMS contains comprehensive modules for the emission, diffusion, transportation, deposition, and chemistry processes in 141 

the atmosphere, and has been used in previous inversion studies (Tang et al., 2013; Kong et al., 2019; Wu et al., 2020a; Kong 142 

et al., 2023). Detailed configurations of the different modules used in NAQPMS are available in these publications. 143 

Figure 1 shows the domain of the inverse model, which is the same as that used in CAQRA, with a fine-scale horizontal 144 

resolution of 15 km. The HTAPv2.2 emission inventory was used as the a priori estimate of anthropogenic emissions in China, 145 

which includes emissions from the energy, industry, transport, residential, agriculture, air and ship sectors with a base year of 146 

2010 (Janssens-Maenhout et al., 2015). It is a harmonized global emission inventory that comprises of different regional 147 

gridded inventories. Within the region of China, the air pollutant emissions were mainly provided by the MEIC emission 148 

inventory (Janssens-Maenhout et al., 2015). The a priori estimates of emissions from other sources includes the biogenic 149 

emissions obtained from the Monitoring Atmospheric Composition and Climate (MACC) project (Sindelarova et al., 2014); 150 

biomass burning emissions obtained from the Global Fire Emissions Database (GFED), version 4 (Van Der Werf et al., 2010; 151 

Randerson et al., 2017); soil and lightning NOx emissions obtained from Yan et al. (2003) and Price et al. (1997); and marine 152 

volatile organic compound emissions obtained from the POET database (Granier et al., 2005). The dust emissions were 153 

calculated online in NAQPMS as a function of the relative humidity, frictional velocity, mineral particle size distribution, and 154 

the surface roughness (Li et al., 2012), while the sea salt emissions were calculated using the scheme of Athanasopoulou et al. 155 

(2008). Note that since we aimed to estimate the air pollutant emissions and their changes from the surface observation, we 156 

did not consider the temporal variation in the a priori emission inventory. This would ensure that the top-down estimated 157 

emission trends were only derived from the surface observations, without being influenced by the trends in the prior emission 158 

inventory. In this way, our top-down estimation can serve as an independent estimation of the air pollutant emission changes 159 

in China. Meanwhile, we used the constant diurnal variation of the emissions in this study due to the lack of information on 160 

the diurnal variation of the emissions from different sectors, which is a potential limitation in our current work. However, since 161 

the emission inversion was performed on the daily basis (Sect. 2.3.3), the diurnal variations of the emission may not 162 

significantly influence the simulation results of the daily mean concentrations of air pollutants (less than 1 ppbv for SO2, NO2 163 

and O3) according to the sensitivity experiments conducted by Wang et al. (2010). The initial condition was treated as clean 164 

air in NAQPMS, with a 2-week spin-up time. Top and boundary conditions were provided by the Model for Ozone and Related 165 

Chemical Tracers (MOZART) (Brasseur et al., 1998; Hauglustaine et al., 1998) data products provided by National Center for 166 

Atmospheric Research (NCAR). Note that since the MOZART data products were not available for years after 2018, the multi-167 

year average results from 2013 to 2017 were used for the simulations after 2018. Because most of the model boundaries were 168 



5 
 

set in the clean areas and are located at distance from China, we assumed that the differences in boundary conditions would 169 

not significantly affect the modeling results over the China. To improve the performance of meteorological simulation, a 36-170 

h free run of the WRF model was conducted for each day by using the NCAR/NCEP 1°×1° reanalysis data. The simulation 171 

results of the first 12 h were treated as the spin-up run, and the remaining 24 h were used to provide the meteorological inputs 172 

for the NAQPMS model. The evaluation results for the WRF simulation are available in Text S1 in the Supplement, which 173 

suggests acceptable performance of the WRF simulation for the inversion estimates (Table S1). 174 

2.2 Assimilated observations 175 

The assimilated observational dataset in this study was the same as that used in CAQRA, which includes surface 176 

concentrations of PM2.5, PM10 (coarse particulate matter), SO2, NO2 (nitrogen dioxide), CO, and O3, from 2013 to 2020, 177 

obtained from CNEMC (Fig. 1). Before the assimilation, outliers of the observations were filtered out by using an automatic 178 

quality control method developed by Wu et al. (2018). Four types of outliers characterized by temporal and spatial 179 

inconsistencies, instrument-induced low variances, periodic calibration exceptions, and lower PM10 concentrations than those 180 

of PM2.5, were filtered out to prevent adverse impacts on the inversion process. As estimated in Kong et al. (2021), about 1.5% 181 

of observational data were filtered out after quality control, but further assessment showed that it had few effects on the average 182 

concentrations of different species, which were estimated to be less than 1 μg/m  for the gaseous air pollutants and less than 183 

5 μg/m  for the particulate matter. Estimation of observation error is also important for the inversion of emissions since the 184 

observational error and background errors determine the degree of adjustment to the emissions. The observational error 185 

comprises the measurement error and the representativeness error induced by the different spatial scales that the model and 186 

observations represent. The estimations of these two components of observational error were the same as those used in CAQRA, 187 

detailed descriptions of which are available in Kong et al. (2021). 188 

It should be noted that the number of observation sites were not constant throughout the whole inversion period, being 189 

approximately 510 in 2013 and then increasing to 1436 in 2015. According to Fig. S1, the observation sites were mainly 190 

concentrated in the megacity clusters (e.g., North China Plain, Yangtze River Delta and Pearl River Delta) and the capital 191 

cities of each province in 2013. The number of observation sites continued to increase across the China in 2014 and 2015. In 192 

particular, many areas that were previously unobserved have added monitoring stations in 2014 and 2015, which significantly 193 

increased the observation coverage of China and could lead to spurious trends in the top-down estimated emissions. Figure 2 194 

shows the changes in the observational coverage over different regions of China from 2013 to 2020 indicated by the ratio of 195 

areas that were influenced by observations to the total area of each region. It can be clearly seen that the observational coverage 196 

increased from 2013 to 2015 with the expansion of the air quality monitoring network in China, and became stable after 2015. 197 

However, the influence of the variation in the number of observation sites varied among different regions. Over the North 198 

China Plain (NCP) region, the observational coverage was approximately 90% in 2013, and reached 100% in 2014, suggesting 199 

that the variation in the observation sites may have little influence on the estimated emission changes there. A similar 200 

conclusion can be drawn for the Southeast China (SE) region, where the observational coverage was about 75% in 2013 and 201 

reached 100% in 2015. Elsewhere, in the other four regions, the influence of the variation in observation sites is expected to 202 

be larger because of the low observational coverage in both 2013 and 2014. For example, the observational coverage over the 203 

Northwest China (NW) region was less than 10% in 2013, but increased to about 60% in 2015. To better illustrate the impact 204 

of changes in observational coverage on the inversions, a sensitivity analysis of the emission increments with the fixed 205 

observation sites or varying observation sites is performed in this study (Text S2 and Fig. S2). It shows that the additional 206 

emission increments caused by the increases of observation sites would weaken the decreasing trends estimated in the fixed-207 

site scenario for the emissions of PM2.5, NOx and NMVOC and even lead to increasing trends for the emissions of PM10 and 208 

CO. In contrast, the increases of observation sites would enhance the decreasing trends of SO2 estimated in the fixed-site 209 

scenario. Such different behaviors are mainly related to the different sign of the emission increment of different species as we 210 
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illustrated in Text S2. These results highlighted the significant influences of the site differences on the estimated emissions 211 

and their trends, which should be noted by the potential users. Therefore, in order to reduce this influence on the estimated 212 

emission trends, in our following analysis we mainly analyze the emission trends after 2015, when the observational coverage 213 

had stabilized in all regions. 214 

2.3 Data assimilation algorithm 215 

We used the modified EnKF coupled with state augmentation method to constrain the long-term emissions of different 216 

air pollutants. EnKF is an advanced data assimilation method proposed by Evensen (1994) that features representing the 217 

background error covariance matrix with a stochastic ensemble of model realizations. Through the use of ensemble simulations, 218 

it has the ability to consider the indirect relationship between the emissions and chemical concentrations caused by the complex 219 

physical and chemical processes in the atmosphere. It also allows for the estimation of flow-dependent emission–concentration 220 

relationships that vary in time and space depending on the atmospheric conditions. The modified EnKF is an offline application 221 

of the EnKF method that works by decoupling the analysis step from the ensemble simulation, which has benefits in the reuse 222 

of costly ensemble simulations and makes high-resolution long-term inversion affordable (Wu et al., 2020a). In this method, 223 

the ensemble simulation was performed firstly with the perturbed emissions, and then the observations were assimilated to 224 

constrain the emissions (Wu et al., 2020a). The state augmentation method is a commonly used parameter estimation method 225 

(Tandeo et al., 2020) in which the air pollutant emissions are taken as the state variable and are updated according to the error 226 

covariance between the emissions and the concentrations of related species.  227 

2.3.1 State variable and ensemble generations 228 

The state variable used in this study was chosen following our previous multi-species inversion study (Kong et al., 2023), 229 

which included the scaling factors for the emissions of fine-mode unspeciated aerosol (PMF), coarse-mode unspeciated aerosol 230 

(PMC), BC, OC, NOx, SO2, CO, and NMVOC, as well as the chemical concentrations of PM2.5, PM10-2.5 (PM10 minus PM2.5), 231 

NO2, SO2, CO, and daily maximum 8-h O3 (MDA8h O3), which are formulated as follows:  232 

𝒙 = [𝒄, 𝜷]𝑻,             (1) 233 

𝒄 = [𝐏𝐌𝟐.𝟓, 𝐏𝐌𝟏𝟎 𝟐.𝟓, 𝐍𝐎𝟐, 𝐒𝐎𝟐, 𝐂𝐎, 𝐌𝐃𝐀𝟖𝐡 𝐎𝟑],         (2) 234 

𝜷 = [𝜷𝐏𝐌𝐅 , 𝜷𝐏𝐌𝐂, 𝜷𝐁𝐂, 𝜷𝐎𝐂, 𝜷𝐍𝐎𝒙
, 𝜷𝐒𝐎𝟐

, 𝜷𝐂𝐎, 𝜷𝐍𝐌𝐕𝐎𝐂],         (3) 235 

where 𝒙 denotes the vector of the state variable, 𝒄 denotes the vector of the chemical concentrations of different species, and 236 

𝜷 denotes the vector of the scaling factors for the emissions of different species. Note that although the chemical concentration 237 

variables are included in the state variable, they are not optimized simultaneously with the emission in the analysis step and 238 

are only used to estimate the covariance between the emission and concentrations. Detailed descriptions of the state variables 239 

are available in Table 1. 240 

The ensemble of the scaling factors for different species was generated independently using the same method of Kong et 241 

al. (2021), which has a medium size of 50 and considers the uncertainties of major air pollutant emissions in China, including 242 

SO2, NOx, CO, NMVOCs, ammonia, PM10, PM2.5, BC, and OC. The uncertainties of these species were considered to be 12%, 243 

31%, 70%, 68%, 53%, 132%, 130%, 208% and 258%, respectively according to the estimates of Li et al. (2017b) and Streets 244 

et al. (2003). Note that in this study we did not perturb the emissions of different sectors to reduce the degrees of freedom in 245 

the ill-posed inverse estimation problem. Instead, we only perturbed the total emissions of different species. Therefore, only 246 

the total emissions of different species were constrained in this study. The ensemble of the chemical concentrations was then 247 

generated through an ensemble simulation based on NAQPMS and the perturbed emissions calculated by multiplying the a 248 

priori emissions by the ensemble of the scaling factors. This treatment implicitly assumes that the uncertainty in the chemical 249 

concentration is mainly caused by the emission uncertainty. This makes sense on a monthly or yearly basis, considering that 250 

substantial changes in emissions are expected to have taken place during the clean air action plans, which are subject to large 251 
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uncertainty. However, the lack of consideration of other error sources, such as those of the meteorological simulation and the 252 

model itself, may lead to underestimation of the background error covariance and emission adjustment, which is a potential 253 

limitation of this study. In addition, the dust and sea salt emissions were not perturbed and constrained in this study, and thus 254 

the errors in the simulated fine and coarse dust emissions would influence the inversion of PM2.5 and PM10 emissions. As a 255 

result, the top-down estimated PM2.5 and PM10 emissions will contain errors in the simulated dust and sea salt emissions. 256 

Particularly, we did not consider the emissions of coarse dust during the inversion process since there is large uncertainty in 257 

the simulated coarse dust emissions by current dust emission schemes  (Zeng et al., 2020; Kang et al., 2011). The large errors 258 

in the simulated coarse dust concentration could significantly influence the inversion results of PM10 emissions. For example, 259 

the simulated coarse dust concentration could sometimes be several orders of magnitude higher than the observed PM10 260 

concentration, leading to too low values of the inverse PM10 emissions (approximately 0) over the regions that were not the 261 

typical dust source regions but were influenced by the transportation of coarse dust. Therefore, we only used simulated PM10 262 

concentrations from other sources in the inversion of PM10 emissions to avoid the influences of the too large errors in simulated. 263 

This is also similar to assume that the coarse dust emission is equal to zero during the assimilation. However, in this way, the 264 

top-down estimated PM10 emissions in this study would comprise all coarse dust emissions which should be noted by potential 265 

users. A detailed description of the ensemble generation is available in Kong et al. (2021). 266 

2.3.2 Inversion algorithm 267 

We used a deterministic form of EnKF (DEnKF) proposed by Sakov and Oke (2008) to update the scaling factors of the 268 

emissions of different species, which is formulated as follows: 269 

𝒙𝒂 = 𝒙𝒃 + 𝐊 𝒚𝒐 − 𝐇𝒙𝒃 ,             (4) 270 

𝐗𝐚 = 𝐗𝐛 −
𝟏

𝟐
𝐊𝐇𝐗𝐛            (5) 271 

𝐊 = λ𝐁𝐞
𝐛𝐇 𝐇λ𝐁𝐞

𝐛𝐇𝐓 + 𝐑 ,           (6) 272 

𝐁𝐞
𝐛 = ∑ 𝑿𝒊

𝒃 𝑿𝒊
𝒃 ,            (7) 273 

𝒙𝒃 = ∑ 𝒙𝒊
𝒃 ; 𝑿𝒊

𝒃 = 𝒙𝒊
𝒃 − 𝒙𝒃,           (8) 274 

where 𝒙 denotes the ensemble mean of the state variable; the superscript 𝐛 and 𝒂 respectively denote the a priori and a 275 

posteriori estimate; 𝐗𝐚 is the analysed anomalies that can be used to calculate the uncertainty of the a posteriori emissions. 𝐊 276 

is the Kalman gain matrix; 𝐁𝐞
𝐛 is the background error covariance matrix calculated by the background perturbation 𝑿𝒃; 𝒚𝒐 is 277 

the vector of the observation and 𝐑 is the observation error covariance matrix; 𝐇 is the linear observation operator, which 278 

maps the model space to the observation space; 𝛌 is the inflation factor used to compensate for the underestimation of the 279 

background error caused by the limited ensemble size and unaccounted error sources, which is calculated using the method of 280 

Wang and Bishop (2003), 281 

𝜆 =
𝐑 𝟏/𝟐𝒅

𝐓
𝐑 𝟏/𝟐𝒅 𝒑

𝒕𝒓𝒂𝒄𝒆 𝐑 𝟏/𝟐𝐇𝐁𝐞
𝐛 𝐑 𝟏/𝟐𝐇

𝐓            (9) 282 

𝒅 = 𝒚𝒐 − 𝐇𝒙𝒃              (10) 283 

where 𝒅 is the observation innovation and 𝒑 is the number of observations. Table S2 summarized the calculated average value 284 

(standard deviation) of the used inflation factor for different species. It shows that the inflation factor over the east China 285 

(including NCP and SE region) was generally round 1.0, suggesting that the original ensemble can well represent the simulation 286 

errors of the different air pollutants over these regions. The inflation factor is larger over the western China (including SW, 287 

NW and Central regions), especially for PM10 (36.0–78.1) and SO2 (7.8–176.1), suggesting that the original ensemble may 288 

underestimate the simulation errors of the air pollutants. This is associated with the large biases in the simulated air pollutant 289 

concentrations over there and reflect that the emission uncertainties assumed in our studies may be underestimated over these 290 
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regions. This also highlighted the importance of the use of inflation method during the inversion, otherwise it would lead to 291 

filter divergency caused by the underestimations of the background error covariance. 292 

In order to reduce the influence of the spurious correlations on the performance of data assimilation, the EnKF was 293 

performed locally in this study in that the analysis was calculated grid by grid with the assumption that only measurements 294 

located within a certain distance (cutoff radius) from a grid point would influence the analysis results of this grid. The use of 295 

this local analysis method also allowed the inflation factor to be calculated locally and to vary in time and space, which can 296 

help characterize the spatiotemporal variations of errors as we illustrated above. Similar to in Kong et al. (2021) and Kong et 297 

al. (2023), the cutoff radius was chosen as 180 km for each species based on the wind speed and the lifespan of the species 298 

(Feng et al., 2020). The same local scheme with a buffer area was also employed during the inversion to alleviate the 299 

discontinuities in the updated state caused by the cut-off radius. A detailed description of the local analysis scheme is available 300 

in Kong et al. (2021).  301 

Table 1 summarizes the corresponding relationships between the emissions and chemical concentrations. Similar to Ma 302 

et al. (2019) and Miyazaki et al. (2012), we did not consider the inter-species correlation during the assimilation to prevent the 303 

spurious correlations between non- or weakly related variables. In most cases, observations of one particular species were only 304 

allowed to adjust the emissions of the same species. The assimilation of PM2.5 mass observation was more complicated as 305 

there are multiple error sources in the simulated mass concentrations of PM2.5, not only from primary emission, but also from 306 

secondary production. In this study, the PM2.5 mass observation was used to constrain the emissions of PMF, BC and OC but 307 

not used to constrain the emissions of its precursors to avoid the spurious correlations and nonlinear chemistry effects, which 308 

is similar to the scheme used in Ma et al. (2019). This is feasible since the emissions of primary PM2.5 (i.e., PMF, BC and OC) 309 

and the emissions of PM2.5 precursors (e.g., SO2, NO2) were perturbed independently in our method, thus the contributions of 310 

primary PM2.5 emission and the secondary PM2.5 productions to the PM2.5 mass could be isolated through the use of ensemble 311 

simulations. Meanwhile, the use of iteration inversion method (which will be introduced later) can further reduce the influence 312 

of the errors in the precursors’ emissions on the inversion of primary PM2.5 emission, because the errors of its precursors’ 313 

emission would be constrained by their own observations during the iterations. However, the lack of assimilation of speciated 314 

PM2.5 observations may lead to uncertainties in the estimated emissions of PMF, BC and OC, which is a potential limitation 315 

in current work. For example, if the a priori simulated PM2.5 equals the observations, the emissions of PMF, BC and OC would 316 

not be adjusted by using the current method. However, in such cases, there may still be errors in the proportions of the emissions 317 

of different PM2.5 components. To adjust the emissions of PMC, we used the observations of PM10-2.5 to avoid the potential 318 

cross-correlations between PM2.5 and PM10 (Peng et al., 2018; Ma et al., 2019). For the NOx emissions, although the O3 319 

concentration are chemically related to the NOx emissions, we did not use the O3 concentrations to constrain the NOx emission 320 

in this study since there is nonlinear relationship between the O3 concentration and NOx emission which would lead to wrong 321 

adjustment of NOx emissions (Tang et al., 2016). 322 

The inversion of NMVOC emission is more difficult than other species due to the lack of long-term nationwide NMVOC 323 

observations and the strong chemical activity. Previous studies usually assimilated the satellite observations of formaldehyde 324 

and glyoxal to constrain the NMVOC emissions, such as Cao et al. (2018) and Stavrakou et al. (2015). However, these 325 

inversion studies are hindered by the NOx-VOC-O3 chemistry and the inherent uncertainty in the satellite observations of 326 

formaldehyde and glyoxal. Considering the strong chemical relationship between the O3 and NMVOC, some pioneer studies 327 

have also explored the method of assimilating ground-level O3 concentrations to constrain the NMVOC emissions (Ma et al., 328 

2019; Xing et al., 2020), and demonstrated the effectiveness of this approach. For example, Ma et al. (2019) found that the 329 

assimilation of O3 concentration could adjust the NMVOC emissions in the direction resembling the bottom-up inventories, 330 

and the forecast skill of O3 concentrations were also improved, indicating that the constrained NMVOC emissions are improved 331 

relative to their a priori. Inspired by these studies, we have made an attempt to constrain the NMVOC emissions based on the 332 

MDA8h O3. The use of MDA8h O3 rather than the daily mean O3 concentration is to avoid the effects of the nighttime O3 333 
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chemistry. For example, the simulation errors in the titration effects of NOx may influence the simulated O3 concentrations 334 

during nighttime and affect the inversion results of NMVOC. An important issue that should be noted when using the MDA8h 335 

O3 to constrain the NMVOC emission is the nonlinear interactions among NOx, NMVOC and O3. On the one hand, the O3 336 

concentrations are dependent not only on the NMVOC emissions but also on the NOx emissions. The errors in the a priori 337 

emissions of NOx would also contribute to the simulation errors of O3, and deteriorate the inversion of NMVOC. The iteration 338 

inversion scheme could help deal with this issue as the errors in the NOx emissions will be constrained by the NO2 observations 339 

in the next iteration, which can reduce the influences of errors in the NOx emission on the inversion of NMVOC emission 340 

based on MDA8h O3 concentrations. This is in fact similar to the approach used by Xing et al. (2020) who firstly constrained 341 

the NOx emissions based on observations of NO2, and then constrained the NMVOC emissions based on O3 concentrations. 342 

Also, in Feng et al. (2024), the NO2 observations were simultaneously assimilated to constrain the NOx emissions to account 343 

for the influences of errors in NOx emissions on the NMVOC emissions, suggesting that the iteratively nonlinear joint inversion 344 

of NOx and NMVOCs is an effective way to address the intricate relationship among VOC-NOx-O3 (Feng et al., 2024). 345 

Similarly, the errors in the CO emissions which may be significant according to our following analysis are also constrained in 346 

a similar way to reduce the potential influences on the inversion of NMVOC emission. On the other hand, the emission 347 

adjustments of NMVOC may exhibit bidirectionality dependent on the VOC-limited or NOx-limited regimes. According to 348 

Fig. 3, the NMVOC emissions were adjusted in alignment with the direction of the O3 errors, suggesting a VOC-limited regime 349 

over urban areas in China, given that the O3 observation sites are predominantly situated in the urban areas. This agrees with 350 

Ren et al. (2022) who diagnosed the NOx-VOC-O3 sensitivity based on the satellite retrievals and found that the VOC-limited 351 

regimes are mainly located in the urban areas in China. This suggests that the relationship between the O3 concentrations and 352 

VOC emissions could be reasonably reflected by our inversion system, providing the feasibility in utilizing the O3 observations 353 

to constrain the VOC emissions. Note that due to the lack observations of the VOC components, we only optimize the gross 354 

emissions of the VOC during the assimilation.  355 

As we illustrated before, there exists nonlinear effects in the atmospheric chemistry which could influence the inversion 356 

results of different species. In addition, since we did not consider the temporal variations in the a priori emissions, it was 357 

expected that there would be significant biases in the a priori emissions for the years after 2013, as substantial changes in 358 

emissions were expected owing to the implementation of strict emission control measures. Such bias in the a priori emissions 359 

does not conform to the unbiased hypothesis of the EnKF, which could lead to incomplete adjustments of the a priori emissions 360 

and degrade the performance of the data assimilation (Dee and Da Silva, 1998). To address these issues, an iteration inversion 361 

scheme was employed in this study, which has been used previously in Kong et al. (2023). The main idea of the iteration 362 

inversion scheme is to preserve the background perturbation 𝐗𝐛 but to update the ensemble mean of the state variable 𝒙𝒃 based 363 

on the model simulations driven by the inversion results of the 𝑘th iteration. Therefore, a new single model simulation is 364 

required to be conducted by using the a posteriori emission from the previous iteration as the input to update the ensemble 365 

mean of the original ensemble. This enables the observational information and the adjusted emissions to be promptly 366 

incorporated into the model, thereby providing feedback for the adjustments of emission in the next iteration. However, we 367 

did not reassemble the ensemble simulation for each iteration due to the expensive computational cost of the ensemble 368 

simulation. Therefore, in each iteration calculation, the ensemble perturbation that were used to calculate the background error 369 

covariance matrix remains the same with only the ensemble mean being updated based on the inversion results of the previous 370 

iteration. The state variable used in the (𝑘 + 1)th inversions is then formulated as follows: 371 

𝒙𝒊
𝒃,𝒌 𝟏 = 𝒄𝒌 + 𝒄𝒊

𝒆 − 𝒄𝒆, 𝜷𝒌 + 𝜷𝒊
𝒆 − 𝜷𝒆

𝑻
,          (11) 372 

where 𝒄𝒌 represents the model simulations driven by the inversed emissions of the 𝑘th iteration, 𝒄𝒊
𝒆 represents the 𝑖th member 373 

of ensemble simulations with an ensemble mean of 𝒄𝒆, 𝜷𝒌  represents the updated scaling factors at the 𝑘th iteration, and 374 

𝜷𝒊
𝒆 represents the 𝑖th member of the ensemble of scaling factors with a mean value of 𝜷𝒆. In each iteration, all emissions are 375 

updated simultaneously and two rounds of iteration were conducted in this study based on our previous inversion study to 376 
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maintain a balance between the inversion performance and the computational cost of the long-term inversions (Kong et al., 377 

2023).  378 

2.3.3 Setup of inversion estimation 379 

Based on this inversion scheme, we constrained the daily emissions of PMF, PMC, BC, OC, NOx, SO2, CO, and NMVOCs, 380 

from 2013 to 2020, based on the daily averaged observations of PM2.5, PM10-2.5, NO2, CO, and MDA8h O3. However, due the 381 

lack of enough speciated PM2.5 observation, the model performance driven by the inverse emission for the BC, OC and primary 382 

unspeciated PM2.5 have not been thoroughly evaluated. It is thus currently unclear for the quality of the inverse emissions of 383 

BC, OC and primary unspeciated PM2.5. Also, the lack of speciated PM2.5 observations could lead to uncertainties in the 384 

estimated emissions of PMF, BC, and OC as we mentioned before. Considering this, similar to in Kong et al. (2023), although 385 

we made attempt to estimate the emissions of BC, OC and primary unspeciated PM2.5, we have reservations about their 386 

inversion results and only provide the emissions of PM2.5 (PMC+BC+OC) and PM10 (PM2.5 + PMC) in current stage. In future, 387 

we will collect more speciated PM2.5 observations to comprehensively quantify the accuracy of their inversion results, after 388 

which the emissions of these species would be released. Meanwhile, the speciated PM2.5 observations could be assimilated 389 

under the current inversion framework. This could provide us with further constrains on the emissions of BC, OC and primary 390 

PM2.5. Meanwhile, as mentioned in subsection 2.3.1, the meteorological and model uncertainty were not considered in the 391 

ensemble simulation. Thus, the errors in the meteorological simulation would cause fluctuations in the daily emissions that 392 

contaminate the inversion results and are difficult to isolate from the inherent variations of emissions (Tang et al., 2013). 393 

Considering this, the daily emissions were averaged to monthly values to reduce the influences of random model errors after 394 

the assimilation.  395 

3 Performance of the chemical data assimilation system  396 

3.1 Analysis of OmF and emission increment 397 

The observation-minus-forecast (OmF) and emission increment (a posteriori emission minus a priori emission) were 398 

firstly analyzed to demonstrate the performance of the data assimilation. As shown in Fig. 3, the a priori simulation generally 399 

underestimated the PM2.5 concentrations over the NCP, SE and SW regions (positive OmF values) during 2013–2014, but 400 

overestimated the PM2.5 concentrations from 2016, reflecting the effects of the emission control measures during these years. 401 

In the NE, NW and central China (hereafter, “Central”) regions, obvious underestimation of the PM2.5 concentration was found 402 

(positive OmF values) throughout almost the entire assimilation period. Similarly, the OmF values of PM10 were positive 403 

throughout the whole assimilation period over all regions of China. In contrast, the OmF values for SO2 were negative for most 404 

regions, and the negative OmF values over the NCP region became larger as the years progressed, which reflects the effects 405 

of the emission control measures. The OmF for NO2 reveals a seasonal variation over the NCP and SE regions, with negative 406 

values during summer and positive values during winter, while there were obvious positive OmF values over the NE, SW, NW 407 

and Central regions. In terms of CO, large positive OmF values were found over all regions of China, and there were decreasing 408 

trends in the OmF values of CO over different regions of China associated with the emission control policies during these 409 

years. The OmF values for O3 were positive over most regions of China, except the NW region. These results provide us with 410 

valuable information on the potential deficiencies in the a priori emissions. However, since our inversion method did not 411 

differentiate between anthropogenic and natural emissions, the biases in the model simulation may also be attributable to the 412 

errors in natural emissions such as dust, especially over the major dust-source areas of China (e.g., the NW and Central regions). 413 

In addition, the effects of emission control were not considered in the a priori emissions, which is another important contributor 414 

to the errors in the model simulation for the later years. Thus, the emission increments calculated by the assimilation should 415 

reflect the combined effects of errors in the anthropogenic and natural emissions, as well as the emission control.  416 
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The calculated emission increments were consistent with the OmF values for all species, which indicates that the data 417 

assimilation method can probably constrain the emissions based on the observations. According to Fig. 3, the emission 418 

increments were positive for PM2.5 over the NE, NW and Central regions, for NO2 over the NE, SW, NW and Central regions, 419 

and for PM10, CO and NMVOC over almost all regions throughout the assimilation period. In contrast, the emission increments 420 

were negative for the SO2 emissions for most cases. Consistent with the OmF values, the emission increments were positive 421 

for PM2.5 over the NCP, SE and SW regions during 2013–2014, but became negative from 2016 owing to the implementation 422 

of strict emission control measures. The emission increments for NOx also showed significant seasonal variation over the NCP 423 

and SE regions, being positive during winter and negative during summer. The a posteriori biases for the model simulations 424 

of different species were also plotted to assess the performance of the data assimilation. It can be clearly seen that the biases 425 

were substantially reduced for all species, and the calculated root-mean-square error (RMSE) reduced by 23.2–52.8% for PM2.5, 426 

19.9–37.8% for PM10, 36.4–77.3% for SO2, 18.3–25.2% for NO2, 29.9–40.5% for CO, and 4.4–26.1% for O3 over the different 427 

regions of China, suggesting a good performance of the data assimilation system. 428 

3.2 Evaluation of the inversion results 429 

Table 2 shows the calculated evaluation statistics for the inversion at different temporal scales. It can be clearly seen that 430 

the model simulation with the a posteriori emission inventory reproduced well the magnitude and temporal variations of the 431 

different air pollutants in China, with calculated correlation coefficients of approximately 0.77, 0.72, 0.64, 0.67, 0.69 and 0.71, 432 

and normalized mean biases of approximately 4.5%, −4.6%, −9.0%, −3.9%, −8.8% and 9.5%, for the hourly concentrations of 433 

PM2.5, PM10, SO2, NO2, CO and O3, respectively. Moreover, the a posteriori model simulation achieved comparable accuracy 434 

with the air quality reanalysis data we developed in Kong et al. (2021) in terms of the RMSE, which was 32.4 μg∙m-3, 53.1 435 

μg∙m-3, 24.9 μg∙m-3, 19.9 μg∙m-3, 0.56 mg∙m-3 and 34.9 μg∙m-3, respectively, for these species at the hourly scale. At the daily, 436 

monthly and yearly scales, the constrained model simulation performed better, with RMSEs of about 9.1–20.0 μg∙m-3 (PM2.5), 437 

18.5–31.6μg∙m-3 (PM10), 11.5–16.0μg∙m-3 (SO2), 8.1–12.8μg∙m-3 (NO2), 0.28–0.39mg∙m-3 (CO), and 14.2–26.1 μg∙m-3 (O3), 438 

which were respectively reduced by 56.7–67.3%, 49.2–52.1%, 68.8–72.8%, 36.3–39.8%, 47.0–58.0%, and 22.9–30.5% 439 

compared to the RMSEs of the a priori simulations. We also compared the model performance driven by the inverse inventory 440 

with that driven by more recent bottom-up inventories (MEIC and HTAPv3) by taking the simulation results of year 2020 as 441 

an example to give us a more objective understanding of the accuracy of the inverse emission inventory. It shows that the 442 

inverse emission generally achieves better performance in simulating the air pollutant concentrations in China than the MEIC 443 

and HTAPv3 (Table S3). It is also encouraging to find that the model performance driven by CAQIEI and MEIC-HTAPv3 is 444 

similar for PM2.5, PM10, and SO2 over the NCP, NE, SE and SW regions, both significantly improved from the a priori emission 445 

inventory. This suggest that both the top-down and recent bottom-up emission inventories have good performance in capturing 446 

the emission changes of these species over these regions and they yield consistent estimations. Detailed information on the 447 

configurations of the model simulation results driven by MEIC-HTAPv3 and the comparisons results are available in Text S3. 448 

All these validation results confirm the good performance of the data assimilation method and suggest that the inversed 449 

emissions inventory has the capability to reasonably represent the magnitude and long-term trends of the air pollutant emissions 450 

in China during 2013–2020.  451 

4 Results 452 

Based on the top-down estimation, the gridded emissions for PM2.5, PM10, SO2, CO, NOx and NMVOCs over China from 453 

2013 to 2020 were developed into what we have called the Inversed Emissions Inventory for Chinese Air Quality (CAQIEI). 454 

In the following sections, we first analyze the magnitude and seasonality of the air pollutant emissions in China by taking 2015 455 

as a reference year when the number of observation sites became stable. After that, the changes in emissions of different air 456 
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pollutants from 2015 to 2020 are analyzed and compared between the two clean air action plans in China. Note that due to the 457 

impacts of the changes in observation coverage, it is difficult to estimate the overall emission reduction rates during the 2013–458 

2017 action plan by using our inversion results. The emission change rates during 2015–2017 were then sampled in this study 459 

to assess the mitigation effects during the 2013–2017 action plan and to be compared with the emission change rates during 460 

2018–2020. Finally, CAQIEI is compared to the previous bottom-up and top-down emission inventories to validate our top-461 

down estimation and identify the potential uncertainties in the current understanding of China’s air pollutant emissions. 462 

4.1 Top-down estimated Chinese air pollutant emissions in 2015 463 

The top-down estimated emissions of different species in 2015 are as follows: 25.2 Tg of NOx, 17.8 Tg of SO2, 465.4 Tg 464 

of CO, 15.0 Tg of PM2.5, 40.1 Tg of PM10, and 46.0 Tg of NMVOCs. Note that these values not only contain anthropogenic 465 

emissions but also natural (e.g., dust and biogenic NMVOC) emissions. Thus, the top-down estimated emissions of PM and 466 

NMVOCs were higher than those estimated by previous studies, as we mention in following sections. Emission maps of all 467 

species in 2015 are shown in Fig. 4, and the calculated emissions of different species over different regions are presented in 468 

Table 3. According to Fig. 4, higher air pollutant emissions are widely distributed in the megacity clusters (e.g., NCP, Yangtze 469 

River Delta and Pearl River Delta) and the developed cities in China, reflecting the influences of human activities. NCP was 470 

the region with the largest emission intensity of air pollutants in China, contributing 5.1 Tg of NOx, 3.5 Tg of SO2, 82.2 Tg of 471 

CO, 2.7 Tg of PM2.5, 8.7 Tg of PM10 and 9.0 Tg of NMVOCs to the total emissions in China. The inversion results also 472 

demonstrate the contribution of natural sources to the air pollutant emissions, such as the soil NOx emissions and the biogenic 473 

NMVOC emission distributed in the Tibet Plateau region. In general, the majority of air pollutant emissions were located in 474 

eastern China (including the NCP, NE and SE regions), where the economy is relatively well developed, which in total 475 

accounted for 66.0% of NOx, 60.9% of SO2, 57.5% of CO, 60.4% of PM2.5, 60.5% of PM10, and 67.8% of NMVOC emissions 476 

in China. However, although the GDP of western China (including the SW, NW and Central regions) is less than one third that 477 

of eastern China, the top-down estimation indicates that the air pollutant emissions in western China could have accounted for 478 

about 32.2–42.5% of the total emissions, which reflects the low emission control levels over these regions.  479 

Figure 5 shows the monthly variations of air pollutant emissions in China for year 2015. The monthly profile of NOx 480 

emissions was relatively flat among the six species. SO2 and CO showed higher emissions during wintertime because of the 481 

enhanced residential emissions associated with higher coal consumption for heating during that time of year. Meanwhile, the 482 

emission factor for CO from vehicles in winter was also higher than in other seasons, due to additional emissions from the 483 

cold-start process (Kurokawa et al., 2013; Li et al., 2017b). PM2.5 and PM10 had higher emissions during winter and spring, 484 

which, on the one hand was due to the enhanced emissions from the residential and industrial sectors during wintertime (Li et 485 

al., 2017b), whilst on the other hand was due to the enhanced dust emissions during the spring season (Fan et al., 2021). 486 

Emissions of NMVOCs exhibited strong monthly variations, with higher emissions mainly in summer because of the enhanced 487 

NMVOC emissions from biogenic sources.  488 

4.2 Top-down estimated emission changes of different air pollutants 489 

4.2.1 Emission changes of particular matter 490 

Figure 6 shows the top-down estimated emission changes of PM2.5 and PM10 over China during two clean air action 491 

periods. Both PM2.5 and PM10 emissions decreased substantially, by 44.3% and 21.2% respectively, from 2013 to 2020. On 492 

the contrary, the top-down estimates showed increases of PM2.5 and PM10 emissions in 2014 and 2015, but this would be a 493 

spurious trend caused by the changes of observation sites as we discussed in Text S2. Therefore, the emissions in 2013 and 494 

2014 were discarded to prevent the spurious trends. According to Fig. 6, the PM2.5 emissions decreased by 14.5% from 2015 495 
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(15.0 Tg) to 2017 (12.8 Tg), and the reduction in emissions was roughly uniform throughout the period, which was about 8% 496 

compared to previous years. The PM10 emissions showed a smaller reduction rate (−7.2%) than that of PM2.5, decreasing from 497 

40.1 Tg in 2015 to 37.2 Tg in 2017. Compared with the emission reduction rate during 2015–2017, both PM2.5 and PM10 498 

showed larger emission reduction rates during 2018–2020, estimated to be 27.2% and 25.5%, respectively. The emission 499 

reductions in each year were also larger, especially for PM10. For example, PM2.5 and PM10 emissions reduced by about 19.3% 500 

and 14.0% in 2019 compared to 2018. This may have been due to that in addition to the strict controls imposed on the industrial 501 

and power sectors during the 2013–2017 action period, the residential emissions have been strengthened during the 2018–502 

2020 action period. In particular, “coal-to-electricity” and “coal-to-gas” strategies were vigorously implemented in northern 503 

China during the 2018–2020 action to reduce coal consumption and related air pollutant emissions (Liu et al., 2016; Wang et 504 

al., 2020a). Thus, our inversion results confirm the effectiveness of the controls on residential emissions in terms of reducing 505 

the emissions of PM2.5 and PM10. In addition, the control of non-point sources, such as blowing-dust emissions, was also 506 

strengthened during the 2018–2020 action period, which is consistent with the faster reduction of PM10 emissions during 2018–507 

2020. The annual trends of PM2.5 and PM10 emissions were also calculated in China using the Mann–Kendall trend test and 508 

the Theil–Sen trend estimation method, the results of which are summarized in Table 4. The calculation of emission trends can 509 

help extend the existing emission datasets forward in time to produce up-to-date products. The top-down estimated trends of 510 

PM2.5 and PM10 emissions were −1.4 and −2.6 Tg/year during 2015–2020, attributable to the strict emission control measures 511 

imposed during the two clean air action plans. As mentioned, the decreasing trends were larger during 2018–2020 (−1.5 and 512 

−4.6 Tg/year) than during 2015–2017 (−1.1 and −1.5 Tg/year). 513 

On the regional scale (Fig. S3), it can be clearly seen that the PM2.5 emissions decreased consistently over all regions, by 514 

59.8% in NCP, 49.6% in SE, 39.5% in NE, 35.8% in SW, 33.2% in NW, and 41.0% in Central, from 2015 to 2020. The NCP 515 

region showed the largest reduction in emissions among the six regions, with its emission reduction rate being almost larger 516 

than 10% in each year. This is consistent with the strictest emission control policies having been imposed over the NCP region. 517 

The SE region showed a similar emission reductions to the NCP region, with its emission reduction rate being larger than 10% 518 

in most years. Obvious increases of PM2.5 emissions could be found over the NW region from 2013 to 2015 owing to the 519 

increase in the number of observation sites in those years. After 2015, PM2.5 emissions generally decreased over the NW region, 520 

while there was a slight rebound in PM2.5 emissions in 2016 and 2018, possibly due to the influences of the errors in fine dust 521 

emission. The Central region showed different characteristics of emission changes to the other regions insofar as it showed 522 

little change in PM2.5 emissions during 2015–2018 but large reductions in 2019. This may be consistent with the control of 523 

emissions over the Fenwei Plain area (the part of the Central region where the emission intensity is largest) being weak during 524 

the 2013–2017 action plan but strengthened during the 2018–2020 action plan. In terms of the PM2.5 emission trends over the 525 

different regions, the calculated PM2.5 emission trends were about −0.32 Tg/year in NCP, −0.32 Tg/year in SE, −0.24 Tg/year 526 

in NE, −0.21 Tg/year in SW, −0.09 Tg/year in NW, and −0.15 Tg/year in Central, from 2015 to 2020. 527 

The changes of PM10 emissions were generally similar to those of PM2.5, i.e., with decreases in all regions from 2015 to 528 

2020 (Fig. S4). The top-down estimated PM10 emission reductions from 2015 to 2020 were about 3.5 Tg (40.0%) in NCP, 2.6 529 

Tg (35.5%) in SE, 3.0 Tg (36.6%) in NE, 2.0 Tg (35.9%) in SW, 1.0 Tg (25.3%) in NW, and 1.3 Tg (21.6%) in Central; and 530 

the calculated trends were about −0.64 Tg/yr, −0.52 Tg/yr, −0.51 Tg/yr, −0.40 Tg/yr, −0.20 Tg/yr, and −0.27 Tg/yr, 531 

respectively. However, due to the influences of the changes in the number of observation sites, the PM10 emissions over the 532 

NE, SW and NW regions increased substantially from 2013 to 2015, while they decreased in almost all years after 2015. 533 

Different from the other regions, the Central region showed increases in PM10 emissions from 2015 to 2018, by about 0.92 Tg 534 

(14.9%), but substantial decreases in 2019 and 2020. The result also shows that most PM10 emission reductions were achieved 535 

during the 2018–2020 action plan. According to CAQIEI, the PM10 emissions decreased by 0.64–2.3 Tg (17.4–31.8%) from 536 

2018 to 2020, which accounted for 48.4–169.0% of the total reduction in emissions from 2015 to 2020. This again emphasizes 537 

the effectiveness of the control of blowing-dust emissions during the 2018–2020 action plan.  538 
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4.2.2 Emission changes of gaseous air pollutants 539 

4.2.2.1 SO2 and CO 540 

Figure 7 shows the emission changes of different gaseous air pollutants in China from 2013 to 2020. Similar to the PM 541 

emissions, SO2 and CO emissions decreased continuously during the two action plan periods, with top-down estimated 542 

emission reductions of about 9.6 Tg (54.1%) and 166.3 Tg (35.7%) for SO2 and CO from 2015 to 2020, respectively. 543 

Meanwhile, both SO2 and CO showed a significant decreasing trend from 2015 to 2020, with estimated trends of approximately 544 

−2.1 Tg/yr and −36.0 Tg/yr, respectively (Table 5). The reductions in SO2 and CO emissions are closely consistent with the 545 

strict emission control measures imposed during the action plan periods, such as the phasing out of outdated industrial capacity 546 

and high-emitting factories, the strengthening of emission standards for industry and the power sector, the elimination of small 547 

coal-fired industrial boilers, and the replacement of coal with cleaner energies, which reflects the effectiveness of the emission 548 

control measures during the two action plan periods. Reductions of SO2 emission were generally steady during the two action 549 

plan periods, which were approximately 4.2 Tg (23.8%) from 2015 to 2017 and 2.5 Tg (23.5%) from 2018 to 2020. However, 550 

CO showed a different emission reduction rate during the two action plan periods, with its emission reductions (67.1 Tg, 18.3%) 551 

during 2018–2020 being larger than those (45.6 Tg, 9.8%) during 2015–2017. This contrast may reflect the different emission 552 

control policies during the two clean air action periods, as well as the different emission distributions among the sectors 553 

between SO2 and CO. According to the estimates of Zheng et al. (2018), the share of emissions from the industrial and power 554 

sector for SO2 (77%) is nearly double that for CO (39%). Thus, the smaller reduction of CO emissions than that of SO2 during 555 

2015–2017 provides evidence that the 2013–2017 action plan mainly focused on controlling the emissions from the industrial 556 

and power sectors. During the 2018–2020 action plan, strict control measures targeted on the residential and transportation 557 

sectors were also implemented, which together account for 61% of CO emissions but only 23% of SO2 emissions. As a result, 558 

CO showed a larger emission reduction rate during 2018–2020, while the emission reduction rate for SO2 was similar to that 559 

during 2015–2017. The calculated trends of SO2 and CO emissions during the two action plans are presented in Table 4, which 560 

are −2.1 Tg/yr and −1.3 Tg/yr for SO2, and −22.8 Tg/yr and −33.5 Tg/yr for CO, respectively.  561 

The reduction of SO2 and CO emissions was also evident on the regional scale (Fig. S5 and S6). According to the top-562 

down estimation, the reduction of SO2 emissions ranged from 0.44 to 2.42 Tg (41.7–69.9%) from 2015 to 2020, with the NCP 563 

region exhibiting the largest reductions. The calculated decreasing trend of SO2 emissions was also significant over all regions, 564 

ranging from −0.08 Tg/yr over the NW region to −0.57 Tg/yr over the NCP region (Table 5). With regards to the emission 565 

reduction rate during the different action plans, the results suggest that the emission reduction rate of SO2 was higher during 566 

2015 – 2017 (by 20.8–39.8%) than that during 2018–2020 (16.6–29.0%) over the NCP, SE, NE and SW regions. This may 567 

have been because, after the strict emission controls imposed upon industry and power plants during the 2013–2017 action 568 

plan, the room for further reductions in SO2 emissions become smaller during the 2018–2020 action plan over these regions. 569 

Although residential and vehicle emissions were controlled more strictly during the 2018–2020 action plan, in total they 570 

account for ~20% of anthropogenic SO2 emissions in China (Zheng et al., 2018). Thus, the enhanced reductions in SO2 571 

emissions from the residential and transportation sectors may not have been able to fully compensate for the weakened 572 

reductions from the industrial and power sectors, leading to a smaller SO2 emission reduction rate over these regions. In 573 

contrast, the SO2 emission reduction rate during 2018–2020 (31.1–34.8%) was higher than that during 2015–2017 (14.1–574 

20.4%) over the NW and Central regions. This may have been due to the fact that the emission controls over the NW and 575 

Central regions were relatively weak during the 2013–2017 action plan (as also evidenced by the emission reduction rates of 576 

other species) owing to its less-developed economy. During the 2018–2020 action plan, the emission controls over these two 577 

regions were strengthened, which led to their higher emission reduction rates. Accordingly, the enhanced SO2 emission 578 

reduction rates over the NW and Central regions compensated for the weakened reduction rates over the other regions, leading 579 

to a steady SO2 emission reduction rate on the national scale.  580 
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The reductions of CO emissions from 2015 to 2020 were approximately 14.9–42.3 Tg (21.6–51.4%) over the different 581 

regions of China, with significant decreasing trends ranging from −3.0 to −8.7 Tg/yr (Fig. S6 and Table 5). Consistent with 582 

the comparisons of national CO emission reduction rates between the two action plans, the emission reduction rates during 583 

2015–2017 (4.4–24.6%) were estimated to be smaller than those during 2018–2020 (12.2–24.6%) over all the different regions 584 

except the Central region, where the CO emission reduction rate was similar during the two action plans (Fig. S6).  585 

4.2.2.2 NOx and NMVOCs 586 

The top-down estimated NOx and NMVOC emissions showed different changes to the other four species, by increasing 587 

during 2015–2017 but declining during 2018–2020. Specifically, NOx emissions increased slightly by 5.9% from 2015 (25.2 588 

Tg) to 2017 (26.6 Tg), with a non-significant increasing trend of 0.74 Tg/yr. Then, NOx emissions began to decrease in 2018, 589 

with a top-down estimated emission reduction and calculated trend of approximately 3.1 Tg (12.7%) and −1.6 Tg/yr, 590 

respectively, from 2018 to 2020. NMVOCs showed stronger emission increases than did NOx, with top-down estimated 591 

emission increases of approximately 12.7 Tg (27.6%) and a calculated emission trend of about 6.3 Tg/yr from 2015 to 2017. 592 

Similar to NOx, NMVOC emissions began to decrease after 2018, with a top-down estimated reduction of approximately 2.6 593 

Tg (−4.4%) from 2018 to 2020, and a calculated trend of about −1.3 Tg/yr.  594 

The increases of NOx and NMVOC emissions during 2015–2017 suggest that the 2013–2017 action plan may not have 595 

achieved desirable mitigation effects on these two species. For NOx emissions, the upward trend may have been associated 596 

with the following factors. On the one hand, vehicle exhaust is one of the most important sources of NOx in China, accounting 597 

for 31% of all NOx emissions nationally (Zheng et al., 2018). From 2013 to 2017, the number of vehicles in China continued 598 

to increase and reached 310 million in 2017, approximately 33.5% higher than in 2013 (MEE, 2017), which led to increases 599 

of NOx emissions from vehicles in China. On the other hand, although the 2013–2017 action plan was effective in reducing 600 

the NOx emissions from coal-fired power plants by promoting denitrification facilities and an ultra-low emission standard, the 601 

mitigation impacts on industrial NOx emissions may have been relatively small. For example, Wang et al. (2019a) compiled a 602 

unit-based emissions inventory for China’s iron and steel industry from 2010 to 2015, based on detailed survey results of 603 

approximately 4900 production facilities in mainland China. They found that there were almost no NOx control measures in 604 

China’s iron and steel industry during 2010–2015, resulting in a 12.4% increase in China’s NOx emissions from the iron and 605 

steel industry in 2015 compared to 2010. In addition, although the penetration rate of denitrification facilities in China’s cement 606 

industry reached 92% in 2015, the actual operating rate of denitrification facilities in the cement industry was not desirable, 607 

due to the lack of online emission monitoring systems. According to the research results of the Ministry of Ecology and 608 

Environment, 800, 1300, and 1400 cement production kilns were equipped with selective non-catalytic denitrification facilities 609 

from 2013 to 2015, but the actual operating rates were only 51%, 54% and 73%, respectively (Liu et al., 2021). In addition, 610 

the new precalciner kilns used in the cement industry have a higher NOx emission factor, such that the shift from traditional 611 

vertical kilns to precalciner kilns has to some extent increased the cement industry’s emissions of NOx (Liu et al., 2021). Thus, 612 

there is evidence that the mitigation effects of the industrial control measures on NOx emissions may not be as significant as 613 

expected. Overall, the increased number of vehicles may have offset the emission mitigation effects brought about by the 614 

control of power plants, and the mitigation effects of controlling industrial NOx emissions were also undesirable. Consequently, 615 

NOx emissions in China may not have decreased, and even increased slightly, during the 2013–2017 action plan. Figure S7 616 

further shows the changes in NOx emissions over different regions of China, revealing that NOx emissions over the NCP, SE, 617 

NE and SW regions were roughly unchanged (by less than 5%) from 2015 to 2017, while they increased over NW (18.6%) 618 

and Central (17.5%). This is consistent with previous results and indicates that NOx emissions may have increased over the 619 

NW and Central regions, possibly due to their increased human activities and weak emission controls. 620 

In terms of NMVOC emissions, since the inversion results did not differentiate between anthropogenic and biogenic 621 

sources, the changes in NMVOC emissions may have been related to both anthropogenic and biogenic emissions. With respect 622 
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to anthropogenic emissions, previous bottom-up studies have suggested that China’s NMVOC emissions did not decline during 623 

the 2013–2017 action plan, due to the lack of effective control measures on the chemical industry and solvent use (Zheng et 624 

al., 2018; Li et al., 2019c). According to the estimates of Li et al. (2019c), China’s NMVOC emissions from solvent use 625 

increased by 11.1% in 2017 compared to those in 2015. Meanwhile, the increase in the number of vehicles in China may also 626 

have led to an increase in NMVOC emissions from transportation. Thus, the increases of NMVOC emission during 2015–627 

2017 estimated by our inversion inventory may be related to the increases in anthropogenic NMVOC emissions from the 628 

chemical industry, solvent use, and vehicles. For the trends of biogenic NMVOC emissions, the CAMS global emission 629 

inventory shows that there were only little changes in the biogenic NMVOC emissions in China from 2013 to 2018 (Sect. 630 

4.3.3), suggesting little contributions of the biogenic sources to the increased NMVOC emission in China. Figure S8 further 631 

shows the changes in NMVOC emissions over different regions of China, which suggests consistent increases in NMVOC 632 

emissions from 2015 to 2017 over different regions. According to the top-down estimations, NMVOC emissions increased by 633 

30.5%, 25.2%, 18.5%, 10.9%, 50.5% and 63.1% over the NCP, SE, NE, SW, NW and Central regions, respectively. Again, 634 

the NW and Central regions exhibited the largest emission increases among the six regions, which is consistent with their 635 

elevated levels of human activity and weak emission controls. 636 

The decrease in NOx and NMVOC emissions after 2018 suggests that the emission control strategy of the Chinese 637 

government had reached a point of optimization. The 2018–2020 action plan not only strengthened the controls over the 638 

industrial and power sectors, but also the transportation sector, especially for diesel vehicles with high NOx emissions. For 639 

example, the Chinese government released the “Action Plan for the Control of Diesel Trucks”, and vigorously promoted an 640 

adjustment of the transportation structure of China by gradually improving the availability of rail transport. As a result, there 641 

was a downward trend in NOx emissions in China. The top-down estimated reductions of NOx emissions were approximately 642 

0.81 Tg (17.2%) over NCP, 0.98 Tg (14.0%) over SE, 0.37 Tg (9.4%) over NE, 0.51 Tg (12.2%) over SW, 0.13 Tg (11.0%) 643 

over NW, and 0.32 Tg (9.2%) over Central (Fig. S7). The decrease in NMVOC emissions after 2018 may on the one hand 644 

have been related to the strengthening of vehicle controls during the 2018–2020 action plan, whilst on the other hand it may 645 

have been related to the promotion of clean heating plans in the northern region, which reduced the emissions of NMVOCs 646 

from residential sources. However, the decreases in NMVOC emissions were smaller than those in NOx, which were estimated 647 

to be 0.84 Tg (6.9%) over NCP, 0.47 Tg (2.8%) over SE, 0.98 Tg (10.1%) over NE, and 0.53 Tg (14.1%) over NW (Fig. S6). 648 

Different from other regions, the NMVOC emissions over the SW and Central regions remained almost unchanged during the 649 

2018–2020 action plan (Fig. S8).  650 

4.2.3 Changes in the distribution pattern of emissions in China 651 

Due to the different emission control intensities over the different regions of China, the emission distribution patterns of 652 

the different species may also have been altered, which could have influenced the distributions of air pollution in China. Based 653 

on CAQIEI, we further investigated the emission distribution patterns, as well as their changes, during the two action plans. 654 

Maps of the emission changes of different species during 2015–2017 and 2018–2020 are presented in Fig. 8. The shares of 655 

emissions in 2015, 2017 and 2020 by each subregion of China are also presented (Fig. 9). It can be seen that the emission 656 

changes during the 2015–2017 were more heterogenous than those during 2018–2020. The air pollutant emissions after the 657 

2018–2020 action plan showed consistent reductions over most regions of China, while there were obvious emission increases 658 

detected from 2015 to 2017. This is consistent with the different emission control effects during the two clean air action plans 659 

as mentioned in previous sections. Due to its strictest emission control policies, the NCP region showed consistent emission 660 

reductions of SO2, NOx, CO, PM2.5 and PM10 during the two clean air action plans. Accordingly, the shares of emissions in the 661 

NCP region continued to decrease during the two action plan periods (Fig. 9). For example, the share of SO2 emissions in the 662 

NCP region decreased from 19.4% to 15.4% during the period of 2015–2017, and from 15.4% to 12.7% during the 2018–2020 663 

action plan. In contrast, NMVOC emissions increased obviously over the NCP region from 2015 to 2017, and decreased during 664 
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2018–2020. However, its share did not change significantly, being roughly 20% throughout both periods. As for other regions, 665 

increases of SO2, NOx, PM2.5, PM10 and NMVOC emissions during 2015–2017 could be found over the Central region. More 666 

specifically, the emission increases were mainly located in the Fenwei Plain area of the Central region, which was due to the 667 

fact that this area was not included as a key region of emission controls during the 2013–2017 action plan. However, the 668 

Fenwei Plain area was added as a key emission control region during the 2018–2020 action plan, which is consistent with the 669 

emission reductions for these species over the Central region (Fig. 8). As a result, the shares of SO2 and PM2.5 emissions in the 670 

Central region increased during 2015–2017 but decreased during 2018–2020 (Fig. 9). However, the shares of NOx, PM10 and 671 

NMVOC emissions continued to increase over the Central region during the two clean air action plans, which suggests larger 672 

roles of air pollutant emissions in that region. In contrast, the share of CO emissions in the Central region continued to decrease 673 

in the two action plans, from 17.7% in 2015 to 13.4% in 2020.  674 

In terms of the shares of emissions in eastern and western China, the top-down estimation suggests an increased share of 675 

NOx, PM2.5, PM10 and NMVOC emissions in western China after the two clean air action plans (Fig. 9), which indicates slower 676 

emission reductions for these species in western China. However, the share of CO emissions in western China was reduced 677 

after the two clean air action plans. Although the share of SO2 emissions in western China increased during 2015–2017, it 678 

turned to a decrease during 2018–2020.  679 

4.3 Comparisons with different emission inventories 680 

In this section, the CAQIEI is compared with the previous long-term bottom-up and top-down emission inventories in 681 

China to validate our inversion results and provide the clues for the potential uncertainty in the current air pollutant emission 682 

inventories. The bottom-up emission inventories used in the comparison include MEIC (Zheng et al., 2018), ABaCAS (Li et 683 

al., 2023), HTAPv3 (Crippa et al., 2023), EDGARv6 (Jalkanen et al., 2012) and CEDS (Mcduffie et al., 2020), while the top-684 

down emission inventory is obtained from the updated Tropospheric Chemistry Reanalysis (TCR-2) (Miyazaki et al., 2020b). 685 

However, it is difficult to directly compare our inversion results with these emission inventories considering that the inversion 686 

emission includes both anthropogenic and natural emissions. To better compare our inversion results with previous inventories, 687 

the natural emission sources, including soil NOx emissions and biogenic emissions obtained from the CAMS global emission 688 

inventory (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview; last 689 

accessed 26 July 2023) and the biomass burning emissions obtained from the Global Fire Assimilation System (GFAS) (Kaiser 690 

et al., 2012) are taken as a reference to account for the influences of natural sources. The CAMS and GFAS emission inventory 691 

are used because they are state-of-art natural emission inventories and can provide us with independent long-term estimations 692 

of natural emissions. Since the latest year of most emission inventories is 2018, the comparisons were conducted between 2015 693 

and 2018. Note that due to the complexity in the estimations of natural sources, significant uncertainty exists in the estimated 694 

natural emissions. As a result, the comparison results would be sensitive to the used natural emission inventories, especially 695 

for the species with large amount of natural emission, such as the NMVOC and particulate matter. Therefore, it should be 696 

aware of that the comparison conducted here and the derived implications are on the basis of the natural emissions estimated 697 

by CAMS and GFAS. In addition, the natural dust emissions are not considered in the comparisons, which would influence 698 

the comparisons of the PM emissions. 699 

4.3.1 Magnitude 700 

4.3.1.1 NOx 701 

Figure 10 shows the average emissions of different air pollutants in China during 2015–2018 obtained from CAQIEI and 702 

the previous emission inventories plus the natural sources we considered. Comparisons of the emission estimations on the 703 

regional scale and gridded scale are also presented (Fig. 11 and Fig. S9). The results show that the CAQIEI has slightly higher 704 
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NOx emissions in China than the other inventories. Considering that CAQIEI includes both anthropogenic and natural sources, 705 

this discrepancy could be explained by the natural NOx sources. According to the estimations of CAMS and GFAS, the soil 706 

and biomass-burning NOx emissions are approximately 1.9 and 0.08 Tg/yr, which explains well the higher NOx emissions 707 

given by CAQIEI. After consideration of the natural sources, MEIC, HTAPv3 and EDGARv6 agree well with our inversion 708 

results on the national scale, with their differences within 1.0–7.4%. The NOx emission estimated by ABaCAS, CEDS and 709 

TCR-2 are slightly lower than CAQIEI and other emission inventories. However, the differences between CAQIEI and these 710 

inventories were found to range from 15.9% to 21.3%, which is within the previous estimated uncertainties of NOx emissions 711 

in China (Kurokawa and Ohara, 2020; Li et al., 2017b; Li et al., 2023). These results suggest that the total NOx emissions in 712 

CAQIEI are generally consistent with the current estimations of the anthropogenic and natural NOx emissions in China. On 713 

the regional scale, the top-down estimated NOx emissions show good agreement with the previous emission inventories over 714 

the NCP and SE regions, with their differences ranging from 1.0%–26.8%, suggesting good consistency in the estimations of 715 

NOx emissions over these two regions. This makes sense because NCP and SE are the two most developed regions in China, 716 

and where surveys and research on emissions are most sufficient. The differences are larger over the other regions. In the NE 717 

region, CAQIEI has higher NOx emissions than the other inventories by 5–70%, suggesting higher anthropogenic or biomass-718 

burning emissions over there. The estimations made by MEIC, CEDS and TRC-2 are closer to our estimates, with their 719 

differences being approximately 5.4–23.3%, while the differences are larger for ABaCAS, HTAPv3 and EDGARv6 (36.7–720 

70.0%). Over the SW and Central regions, there are large diversity in the previous emission inventories with estimations by 721 

HTAPv3 and EDGARv6 almost double those of MEIC, ABaCAS, CEDS and TCR-2. The CAQIEI suggests a midst estimation 722 

which is within the range of previous emission inventories. In the NW region, CAQIEI is consistently higher than other 723 

inventories, by 22.7–64.2%, which suggests a potential missing source of the NOx emissions over this region. 724 

4.3.1.2 SO2 725 

For SO2 emissions, since natural sources contribute little (only about 0.02 Tg/yr) to them in China, the discrepancies 726 

between CAQIEI and previous emission inventories are mainly attributable to the differences in anthropogenic emissions. As 727 

shown in Fig. 10, CAQIEI agrees well with HTAPv3 and CEDS on the national scale, with their differences being 728 

approximately ±2%, but is higher than MEIC, ABaCAS and TCR-2 by 17.4–32.9%. In contrast, EDGARv6 may have a 729 

positive bias in its estimated SO2 emissions, which are roughly double those of CAQIEI and other inventories. On the regional 730 

scale, our results agree well with MEIC, ABaCAS, HTAPv3, CEDS and TCR-2 over the NCP region, with their differences 731 

ranging from 1.0 to 18.1%. In the SE region, CAQIEI suggest lower SO2 emissions than previous emission inventories, except 732 

TCR-2. The differences are relatively smaller for the MEIC and ABaCAS inventories by around −15%, but larger for HTAPv3, 733 

EDGARv6 and CEDS (ranging from −47.3% to −113.2%). In contrast, CAQIEI suggests higher SO2 emissions than all 734 

previous emission inventories over the NE region by about 14.8–132.0%, indicating possible missing sources over there. 735 

Similarly, the CAQIEI and HTAPv3 suggests higher SO2 emissions than the MEIC, ABaCAS, CEDS and TCR-2 by 27.0–736 

75.6% in the NW region, and by 44.3–77.7% in the Central region. 737 

4.3.1.3 CO 738 

For CO emissions, CAQIEI is substantially higher than the previous emission inventories, with the estimated CO 739 

emissions of CAQIEI being about three times higher than the bottom-up inventories and more than double those of the top-740 

down estimates made by TCR-2. According to GFAS, the average rate of CO biomass-burning emissions in China from 2015 741 

to 2018 was about 3.4 Tg/yr. Yin et al. (2019), based on MODIS fire radiative energy data, also estimated China’s CO biomass-742 

burning emissions to be about 5.0 (2.3–7.8) Tg/yr. The biogenic CO emissions obtained from the CAMS global emission 743 

inventory were approximately 2.3 Tg/yr. According to these estimates, natural CO emissions in China have a magnitude of 744 

about 101, which is rather small compared with anthropogenic sources, and cannot explain the large discrepancies between 745 
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CAQIEI and other inventories. Thus, the CAQIEI suggest much higher anthropogenic CO emissions in China than the existing 746 

emission inventories. In fact, the potential underestimation of CO anthropogenic emissions has been investigated in previous 747 

studies and is regarded as the main reason for the negative bias in global or hemispheric CO simulations (Stein et al., 2014; 748 

Gaubert et al., 2020). Regionally, Kong et al. (2020) compared a suite of 13 modeling results from six different CTMs—749 

namely, NAQPMS, CMAQ, WRF-Chem, NU-WRF, NHM-Chem and GEOS-Chem—with observations over the NCP and 750 

Pearl River Delta regions under the framework of the Model Inter-Comparison Study for Asia III (MICS-Asia III), and found 751 

consistent negative biases in the CO simulations of all models, pointing toward potential underestimations of CO emissions in 752 

China. Previous inversion studies have also reported higher a posteriori CO emissions than their a priori emission inventories 753 

(Bergamaschi et al., 2000; Miyazaki et al., 2012; Petron et al., 2002; Petron et al., 2004; Tang et al., 2013; Gaubert et al., 2020). 754 

For example, the constrained CO emissions reported by Gaubert et al. (2020) are 80% higher than the CEDS over the northern 755 

China. Our inversion results are consistent with these inversion studies, suggesting higher anthropogenic CO emissions in 756 

China. However, direct evidence in support of such high CO emissions in China reported by our study is still limited currently. 757 

Thus, we compiled more inversion results within the period of 2013–2020 from previous studies to further validate our 758 

inversion results, which are summarized in Table 6. It can be clearly seen that there are large differences in the estimated CO 759 

emissions between the inversion results based on surface observations and those based on satellite data. Our inversion results 760 

are consistent with the results of Feng et al. (2020), with China’s CO emissions in December 2017 estimated at approximately 761 

1500.0 kt/day and 1388.1 kt/day, respectively. In addition, Feng et al. (2020) used the CMAQ model to constrain CO emissions, 762 

which is different from the model we used. This may indicate that the model uncertainty would not significantly influence the 763 

inversion results of CO emissions. However, the top-down estimated CO emissions based on satellite data (163.6–553.4 kt/day) 764 

are much lower than those based on surface observations, although they are all higher than their a priori emissions. The lower 765 

CO emission estimations based on satellite data assimilation may be attributable to the lower sensitivities of satellite data to 766 

surface concentrations, suggesting that the assimilation of satellite data alone may not be adequate to correct the negative 767 

biases in the a priori emissions. This deficiency has also been revealed by Miyazaki et al. (2020b), who found undercorrected 768 

surface CO emissions in the extratropic of the Northern Hemisphere in TCR-2. However, the assimilation of surface 769 

observations can be influenced by the uncertainties in the modeled vertical mixing, which could lead to the uncertainties in the 770 

inversed CO emissions based on surface observations. Therefore, the inversed CO emissions in CAQIEI could be partly 771 

supported by previous inversion studies based on surface observations, but more evidence is still needed to justify the 772 

magnitude of the inversed CO emissions. Besides anthropogenic sources, the chemical production of CO via oxidation of 773 

methane (CH4) and NMVOCs, as well as the CO sinks via the hydroxyl radical (OH) reaction, also influence the simulation 774 

of CO (Stein et al., 2014; Gaubert et al., 2020; Müller et al., 2018). Due to the important role of OH in the chemical production 775 

and sinks of CO, the inversion of CO emissions is sensitive to the modeled OH abundance and the emissions of CH4 and 776 

NMVOCs. According to the estimation of Müller et al. (2018), the magnitude of inversed CO emissions in China could differ 777 

by more than 40% when different levels of OH concentrations are used in the model. Thus, the much higher estimations of 778 

CO emissions in our inversion results may also be partly explained by the underestimation of CO chemical production or the 779 

overestimation of the CO sink. 780 

4.3.1.4 PM2.5 781 

In terms of PM2.5, the CAQIEI suggests higher emissions than ABaCAS, HTAPv3 and EDGARv6 by about 20%, and by 782 

47.7% than MEIC on the national scale. Larger discrepancies mainly occur in the NE and NW regions, where CAQIEI is about 783 

27.2–114.9% and 83.2–143.2% higher than the previous inventories. The differences in the estimated PM2.5 emissions may be 784 

related to the uncertainties in the biomass-burning or anthropogenic sources in the NE region (Wu et al., 2020b), while in the 785 

NW region, the errors in the fine-dust emissions may also contribute to the differences in the estimated PM2.5 emissions there. 786 

The differences in the estimated PM2.5 emissions are relatively smaller in the NCP and SE regions, ranging from −18.9% to 787 
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20.4%, suggesting better agreement in the estimated PM2.5 emissions over these two regions. In the SW region, CAQIEI is 788 

closer to HTAPv3 and EDGARv6, with their differences being about 6.3% and −9.5% respectively, and is higher than MEIC 789 

and ABaCAS by 54.2% and 28.6%, suggesting higher uncertainty in the estimated PM2.5 emissions over there. 790 

4.3.1.5 PM10 791 

For PM10 emissions, it is difficult to directly compare CAQIEI with previous emission inventories since CAQIEI not only 792 

contains anthropogenic and biomass-burning emissions, but also coarse-dust emissions. As a result, the estimated emissions 793 

of PM10 by CAQIEI are substantially higher than those by previous inventories, especially over the NW, Central and NE 794 

regions (Fig. 11), which are the typical natural windblown dust-source regions in China (Zeng et al., 2020). Besides the 795 

naturally windblown dust of arid desert regions (Prospero et al., 2002), large amounts of coarse-dust emissions also stem from 796 

anthropogenic sources, including anthropogenic fugitive, combustion and industrial dust from urban sources (AFCID) (Philip 797 

et al., 2017), and anthropogenic windblown dust from human-disturbed soils due to changes in land-use practices, deforestation 798 

and agriculture (Tegen et al., 1996). Therefore, although the other regions are not typical natural windblown dust-source 799 

regions in China, there are still high levels of coarse dust emissions from anthropogenic sources there (also called “urban 800 

dust”), which may be the main reason for the large deviation in the estimated PM10 emissions between CAQIEI and previous 801 

inventories. On the one hand, although AFCID is included in MEIC, ABaCAS, HTAPv3 and EDGARv6, it is difficult for 802 

current bottom-up emission inventories to completely represent fugitive sources (Philip et al., 2017). On the other hand, the 803 

anthropogenic windblown dust emissions have not been included in current bottom-up emission inventories, which is an 804 

important source of coarse dust in urban areas according to the estimations of Li et al. (2016) and the another important 805 

contributor to the differences between CAQIEI and previous emission inventories.  806 

4.3.1.6 NMVOCs 807 

For NMVOC emissions, since CAQIEI includes both anthropogenic and natural sources, its estimated NMVOC emissions 808 

are much higher than those estimated by previous emission inventories. After consideration of natural sources, the CAQIEI 809 

suggests close estimations of the NMVOC emissions with the MEIC, HTAPv3 and CEDS inventories on the national scale, 810 

with their differences being about 1.5–12.5%. The estimated NMVOC emission by ABaCAS and EDGARv6 are slightly lower 811 

than CAQIEI by 17.8% and 24.6%, respectively. On the regional scale, the CAQIEI suggests higher NMVOC emissions over 812 

the northern China (NCP, NE and NW), with the top-down estimated NMVOC emissions about 30.4–81.4%, 27.3–72.1%, 813 

79.3–116.8%, and 8.7–57.5% higher than those of the previous emission inventories. In contrast, the CAQIEI suggests lower 814 

NMVOC emissions over the SE region, with the estimated NMVOC emissions of CAQIEI being about 21.2–27.6% lower 815 

than those of MEIC, ABaCAS, HTAPv3 and CEDS. These results are consistent with the previous inversion results based on 816 

the satellite observations, which suggest higher NMVOC emissions over the NCP region and lower NMVOC emissions over 817 

the south China (Souri et al., 2020). Over the SW region, CAQIEI shows good agreement with MEIC, ABaCAS and CEDS, 818 

with CAQIEI being slightly lower than these inventories by 1.0–8.9%, but is lower than HTAPv3 and EDGARv6 by about 819 

38.6% and 29.1%, respectively. Again, it should be noted that the comparisons of NMVOC emission are conducted on the 820 

basis of natural emissions estimated by CAMS and GFAS, and could be more sensitive to the used natural sources than other 821 

species considering the larger contributions of the natural source to the NMVOC emissions. 822 

4.3.2 Seasonality 823 

Figure 12 presents the monthly profiles of different air pollutants obtained from different emission inventories. Note that 824 

the natural sources have been added to the previous inventories to facilitate the comparisons. The results show that different 825 

emission inventories give similar monthly profiles of NOx and CO emissions, with higher emissions during wintertime and 826 

lower emissions during summertime, which suggests relatively lower uncertainty in the estimated monthly profiles for these 827 
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two species. For SO2 emissions, CAQIEI yields stronger monthly variation than the other inventories, with a higher proportion 828 

from January to March and lower proportion during summertime. Due to the influences of dust emissions, the top-down 829 

estimated PM2.5 and PM10 emissions show higher proportions than the other emission inventories during the spring season, 830 

especially for PM10. However, the proportion of emissions during autumn and winter are lower than in the other inventories. 831 

The monthly profiles of NMVOC emissions are generally consistent, with higher emissions during summer due to the enhanced 832 

biogenic emissions. However, the profile of CAQIEI is flatter than the previous inventories, and suggests a higher proportion 833 

during springtime. In addition, the timings of peak values of NMVOC emissions are also different between CAQIEI and the 834 

previous inventories, with CAQIEI showing peak values during May–July but the other inventories suggesting peaks during 835 

June–August. 836 

4.3.3 Emission changes during 2015–2018 837 

The top-down estimated emission changes of different air pollutants during 2015–2018 were also compared with previous 838 

emission inventories. Figure 13 shows the time series of the total emissions of different species from 2013 to 2020 obtained 839 

from the CAQIEI and other emission inventories. Comparisons of the emission changes over the regional scales are also 840 

presented in Fig. S10–S15. Before the comparison, we firstly analyze the trends of natural sources in China to investigate their 841 

influences on the emission changes of different species based on the CAMS emission inventory and GFAS. Note that we only 842 

consider the soil, biogenic and biomass-burning emissions for the natural sources; the trends of dust emissions in China are 843 

not analyzed, which may lead to uncertainty when comparing the emission changes of PM2.5 and PM10. As shown in Fig. S16, 844 

the natural sources of NOx and NMVOC emissions changed little during 2013–2018. The other species had small decreasing 845 

trends from 2013 to 2018. However, considering the small contributions of natural sources to their emissions, these small 846 

trends would not significantly influence their emission trends. For the dust emissions, previous studies have indicated a 847 

declining trend in dust activity in China from 2001 to 2020 (Wu et al., 2022; Wang et al., 2021), due to weakened surface wind 848 

and increased vegetation cover and soil moisture. These results suggest that the emission trends in the CAQIEI would be 849 

mainly driven by the anthropogenic sources for the gaseous air pollutants based on the estimations of CAMS and GFAS, while 850 

its estimated emission trends of PM2.5 and PM10 would be influenced by the declining trends in dust emissions in China, which 851 

should be noted when comparing the emission changes of PM2.5 and PM10. 852 

As shown in Fig. 14, all the emission inventories agree that the NOx, SO2, CO, PM2.5 and PM10 emissions in China were 853 

reduced from 2015 to 2018, except for the increases of CO emissions estimated by TCR-2, which confirms the effectiveness 854 

of the emission control policies implemented during the clean air action plans. Meanwhile, most emission inventories agree 855 

that SO2 is the species with the largest emission reduction rate, followed by PM2.5, indicating better emission mitigation effects 856 

of these two species (Fig. 14). However, the CAQIEI suggested lower emission reduction rates than the other emission 857 

inventories for most species, especially for NOx, PM10 and NMVOCs (Fig. 14). The estimated emission reduction rate of NOx 858 

obtained from CAQIEI is about −2.7%, which is lower than the values of MEIC (−9.7%), ABaCAS (−23.0%), HTAPv3 859 

(−13.0%) and CEDS (−9.0%). As we discussed in Sect. 4.2.2.2, the small reductions of NOx emission in CAQIEI would be 860 

related to the increased vehicle emissions and the undesirable mitigation effects of the industry control. In fact, these factors 861 

have been considered in some bottom-up emission inventories, such as MEIC. The differences between our inversion results 862 

and previous inventories thus reflect uncertainty in the quantifications of the effects of these factors on the NOx emissions due 863 

to the lack of sufficient statistics on mobile vehicle or other sectors. Our inversion results suggest larger adverse effects of 864 

these two factors on the reductions of NOx emissions in China. According to Fig. S17, the differences between CAQIEI and 865 

these inventories mainly occur in the SE, SW, NW and Central regions, with the emission reduction rate estimated by CAQIEI 866 

being substantially lower than those estimated by previous inventories. In particular, CAQIEI suggests increases of NOx 867 

emissions over the Central region, which is opposite to the previous emission inventories. Better agreement is achieved over 868 

the NCP and NE regions, with the emission reduction rate estimated by CAQIEI being closer to those of MEIC, HTAPv3 and 869 



22 
 

CEDS. The NOx emission reduction rates estimated by EDGARv6 (−3.3%) and TCR-2 (−1.7%) are closer to our results on 870 

the national scale, but they estimated lower NOx emission reduction rate than our estimate over the NCP and NE regions.   871 

Similarly, the emission reduction rate of PM10 obtained from CAQIEI (−10.8%) is lower than those estimated by MEIC 872 

(−27.9%), ABaCAS (−33.0%) and HTAPv3 (−27.8%) on the national scale (Fig. 14). A lower PM10 emission reduction rate 873 

of CAQIEI than these inventories also exist in the different regions of China, except SW (Fig. S17). In particular, different 874 

from previous emission inventories, CAQIEI suggests that PM10 emissions may have actually increased over the Central region. 875 

Considering that dust emissions may have decreased from 2015 to 2018 owing to weakened dust events (Wang et al., 2021), 876 

the increase in PM10 emissions over the Central region may reflect the increases in anthropogenic sources. Meanwhile, we also 877 

found that CAQIEI estimated the emission reduction rate of PM10 to be smaller than that of PM2.5. This is different from 878 

previous emission inventories, which show similar emission reduction rates for PM2.5 and PM10. Considering that PM10 879 

emissions include PM2.5 and PMC emissions, the lower emission reduction rate of PM10 than PM2.5 in CAQIEI suggests that 880 

PMC emissions may have decreased slower than PM2.5 emissions from 2015 to 2018. 881 

In terms of NMVOCs, most previous inventories, including MEIC, EDGARv6 and CEDS, suggest a weak decrease in 882 

China, with the estimated rates of change in emissions ranging from −0.8% to −4.6%. The emission reduction rate estimated 883 

by ABaCAS is larger, reaching up to −14.2%. In contrast, the CAQIEI suggests an opposite emission change to these 884 

inventories, with estimated NMVOC emissions increasing by 26.6% from 2015 to 2018. HATPv3 also suggests an increase in 885 

NMVOC emissions, but with a much lower rate of increase (2.7%). Similar results could also be found on the regional scale 886 

(Fig. S17), especially over the NCP, NE and Central regions, where NMVOC emissions could have increased by 38.0%, 38.3% 887 

and 60.0%, respectively, according to the estimates of CAQIEI. As we discussed in Sect. 4.2.2.2, the increases of NMVOC 888 

emission estimated in CAQIEI may be related to the increased anthropogenic NMVOC emissions from the chemical industry, 889 

solvent use, and vehicles. Therefore, similar to the NOx emissions, the differences between CAQIEI and previous inventories 890 

reflects the uncertainty in the quantifications of the impacts of these factors, and suggest larger adverse effects of these factors 891 

on the emission reductions of NMVOC emission than the previous inventories.  892 

The differences in the estimated emission reduction rates between CAQIEI and previous inventories are relatively smaller 893 

for SO2 and PM2.5 emissions. The emission reduction rate of SO2 estimated by CAQIEI is close to that estimated by MEIC and 894 

CEDS, ranging from −34.7% to −44.3%. ABaCAS and HTAPv3 estimate a larger emission reduction rate of about −58.5% 895 

and −53.7%, respectively. EDGARv6 and TCR-2 may underestimate the reduction rate of SO2, with estimates of only about 896 

−7.0% and −9.1%, respectively. This may be because EDGARv6 underestimates the FGD (flue-gas desulfurization devices) 897 

penetration or SO2 removal efficiencies of FGD in China. On the regional scale (Fig. S17), the top-down estimated SO2 898 

emission reduction rate agrees reasonably with that of MEIC over the NCP, NE and SE regions, but these inventories estimate 899 

different SO2 emission reduction rates over the SW, NW, and Central regions. The reduction rates estimated by MEIC over 900 

the SW and Central regions is higher than those given by CAQIEI, but lower over the NW region. The other emission 901 

inventories also give different emission reduction rates, suggesting large uncertainty in the estimated SO2 emission reduction 902 

rates over these three regions. In terms of PM2.5, CAQIEI’s estimated emission reduction rate agrees well with those of MEIC 903 

and HTAPv3 on the national scale, which is about 24–27% from 2015 to 2018. The emission reduction rate of PM2.5 estimated 904 

by EDGARv6 are lower than our estimates and other inventories, which were about 9%. On the regional scale, our results 905 

show good consistency with MEIC and HTAPv3 over the NCP, NE, SE and SW regions, but they have large differences over 906 

the NW and SW regions.  907 

Different from the other species, the CO emission reduction rate estimated by CAQIEI (−21.3%) is higher than in most 908 

of the previous inventories, including MEIC (−13.0%), ABaCAS (−11.6%), EDGARv6 (−4.7%), and CEDS (−11.7%), 909 

suggesting larger mitigation effects on CO emissions than other inventories. HTAPv3 agrees with our results, with an estimated 910 

emission reduction rate of about −22.0%. On the regional scale (Fig. S17), our result is consistent with MEIC over the NCP 911 

and SE regions, with estimated emission reduction rates for CO of around 24% and 15%, respectively, while in other regions 912 
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the emission reduction rate estimated by CAQIEI is higher than that estimated by MEIC. The TCR-2 shows opposite changes 913 

in CO emissions compared with the other inventories insofar as it suggests increases of CO emissions over different regions 914 

of China. Since the emissions in TCR-2 are constrained by satellite observations, the differences between our results and those 915 

of TCR-2 highlight that the observations used to constrain the emissions may have a large influence on the estimated emission 916 

changes. In this case, the estimated changes of CO emissions by CAQIEI are more consistent with those estimated by other 917 

bottom-up inventories. Considering this, the TCR-2 may have uncertainties in its estimated changes of CO emissions in China 918 

from 2015 to 2017, which could be related the suboptimal performance of the data assimilation caused by the underestimated 919 

background errors of CO or too short assimilation window for the CO emission estimates (Miyazaki et al., 2020). 920 

4.4 Uncertainty estimation of CAQIEI 921 

Finally, the uncertainty of the inversed emission inventory product is estimated in this section to facilitate users' 922 

understanding of the data's accuracy. Within the framework of EnKF, the analysis perturbation 𝐗𝐚 estimated by using Eq. (3) 923 

could provide the information regarding the uncertainty of the inversed emission inventory. The Coefficient of variation 924 

(hereinafter, CV), defined as the standard deviation divided by the average, with a larger value denoting higher uncertainty, is 925 

calculated based on the analysis perturbation to measure the uncertainty of the inverse emission inventory. Based on this 926 

method, the uncertainty (CV) of the a posteriori emission was estimated as follows: 92.3% (PM2.5), 88.8% (PM10), 26.7% 927 

(SO2), 46.8% (CO), 31.8% (NOx) and 65.5% (NMVOC). However, it should be noted that such uncertainty was only calculated 928 

under the framework of the EnKF constructed in this study, which is dependent on the assigned value of the a priori emission 929 

uncertainty, observation errors and the number of assimilated observations. In addition, we only considered the a priori 930 

emission uncertainty and the observation errors during the inversion. The influences of the other error sources, such as 931 

uncertainty in the chemistry transport model, meteorology simulations and the inversion method were not considered. 932 

Therefore, the current estimated uncertainty should be considered as a lower bound for the real uncertainty. More systematic 933 

analysis that thoroughly consider the uncertainty sources regarding the emission inversion should be conducted in future to 934 

give a more accurate estimation of the uncertainty in our products. 935 

5 Discussion and conclusion 936 

A long-term, top-down emissions inventory of major air pollutants in China was developed and validated in this study by 937 

assimilating surface observations from CNEMC using the modified EnKF method and NAQPMS. It includes gridded emission 938 

maps of NOx, SO2, CO, primary PM2.5, primary PM10, and NMVOCs in China from 2013 to 2020, on a monthly basis, with a 939 

horizontal resolution of 15 km × 15 km. This new top-down emissions inventory, named CAQIEI, provides new insights into 940 

the air pollutant emissions and their changes in China during the country’s two clean air action periods. The estimated total 941 

emissions for the year 2015 in China are 25.2 Tg of NOx, 17.8 Tg of SO2, 465.4 Tg of CO, 15.0 Tg of PM2.5, 40.1 Tg of PM10 942 

and 46.0 Tg of NMVOCs. Comparisons of CAQIEI with previous inventories, including MEIC, ABaCAS, HTAPv3, 943 

EDGARv6, CEDS and TCR-2, on the basis of the natural emissions obtained from CAMS and GFAS showed reasonable 944 

agreement for the estimation of NOx, SO2 and NMVOC emissions in China. The PM2.5 emissions obtained from CAQIEI (13.2 945 

Tg) are slightly higher than in the previous emission inventories (8.3–11.1 Tg), while the CO emissions estimated by CAQIEI 946 

(426.8 Tg) are substantially higher than in previous inventories (120.7–237.7 Tg). However, the reasons for such a large gap 947 

are still not clear, but might be attributable to both the underestimation of CO sources (e.g., anthropogenic, biomass-burning 948 

and chemical-production sources) (Bergamaschi et al., 2000; Miyazaki et al., 2012; Petron et al., 2002; Petron et al., 2004; 949 

Tang et al., 2013; Gaubert et al., 2020), and/or the overestimation of CO sinks in the model (Müller et al., 2018). In addition, 950 

comparisons with previous inversion studies suggest there are larger differences in the top-down estimated CO emissions based 951 

on surface and satellite observations. Our inversion results are consistent with previous inversions based on surface 952 
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observations, but are much higher than those based on satellite observations, suggesting large uncertainty in inversion-953 

estimated CO emissions in China. Therefore, more research is needed to better understand the reasons behind the negative 954 

biases in CO simulation, and to explain the differences between our results and those of previous inventories. Similar to 955 

situation with CO emissions, the PM10 emissions estimated by CAQIEI (37.7 Tg) are also substantially higher than in previous 956 

inventories (11.1–15.9 Tg). However, this will be mainly associated with the emissions of coarse dust, which were not included 957 

in previous inventories. The estimation of dust emissions in China is subject to high levels of uncertainty, with the estimated 958 

dust fluxes based on different dust emission schemes differing by several orders of magnitude (Zeng et al., 2020). Therefore, 959 

our inversion results could provide a reference for the magnitude of coarse-dust emissions in China, which could then help to 960 

reduce the large uncertainty in estimations of dust emissions in China. 961 

Several potential important deficiencies in current emission estimations were also indicated by CAQIEI on the regional 962 

scale. For example, the CAQIEI suggests substantially higher air pollutant emissions than the previous emission inventories 963 

over the NW and Central regions. Thus, the air pollutant issues may be more severe than we expected over these two regions. 964 

Meanwhile, our inversion results suggest higher NMVOC emissions over the northern China but suggest lower NMVOC 965 

emissions in southern China, which is consistent with the previous inversion studies based on the satellite. China is now facing 966 

increasingly severe O3 pollution and has an urgent need for a coordinated control of O3 and PM2.5. Our results may provide 967 

valuable information on the NMVOC emissions in China, which is important for a proper understanding of O3 pollution and 968 

the development of effective control strategies nationally. Higher emissions were also found in the NE region based on our 969 

inversion results. The NE region is a typical area for open-area biomass burning, with significant emissions from straw 970 

combustion (Wu et al., 2020b). The higher emissions estimated by our inversion result may indicate higher biomass-burning 971 

emissions over there. This is consistent with recent estimations of biomass-burning emissions by Xu et al. (2023) and Wu et 972 

al. (2020b), who showed higher biomass-burning emissions in China than previous estimations, including those of GFEDv4.1s 973 

(https://www.globalfiredata.org/data.html), FINNv1.5 (https://www.acom.ucar.edu/Data/fire/), and GFASv1.2 974 

(https://www.ecmwf.int/en/forecasts/dataset/global-fire-assimilation-system).  975 

Based on CAQIEI, we further quantified the emission changes of different air pollutants in China during the two clean 976 

air action plans. The results confirmed the effectiveness of these campaigns on the mitigation of air pollutant emissions in 977 

China, with estimated emission reductions of 15.1% for NOx, 54.5% for SO2, 35.7% for CO, 44.4% for PM2.5, and 33.6% for 978 

PM10 from 2015 to 2020. In contrast, NMVOC emissions increased by 21.0% from 2015 to 2020. Comparisons of the estimated 979 

emission reduction rates during the two clean air action plans suggested that emission reductions were larger during the 2018–980 

2020 than during 2015–2017. The estimated rates of change in emissions were 5.9% for NOx, −23.8% for SO2, −9.8% for CO, 981 

−14.5% for PM2.5, −7.2% for PM10, and 27.6% for NMVOCs during 2015–2017, which were smaller than the −12.1% for NOx, 982 

−23.5% for SO2, −18.3% for CO, −26.6% for PM2.5, −25.5% for PM10, and −4.5% for NMVOCs during 2018–2020. On the 983 

one hand, this is due to the fact that more sectors were controlled during the 2018–2020 action plan. Besides the industrial and 984 

power sectors, which were the main points of control in the 2013–2017 action plan, the residential sector, transportation sector, 985 

and non-point sources like blowing-dust emissions, were also strengthened in the 2018–2020 action plan. Consequently, the 986 

emission reduction rates of CO, PM2.5 and PM10 during 2018–2020 were higher than those during the 2015–2017 when the 987 

2013–2017 action plan was implemented. However, the reduction of SO2 emissions was similar during the two action plan 988 

periods. This is because most SO2 emissions stem from the industrial sector and power plants, which together contribute about 989 

77% of all emissions (Zheng et al., 2018). Thus, the additional control of other sectors in the 2018–2020 action plan may not 990 

have significantly impacted the mitigation of SO2 emissions. On the other hand, strict emission controls were implemented or 991 

strengthened in more areas of China during the 2018–2020 action plans. For example, the inversion results indicated that there 992 

were obvious increases of SO2, NOx, PM2.5, PM10 and NMVOC emissions during 2015–2017 over the Central region, 993 

especially in the Fenwei Plain area, where the emission controls were relatively weak during the 2013–2017 action plan. 994 

However, all species showed obvious emission reductions almost the whole China during the 2018–2020 action plan.  995 



25 
 

The estimated rates of change in emissions during 2015–2018 were also compared with those estimated by previous 996 

emission inventories. Although both CAQIEI and previous inventories showed declines of air pollutant emissions in China, 997 

the emission reduction rates estimated by CAQIEI were generally smaller than those estimated by previous inventories, 998 

especially for NOx, PM10 and NMVOCs, suggesting a smaller mitigation effects of the air pollution control measures than the 999 

previous emission inventories suggested. In particular, China’s NMVOC emissions were shown to have increased by 26.6% 1000 

from 2015 to 2018, especially over NCP (38.0%), NE (38.3%) and Central (60.0%). CO was found to be an exception insofar 1001 

as the emission reduction rate estimated by CAQIEI was larger than that of most previous emission inventories, except in the 1002 

NCP region. The estimated emission reduction rates of SO2 and PM2.5 were relatively closer to those of previous inventories, 1003 

suggesting better consistency in the estimated emission reduction for these two species.  1004 

Overall, the inversion inventory developed in this study could provide us with value information on the complex variations 1005 

of air pollutant emissions in China during its two recent clean air action periods, which could help improve our understanding 1006 

of air pollutant emissions and related changes in air quality in China. For example, the increases of O3 and nitrate 1007 

concentrations may be associated with the undesirable emission reduction effects of the 2013–2017 action plans. The estimated 1008 

lower NOx emission reduction rate by CAQIEI may also help explain the weak responses of nitrogen deposition fluxes to the 1009 

clean air action plans. Meanwhile, this top-down emissions inventory can be used to supply the input data for CTMs or server 1010 

as a comparable reference for future inversion studies based on other methods or observation data, which is expected to 1011 

improve the performance of model simulations and air quality forecasts, and facilitate the development of inversion method.  1012 

6 Limitations 1013 

However, due to the complexity of the emission estimation, it is inevitable that there are some limitations in our inversion 1014 

results. Here We summarise some issues that might affect the quality of the CAQIEI which were known at the time of 1015 

publication to assist the potential users in properly using this data products.  1016 

(1) The changes in the number of observation sites would induce spurious emission trends during 2013–2014, especially 1017 

over western China, although the influence of the number of observation sites is smaller over the NCP and SE regions because 1018 

of their higher density of observation sites. Therefore, it is recommended that not to use the emissions in 2013 and 2014 when 1019 

analyzing the emission trends in China. This limitation makes it difficult to estimate the overall emission control effects of 1020 

2013 – 2017 action plan. Consequently, the emission change rate during the 2015–2017 were sampled in this study to represent 1021 

the emission control effects of the 2013–2017 action plan, but it may not necessarily reflect the overall reduction rate of the 1022 

action plan for the entire period. In addition, although the number of observation sites has become stable since 2015, the limited 1023 

number of observation sites makes it difficult to fully constrain China’s air pollutant emissions, especially for the natural 1024 

sources considering that the majority of the observation sites are located in the urban areas. Therefore, the uncertainty in the 1025 

estimated emissions over the remote areas are expected to be higher than those over the urban areas, especially for the species 1026 

with large amount of natural emission, such as PM and NMVOC. For example, the coarse-dust emissions over western China 1027 

are expected to be underestimated by CAQIEI because of the limited availability of observation sites. Therefore, adding 1028 

observations there will help improve the accuracy of the inversion estimates. For example, simultaneous assimilation of the 1029 

surface and satellite observation may help alleviate this problem and provide more constrains on the emissions without surface 1030 

observations. 1031 

(2) The natural and anthropogenic emissions are not differentiated in our inversion method, leading to higher emissions 1032 

of PM10 and NMVOCs than in other emission inventories. This also hinders the comparisons of our inversion results with the 1033 

previous inventories. Therefore, potential readers should be aware of that the current comparisons of our inversion results and 1034 

previous inventories are on the basis of the natural emissions estimated by CAMS and GFAS, which does not necessarily 1035 

indicate large uncertainties in anthropogenic sources within the bottom-up inventories. The impacts are expected to be smaller 1036 
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for the NOx, SO2 and CO due to the small contributions of natural sources to their emission, but would be larger for NMVOC 1037 

and PM which has large amount of natural emission. Assimilation of isotope data, speciated PM2.5 and NMVOC observations 1038 

may help differentiate the natural and anthropogenic emissions, and address this problem in future.  1039 

(3) The NMVOC emissions may have larger uncertainty than the other species. On the one hand, a significant amount of 1040 

NMVOC emission would originate from suburban or rural regions. Therefore, although the O3 observations at the urban sites 1041 

could provide information on the NMVOC emissions over the suburban or rural areas according to covariance estimated by 1042 

the ensemble simulation, the NMVOC emissions may not be fully constrained due to the lack of observation sites over the 1043 

suburban or rural areas. On the other hand, due to the lack of long-term NMVOC observations, the NMVOC emissions were 1044 

constrained by the O3 concentrations in this study. Although the feasibility of this approach has been demonstrated by previous 1045 

inversion studies, the nonlinear NOx-VOC-O3 interactions could inevitably introduces greater uncertainty into the inversion of 1046 

NMVOC than other species. Therefore, more attention should be paid while using the inversion results of NMVOC, and more 1047 

robust analysis of the effects of nonlinear NOx-VOC-O3 interactions and the number of observation sites should be performed 1048 

in future to better illustrate the feasibility of assimilating O3 to constrain the NMVOC emissions. 1049 

(4) The errors in the meteorological simulation and the CTMs were not considered in the emission inversions, which 1050 

would lead to uncertainty in our estimated emissions. For example, the errors in the simulated wind would influence the 1051 

transportation of the air pollutant and lead to uncertainty in the emissions distributions. According to the evaluation results of 1052 

meteorological simulations (Table S1), the simulated relative humidity is generally lower than the observations, which may 1053 

weaken the formation of secondary aerosol. On the contrary, the simulated precipitation was higher than the observation for 1054 

most regions which would lead to overestimations of the wet removal of air pollutants. As a result, there may be a positive 1055 

tendency in the inversed emission inventory due to the errors in the simulated relative humidity and precipitation. Besides 1056 

these parameters, the accuracy of the simulated boundary layer is also important for the performance of the emission inversions 1057 

(Du et al., 2020), although it was not evaluated currently due to the lack of observation. If the WRF systematically 1058 

underestimates the boundary layer, the vertical diffusions of the air pollutants would be suppressed, which would lead to 1059 

overestimated surface air pollutant concentrations and a negative tendency in the inverse emission inventory. However, it is 1060 

difficult to quantify the influences of the meteorological errors on the emission inversions, as the errors in the meteorological 1061 

simulation and chemical transport model interact with each other. More comprehensive analysis should be conducted in the 1062 

future to better understand the impacts of the meteorological and model errors on the inverse emission inventory. A multi-1063 

model inversion framework, for example that of Miyazaki et al. (2020a), may help alleviate the influences of model errors on 1064 

emission inversions in future. Using other models (e.g., WRF-Chem, CMAQ) to validate our inversion inventory could also 1065 

help us assess the impacts of model uncertainty on the emission inversions. Meanwhile, because of the many uses that require 1066 

a rapid update of emissions, it may be time to organize an intercomparison study focused on the emission inversions.  1067 

(5) Current inversion emission inventory is mainly assessed by the surface observations and previous emission 1068 

inventories. more independent observations, such as the satellite observation data, should be used in future to further validate 1069 

the inversion results of this study and its derived findings. For example, the independent measurements from field campaign 1070 

or satellite retrievals (e.g., TropOMI CO data) can help validate the reliability of the much higher a posterior CO emissions in 1071 

CAQIEI than the previous inventories in the future. 1072 

7 data availability  1073 

The CAQIEI inventory can be freely download at https://doi.org/10.57760/sciencedb.13151 (Kong et al., 2023), which 1074 

includes monthly grid maps of the air pollutant emissions from 2013 to 2020. The contained species include NOx, SO2, CO, 1075 

primary PM2.5, primary PM10 and NMVOC. The horizontal resolution is 15km. There are totally 8 Network Common Data 1076 

Form files (NetCDF), which were named by the date and contains the monthly emissions of different air pollutants in China 1077 
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in each year. The description of the content of each NetCDF file and some important notes when using this dataset are also 1078 

available in README.txt on the website.  1079 

 1080 

Tables 1081 

Table 1. Corresponding relationships between the chemical observations and adjusted emissions 1082 

Species Description Observations used for inversions of this species 

BC Black carbon PM2.5 

OC Organic carbon PM2.5 

PMF Fine-mode unspeciated aerosol PM2.5 

PMC Coarse-mode unspeciated aerosol PM10 – PM2.5 

NOx Nitrogen oxide NO2 

SO2 Sulfur dioxide SO2 

CO Carbon monoxide CO 

NMVOCs Non-methane volatile organic 

compounds 

MDA8h O3 

 1083 

 1084 

 1085 

 1086 

 1087 

 1088 

 1089 

 1090 

 1091 

 1092 

 1093 

 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 
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Table 2. Evaluation statistics of the a posteriori (a priori) model simulation for different speciesa 1108 

 PM2.5 (μg/m ) PM10 (μg/m ) 

R MBE NMB (%) RMSE R MBE NMB (%) RMSE 

Hourly 0.77 (0.53) 2.1 (13.3) 4.5 (28.6) 32.4 (55.6) 0.72 (0.44) −3.7 (−11.5) −4.6 (−14.3) 53.1 (74.4) 

Daily 0.89 (0.61) 2.1 (13.3) 4.4 (28.4) 20.0 (46.3) 0.88 (0.51) −3.7 (−11.2) −4.6 (−14.1) 31.6 (62.2) 

Monthly 0.94 (0.68) 2.1 (13.3) 4.5 (28.3) 11.7 (32.5) 0.90 (0.56) −3.6 (−11.3) −4.5 (−14.1) 21.2 (44.1) 

Yearly 0.94 (0.62) 2.2 (11.9) 4.4 (24.3) 9.1 (27.7) 0.89 (0.52) −3.8 (−13.4) −4.6 (−16.1) 18.5 (38.7) 

 SO2 (μg/m ) NO2 (μg/m ) 

R MBE NMB (%) RMSE R MBE NMB (%) RMSE 

Hourly 0.64 (0.16) −1.8 (19.0) −9.1 (93.8) 24.9 (58.7) 0.67 (0.45) −1.2 (−0.9) −3.9 (−2.7) 19.9 (25.5) 

Daily 0.80 (0.20) −1.8 (19.0) −9.2 (94.5) 16.0 (51.4) 0.80 (0.51) −1.2 (−0.8) −3.7 (−2.6) 12.8 (20.1) 

Monthly 0.85 (0.20) −1.9 (18.9) −9.3 (93.1) 12.4 (45.8) 0.84 (0.57) −1.2 (−0.8) −3.8 (−2.6) 9.4 (15.6) 

Yearly 0.83 (0.18) −2.4 (17.0) −10.8 (75.9) 11.6 (42.4) 0.82 (0.63) −1.3 (−1.6) −3.9 (−5.0) 8.1 (13.0) 

 CO (mg/m ) O3 (μg/m ) 

R MBE NMB (%) RMSE R MBE NMB (%) RMSE 

Hourly 0.69 (0.38) −0.1 (−0.4) −8.8 (−45.6) 0.6 (0.8) 0.71 (0.51) 5.6 (−8.4) 9.5 (−14.0) 34.9 (41.6) 

Daily 0.81 (0.42) −0.1 (−0.4) −8.6 (−45.5) 0.4 (0.7) 0.71 (0.40) 5.7 (−8.4) 9.5 (−14.1) 26.1 (33.8) 

Monthly 0.83 (0.42) −0.1 (−0.4) −8.7 (−45.7) 0.3 (0.7) 0.76 (0.47) 5.6 (−8.4) 9.4 (−14.1) 19.6 (26.0) 

Yearly 0.82 (0.27) −0.1 (−0.5) −9.0 (−47.6) 0.3 (0.7) 0.53 (0.11) 5.1 (−7.8) 8.7 (−13.4) 14.2 (20.5) 
a The time series of the air pollutant concentrations at each station were firstly catenated into a single vector. Then the values of each evaluation metric were calculated based on the catenated time series of the observed and 1109 
simulated concentrations. 1110 
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Table 3. Inversion-estimated emissions (Tg/yr) of different species in China as well as the six regions for year 2015 1129 

 China NCP SE NE SW NW Central 

NOx 25.2 5.1  7.1  4.5  4.2  1.2  3.2  

SO2 17.8 3.5  3.3  4.0  2.6  0.8  3.6  

CO 465.4 82.2  106.7  78.7  82.8  32.6  82.3  

PM2.5 14.9 2.7  3.3  3.1  2.9  1.2  1.9  

PM10 40.1 8.7  7.5  8.2  5.5  4.1  6.2  

NMVOC 46.0 9.0  13.7  8.5  7.8  2.7  4.2  

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 

Table 4. The calculated annual trends of PM2.5 and PM10 emissions in China based on CAQIEI 1136 

 PM2.5 (Tg/year) PM10 (Tg/year) 

 2015–2020 2015–2017 2018–2020 2015–2020 2015–2017 2018–2020 

China −1.4* −1.1 −1.5 −2.6* −1.4 −4.6 

NCP −0.32*  −0.30  −0.32  −0.64*  −0.88 −0.99  

SE −0.32*  −0.21  −0.44  −0.52* −0.48  −0.84  

NE −0.24*  −0.25  −0.11  −0.52*  −0.22  −0.73  

SW −0.21* −0.26  −0.20  −0.40*  −0.26  −0.56  

NW −0.09  −0.08  −0.12  −0.20*  −0.32  −0.32  

Central −0.15  0.01  −0.32  −0.27  −0.32  −1.14  

* Trend is significant at the 0.05 significance level 1137 
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Table 5. The calculated annual trends of the four gaseous emissions in China based on CAQIEI 1156 

 SO2 (Tg/year) CO (Tg/year) 

2015–2020 2015–2017 2018–2020 2015–2020 2015–2017 2018–2020 

China −2.1* −2.1 −1.3 −36.0* −22.8 −33.5 

NCP −0.57*  −0.69  −0.21  −8.4*  −4.30  −7.23  

SE −0.34*  −0.39  −0.20  −6.1*  −3.54  −8.37  

NE −0.44*  −0.44  −0.21  −6.2*  −1.74  −3.91  

SW −0.22*  −0.27  −0.17  −3.8*  −2.36  −4.54  

NW −0.08*  −0.08  −0.08  −3.0*  −0.73  −2.95  

Central −0.46*  −0.25  −0.40  −8.7*  −10.14  −6.55  

 NOx (Tg/year) NMVOC (Tg/year) 

2015–2020 2015–2017 2018–2020 2015–2020 2015–2017 2018–2020 

China −0.67 0.74 −1.6  1.9  6.3 −1.3  

NCP −0.32  0.05  −0.40  0.66  1.37  −0.42  

SE −0.22  0.18  −0.49  0.50  1.73  −0.24  

NE −0.17  0.03  −0.19  0.03  0.79  −0.49  

SW −0.06  0.10  −0.26  0.23*  0.43  0.03  

NW −0.03  0.11  −0.06  0.10  0.69  −0.27  

Central 0.04  0.28  −0.16  0.55* 1.33  0.09  

* Trend is significant at the 0.05 significance level 1157 
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Table 6 The top-down estimated CO emissions in China from previous inventories 1181 

Reference Region Period Method 
Assimilated 

observation 

A priori CO 

emission 

(kt/day) 

A posteriori CO 

emission 

(kt/day) 

Feng et al. 

(2020) 

China 

Mainland 

December 2013 

EnKF with 

CMAQ model 

Surface 

observation 

586.4 1678.0 

December 2017 499.3 1388.1 

NCP 
December 2013 143.9 394.3 

December 2017 120.5 340.7 

Muller et al. 

(2018) 
China 2013 

4DVar with 

IMAGES 

model 

IASI CO 

observation 

with different 

constraints on 

OH levels 

454.8 367.1–553.4 

Gaubert et al. 

(2020) 

Central 

China 
May 2016 

DART/CAM-

CHEM 

MOPITT CO 

observation 

193.6 220.3 

North  

China 
93.5 163.6 

Jiang et al. 

(2017) 
East China 

2013 
4DVar with 

GEOS-Chem 

MOPITT CO 

observation 
564.5 

439.5–484.4 

2014 430.4–481.1 

2015 397.5–439.7 

Zheng et al. 

(2019) 
China 

2010–2017 

average 

Bayesian 

inversion 

MOPITT CO, 

OMI HCHO, 

and GOSAT 

CH4 

observation 

- 444.4 
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Figures 1198 

 1199 

 1200 

Figure 1: Modeling domain of the ensemble simulation overlaid with the distributions of observation sites from CNEMC. Different 1201 
colors denote the different regions in mainland China—namely, the North China Plain (NCP), Northeast China (NE), Southwest 1202 
China (SW), Southeast China (SE), Northwest China (NW) and Central China (Central). 1203 

 1204 
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  1205 

Figure 2: Time series of the observational coverage from 2013 to 2020 over different regions of China. 1206 

 1207 

 1208 

 1209 

 1210 

 1211 

Figure 3: Time series of the a priori bias (blue lines), the a posteriori bias (red lines), and the emission increment (green lines) from 1212 
2013 to 2020 for different species over the six regions of China. 1213 

 1214 

 1215 
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 1216 

Figure 4: Spatial distributions of the emissions of (a) SO2, (b) NOx, (c) CO, (d) NMVOCs, (e) PM2.5, and (f) PM10 in 2015 obtained 1217 
from CAQIEI. 1218 

 1219 

 1220 

 1221 
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 1222 

Figure 5: Monthly series of total emissions of (a) NOx, (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs in China for year 2015 1223 
obtained from CAQIEI. 1224 

 1225 

 1226 

 1227 

 1228 

 1229 

 1230 

 1231 

 1232 

 1233 

 1234 

 1235 

 1236 

 1237 

 1238 

 1239 
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 1240 

Figure 6: Emission changes in (a) PM2.5 and (b) PM10 obtained from CAQIEI from 2013 to 2020. 1241 

 1242 

Figure 7: Emission changes in (a) SO2, (b) CO, (c) NOx, and (d) NMVOCs obtained from CAQIEI from 2013 to 2020. 1243 

 1244 
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 1245 

Figure 8: Spatial distributions of the emission changes of different species during 2015–2017 (left panels), 2018–2020 (middle panels), 1246 
and 2015–2020 (right panels) obtained from CAQIEI from 2013 to 2020. 1247 
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 1248 

Figure 9: Emission distributions of (a) NOx, (b) SO2, (c) CO, (d) PM2.5, € PM10, and (f) NMVOCs among different regions in China 1249 
obtained from CAQIEI in 2015, 2017 and 2020. 1250 

 1251 

 1252 
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 1253 

Figure 10: Comparisons of the averaged emissions of (a) NOx, (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs over China 1254 
from 2015 to 2018 between CAQIEI and previous inventories added with natural sources. 1255 

 1256 
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 1257 

Figure 11: Comparisons of the averaged emissions of (a) NOx, (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs over different 1258 
regions in China from 2015 to 2018 between CAQIEI and previous inventories added with natural sources. 1259 

 1260 

 1261 

 1262 

 1263 

 1264 
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 1265 

Figure 12: Comparisons of the monthly profiles of (a) NOx, (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) NMVOCs over China 1266 
averaged from 2015 to 2018 between CAQIEI and previous inventories added with natural sources. 1267 

 1268 

 1269 

 1270 

 1271 

 1272 

 1273 

 1274 

 1275 

 1276 

 1277 



42 
 

 1278 

Figure 13: Time series of annual emissions of (a) NOx, (b) SO2, (c) CO, (d) PM2.5, (e) PM10 and (f) NMVOC over China from 2013 to 1279 
2020 obtained from CAQIEI and previous inventories. Note that the natural sources were not included in the previous inventories 1280 
in this figure.  1281 

 1282 

 1283 

 1284 

 1285 

 1286 

 1287 
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 1288 

Figure 14: Comparisons of the calculated emission changes of NOx, SO2, CO, PM2.5, PM10, and NMVOCs over China from 2015 to 1289 
2018 between CAQIEI and previous inventories. Note that the natural sources were not included in the calculation of the emission 1290 
changes in this figure. 1291 
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