
Response to Reviewer #2 (ESSD-2023-477) 

We Thank Reviewer for his/her constructive comments 

Responses to the Specific comments 

General comments: The manuscript presents a comprehensive study aimed at estimating air pollutant 

emissions in China through the assimilation of surface observations. The authors found that the emission 

reduction efforts during the 2018-2020 Action Plan generally exceeded those of the 2013-2017 Action Plan. 

They also conducted comparisons with various bottom-up emission inventories, and provided detailed 

explanations for differences and uncertainties. These findings are relevant and potentially important. However, 

while reading the manuscript, I encountered several unanswered questions, mainly related to the settings and 

parameters of the estimation technique, as well as potential uncertainties and biases in the inferred emission 

estimates. In particular, I have doubts about the credibility of the NMVOC emission inversion. I believe that 

further analysis and discussion addressing the major and specific issues outlined below are necessary to 

substantiate the authors' claims and make the manuscript suitable for publication in ESSD:  

Reply: The authors appreciate the reviewer for his/her constructive and insightful comments. We have 

carefully considered the comments and revised the manuscript accordingly. Please refer to our responses for 

more details given below.  

 

Major comments: 

Comment 1: The authors compare the posterior results with other sources and frequently employ terms like 

"underestimate" and "overestimate" without explicitly specifying what is considered an under- or overestimate 

relative to a reference. For instance, in line 47, the use of these terms lacks clarity. More critically, the terms 

"underestimate" and "overestimate" imply that the posterior is inherently closer to the truth than the other 

sources, assuming that the other sources are less accurate. This assumption is not self-evident. In inversion, 

adjusting emissions to match observations does not conclusively prove that the posterior emissions are 

improved, nor does it inherently indicate biases in other bottom-up inventories. To claim that HTAP and other 

sources are less accurate and to justify the terms "overestimate" and "underestimate," the authors need to 

provide a more convincing argument. Simply relying on posterior simulations is not sufficient to demonstrate 

the improvement in posterior emissions and the existence of biases in other bottom-up inventories. If a more 

convincing argument cannot be made, the authors should consider using more neutral terms to avoid implying 

a hierarchy of accuracy among different emission sources. An example of inconsistency can be found in 

Section 4.3, where the authors, in comparing their emission inventory with others, occasionally use alternative 

inventories as a basis to highlight the agreement and reduced uncertainty of their inventory compared to 



bottom-up inventories. At other times, however, they claim that these alternative inventories exhibit significant 

uncertainties. This contradiction raises concerns about the clarity and consistency of the manuscript. It is 

essential that the authors provide a more coherent explanation or rationale for the varying assessments of 

uncertainty in other inventories. 

Reply: Thanks for this important comment. We apology for the ambiguous employment of the terms like 

"underestimate" and "overestimate" when we compare the posteriori results with other sources. As the 

reviewer suggested, we have made revisions to these expressions throughout the manuscripts to ensure greater 

clarity in our intended meaning. For example, the unclear expression in line 47 has been revised to “the 

CAQIEI suggested higher NMVOC emissions than the other emission inventories by about 30.4–81.4% over 

the NCP region but suggested lower NMVOC emissions by about 27.6–0.0% over the SE region.” Similar 

revisions have also been made throughout the manuscript. 

We agree with the reviewer that adjusting emissions to match observations does not conclusively prove that 

the posterior emissions are more accurate than the other emission inventories. The purpose of comparisons of 

CAQIEI with other emission inventories in our manuscript is also not to prove the superiority of the inversion 

inventory, nor to rank the accuracy among different inventories. In fact, it is difficult to validate the estimated 

emission inventory because of the unavailability of the truth value or observations of air pollutant emissions, 

which is the main challenge faced in the research of emission inventory. Thus, one of the most important 

values of the top-down analysis is to provide valuable clues for verifying the emission inventory (Zhang et al., 

2009; Streets et al., 2006) through the assimilations of observations of air pollutant concentrations, as 

demonstrated in many inversion studies, such as Miyazaki et al. (2017); Zheng et al. (2019); Goldberg et al. 

(2019) and so on. Therefore, similar to pervious top-down studies, the primary objectives of our manuscript 

are to utilize the inversion method to investigate the changes of air pollutant emissions in China, and to provide 

information about potential uncertainty in current understandings of the Chinese air pollutant emissions. The 

inversion emissions are also useful for improving the emission inventories. We feel sorry that the inappropriate 

use of the terms like "underestimate" or "overestimate" in the manuscript gives the implications about the 

hierarchy of the accuracy among different emission sources. This is not the intendency of our work. Following 

the suggestions of reviewer, we have made a throughout revision to our manuscript, especially for Sect 4.3 by 

using more neutral terms to make our intendency clearer. In the revised Sect 4.3, we only highlight the 

similarity and differences among the different inventories, and delete the terms like underestimate and 

overestimate. Meanwhile, the consistency in Sect 4.3 has also improved in the revised manuscript by giving 

a more coherent explanation. (please see lines 650–794 in the revised manuscript) 

 

 



Comment 2: In particular, the authors' comparison of natural and anthropogenic species emissions (such as 

PM10 and NMVOC) reveals a significant issue. Natural sources inherently exhibit considerable uncertainty, 

and in many regions, natural sources contribute significantly more than anthropogenic sources. Therefore, 

using the uncertainty in natural sources as a basis does not necessarily indicate large uncertainties in 

anthropogenic sources within the bottom-up inventories. An inconsistency arises in Line 790, where the 

authors' explanation appears contradictory. They simultaneously assume minimal variations in natural sources 

and cite literature indicating an increasing trend in natural sources. Additionally, the manuscript attributes 

emission changes to anthropogenic sources while acknowledging substantial uncertainty in natural sources. If 

it is acknowledged that natural sources indeed carry significant uncertainty (which is indeed the case), the 

manuscript should avoid using terms such as "not captured," "overestimated," or "underestimated" concerning 

the bottom-up inventories. These terms imply a clear attribution of error that may not be justified given the 

uncertainties associated with natural sources. Clear and consistent handling of uncertainties in both natural 

and anthropogenic sources is crucial for maintaining the credibility of the manuscript. 

Reply: Thanks for this suggestion. We acknowledge the significant uncertainty existed in the natural sources 

and its implications for the assessment of anthropogenic emissions. As we illustrated in the responses to 

Comment 1, we are not intended to conclusively prove the biases in existing emission inventories, but to 

provide clues for their possible deficiencies through the comparison of our inversion results with the other 

emission inventories. However, since our inversion inventory does not differentiate the natural and 

anthropogenic sources, the natural sources have to be considered to make different emission inventories 

comparable. We apology the inappropriate use of the terms “not captured”, “overestimated” and 

“underestimated” in the comparisons of different emission inventories, which did not accurately convey our 

true intent and caused some inconsistencies and contradictions in the manuscripts as the reviewer mentioned. 

Following the suggestions of reviewer, we have made following revisions to provide a clear and consistent 

handling of uncertainties in the natural and anthropogenic sources in our manuscript: 

1) Add the discussions about the uncertainty in the natural sources and its implications on the comparisons 

of inversion results with other anthropogenic emission inventories. We also highlighted in the revised 

manuscript that the comparisons conducted in this study is on the basis of the natural sources estimated by 

CAMS and GFAS inventories, which would be sensitive to the used natural emission inventories, and does 

not necessarily indicate large uncertainties in anthropogenic sources within the bottom-up inventories. 

(please see lines 657–665, 786–788, 994 – 1001 in the revised manuscript). 

2)  Rewrote the expressions including the terms such as "not captured," "overestimated," or 

"underestimated" concerning the bottom-up inventories throughout the manuscript. For example, the lines 

766–767 in the original manuscript has been revised to “In particular, CAQIEI suggests increases of NOx 



emissions over the Central region, which is opposite to the previous emission inventories.” The lines 781–

782 in the original manuscript has also been deleted in the revised manuscript. More revision is available 

in the Sect 4.3 in the revised manuscript. 

3) The inconsistent or contradictory expressions in the manuscript have also been revised to maintain the 

consistency of the manuscript. For example, we do not simultaneously attribute the increase in NMVOC 

emissions to biogenic sources while also stating that the variation in biogenic sources is not significant. 

Instead, in the revised manuscript, the emission trends of biogenic NMVOC (also for other species) are 

only estimated based on the CAMS emission inventory, and further analysis is also made based on this 

assumption (lines 593–597). The uncertainty of this assumption and its potential impacts on the 

comparisons of our inversion results with previous emission inventories were then discussed in the 

manuscript (please see lines 657–665, 786–788, 994 – 1001 in the revised manuscript). This would help 

increase the consistency of the manuscript. Regarding to the inconsistency that we attribute the emission 

changes to anthropogenic sources while acknowledging substantial uncertainty in natural sources. Since 

our inversion result do not differentiate the anthropogenic and natural sources, it is difficult to directly 

compare our inversion results with previous emission inventories. To deal with this issue, the natural 

sources estimated by CAMS and GFAS were used in this study to account for the influences of natura 

sources. Therefore, our primary intendency is to make an attempt to compare our inversion results with 

previous emission inventories on the basis of state-of-art estimations of natural source. However, as we 

are aware of that despite the use of state-of-art estimations of natural sources, there is still significant 

uncertainty in the estimated emission trends of natural sources, which would influence the comparison 

results of our inversion inventory with previous emission inventories. That’s why we acknowledge the 

large uncertainty in the estimated natural sources. This could help the potential reader better understand 

the comparison results of CAQIEI with previous emission inventories. We feel sorry that the inappropriate 

expression in our original manuscript did not correctly convey our intention, and lead to inconsistency. In 

the revised manuscript, we explicitly pointed out that the comparison conducted in our study is on the 

basis of natural emissions estimated by CAMS and GFAS at the beginning of Sect. 4.3 (Lines 657 – 665), 

which would be sensitivity to the used natural sources. This would help potential readers better understand 

our comparison results and improve the consistency with the discussion of the uncertainty in natural 

sources in our manuscript. More revision is available in the Sect 4.3 in the revised manuscript. 

 

 

 

 



Comment 3: In Line 272, it is mentioned that VOC emissions are optimized through assimilating ground-

level O3 observations. However, several factors need consideration. On one hand, VOC-O3 interactions 

involve strong nonlinear chemical reactions, and emission adjustments exhibit bidirectionality (Tang et al., 

2016). Despite the convergence of simulations and observations, VOC inversion results may deteriorate due 

to these complexities. On the other hand, the majority of the national monitoring stations are situated in urban 

areas, whereas VOC primarily originates from suburban or rural regions. I am skeptical about the feasibility 

of assimilating O3 to constrain VOC emissions. As evident from Figure 3, the posterior simulations do not 

show a significant improvement in O3. As the authors noted, O3 cannot effectively constrain precursor NOx 

(L278). Therefore, I recommend deleting the VOC emission inversion. 

Reply: Thanks for this comment. We agree with the reviewer that the NOx-VOC-O3 nonlinear interaction 

would influence the inversion of NMVOC emission based on the O3 concentration if were not well addressed. 

On the one hand, the O3 concentrations are dependent not only on the NMVOC emissions but also on the NOx 

emissions. The errors in the a priori emissions of NOx would also contribute to the simulation errors of O3, 

and deteriorate the inversion of NMVOC. This concern has been considered in our inversion method through 

two approaches. Firstly, the emissions of NOx and NMVOC were perturbed independently in our study, thus 

their contributions to the simulation errors of O3 concentrations could be isolated through the use of ensemble 

simulations. Secondly, the use of iteration inversion method can further reduce the influence of the errors in 

NOx emissions on the inversion of NMVOC emission, since the errors in NOx emission would be constrained 

by its own observations during the iterations as we illustrated in lines 320–324 in the revised manuscript. This 

is in fact similar to the approach used by Xing et al. (2020) who firstly constrained the NOx emissions based 

on observations of NO2, and then constrained the NMVOC emissions based on O3 concentrations. Also, in 

Feng et al. (2024), the NO2 concentrations were also assimilated to constrain the NOx emissions to account 

for the influences of errors in NOx emissions on the NMVOC emissions. These studies indicates that the 

iteratively nonlinear joint inversion of NOx and NMVOCs using multi-species observations adopted in our 

study is an effective and commonly used way to address the intricate relationship among VOC-NOx-O3 (Feng 

et al., 2024). On the other hand, the emission adjustments exhibit bidirectionality dependent on the VOC-

limited or NOx-limited regimes. According to the Fig 3 in the revised manuscript, the NMVOC emissions 

were adjusted in alignment with the direction of the O3 errors, suggesting a VOC-limited regime over urban 

areas in China, given that the O3 observation sites are predominantly situated in the urban areas. This agrees 

with Ren et al. (2022) who diagnosed the NOx-VOC-O3 sensitivity based on the satellite retrievals and found 

that the VOC-limited regimes are mainly located in the urban areas in China. This suggests that the relationship 

between the O3 concentrations and VOC emissions could be reasonably reflected by inverse modeling. 

Moreover, considering there are transport of VOCs from suburban or rural areas (Liu et al., 2022), the O3 



concentrations in the urban areas could also provide information on the NMVOC emission over the suburban 

or rural areas. Therefore, although the majority of monitoring stations are located in urban areas, the NMVOC 

emissions over remote regions lacking observations could still be constrained to some extent through the 

utilization of covariance relationships estimated by the ensemble simulations. However, we agree with the 

reviewer that the lack of observation sites over the remote areas significantly hinders the fully constrains of 

the NMVOC emission over there and may lead to larger uncertainty. More observations over the suburban 

and rural areas are required to better constrain the NMVOC emissions in the future.  

To date, we think there remains feasibility in utilizing the O3 observations to constrain the VOC emissions. 

Besides our study, the assimilation of surface O3 observations to constrain the VOC emissions has also been 

performed in other inversion studies, such as Xing et al. (2020) and Ma et al. (2019). Both of these studies 

have demonstrated the effectiveness of assimilating surface O3 concentrations on the inversion of VOC 

emissions. For example, Ma et al. (2019) found that the assimilation of O3 concentration could adjust the 

NMVOC emissions in the direction resembling the bottom‐up inventories, and the forecast skill of O3 

concentrations were also improved, indicating that the constrained NMVOC emissions are improved relative 

to their priori. Our inversion results suggest similar effectiveness of the assimilation of O3 concentrations on 

the NMVOC emissions as reflected by the improvement of O3 simulations (Table 2 in the revised manuscript) 

and the overall consistency with the bottom-up inventories and top-down emission inventories using the 

satellite observation data (Souri et al., 2020). Meanwhile, there are limited ways to constrain the NMVOC 

emissions due to the lack of NMVOC observations. Previous inversion studies are mainly relied on the satellite 

observations of formaldehyde and glyoxal. However, these inversion studies are also hindered by the NOx-

VOC-O3 chemistry and the inherent uncertainty in the satellite observations of formaldehyde and glyoxal (Cao 

et al., 2018; Stavrakou et al., 2015), leading to uncertainty in their estimates. Given that, we think it is still 

worth a try to advance our understanding of the NMVOC emissions in China by assimilating the surface O3 

concentrations. Therefore, we lean towards retaining the inversion results of NMVOCs. This on the one hand 

could provide the users of interest with some potential valuable information on the NMVOC emissions in 

China, and on the other hand can serve as a comparable reference for future VOC inversion studies based on 

other methods or observation data, which could help the development of the inversion method of NMVOC. 

However, we acknowledge the complexity of the inversion of NMVOC emission due to the nonlinear NOx-

VOC-O3 interactions and the limited observation sites which were not fully addressed in our study. Therefore, 

more descriptions on the rationale and uncertainty in the inversion of NMVOC emissions based on O3 

concentrations have been added in the revised manuscript to assist the potential readers in properly utilizing 

the inversion results of NMVOC. In addition, more robust analysis of the effects of nonlinear NOx-VOC-O3 

interactions and the number of observation sites should be performed in future to better illustrate the feasibility 



of assimilating O3 to constrain NMVOC emissions. Detailed revisions to the manuscript are available in lines 

308–337 and 1002–1011 in the revised manuscripts.  

 

Comment 4: The changes in observation coverage each year can significantly impact emission estimates. If 

the authors intend to include the years 2013-2014 in this study, they should compare the impact of site 

differences on emissions for a more robust analysis. If the authors aim to investigate trends, it is advisable to 

delete emissions in the 2013-2014 period, as this might otherwise potentially mislead readers, given that the 

changes during this period do not contribute meaningfully to the study's overall trend analysis. There also 

appears to be some discrepancies in the manuscript where emission changes are often stated as occurring from 

2015-2017, while the text descriptions indicate the period as 2013-2017, as seen in lines 452, 485, and 561, 

among others. Furthermore, it is important to note that the changes in emissions observed from 2015-2017 not 

necessarily reflect the overall reduction rate of the action plan for the entire period of 2013-2017. Additionally, 

the data from 2015-2017 alone may not be sufficient to conclude that the emission reduction rate during the 

2013-2017 period is lower than that during the 2018-2020 action plan.  

Reply: Thanks for this comment. Following the suggestions of the reviewer, we added more analysis on the 

influences of the site differences on the emission inversions in the revised manuscript. Figure R1 shows the 

spatial distributions of the observation sites used in inversion during 2013–2015 when the number of 

observation sites changed rapidly. It can be seen that the observation sites were mainly concentrated in the 

megacity clusters (e.g., North China Plain, Yangtze River Delta and Pearl River Delta) and the capital cities 

of each province in 2013. The number of observation sites continued to increase across the China in 2014 and 

2015. In particular, many areas that were previously unobserved in 2013 have added monitoring stations, 

which significantly increased the observation coverage in China especially over the NW, NE, SW and Central 

regions. Figure R2 shows the calculated emission increments at the observation sites (a posteriori minus a 

priori) for different species in China from 2013 to 2015 under the scenario of fixed observation sites (blue 

lines) and varying observation sites (orange). In the fixed-site scenario, it is assumed that the number of 

observation sites remains constant at the 2013 level while in the varying-site scenario, the number of 

observation sites increases over time. The differences in emission increments between these two scenarios are 

used to analyze the impact of changes in the observation coverage on the emission inversions. Please note that, 

to simplify calculations, we only computed the emission increments at the locations of the observation sites. 

Therefore, they may not be equal to the emission increments calculated for the entire grid as reported in the 

paper. However, they are still useful indicators for the effects of emission inversion. In addition, since we did 

not consider the temporal variation in the a priori emissions, the changes of emission increments at the 

observation sites can be used to approximate the temporal variations of the a posterior emissions. It can be 



clearly seen that that there are obvious differences in the emission increments between the two scenarios. The 

emission increment is larger in the varying-site scenario than that in the fixed-site scenario for all species due 

to the increases of observation sites. Moreover, as indicated in Fig. R2, the changes of observation sites were 

shown to significantly affect the estimation of the emission trend in 2013 and 2014. Most of species showed 

decreasing trends in their inversed emission under the fixed-site scenario. However, under the varying-site 

scenario, the decreasing trends were smaller for PM2.5, NOx and NMVOC, and the emissions of PM10 and CO 

even showed increasing trends. This is due to that the emission increments were positive over most of 

observation sites for these species as demonstrated in Fig.3 in the revised manuscript. Thus, the increases of 

observation site would lead to increases of positive emission increments and higher a posteriori emissions, 

which may counteract the decreasing trends or even lead to an opposite trend. These results provide the 

evidences that the increasing trends in the total emissions of PM10 and CO from 2013 to 2015 seen in Fig. 6 

and Fig. 7 are highly likely to be a spurious trend caused by the changes of observation coverage. The weak 

emission changes in PM2.5 and NOx (Fig. 6 and Fig. 7) may also be related to the changes in the number of 

observation sites. The SO2 emission is an except that its calculated trend is larger under the varying-site 

scenario than that under the fixed-site scenario. This is because that the emission increment for the SO2 is 

generally negative over the most of sites, thus the increased observation sites would lead to larger decreasing 

trend in the inversed emissions of SO2. These results highlighted the significant influences of the site 

differences on the estimated emissions and their trends. Therefore, as the reviewer suggested, we recommend 

not to use the emission in 2013 and 2014 when analyze the trends of the emissions, which has been written in 

the user notes of our data products. we also only investigated the emission changes from 2015 to 2020 in our 

manuscript to avoid misleading the potential users. Following the suggestions, the analysis on the influences 

of the site differences on the emission inversion has been added in the revised manuscript to remind potential 

users to be aware of this issue. Please see lines 199–207 in the revised manuscript, lines 3–28 and Fig. S1–S2 

in the revised supplement. 

We feel sorry for the discrepancies in the manuscript. The 2013-2017 is merely used as the names for the clean 

air action plans during 2013–2017, rather than referring to the years calculating emission changes. This 

confusion has been revised by using more accurate expression. For example, the lines 36 – 37 in the original 

manuscript have been revised to “It is also estimated that the emission reductions were larger during 2018–

2020 (from -26.6% to -4.5%) than during 2015–2017 (from -23.8% to 27.6%) for most species.” in the revised 

manuscript (lines 36–37). Also, we agree with the reviewer that the changes in emissions observed from 2015-

2017 not necessarily reflect the overall reduction rate of the action plan for the entire period of 2013-2017, 

and that they were not sufficient to conclude that the emission reduction rate during the 2013-2017 period is 

lower than that during the 2018-2020 action plan. Thanks for the reviewer’s reminder. We have softened the 



statement of this conclusion and added relevant discussions in the revised manuscript to enhance the rigor of 

our paper (please see lines 423–427 and 984–987 in the revised manuscript).  

 

Figure R1 Spatial distributions of observation sites in (a) 2013, (b) 2014 and (c) 2015. The observation sites 

in 2013 were marked as black dots, while the added observation sites from 2013 to 2014 and those from 2014 

to 2015 were marked as red and green dots respectively. 

 

Figure R2: the calculated total emission increments at the observation sites for different species under the 

fixed-site scenario and varying-site scenario. 



Comment 5: The authors use PM2.5 observations to simultaneously constrain BC, OC, and primary PM2.5. If 

they do not consider inter-species correlations or use random perturbations, and, for instance, if BC and OC 

increase while PM2.5 decreases in one ensemble member. How do they constrain emissions when the 

simulated PM2.5 and observations are the same. 

Reply: Thanks for this comment. Since we aim to estimate the emissions separately for BC, OC and primary 

PM2.5, it is necessary to perturb the a priori emissions of BC, OC and primary PM2.5 randomly during the 

inversion to avoid the spurious correlations between the non- or weakly related variables. This enables us to 

statistically differentiate the contributions of their emission errors to the simulation errors of PM2.5 

concentration through the use of ensemble simulation, making the emissions of BC, OC, primary adjusted by 

different scaling factors (i.e., 𝛽𝐵𝐶 , 𝛽𝑂𝐶  and 𝛽𝑃𝑀𝐹). Also, it is feasible that using same perturbation coefficient 

to perturb their emissions. As I understand it, this treatment is closer to what the reviewer mentioned regarding 

considering the inter-species correlations. This is equivalent to perturbing only the total PM2.5 emissions and 

allows the estimations of total PM2.5 emissions by using a same scaling factor. Therefore, applying 

independent perturbations or using the same perturbation coefficient are both commonly employed methods 

in the inversion studies. We agree with the reviewer that it is possible for BC and OC to increase while PM2.5 

decreases in one ensemble member under the conditions of random perturbation. However, as we used the 

deterministic form of EnKF (DEnKF), the ensemble member is only used to calculate the background 

perturbation 𝑿𝒊
𝒃  and the subsequent background covariance matrix 𝐁𝐞

𝐛 . The behavior of single ensemble 

would not significantly influence of the statistical properties of the ensemble, unless there is spurious 

correlation among the emissions of different PM2.5 components. For example, if there is a spurious negative 

correlation between the perturbed emissions of BC and PMF, there would lead to a false negative correlation 

between the PM2.5 concentrations and the emissions of BC. That’s why the emissions of different PM2.5 

component should be perturbed randomly during the assimilation. Also, in the DEnKF, the observation 

innovation (observation minus simulation) is only determined by the observation and ensemble mean of the 

simulated PM2.5. Therefore, whether to adjust the a priori emission is only determined by the deviations 

between the ensemble mean and observations, rather than the simulation results in one ensemble member. 

Meanwhile, since the emissions were perturbed unbiasedly in our study, the ensemble mean of perturbed 

emissions is equal to the a priori emission. Thus, the ensemble mean of the model simulation is mainly 

determined by the a priori emission. If the ensemble mean of PM2.5 simulations equals the observed values, it 

suggests that the a prior emission may have no error, and thus, we won't make adjustments to the prior emission. 

However, we acknowledge that in such cases, there may still be errors in the emissions of BC, OC, and primary 

PM2.5, such as the underestimation of BC and OC while the overestimation of primary PM2.5. This is primarily 

due to that we only assimilate the observations of total PM2.5 mass without the assimilation of speciated PM2.5 



observations. In the absence of detailed speciated PM2.5 observations, assimilating only total PM2.5 

concentration observations cannot adjust the proportions of emissions for different PM2.5 components when 

the observations and simulations are equal, which is a specific manifestation of the uncertainty resulting from 

adjusting PM2.5 emissions solely based on total PM2.5 concentration. This limitation has been explicitly pointed 

out in our manuscript and thus only the total PM2.5 emissions were provided to prevent the potential misuse 

of PM2.5 component emissions without sufficient validation. Following the suggestions of reviewer, we give 

more discussions about the limitations of only assimilation total PM2.5 mass in the revised manuscripts (please 

see lines 299–303 in the manuscript).  

 

Comment 6: The authors simultaneously constrain concentrations and emissions, emphasizing that 

concentration errors arise from emission uncertainties, implying a shared source of uncertainty (L222). In this 

context, the question arises whether optimizing concentrations would diminish emission uncertainties, thereby 

affecting emission estimates. 

Reply: Thanks for this comment. We feel sorry for this confusion. Since we used the modified EnKF method 

to constrain the emissions (Wu et al., 2020), the concentrations were not optimized simultaneously with the 

emissions. As we written in the manuscript, the modified EnKF is an offline application of the EnKF method 

that decouples the analysis step from the ensemble simulation. In this method, the ensemble simulation was 

performed firstly with the perturbed emissions, thus the concentration errors estimated by the ensemble 

simulation mainly stem from the emission uncertainty as we written in line 240–241 in the revised manuscript. 

After that, the observations were assimilated to constrain the emissions. During this step, the concentration 

was not required to be optimized but was used to estimate the covariance between the emission and 

concentration. Therefore, although the concentration was included in the state variable as illustrated in Eq. (1), 

it was not optimized during the inversion step and thus would not diminish emission uncertainties. The 

feasibility of this method in the emission inversion has been discussed and tested in Wu et al. (2020) through 

the observation system simulation experiments, which shows good performances of this method in reducing 

the errors in the a priori emission inventory. To avoid this confusion, we have added relevant explanations 

regarding to the optimization of the state of concentrations in the revised manuscript. Please see lines 215–

219 and lines 231–233 in the revised manuscript. 

 

Comment 7: The NOx emission changes optimized by the authors appear to contradict existing research 

findings and are inconsistent with recent emission reduction policies. Despite citing the study by Zheng et al., 

(2018), the actual NOx emissions reported by Zheng show a significant decrease. Could this discrepancy be 

attributed to the bottom-up inventory lacking sufficient statistics on mobile vehicle emissions? Moreover, 



according to Zheng's study, industrial and power plant emissions collectively contribute to over 50% of total 

emissions. Hence, the second reason provided by the authors may not be suitable if the industrial and power 

plant emissions are substantial contributors. 

Reply: Thanks for this comment. The NOx emission changes are determined by the combined effects of 

pollution control and growth of activity. If the effects of air pollution control exceed the additional emissions 

caused by the growth of activity, the NOx emission would decrease and vice versa. According to Zheng et al. 

(2021), the increases of activity levels has offset the mitigation effects of the emission controls for the traffic 

and industrial sectors. For example, the vehicle growth yielded increases of 1.4 Tg NOx emission compared 

with its 2010 level, which exceeded the emission reductions of NOx (1.3 Tg) achieved by the pollution control 

on the traffic section (Zheng et al., 2018). This indicates that the increase in the activity levels and the 

insufficient effectiveness of emission control in industrial and traffic sectors do exist, and has been considered 

in some bottom-up emission inventories, such as MEIC. The discrepancy in the estimated NOx emission 

changes between inversion results and other emission inventories thus reflect the uncertainty in the 

quantification of the combined effects of NOx emission control and activity growth. Our inversion results 

suggest that the offset effects of activity growth may be larger than the mitigation effects of the pollution 

control during 2015–2017, while previous emission inventories suggest larger mitigation effects of air 

pollution control than the offset effects of activity growth. As the reviewer mentioned, this discrepancy could 

be attributed to the bottom-up inventory lacking sufficient statistics on the mobile vehicle or other sectors. For 

example, previous inversion study by Kong et al. (2022) found there are numerous small-to-medium local 

sources of NOx emission related to the minor roads or small human settlements in China that are unclear or 

missing in the MEIC, EDGAR and CEDS emission inventory. The emission trends of these unaccounted local 

sources are thus not able to be considered by these emission inventory, which could be an important factor for 

the differences between our inversion results and previous inventories. Following the suggestions of the 

reviewer, more discussions have been added in the revised manuscript to better explain the discrepancy 

between our inversion results and previous inventories (please see lines 826–831 in the revised manuscript). 

We agree with the reviewer that industrial and power plant emissions are substantial contributors to the NOx 

emission. Our second reason is mainly related to the control of traffic sector. Following the suggestions of the 

reviewer, we have deleted this reason in the revised manuscript. Please see lines 566 – 568 in the revised 

manuscript. 

 

Comment 8: "Figure 12 shows significant discrepancies between the results of the author's inversion and 

other bottom-up inventories. According to other literature, it is known that China experienced two peaks in 

VOC emissions in May and July 2015. The variation in VOC emissions closely follows the changes in O3 



levels, suggesting a strong dependence of VOC on O3 variations. This raises the question of whether non-

linear changes are being overlooked. 

Reply: Thanks for this comment. Firstly, we feel sorry that there is an error in the description of Fig. 12. It 

actually presents the monthly profiles of the averaged air pollutant emissions from 2015 to 2018 rather than 

just for 2015. Figure R3 shows the comparisons of the standardized monthly profile of the averaged a 

posteriori NMVOC emission and MDA8h O3 concentrations in China from 2015 to 2018. The standardized 

monthly profiles were calculated by dividing them by their mean values. It shows that the monthly variation 

of the a posteriori NMVOC emissions have significant similarity to the monthly variation of the observed 

MDA8h O3 concentrations, as the reviewer mentioned. However, there are still obvious differences in their 

month variations. For example, the peak values of the observed MDA8h O3 concentrations occur in May, 

while the peak values of the a posteriori NMVOC emissions occur in July. This suggest that the monthly 

profile of a posteriori NMVOC emissions is not solely dependent on the variations of the MDA8h O3 

concentrations, thus some non-linear changes, such as unfavorable meteorological conditions that lead to high 

O3 concentrations even with relatively low NMVOC emissions, could be represented in our method to some 

extent. This is also the advantage of the EnKF method which provide an effective way to consider the flow 

dependent non-linear relationships between the concentrations and emissions. For example, the sensitivity of 

O3 concentrations to the NMVOC emissions under different meteorological conditions could be represented 

in the EnKF through the use of ensemble simulation. Nevertheless, we acknowledge that there could still be 

some unknown nonlinear-changes in the model or the EnKF method that were not well considered during 

inversion, which leads to uncertainty in the a posteriori NMVOC emissions.  

 



Figure R3: the standard monthly variation of the averaged a posteriori NMVOC emission and MDA8h O3 in 

China during 2015–2018.  

 

Comment 9: The author has provided a high-resolution, multispecies emission inventory. To facilitate users' 

understanding of the data's accuracy, could you please provide information on the uncertainties associated 

with different species, allowing users to assess the error range in the data? 

Reply: Thanks for this suggestion. Within the framework of the EnKF assimilation, the information on the 

uncertainty of the a posteriori emission for different species could be provided by the analysis ensemble spread 

estimated form the standard deviation across the analysis ensemble (Miyazaki et al., 2020). According to 

Sakov and Oke (2008), the analysis ensemble can be calculated as follows: 

𝐗𝐚 = 𝐗𝐛 −
𝟏

𝟐
𝐊𝐇𝐗𝐛                    (R1) 

Based on the analysis ensemble, the uncertainty of the a posteriori emission was estimated as follows: 101.4% 

(PM2.5), 102.5% (PM10), 26.7% (SO2), 46.8% (CO), 31.8% (NOx) and 65.5% (NMVOC). However, it should 

be noted that such uncertainty was only calculated under the framework of the EnKF constructed in this study, 

which is dependent on the assigned value of the a priori emission uncertainty, observation errors and the 

number of assimilated observations. In addition, we only considered the a priori emission uncertainty and the 

observation errors during the inversion. The influences of the other error sources, such as uncertainty in the 

chemistry transport model, meteorology simulations and the inversion method were not considered. Therefore, 

the current estimated uncertainty should be considered as a lower bound for the real uncertainty. More 

systematic analysis that thoroughly consider the uncertainty sources regarding the emission inversion should 

be conducted in future to give a more accurate estimation of the uncertainty in our products. Following the 

suggestions, we have added the descriptions on the uncertainty on the a posteriori emission in the revised 

manuscript (please see lines 885–899 in the revised manuscript). 

 

Specific comments: 

Comment 1: Change "Fengwei Plain" to "Fenwei Plain". 

Reply: Done. 

 

Comment 2: In L212, the VOC adjustment factor was omitted. 

Reply: Done. 

 

Comment 3: Since MOZART data products are no longer updated, are the boundary conditions in this study 



based on simulations conducted by the author's team? Additionally, maritime shipping emissions have a 

significant impact on the generation of NO2 and O3 in coastal provinces. Has the model taken into account 

inputs from maritime emissions? Why was a localized scale of 180 km chosen? 

Reply: We feel sorry for the lack of clear explanation regarding the use of MOZART data products. As 

mentioned by the reviewer, the MOZART data products have not been updated since 2018. Therefore, the 

multi-year average results from the MOZART were used for the simulations after 2018. Because most of the 

model boundaries were set in the clean areas and are located at distance from China, we assumed that the 

differences in boundary conditions would not significantly affect the modeling results in China. following the 

suggestions of reviewer, we have clarified the use of MOZART data in the revised manuscript (please see 

lines in 160–165). The ship emissions have been considered in our inversion study as a part of the HTAP 

emission inventory as we illustrated in lines 145 – 147 in the revised manuscript. The localized scale of 180km 

was chosen according our previous inversion study (Kong et al., 2023), and is similar to the localization scales 

used in Feng et al. (2020) and Ma et al. (2019) which were determined based on the wind speed and the 

lifespan of the species (please see lines 282 – 284 in the revised manuscript).  

 

Comment 4: In L291, is it necessary to reassemble simulations for each iteration, or is it multiple inversions 

on the original ensemble? If multiple iterations are performed, does it imply that the posterior approaches the 

observations more closely with each iteration? Why was the choice made to iterate twice? 

Reply: Thanks for raising this important issue. In this method, we conduct a new simulation by using the a 

posteriori emission from the previous iteration to update the ensemble mean of the original ensemble. This 

enables the observational information and the adjusted emissions to be promptly incorporated into the model, 

thereby providing feedback for the adjustments of emission in the next iteration. However, we did not 

reassemble the ensemble simulation for each iteration due to the expensive computational cost of the ensemble 

simulation. Therefore, in each iteration calculation, the ensemble perturbation that were used to calculate the 

background error covariance matrix remains the same with only the ensemble mean being updated based on 

the inversion results of the previous iteration.  

As mentioned by the reviewer, it is implied that the posteriori should approach the observations more closely 

with each iteration, which has been demonstrated in our previous inversion studies (Kong et al., 2023). As 

seen in the Fig.3 of Kong et al. (2023) (fig. R4), four times of iterations were conducted to adjust the SO2 

emissions. We can clearly see that due to the large positive biases in the a priori SO2 emissions, the model still 

has large positive biases in simulated SO2 concentration over all regions of China even after assimilation (first 

iteration). With the increases in the iteration times, the biases and errors continued to decrease which is 

consistent with the implication in the iteration inversion. However, the degree of improvement will gradually 



diminish with an increasing number of iterations until convergence is achieved. Our previous study shows that 

the improvement become no longer significant after two iterations. Thus, we choice the two times of the 

iteration in this study maintain a balance between the filter performance and the computational cost. Following 

the suggestions of reviewer, we have added more description on the implementation of iteration inversion 

scheme and the determination of the times of iteration in the revised manuscript. Please see lines 345–354 and 

358–360. 

 

Figure R4: Comparisons of the observed and simulated mean SO2 concentrations using emissions of different 

iteration time over (a) the NCP region, (b) NE region, (c) SE region, (d) SW region, (e) NW region and (f) 

central region (taken from Fig 3 in Kong et al. (2023)). 

 

Comment 5: With such a high grid resolution of 15 km, how does the computational cost for the inversion of 

multiple years in the ensemble calculations? Additionally, what is the size of the assimilation window? 

Reply: Thanks for this comment. We have added more details related to this issue in the revised manuscript. 

The computational cost is still expensive for the inversion of multiple years in the ensemble calculations with 

a high grid resolution of 15km. According to our estimation, we used about 12000 CPUs in the ensemble 

simulation, and the computational time for one-year ensemble simulation reaches approximately 2 million 

core-hours. Thanks to the “Earth System Science Numerical Simulator Facility” (EarthLab) which provide us 



with ample computational resources to complete this research. Since we constrained the daily emissions, the 

size of the assimilation window is 24h in our study. Please see lines 1255–1258 in the revised manuscript. 

 

Comment 6: The inflation factor 'r' varies for each window. Is 'r' a matrix or a scalar? If it is a  

scalar, could the author provide the specific range of 'r'? 

Reply: The inflation factor is a scalar but its value varies in the space and time, which is calculated by using 

the method of Wang and Bishop (2003): 

𝜆 =
(𝐑−𝟏/𝟐𝒅)

𝐓
𝐑−𝟏/𝟐𝒅−𝒑

𝒕𝒓𝒂𝒄𝒆{𝐑−𝟏/𝟐𝐇𝐁𝐞
𝐛(𝐑−𝟏/𝟐𝐇)

𝐓
}
                  (R2) 

𝒅 = 𝒚𝒐 − 𝐇𝒙𝒃̅̅ ̅                      (R3) 

where 𝜆  is the inflation factor, 𝒅  is the observation innovation, 𝐑  is the observation error covariance 

matrix, and 𝒑  is the number of observations. following the suggestions of the reviewer, we analyze the 

calculated value of inflation factor in the revised manuscript. Table R1 shows the calculated average value 

(standard deviation) of the used inflation factor for the different species over different regions of China. It 

shows that the inflation factor over the east China (including NCP and SE region) was generally round 1.0, 

suggesting that the original ensemble can well represent the simulation errors of the different air pollutants 

over these regions. The inflation factor is larger over the western China (including SW, NW and Central 

regions), especially for PM10 and SO2, suggesting that the original ensemble may underestimate the simulation 

errors of the air pollutants. This is associated with the large biases in the simulated air pollutant concentrations 

over there and reflect that the emission uncertainties assumed in our studies may be underestimated over these 

regions. it also highlighted the importance of the use of inflation method during the inversion, otherwise it 

would lead to filter divergency caused by the underestimations of the background error covariance. Following 

the suggestions of the reviewer, we have added the discussions of the inflation factors in the revised manuscript. 

Please see lines 269 – 277 in the revised manuscript and Table S1 in the revised supplement. 

 

Table R1 The average mean (standard deviation) of the calculated factor for the inflation of the ensemble 

member over different regions of China for different species 

 NCP NE SE SW NW Central 

PM2.5 1.0 (0.2) 1.7 (1.6) 1.0 (0.0) 6.8 (8.5) 3.1 (3.8) 3.9 (3.9) 

PM10 1.4 (0.7) 7.2 (8.0) 2.4 (0.8) 78.1 (108.2) 26.3 (36.5) 36.0 (49.0) 

SO2 1.4 (0.7) 4.1 (3.2) 2.3 (0.8) 
176.1 

(254.6) 
7.8 (6.5) 58.6 (72.5) 

NOx 1.0 (0.1) 1.7 (0.7) 1.2 (0.3) 8.1 (5.3) 2.8 (1.3) 5.4 (4.1) 



CO 1.0 (0.1) 2.8 (2.3) 1.4 (0.4) 18.8 (16.8) 6.8 (6.9) 8.6 (10.0) 

NMVOC 1.4 (0.6) 4.5 (4.4) 1.6 (0.5) 8.1 (8.6) 6.5 (5.8) 8.1 (10.1) 

 

Comment 7: Table 3 lacks information regarding the year. 

Reply: Thanks for this comment. we have added the year information in the revised Table 3.  

 

Comment 8: How were diurnal variations of the emissions specified? 

Reply: Since the a priori emission inventory did not provide the information on the diurnal variations of the 

emissions, and it is difficult to estimate the diurnal variations of the emissions for different sectors over the 

whole China, we used the constant diurnal variation during the assimilation. We acknowledge that the 

uncertainty in the diurnal variations of the emission would lead to uncertainty in our inversion results. 

However, the diurnal variations of the emission may not significantly influence the simulation results of the 

daily mean concentrations of air pollutants according to the sensitivity experiments conducted by Wang et al. 

(2010) in China and Mues et al. (2014) in Europe. As shown in Wang et al. (2010), the differences in the 

simulated concentrations of SO2, NO2 and O3 with or without considerations of diurnal variation were 

estimated to be within 1 ppbv in China. Therefore, the diurnal variation may not significantly influence our 

inversion results. Following the suggestion of reviewer, we have added the description of the settings of the 

diurnal variation of the emissions in the revised manuscript. Please see lines 155–159. 

 

Comment 9: How is the optimization of VOC components conducted when VOC consists of multiple 

components? 

Reply: Since we did not have the observations of the VOC components, we only optimize the gross emissions 

of the VOC during our assimilation which has been pointed out in the revised manuscript (lines 336–337).  

 

Comment 10: Region name in Figure 1 refers to specific areas. Consider a different expression to avoid 

potential ambiguity. 

Reply: Thanks for this suggestion. Since the region names in Fig. 1 were also used in our other papers, we 

are intended to keep their name to guarantee the consistency among our works.  

 

Comment 11: Please consider adopting a clearer representation for Figure 11. 

Reply: Thanks for this suggestion. We have redrawn the Figure 11 in revised manuscript for a clearer 

representation as shown in Fig. R5: 



 

Figure R5: Comparisons of the averaged emissions of (a) NOx, (b) SO2, (c) CO, (d) PM2.5, (e) PM10, and (f) 

NMVOCs over different regions in China from 2015 to 2018 between CAQIEI and previous inventories added 

with natural sources. 

 

Comment 12: L483 Change "Fig.3" to "Fig. 4" 

Reply: Done 
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