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Abstract 18 

Soybean, an essential food crop, has witnessed a steady rise in demand in recent years. There is a lack of 19 

high-resolution annual maps depicting soybean planting areas in China, despite China being the world’s 20 

largest consumer and fourth largest producer of soybeans. To address this gap, we developed a novel 21 

Regional Adaptation Spectra-Phenology Integration method (RASP) based on Sentinel-2 remote sensing 22 

images from the Google Earth Engine (GEE) platform. We utilized various auxiliary data (e.g., cropland 23 

layer, detailed phenology observations) to select the specific spectra and indices that differentiate 24 

soybeans most effectively from other crops across various regions. These features were then input for an 25 

unsupervised classifier (K-means), and the most likely type was determined by a cluster assignment 26 

method based on dynamic time warping (DTW). For the first time, we generated a dataset of soybean 27 

planting areas across China, with a high spatial resolution of 10 meters, spanning from 2017 to 2021 28 

(ChinaSoyArea10m). The R2 values between the mapping results and the census data at both county- and 29 

prefecture-level were consistently around 0.85 in 2017-2020. Moreover, the overall accuracy of mapping 30 

results at the field level in 2017, 2018, and 2019 were 77.08%, 85.16% and 86.77%, respectively. 31 

Consistency with census data was improved at the county level (R2 increased from 0.53 to 0.84), 32 

compared to the existing 10-m crop-type maps in Northeast China (Crop Data Layer, CDL) based on 33 

field samples and supervised classification methods. ChinaSoyArea10m is spatially consistent well with 34 

the two existing datasets (CDL and GLAD maize-soybean map). ChinaSoyArea10m provides important 35 

information for sustainable soybean production and management, as well as agricultural system modeling 36 

and optimization. ChinaSoyArea10m can be downloaded from an open-data repository (DOI: 37 

https://zenodo.org/doi/10.5281/zenodo.10071426, Mei et al., 2023). 38 

1 Introduction 39 

Soybean, one of the most important crops around the world, plays an important role in diet and livestock 40 

breeding (Hartman et al., 2011). As the global demand for protein and meat increases, China’s demand 41 

for soybeans has been keeping rising nowadays. In the past decade, China has averagely accounted for 42 

over 30% of the world's total soybean consumption (Liu and Fan, 2021). Despite being the fourth-largest 43 

https://zenodo.org/doi/10.5281/zenodo.10071426
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producer of soybeans after Brazil, the United States, and Argentina, China's self-sufficiency rate is low 44 

(FAOSTAT, 2023; Wang et al., 2023). Given the rapid growth of demand and the shortages of domestic 45 

supply due to lower yield and self-sufficiency, mapping soybean planting areas across China is crucial 46 

for sustainable soybean production and management (Cui and Shoemaker, 2018; Liu et al., 2021). 47 

Soybean planting area in some regions of China was mapped in previous studies (You et al., 2021; 48 

Huang et al., 2022; Chen et al., 2023), but long-term soybean maps over all major producing areas in 49 

China have not been available. A decision tree method based on phenological and near-infrared 50 

reflectance differences was applied in the state of Parana in Brazil to produce corn-soybean maps with a 51 

resolution of 500 m (Zhong et al., 2016). However, this study was limited to one state and a simple 52 

planting pattern (including soybeans and corn only) at a medium resolution. The field size in China is 53 

generally small, and 500 m-resolution maps will inevitably bring pixel mixing problem (Lowder et al., 54 

2016). More recently, 20-year soybean-corn maps with 30 m resolution across the US Midwest have been 55 

generated by collecting a large number of samples and using green chlorophyll vegetation index (GCVI) 56 

time series features, which is a large-scale, high-precision soybean mapping attempt (Wang et al., 2020). 57 

Similarly, high-precision soybean maps in China were also made by collecting major crop samples and 58 

utilizing spectral reflectance and vegetation indexes characteristics, for 2017-2019 in Northeast China 59 

(You et al., 2021). Some studies have utilized unique canopy water content and chlorophyll content to 60 

produce soybean maps in the three provinces of Northeast China from 2017 to 2021 (Huang et al., 2022). 61 

Other studies made laudable efforts to craft a comprehensive national maize-soybean map for China in 62 

2019 by combining field data and regression estimators (Li et al., 2023). However, these studies were 63 

confined in some degrees because of the specific region or a single year, despite prior attempts to 64 

accurately map soybean cultivation areas. Long-term annual soybean maps over mainly planting areas 65 

in China with a higher spatial resolution have not been available so far.  66 

Mapping crops by remote sensing can be categorized into four methods : 1) supervision classification 67 

based on a large number of field samples or high quality training labels (Song et al., 2017; You et al., 68 

2021; Shangguan et al., 2022; Li et al., 2023); 2) developing some composite indexes based on the feature 69 

bands and determining the binary classification using appropriate thresholds (Huang et al., 2022; Chen 70 

et al., 2023; Zhou et al., 2023); 3) threshold segmentation based on prior knowledge such as phenology 71 

or spectra (Zhong et al., 2016); 4) combining unsupervised classification with cluster assignment (Wang 72 
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et al., 2019; You et al., 2023). Supervision classification methods relied on ground samples heavily, while 73 

the 2nd and 3rd methods are both based on reliable and accurate thresholds. However, mapping soybean 74 

by these methods was mainly applied in small areas, very few covering over a larger region. Because of 75 

sufficient field samples, supervision classification can achieve maps with a higher accuracy, which is 76 

relatively mature method used widely. However, collecting sufficient field samples is extremely time, 77 

money, and labor consumed, and unsuitable for long-term years over larger areas (Luo et al., 2022). 78 

Furthermore, the threshold-based methods (the 2nd and 3rd) have been applied into large areas, however, 79 

determining the thresholds will inevitably bring significant uncertainty, especially for the areas with high 80 

heterogeneity in climate, environment, and planting patterns. Thus, these methods show low 81 

reproducibility, further hindering their application across diverse geographic areas. As for mapping 82 

soybean, it is still a big challenge due to their similar growth characteristics with many other summer 83 

crops (Wang et al., 2020; Di Tommaso et al., 2021). The thresholds that work well in some areas did not 84 

perform well in other areas (Graesser and Ramankutty, 2017; Guo et al., 2018). These limitations restrict 85 

accurate soybean maps available, especially over large regions in China. Given the challenges of 86 

collecting sufficient field samples over larger region and the limited adaptability to environmental 87 

variations of threshold-based method, previous researches have yet to achieve multi-year, high-resolution 88 

soybean maps nationwide. 89 

Along this line, the adaptive classification approach tailored to distinct areas, i.e., method (4), is a 90 

highly effective for accurately mapping crops over a larger region. Such unsupervised classification can 91 

effectively address the above issues such as insufficient samples and limited spatial scalability by training 92 

classifiers separately in different areas (Ma et al., 2020; Wang et al., 2022). Remarkable successes have 93 

been achieved when applying the approach into the United States in mapping soybean and maize (Wang 94 

et al., 2019). Due to the different climatic and environmental conditions, together with huge differences 95 

in cultivating patterns over various areas, crop phenological information has become an important 96 

reference for crop classification. For example, the phenological observations at the agricultural 97 

meteorological stations were employed as a reference to detect the critical phenological dates of pixels 98 

through inflexion- and threshold-based methods, thereby generating planting areas for three major crops 99 

in China with R2 greater than 0.8 compared to county statistics (Luo et al., 2020). The time-weighted 100 

dynamic time warping method based on the similarity of phenological curves of Normalized Difference 101 
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Vegetation Index (NDVI) has successfully estimated the planting area of maize in China, with provincial 102 

averages for producer’s and user’s accuracies at 0.76 and 0.82, respectively (Shen et al., 2022). 103 

Phenological-based Vertical transmit Horizontal receive (VH) polarized time series accurately captured 104 

temporal characteristics of soybeans, thus were used for an unsupervised classifier to map the seasonal 105 

soybeans, achieving an overall accuracy over 80% in Ujjain district (Kumari et al., 2019). By integrating 106 

unsupervised classification’s regional scalability with specific local soybean growth signs from 107 

phenological data, we fully leverage soybean’s characteristic spectra and vegetation indices during key 108 

growth periods across different areas. Through training the local unsupervised classifier to accommodate 109 

the crop growth variability across regions, and avoiding extensive jobs on collecting samples, the 110 

approach provides an effective solution for regional adaptive large-area crop mapping. 111 

The main objectives of this study are: 1) to develop a novel framework to map soybean planting area 112 

over a larger region; 2) to test the generalization ability of the framework and assess the accuracy of maps 113 

at different levels; and 3) to provide a new data product of soybean planting area across mainly planting 114 

areas in China, for multi-years with a high spatial resolution.  115 

2 Materials and methods 116 

2.1 Study area 117 

We selected 14 major soybean producing provinces (including Chongqing Municipality) as study area, 118 

which cover over 90% of the total planting area in China (National Bureau of Statistics of China, 2023) 119 

(Fig. 1). The soybean planting areas were classified into four agro-ecological zones (AEZs) based on 120 

their diverse geographical environment and planting habits, including Northeast single cropping eco-121 

region (NE, Zone I), Huang-Huai-Hai double cropping eco-region (HH, Zone II), Middle-Lower Yangtze 122 

River double cropping eco-region (MLY, Zone III) and Southwest double cropping eco-region (SW, Zone 123 

IV) (Wang and Gai, 2002). In particular, Zone I and Zone II are the main soybean producer in China, 124 

accounting for more than 70% of the national soybean planting area.  125 
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 126 

Figure 1. The study area including 14 provinces (including Chongqing Municipality) and spatial distribution 127 

of ground samples and reference points across China in (a) 2019, (b) 2017, and (c) 2018. The 14 provinces 128 

include Heilongjiang, eastern Inner Mongolia, Anhui, Henan, eastern Sichuan, Jilin, Hubei, Guizhou, Jiangsu, 129 

Yunnan, Shandong, Shaanxi, Shanxi, and Chongqing. Stars, triangles, and dots represent the locations of 130 

soybean agricultural meteorological stations (AMSs), ground samples, and reference points, respectively. 131 

2.2 Data 132 

2.2.1 Remote sensing data 133 

We used Sentinel-2A/B Multi-Spectral Instrument (MSI) Level-1C top-of-atmosphere (TOA) reflectance 134 

data during 2017-2021 (https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2, 135 

last access: September 2023). Because of the longer-term coverage of Sentinel-2 Level-1C TOA 136 

reflectance data, and the nearly identical spectral profile time series extracted from both products, we opt 137 

to use L1C products instead of L2A, considering that TOA images fully meet the crop classification 138 

requirements (You and Dong, 2020; Han et al., 2021; Luo et al., 2022). Sentinel-2 sensors provide 139 

observations in 13 spectral bands at 10 m or 20 m resolution. The red-edge bands and shortwave infrared 140 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
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bands equipped with sentinel-2 play a great role in enhancing the accuracy of crop classification (Luo et 141 

al., 2021; Marshall et al., 2022). In addition, the S2 cloud probability dataset provided by the official can 142 

identify cloud pollution areas and be used as cloud removal processing.  143 

2.2.2 In-situ phenological observations 144 

The soybean phenology observations in study area from 2017 to 2020 were obtained from 76 agricultural 145 

meteorological stations (AMSs) governed by the CMA (https://data.cma.cn/, last access: May 2022). 146 

Phenology information of each AMS is observed on alternate days or once a day, and key phenological 147 

events such as sowing, emergence, three-true-leaves, branching, flowering, podding, full-seeding, and 148 

maturity are noted by technicians to ensure accuracy. We defined the period from sowing to flowering as 149 

the vegetative growth period (VGP), and the period from flowering to maturity as the reproductive 150 

growth period (RGP) of soybeans (Gong et al., 2021). In cases of missing observation for a specific year, 151 

we inserted the average of two closest observations before and after the year. For instance, if there was 152 

missing data of flowering date in 2017, we filled it with the average of flowering records in 2016 and 153 

2018 at the same station. 154 

2.2.3 Cropland data 155 

GLAD cropland product with a 30-m resolution in China was used as cropland masks 156 

(https://glad.umd.edu/dataset/croplands, last access: September 2023) (Potapov et al., 2022). The crop 157 

layer was conducted every four years from 2000 to 2019. We used the file for the 2016-2019 interval 158 

which is closest to the study years. GLAD’s overall accuracy of pixel-wise validation is 0.88 in China, 159 

consistent well with the census data. The accuracy of the product is higher than that of similar products, 160 

making it a reliable for crop mapping (Zhang et al., 2022). 161 

2.2.4 Census data and ground samples 162 

To determine the number of clusters at prefecture-level and validate the accuracy of the soybean maps at 163 

county (2017-2018) or prefecture (2019-2020) level, we utilized agricultural census data obtained from 164 

the statistical yearbook of each county or province by accessing National Bureau of Statistics of China 165 

(http://www.stats.gov.cn/, last accessed: June 2023).  166 

https://glad.umd.edu/dataset/croplands
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We used both ground samples and reference points based on available datasets to determine soybean 167 

standard curves and assess the reliability of the soybean maps (Fig. 1). All points were randomly divided 168 

in a 3:7 ratio for standard curve calculation and accuracy validation, respectively (Dong et al., 2020). We 169 

collected ground samples from field surveys from 2017 to 2019 in Heilongjiang (HLJ), Inner Mongolia 170 

(NMG), Anhui (AH), Henan (HN), and Jilin (JL), which account for more than 70% of the country’s total 171 

soybean planting area (Table 1). Crop types (soybean, maize, rice, wheat, others) and other land cover 172 

types were recorded. To ensure the impartiality of verification results, we only selected crop samples for 173 

validation. In provinces without ground samples, we manually selected reference points on large soybean 174 

plots based on GLAD (https://glad.earthengine.app/view/china-crop-map, last access: March 2024) 175 

soybean layer. The criterions selected are: (1) located in large plots; (2) false color composite image (R: 176 

NIR, G: SWIR2, B: SWIR1) at the peak of growing season (Song et al., 2017; You and Dong, 2020); (3) 177 

phenological characteristics similar to local observations. Additionally, the reference points of maize, 178 

single-cropping rice and double-cropping rice in 2019 were selected based on GLAD maize layer, high 179 

resolution single-season rice map (https://doi.org/10.57760/sciencedb.06963, last access: March 2024), 180 

and double-season rice map (https://doi.org/10.12199/nesdc.ecodb.rs.2022.012, last access: March 2024) 181 

with the same principle to explore the spectral characteristics of crops in each sub-zone of the studied 182 

areas. The overall accuracy of all available maps in 2019 is above 85% (Pan et al., 2021; Li et al., 2023; 183 

Shen et al., 2023). 184 

Table 1. Summary of ground samples for validation. 185 

  HLJ NMG AH HN JL 

2017 Soybean 1013 451 - - 0 

 Maize 1061 146 - - 11 

 Rice 513 38 - - 13 

 Other crops 124 459 - - 0 

2018 Soybean 525 746 72 15 117 

 Maize 764 479 73 20 217 

 Rice 587 42 0 0 71 

 Wheat 10 141 0 0 0 

 Other crops 70 1069 0 0 0 

2019 Soybean 901 562 51 - 26 

 Maize 468 463 53 - 197 

 Rice 392 36 0 - 148 

 Other crops 62 445 0 - 36 

https://glad.earthengine.app/view/china-crop-map
https://doi.org/10.57760/sciencedb.06963
https://doi.org/10.12199/nesdc.ecodb.rs.2022.012
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2.2.5 Existing products 186 

We utilized the crop map CDL of Northeast China from 2017 to 2019 187 

(https://figshare.com/articles/figure/The_10-m_crop_type_maps_in_Northeast_China_during_2017-188 

2019/13090442, last access: September 2023) for consistency comparison with census data, and the 189 

2019 GLAD maize-soybean map as a reference for spatial detail comparison with ChinaSoyArea10m. 190 

CDL is a 10m resolution crop map dataset of Northeast China from 2017 to 2019 that was created 191 

using Sentinel-2 key spectral bands and vegetation indices, multi-year field samples, and random forest 192 

classifiers (You et al., 2021). The maps include three crop types: rice, maize, and soybeans. The GLAD 193 

maize-soybean Map is a national classification map for 2019 that was produced using random forests, 194 

based on field surveys and area estimates (Li et al., 2023). The agreement (R2) between GLAD and the 195 

statistics is higher than 0.9, and the overall mapping accuracy is greater than 90%, making it a reliable 196 

reference for comparing spatial details. We extracted the soybean layers from all the existing products. 197 

2.3 Methods 198 

Mapping soybean consists of three main steps (Fig.2): data processing, soybean mapping, and accuracy 199 

assessment. It is important to note that the Regional Adaption Spectra-Phenology Integration (RASP) 200 

soybean mapping strategy involves several key steps, including potential area identification, feature 201 

selection, unsupervised learning, and cluster assignment. Finally, we conducted multi-comparisons 202 

between our soybean products with others, including census data, ground samples, and existing datasets, 203 

to evaluate the accuracy of our data product. 204 

https://figshare.com/articles/figure/The_10-m_crop_type_maps_in_Northeast_China_during_2017-2019/13090442
https://figshare.com/articles/figure/The_10-m_crop_type_maps_in_Northeast_China_during_2017-2019/13090442


10 

 

 205 

Figure 2. The Regional Adaption Spectra-Phenology Integration methodology for retrieving soybean planting 206 

area. AMS, agricultural meteorological station; DOYpodding, the podding date recorded by the nearest AMS; 207 

EVI: Enhanced Vegetation Index; DOYpeak, the date when EVI reached peak; DOYseed, the full-seed date 208 

recorded by the nearest AMS; SOS, start of growing season; EOS, end of growing season; SWIR1, Short Wave 209 

Infrared band 1; SWIR2, Short Wave Infrared band 2; SIWSI, shortwave Infrared Water Stress Index; RE1, 210 

Red Edge band 1; RE2, Red Edge band 2; RE3, Red Edge band 3; NIR, Near-infrared band; TCARI, 211 

Transformed Chlorophyll Absorption in Reflectance Index; VGP: vegetative growing period; RGP: 212 

reproductive growing season.  213 

2.3.1 Data processing 214 

We employed the simple cloud score algorithm (Oreopoulos et al., 2011), QA60 band, cirrus band, and 215 

cloud probability dataset to identify cloud masks. The following isolated cloud masks are created: (1) 216 

Cloud and cirrus identified by QA60 band; (2) Cirrus identified by cirrus band in Level-1C products; (3) 217 

Pixels with cloud score less than 0.9; and (4) Pixels with cloud probability more than 70. Each algorithm 218 

has its own strengths and limitations. For example, QA60 band removes a large number of thin cirrus 219 

clouds while ignoring small clouds with thicker resolution, and the fixed threshold values of cloud score 220 

and cloud probability may introduce uncertainties. Therefore, we masked the pixels identified as clouds 221 

by at least two methods to achieve better cloud removal effects. Then, we used Temporal Dark Outlier 222 
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Mask (TDOM) method to eliminate cloud shadows (Housman et al., 2018). We calculated the SIWSI 223 

and TCARI indices based on the Sentinel-2 image set processed above (see 2.3.2(2)). To fill the data gaps 224 

caused by cloud removal and smooth anomalies, Sentinel-2 time series was reconstructed by moving 225 

median composite method, resulting in a 10-day interval composite time series. We set the half-window 226 

size for the moving median methods to 10 days considering the 5-day revisit cycle of Sentinel-2 and 227 

computational efficiency. In areas with notably limited clear observations, a gap-filling method was 228 

conducted on the composite time series. This method involves substituting any given observation with 229 

the median value from three neighboring observations (i.e., previous, current, and subsequent 230 

observations) to maximize the continuity and completeness of time series. 231 

2.3.2 Regional Adaptation Spectra-Phenology Integration (RASP) soybean mapping strategy  232 

(1) Potential area identification 233 

To minimize the impact from non-croplands, we firstly determine the potential cropping areas by 234 

masking GLAD cropland layer over study area. Sentinel-2 images within growing season were extracted 235 

by taking the sowing date and harvesting date recorded at the nearest agricultural meteorological station 236 

(AMS) as the starting and ending dates of the growing season, respectively. Based on the cropland 237 

extracted, we filtered out the pixels exhibiting an Enhanced Vegetation Index (EVI) maximum value 238 

during the growing season less than 0.4 to remove fallow land according to the analysis of ground 239 

samples (Fig. S1) and previous studies, which found that almost all crops had maximum EVI values 240 

above 0.4 (Li et al., 2014; Zhang et al., 2017; Han et al., 2022). EVI is a vegetation index with high 241 

sensitivity in biomass: 242 

𝐸𝑉𝐼 = 𝐺 ×
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝐶1 × 𝜌𝑅𝑒𝑑 − 𝐶2 × 𝜌𝐵𝑙𝑢𝑒 + 𝐿
 (1) 

Where 𝜌𝑁𝐼𝑅, 𝜌𝑅𝑒𝑑, and 𝜌𝐵𝑙𝑢𝑒 represented the reflectance of the Near-infrared (835.1nm (S2A) / 833nm 243 

(S2B)), Red (664.5nm (S2A) / 665nm (S2B)), Blue (496.6nm (S2A) / 492.1nm (S2B)), respectively. 244 

The greenest period of soybean typically occurs between the podding date and the full-seed date, with a 245 

difference of more than a month from the peak date of non-seasonal crops, such as wheat (Fig. 4a). We 246 

obtained the phenological observations recorded by the nearest AMS as reference and set the restricted 247 

time window from 15 days before the podding date (DOYpodding) to 15 days after the full-seed date 248 

(DOYseed) (Fig. 3). We generated the potential area by eliminating pixels whose EVI maximum occurs 249 
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outside the given time window because the phenological difference of soybeans in adjacent areas 250 

generally does not exceed one month. Moreover, the impacts of cloud-covered pixels appearing in the 251 

proposed period is minimized since we have reconstructed the original EVI time series. 252 

 253 

Figure 3. Schematic diagram of seasonal crop identification for (a) single - and (b) double - cropping systems. 254 

(2) Feature selection 255 

By exploring the spectral characteristics of crop field samples, we identified reflectance bands and 256 

vegetation indices that are significantly associated with soybeans but different from other crops. We 257 

selected six bands and two spectral indices for crop mapping, including Near-infrared (NIR) band, Red 258 

edge band 1 (RE1), Red edge band 2 (RE2), Red edge band 3 (RE3), Short Wave Infrared band 1 259 

(SWIR1), Short Wave Infrared band 2 (SWIR2), Shortwave Infrared Water Stress Index (SIWSI), 260 

Transformed Chlorophyll Absorption in Reflectance Index (TCARI). SIWSI is an indicator of canopy 261 

water content that reflects soil moisture variations and canopy water stress better than Normalized 262 

Difference Vegetation Index (NDVI) (Fensholt and Sandholt, 2003; Olsen et al., 2015). TCARI is an 263 

indicator which is sensitive to chlorophyll concentration (Sobejano-Paz et al., 2020). The two spectral 264 

indices were calculated as follows: 265 

𝑆𝐼𝑊𝑆𝐼 =
𝜌𝑆𝑊𝐼𝑅1 − 𝜌𝑁𝐼𝑅
𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑁𝐼𝑅

 (2) 

𝑇𝐶𝐴𝑅𝐼 = 3 × ((𝜌𝑉𝑅𝐸1 − 𝜌𝑅𝑒𝑑) − 0.2 × (𝜌𝑉𝑅𝐸1 − 𝜌𝐺𝑟𝑒𝑒𝑛) × 𝜌𝑉𝑅𝐸1/𝜌𝑅𝑒𝑑) (3) 

Where 𝜌𝑆𝑊𝐼𝑅1, 𝜌𝑁𝐼𝑅, 𝜌𝑉𝑅𝐸1, 𝜌𝑅𝑒𝑑 and 𝜌𝐺𝑟𝑒𝑒𝑛 represented the reflectance of the Short Wave Infrared 266 

band1 (SWIR1, 1613.7nm (S2A) / 1610.4nm (S2B)), Near-infrared (835.1nm (S2A) / 833nm (S2B)), 267 

Red Edge1 (VRE1, 703.9nm (S2A) / 703.8nm (S2B)), Red (664.5nm (S2A) / 665nm (S2B)), Green 268 

(560nm (S2A) / 559nm (S2B)), respectively. 269 

During early growing season of soybean (~DOY 120-190 in Zone I), the flooding signal of rice was 270 

obvious due to the transplanting period. This resulted in a significantly lower SWIR reflectance and 271 
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SIWSI index for rice compared to those of soybean (Fig. 4f-h). SWIR bands and SIWSI index during the 272 

vegetative growing period (VGP) of soybean can effectively distinguish dryland crops (such as soybean, 273 

maize) from paddy crops (such as rice). 274 

Soybean has a lower water content during the middle and later growing season (~DOY 190-220 in 275 

Zone I) than maize, resulting in higher reflectivity in SWIR bands (Fig. 4b, 4f, 4g) (Chen et al., 2005). It 276 

has been demonstrated that SWIR and red-edge bands can effectively differentiate soybean and maize 277 

(Fig. 4c-g) (Zhong et al., 2016; You and Dong, 2020; Liu et al., 2018b). Additionally, the chlorophyll 278 

content of soybean in the middle and late growth period was lower than that of maize, leading to 279 

significantly higher TCARI values. Meanwhile, the timing of TCARI reaching saturation significantly 280 

differs among soybean, rice, and wheat (Fig. 4i). All these spectral-phenological characteristics are also 281 

applicable to soybeans planted in other sub-zones (Fig. S2-S4). Based on these findings, we selected NIR, 282 

red-edge bands, short-wave infrared bands, and TCARI index during soybean reproductive growing 283 

season (RGP) as key features. 284 

 285 



14 

 

Figure 4. Temporal profiles of (a-i) for major crops in Northeast China and (j) key soybean phenological 286 

periods by region based on ground samples. Lines depict the mean values of different crops and shaded areas 287 

depict error bars with one positive/negative standard deviation. The number at the bottom represents the key 288 

phenological periods of soybean: 1 – Sowing, 2 – Flowering, 3 – Seed fulling, 4 – Maturity. 289 

(3) Unsupervised learning 290 

We utilized K-means algorithm to classify potential area data by using the wekaKMeans Clusterer 291 

provided by Google Earth Engine (GEE). The m samples are divided into k clusters by alternately 292 

assigning the samples to the nearest cluster centroid measured by Euclidean distance or the Manhattan 293 

distance and updating the cluster centroid to the mean of the samples assigned to the cluster. This 294 

approach had been widely used in land-cover classification and crop mapping (Xiong et al., 2017; Wang 295 

et al., 2019). We used the detailed phenological records at AMSs to identify soybean growth periods and 296 

selected the spectra and vegetation indices within specific growth periods (VGP, RGP)key phenological 297 

information as input features. The classifier was trained individually on each prefecture based on the 298 

number of clusters k input. The cluster number k is defined as the number of “major crops” that 299 

constituting 95% of the total area for seasonal crops (including rice, maize, soybean, cotton, peanuts, 300 

sesame, sweet potato, and sorghum) according to prefecture-level statistics, and plus one for “other 301 

crops”. 302 

(4) Cluster assignment 303 

To identify the most likely cluster that represents soybean, we randomly selected 100 points per cluster 304 

and extracted feature series. We then used dynamic time warping (DTW) method to measure the 305 

similarity between each cluster’s eight features involved in classification and the soybean standard curves. 306 

We averaged the data of 30% samples in each sub-zone to establish the standard curves, reducing the 307 

impact of regional phenological variations. The time coverage of Zone I-IV was set to April-September, 308 

May-October, June-October, and August-November, respectively, which are corresponding with the 309 

soybean growing season. The cluster with the minimal average of 8 DTW values was identified as the 310 

soybean cluster. DTW is a flexible algorithm that allows for deviations in time between two sequences, 311 

and it calculates the minimum distance between them by finding misalignment matches between 312 

elements. This approach is widely used in land cover and crop identification due to its ability to handle 313 

time distortions associated with seasonal changes (Guan et al., 2016; Dong et al., 2020). 314 
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2.3.3 Accuracy assessment 315 

To assess the accuracy of the soybean maps we generated, we validated and compared the results using 316 

1) county- and prefecture-level census data, 2) ground samples, and 3) existing products. Since the 317 

county-level statistics after 2019 were not fully collected, we used the county-level statistics for 2017-318 

2018 and the prefecture-level statistics for 2019-2020 to calculate the R2 and RMSE of the mapped area 319 

with the following equations: 320 

𝑅2 = 1 −
∑ (𝑠𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑠𝑖 − �̅�)2𝑛
𝑖=1

 (4) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑠𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

𝑛
 (5) 

where 𝑠𝑖 and 𝑦𝑖 are the statistical and mapped soybean area for county (prefecture) 𝑖, �̅� is the average 321 

statistical area, and 𝑛 represents the total number of counties (prefectures). We calculated the local crop 322 

mapping area based on the Universal Transverse Mercator (UTM) projection corresponding to the 323 

location of the province. 324 

We also used ground samples during 2017-2019 to verify the authenticity of the soybean maps. 325 

Confusion matrices were calculated as follows: 326 

𝑃𝐴 =
𝑁𝑖
𝑅𝑖

 (6) 

𝑈𝐴 =
𝑁𝑖
𝐶𝑖

 (7) 

𝑂𝐴 =
𝑁𝑐
𝐴

 (8) 

𝐹1 = 2 ×
𝑈𝐴 × 𝑃𝐴

𝑈𝐴 + 𝑃𝐴
 (9) 

where 𝑁𝑖  is the number of correctly identified validation samples of class 𝑖 , 𝑅𝑖  is the number of 327 

ground validation samples of class 𝑖, 𝐶𝑖 is the number of validation samples classified as class 𝑖, 𝐶𝑖 328 

is the number of validation samples classified as class 𝑖, 𝑁𝑐 is the total number of correctly identified 329 

validation samples, 𝐴 is the total number validation samples. 𝑃𝐴, 𝑈𝐴, and 𝑂𝐴 represent producer’s 330 

accuracy, user’s accuracy, and overall accuracy, respectively. 331 

To ensure that the products are accurate not only in quantity but also in space, we further compared 332 

the ChinaSoyArea10m with existing products in detail space. 333 
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3 Results 334 

3.1 Accuracy assessment 335 

We utilized the available census data from 2017-2020 (at county-level in 2017-2018 and prefecture-level 336 

in 2019-2020) to verify the accuracy of the soybean maps across the entire studied area. Annual 337 

ChinaSoyArea10m is consistent well with the census data (R2 > 0.8), with an R² value of 0.84, 0.85, 0.82, 338 

and 0.86 for 2017, 2018, 2019, and 2020, respectively (Fig. 5). These results demonstrate that our RASP 339 

method is inter-annual robustness and can accurately capture annual dynamics of soybean planting areas. 340 

The scattered points are generally distributed around 1:1 line, without large overestimations or 341 

underestimations. However, the areas are overestimated for counties with planting area < 20 kha, or 342 

prefectures with planting area <100 kha (Fig. 5). This uncertainty, particularly overestimation, could be 343 

caused by the low proportion of soybean cultivation. If maize or other same-season crops are planted in 344 

a much higher proportion than soybeans there, distinctly recognizing soybeans (as a less prevalent crop) 345 

as a separate category will be a big challenge for classifiers, consequently resulting in misclassified 346 

clusters including maize or other crops. 347 

The mapping accuracy in Zone I closely matched county-level statistics, showing high consistency 348 

(R2=0.86). Zones II-IV also demonstrated reasonable agreement (R2=0.50~0.69), despite relatively lower 349 

accuracy due to the scarcer planted areas (Fig. S5). No significant trend deviation from statistics was 350 

indicated for the mapping area in Zone I, with slight overestimates for Zone II and III, and underestimates 351 

for Zone IV (Fig. S5). These accuracy variations are acceptable, given the challenges in accurately 352 

identifying soybeans in regions where they are planted less prevalently. Specifically, maize is more 353 

dominant than soybeans in Zone II, while Zone III is characterized by diverse crops and complex planting 354 

patterns. Underestimation in Zone IV is possibly due to fewer clear observations in the southwest. 355 

Nevertheless, the overall accuracy across the zones is acceptable. 356 

ChinaSoyArea10m is consistent well with census data compared to the existing product (CDL) (You et 357 

al., 2021), using both the county level in 2018 and prefecture level in 2019 (Fig. 6). CDL’s results are 358 

consistent with census data at the prefecture scale, with more overestimations at the county level (Fig. 359 

6), implying the comparison at finer scale would reveal more details. ChinaSoyArea10m is consistent 360 
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with statistics at the both levels (R2 ~0.85), with R2 increases 0.31 compared with CDL in county level 361 

(Fig. 6a). 362 

 363 

Figure 5. Comparison of soybean areas with statistics in (a) 2017 at county-level, (b) 2018 at county-level, (c) 364 

2019 at prefecture-level, (d) 2020 at prefecture-level. 365 

 366 

Figure 6. Comparison of soybean areas of ChinaSoyArea10m and CDL with statistics in (a) 2018 at county-367 

level, (b) 2019 at prefecture-level. 368 



18 

 

Furthermore, we used ground samples in 2017-2019 to validate the reliability of the soybean maps. 369 

Since the soybean planting area maps are 0-1 binary images, we categorized the ground samples into 370 

soybean and non-soybean (maize, rice, wheat, and other crops). The verification results based on ground 371 

samples indicated that the overall accuracy of soybean maps during 2017-2019 was in the range of 77.08% 372 

to 86.77%. The F1 scores of soybeans increased from 2017 to 2019 (0.69, 0.75 and 0.84, respectively) 373 

(Table 2). The variance in accuracy among years could be attributed to the quality of Sentinel-2 images, 374 

which had been indicated in previous studies (Liu et al., 2020; Han et al., 2021). The overall accuracy 375 

for each sub-zone in 2019 varied from 83.58% to 90.67% (Table S1). Specifically, Zone I demonstrated 376 

the highest producer’s accuracy for soybean at 88.31%, aligning with its high consistency with statistics. 377 

Zone III achieved the highest overall accuracy at 90.67%, attributed to its superior user’s accuracy for 378 

soybean, indicating fewer misclassifications, and effective differentiation from non-soybean crops (Table 379 

S1). The producer’s accuracy in Zone IV was relatively lower at 63.89%, possibly due to the limited 380 

samples, high heterogeneity, and fewer clear observations (Table S1).  381 

Table 2. Confusion matrix of the soybean maps during 2017-2019. 382 

 Reference Map Producer’s 

Accuracy 

User’s 

Accuracy 

F1 

Score 

Overall 

Accuracy Soybean Non-Soybean 

2017 Soybean 679 352 65.86% 72.47% 0.69 77.08% 

Non-Soybean 258 1372 84.17% 79.58% 0.82 

2018 Soybean 799 246 76.46% 74.19% 0.75 85.16% 

Non-Soybean 278 2208 88.82% 89.98% 0.89 

2019* Soybean 1279 235 84.48% 83.32% 0.84 86.77% 

Non-Soybean 256 1940 88.34% 89.20% 0.89 

* Including ground samples and nationwide reference points based on existing datasets. 383 

3.2 Spatial distributions of soybean planting areas 384 

Based on the soybean maps, we further analyzed the spatial patterns of soybean distribution in China 385 

during 2017-2021. There were small changes in the spatial distribution of soybean in China in recent 386 

years (Fig. 7-8). Several hot spots were obviously observed in Heilongjiang Province, eastern Inner 387 

Mongolia, and northern Anhui, especially for eastern Inner Mongolia and western Heilongjiang, 388 

extensively and densely distributed by soybean fields (Fig. 8b-c). In Region II, soybean was planted at a 389 

larger scale, mainly concentrated in northern Anhui (Fig. 8d), and extensively distributed in Henan and 390 
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Shandong (Fig. 8e). Soybeans in other provinces of Region II, III, and IV were scattered distribution, 391 

especially in the southwestern mountainous region (Fig. 8f-h). 392 

 393 

Figure 7. Spatial distribution of soybean areas at 10 m resolution across China in (a) 2017, (b) 2018, (c) 2020 394 

and (d) 2021. 395 
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 396 

Figure 8. Spatial distribution of soybean areas at 10 m resolution across China (a) and zoom-in maps of each 397 

region (b-h) in 2019. 398 

 399 

To further compare soybean maps in detail, we compared ChinaSoyArea10m with GLAD maize-400 

soybean map and CDL data products in space. The GLAD product is a 10-m resolution maize-soybean 401 

map of China in 2019, and their R2 values with provincial and prefecture statistics were reported by 0.93 402 

and 0.94 (Li et al., 2023). Arable land near waterbodies is often misclassified as soybean plots by CDL, 403 

which has not occurred by GLAD and ChinaSoyArea10m, implying other crop types are possibly 404 

misclassified as soybeans by CDL (Fig. 9 a1-d1). As for the second case (Fig. 9 a2), our extraction results 405 

are similar to those of GLAD, while small plots failed to be identified by CDL (Fig. 9 a2-d2). In areas 406 

where banded soybeans are planted less concentrated, CDL tended to overestimate the soybean area (Fig. 407 

9 a3-d3), further substantiating the above limitations (Fig. 6). Conversely, our mapping results behaved 408 

similarly as GLAD did (Fig. 9 a3-d3). The overall accuracy of GLAD map based on pure samples reaches 409 

95.4% (Li et al., 2023), so GLAD can be regarded as a reliable reference. From the three cases, therefore, 410 

ChinaSoyArea10m has behaved more similarly with GLAD than CDL does, indicated by less 411 

underestimation, less overestimation, and higher accuracy in details. 412 



21 

 

 413 

Figure 9. Visual comparison of our soybean maps and existing products in typical regions in 2019: (a1-a3) 414 

RGB composite images comprise NIR (Band 8), SWIR 2 (Band 12), and SWIR 1 (Band 11) bands from 415 

Sentinel-2 median composite images during the peak growth period of soybean; (b1-b3) soybean layer 416 

extracted from GLAD maize-soybean map; (c1-c3) ChinaSoyArea10m map; (d1-d3) soybean layer extracted 417 

from CDL. 418 

4 Discussion 419 

We proposed a new framework (RASP) to identify annual dynamic of soybean planting areas over 420 

larger regions. We produced the longer-term series of soybean maps (ChinaSoyArea10m) across 421 

mainly planting areas in China from 2017 to 2021 firstly. The accuracy of ChinaSoyArea10m is 422 

acceptable (R2 ~ 0.85) at both county- and prefecture-level, relatively less than GLAD (R2 = 0.93 at 423 

prefecture-level), but higher than CDL (R2 = 0.53 at county-level). The RASP proposed does not 424 

require quantities of field samples and can self-adopt to different environments by considering 425 
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phenology information. Such an approach has its unique advantages, as well as some limitations. 426 

4.1 Our advantages and potential applicability  427 

We proposed a new framework (RASP) to identify annual dynamic of soybean planting areas over 428 

larger regions and. We produced the longer-term series of soybean maps (ChinaSoyArea10m) across 429 

mainly planting areas in China from 2017 to 2021 firstlyat the first time. The accuracy of 430 

ChinaSoyArea10m is acceptable (R2 ~ 0.85) at both county- and prefecture-level, with relatively less 431 

R2 than GLAD (R2 = 0.93 at prefecture-level), but higher than CDL (R2 = 0.53 at county-level). 432 

Compared with existing products, ChinaSoyArea10m accurately depict the soybean with more 433 

spatial and temporal details as well. The RASP proposed does not require quantities of field samples 434 

and can self-adopt to different environments by considering phenology information. Such an 435 

approach has its unique advantages, as well as some limitations. 436 

The methodology developed for identifying soybean planting areas indicate several notable 437 

strengths that make it an attractive option for wide application. Firstly, it operates independently, 438 

without extensive ground samples required. The conventional supervised approaches like random 439 

forest (RF) and long short-term memory (LSTM) depend on quantities of observationsal data, with 440 

much money, time, and labor consumed. In this context, both transferable learning model and our 441 

RASP methods (combing unsupervised learning with statistics) indeed provide huge potential for 442 

crop mapping. However, transferable models are suitable for areas or years with similar cropping 443 

patterns. In areas with diverse and complex cropping patterns, it is a challenge to apply the 444 

supervised model trained in limited areas or limited years into others (Wang et al., 2019; Ma et al., 445 

2020). In contrast, our strategy leverages a specific, pre-existing set of samples to discern stably 446 

differentiate soybean characteristics from other crops, which can accurately map annual dynamics 447 

without updated requirement in annual samples. Consequently, this method significantly weakens 448 

limitations in crop classification during years without specific samples, enabling crop mapping 449 

consistently and continually. 450 

Another key advantage of our spectra-phenology integration approach is its quick applicability 451 

over larger areas, coupled with excellent spatial scalability. It can self-adopt to different 452 

environments by considering phenology information. Compared to methods that rely on composite 453 

indicators and specific thresholds, our approach simplifies the requirements for inputs and 454 
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experienced judgements. The only inputs required are the phenological information of soybeans and 455 

the number of other primary crops during the same growing season in the targeted area. This allows 456 

to classify crop swiftly and efficiently without additional inputs for background knowledge or 457 

setting complex thresholds. The input of phenological information in each prefecture enhanced the 458 

zonal adaptive assessment of soybean growth status across various areas, thereby facilitating crop 459 

classification. This innovative approach ensures its applicability into other soybean-producing areas, 460 

showcasing its potential for broader implementation. 461 

4.2 The uncertainty from image quality 462 

The method we proposed (RASP) is strongly dependent on remote sensing images and subregional 463 

unsupervised classification by considering the bands and vegetation indices, which are all sensitive to 464 

the unique characteristics of soybeans. Therefore, the accuracy of soybean maps inevitably is associated 465 

with the quality of remote sensing images. By using ground samples to validate the mapping results, we 466 

found that the accuracy of 2017 is lower than that of 2018 and 2019, with an overall accuracy is less than 467 

80% (Table 2). 468 

We extracted cloud-free images in different regions during the soybean growing season and calculated 469 

the monthly average number of clear observations. In general, the monthly averages of clear observations 470 

in Northeast region and Huang-Huai-Hai region (Zone I and Zone II) are relatively higher than the 471 

southern zones (Zone III and IV) (Fig. 10a2-e2). In areas with quite lower clear observations, despite 472 

a gap-filling method was conducted to generate complete 10-day composite time series, higher 473 

uncertainty is inevitable. The gap-filling time series might contain duplicate values, which cannot 474 

accurately reflect the crop growth process in reality. Obviously, the total number of images available 475 

in 2017 over the study areas was significantly fewer than those of other years, because the second 476 

satellite Sentinel-2B only commenced operations and started providing data after March of 2017 477 

(Fig.10a1-e1). Removing the cloudy pixels has left ever fewer clear images available (upper vs. down 478 

layer in Fig.10). During the growing season, the average number of clear observations per month was 0-479 

2 in partial regions, lower than the requirements of 10-day time series composite we mentioned in 2.3.1. 480 

This might explain the lower user’s accuracy of soybean in Zone IV compared to other sub-zones 481 

(Table S1) and low overall accuracy based on sample verification in 2017 (Table 2). 482 
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 483 

Figure 10. Total (a1-e1) and clear (a2-e2) observations per month during soybean growing season. 484 

4.3 Limitations in small-scale planting areas  485 

Validation based on statistics shows that ChinaSoyArea10m reached a high consistency (R2 ~ 0.85) across 486 

China. However, in areas with soybean sparsely planted, the consistency is lower than that in densely 487 

planted areas, with more overestimations observed in the sparse areas. Such overestimations are caused 488 

by the limitations of unsupervised classification algorithm. K-means is difficult to accurately capture 489 

small plots of crops in a complex cropping system, although it can make up for the shortage of crop 490 

mapping in some areas with limited training samples (Kwak and Park, 2022). Studies have proved that 491 

the classifier performs inferiorly where dominant crop phenotypes are similar, and crop diversity is higher 492 

(Wang et al., 2019; Konduri et al., 2020). Therefore, the classifier is challenged in areas where soybean 493 

is not the dominant type due to the small plot size and spectral overlap between different crops (Chabalala 494 

et al., 2022). In southern China, cropland plots are typically small (<0.04 ha in most regions) and the 495 

crop diversity is high. The growth periods of soybean, peanut, potato, and maize are similar, dominantly 496 

indicated by a mixed planting pattern, which has contributed to the low accuracy of non-main soybean 497 

producing areas in southern China (Liu et al., 2020). Additionally, soybeans are intercropped with maize 498 

or other crops in some areas, where the strip width is less one meter (Yang et al., 2014; Du et al., 2018). 499 
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This planting pattern will introduce the mixed pixels problem as well under the background of 10 m 500 

resolution crop mapping. 501 

The lower accuracy in soybean area sparely planted could be explained by the characteristics of K-502 

means algorithm. K-means algorithm is developed to minimize the distance between each point within a 503 

cluster and the cluster’s centroid. When the sample size in a particular category substantially exceeds 504 

those of others, the algorithm might preferentially optimize the cohesion of the larger category, and would 505 

neglect the accurate clustering for smaller categories (Tan et al., 2016). The effectiveness of K-means 506 

classification is highly dependent on the selection of initial clustering centers. In scenarios of unbalanced 507 

categories, initial centers randomly selected might inadequately represent the minor categories, resulting 508 

in inaccurate results (Tan et al., 2016). Additionally, K-means assumes that each cluster is spherical; 509 

therefore, it does not perform well when clusters are non-spherical and uneven in size and density. Hence, 510 

in areas with unbalanced crop categories, the algorithm faces challenge to assign each crop to a 511 

corresponding cluster precisely (Tan et al., 2016; Wang et al., 2019). 512 

Our regional adaptive large-area crop mapping method in future will further be improved by the 513 

follows: (1) Classification on a finer scale by specifying a more precise number of target clusters can 514 

reduce spatial heterogeneity and emphasize the relative importance of non-dominant categories, and 515 

increase classification accuracy consequently (Li and Yang, 2017). (2) Optimizing data preprocessing 516 

methods. Outliers can interrupt classification because the unsupervised methods is highly sensitive to 517 

anomalies (Raykov et al., 2016; Wang et al., 2019). Therefore, eliminating outliers can further improve 518 

the classification validity. In addition, since K-means weights all dimensions equally, minimizing the 519 

features’ correlation and reducing irrelevant variables are also important means to enhance the 520 

classification effect (Hastie et al., 2009). (3) Improving algorithm performance. A variety of algorithms 521 

have been proposed to address the inherent defects of K-means (Ahmed et al., 2020), such as by 522 

optimizing the initial clustering center (e.g., K-means++), weighting classes (e.g., Weighted k-means), 523 

and non-spherical clustering assumptions (e.g., DBSCAN, Spectral Clustering) (Ester et al., 1996; Bach 524 

and Jordan, 2003; Kerdprasop et al., 2005; Arthur and Vassilvitskii, 2007). The improved algorithms will 525 

address the issues on complex and highly diverse crop classification in some degrees (Li et al., 2022; 526 

Rivera et al., 2022). (4) Better post-processing of data. Misclassification of field ridges and image 527 

speckles is inevitable during mapping crops over large areas. With the progress of computing power, 528 
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auxiliary data and image processing algorithms can further eliminate these issues (Liu et al., 2018a; Li 529 

and Qu, 2019; Hamano et al., 2023). We are sure that integrating cloud computing platforms with 530 

advanced algorithms will provide substantial potential for accurate crop identification covering larger 531 

areas in future. 532 

5 Data availability 533 

The soybean planting area product for China during 2017-2021 (ChinaSoyArea10m) is available at 534 

https://zenodo.org/doi/10.5281/zenodo.10071426 (Mei et al., 2023). We encourage users to 535 

independently verify data products for special study areas before using them. 536 

6 Conclusions 537 

In this study, a Reginal Adaption Spectra-Phenology Integration (RASP) method over large-scale was 538 

developed and utilized to generate soybean planting area maps for major producing regions in China 539 

from 2017 to 2021. By utilizing Sentinel-2 images, spectral features and vegetation indices that best 540 

distinguish soybeans were extracted and input into an unsupervised classifier in each prefecture. The 541 

DTW method was then employed to identify the soybean distribution. RASP does not rely on many 542 

ground samples and considers the soybean phenology in various planting areas, suggesting a potential 543 

way for long-term crop mapping over larger regions. Verification results demonstrated a high consistency 544 

between the mapping results and census data at county or prefecture level (all > 0.82), with overall 545 

accuracies of field samples reaching 77.08%~86.77%. These findings confirm the reliability of 546 

ChinaSoyArea10m. Our data products fill the gap in regional long-term soybean maps in China, and 547 

provide important information for sustainable soybean production and management, agricultural system 548 

modeling, and optimization. 549 
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