
Dear Editors and Reviewers: 

Sincere thanks for the evaluation of this work and your valuable comments and suggestions for 

improving this manuscript. We carefully considered the concerning points and have conducted 

numerous additional experiments and analyses in our manuscript (essd-2023-467) titled 

“ChinaSoyArea10m: a dataset of soybean planting areas with a spatial resolution of 10 m 

across China from 2017 to 2021”. Here we submit the revised version, which has been modified 

according to the comments from the reviewers. The major changes that we made in the revised 

manuscript are summarized as follows: 

(1) We have redesigned and added several figures to make the information conveyed clearer and 

more comprehensive. 

(2) The introduction has been reorganized to systematically review the common methods and the 

challenges encountered in soybean areas mapping. We have elaborated on how these challenges 

are addressed by our novel framework, the Regional Adaption Spectra-Phenology Integration 

(RASP) method. 

(3) We supplemented the accuracy verification of each sub-zone based on county-level statistics, 

and explained the method’s performance difference across various regions, which further 

demonstrated the robustness of the method. 

(4) Additional validation using reference points from existing datasets has been conducted to 

elucidate the accuracy differences across regions, further showcasing practical applicability of 

the mapping method. 

(5) We further refined the discussion section, added the advantages of the method, and 

supplemented the limitations and future improvement directions of the method from a more 

theoretical perspective. 

(6) Supplementary materials related to the methodology and result figures have been added. 

(7) More details of the data sources and methods were listed in the revised manuscript. 

 

We attach the detailed item-by-item response to all comments and suggestions for the evaluation. 

Yours sincerely,  

Zhao Zhang and co-authors  

  



NOTIFICATION FROM THE EDITOR: 

---------------------------------------------------------------------- 

(1) Please ensure that the colour schemes used in your maps and charts allow readers with colour 

vision deficiencies to correctly interpret your findings (see e.g. F03). Please check your figures 

using the Coblis Color Blindness Simulator (https://www.color-blindness.com/coblis-color-

blindness-simulator/) and revise the colour schemes accordingly. 

Reply: We have checked the figures in our manuscript using the Coblis Color Blindness Simulator, 

as recommended and ensured ensure that they are distinguishable and interpretable by readers with 

colour vision deficiencies. 

 

(2) I noticed that your figure 8 contains maps. For the next revision, I kindly ask you to clarify 

whether you have created the maps or were they created by a map provider? If the maps were not 

created by you, please provide in your revised file that the copyright is denoted in the figure itself. 

If this is not possible, please provide it in the caption. 

Reply: The maps presented in our manuscript were created by the authors using publicly available 

administrative boundary data. Therefore, no copyright statement is required. 

 

COMMENTS FROM REVIEWERS:  

---------------------------------------------------------------------- 

Response to reviewer #1: 

Many thanks for your thoughtful and valuable comments and suggestions, which are very helpful 

in improving our manuscript. We have conducted new experiments and analyses to ensure that the 

study is more comprehensive and rigorous, and our maps are more reliable. Our responses to the 

comments point-by-point are included below in blue. The corresponding changes in the revised 

manuscript are shown in purple. 

 

General comment: The article proposed an unsupervised method for identifying soybean crops 

within the defined croplands across China. The topic is interesting, and also important for 

sustainable agricultural development due to its large spatial and long-term coverage. The data is 

well collected and processed, and the results are properly presented. I would suggest some minor 

revisions as listed below. 

Reply: Thank you for your positive and constructive comments, which surely encourage us to 

further enhance our research quality. We carefully revised our manuscript and provided a point-by-

point response below. Moreover, we have positively addressed all points in the revised edition, 

which will be updated after responding all referees’ comments. 

 

Comment 1: L43: Not sure what are the “shortcomings of domestic supply”? 

Reply: Sincerely apologize for the ambiguousness here. We have changed “shortcomings” into 

“shortages” throughout the manuscript. 

We have further elucidated the issue of soybean supply in China in our revised manuscript. The 

shortages of soybean supply in China are evident in its growing dependence on imports and the 

decreasing share of soybean production. Specifically, the yield per unit area of soybean in China is 

substantially lower than that of other major crops, such as wheat, rice, and maize (Liu et al., 2021). 

In addition, as China shifts from domestic cultivation of soybeans to importation, a considerable 



amount of arable land is being repurposed for the cultivation of other, more productive crops (Cui 

and Shoemaker, 2018). 

These points have been comprehensively addressed and supplemented with supporting literature in 

the revised manuscript: 

“Given the rapid growth of demand and the shortages of domestic supply due to low yield and low self-

sufficiency, mapping soybean planting areas across China is crucial for sustainable soybean production 

and management (Cui and Shoemaker, 2018; Liu et al., 2021).” 

 

Reference: 

Cui, K. and Shoemaker, S. P.: A look at food security in China, npj Sci. Food, 2, 4, https://doi.org/10.1038/s41538-018-0012-x, 

2018. 

Liu, Z., Ying, H., Chen, M., Bai, J., Xue, Y., Yin, Y., Batchelor, W. D., Yang, Y., Bai, Z., Du, M., Guo, Y., Zhang, Q., Cui, Z., Zhang, 

F., and Dou, Z.: Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon 

footprints, Nat. Food, 2, 426–433, https://doi.org/10.1038/s43016-021-00300-1, 2021. 

 

Comment 2: L46: Please add references to previous studies. 

Reply: Yes, we have followed you to add references here. 

“Soybean planting area in some regions of China was mapped in previous studies (You et al., 2021; 

Huang et al., 2022; Chen et al., 2023), but long-term soybean maps over all major producing areas in 

China have not been available.” 

 

Comment 3: L59-62: I would suggest revising the statements as “the previous studies made 

laudable efforts to craft a comprehensive national maize-soybean map for China in 2019 by 

combining field data and regression estimators (Li et al., 2023). Nonetheless, these studies were 

confined to specific regions or a single year, despite prior attempts to accurately map soybean 

cultivation areas.” 

Reply: Thank you very much for your instructive comments. Your suggestion has indeed made the 

statement clearer and more logically coherent. We have revised the sentence as you suggested. 

 

Comment 4: L64-70: to me, this is not “generally” way of categorizing remote sensing 

classification methods. Supervised and unsupervised are the widely accepted categories. I would 

suggest authors revise the paragraph, link the specific classification method mentioned in L71-78 

to each category, and discuss the pros and cons. 

Reply: Yes, we have reorganized the previous researches and divided the commonly used remote 

sensing-based crop classification methods into four categories. In addition to the supervised and 

unsupervised classification in machine learning that you mentioned, considering that threshold 

segmentation based on prior knowledge and new composite index methods based on feature bands 

are two other methods of crop mapping, we have summarized the methods into four types. Method 

5 in the original text has been incorporated into supervised classification. Additionally, we revised 

the corresponding section, as well as discussing the advantages and disadvantages of each method: 

“Mapping crops by remote sensing can be categorized into four methods : 1) supervision classification 

based on a large number of field samples or high quality training labels (Song et al., 2017; You et al., 

2021; Shangguan et al., 2022; Li et al., 2023); 2) developing some composite indexes based on the feature 

bands and determining the binary classification using appropriate thresholds (Huang et al., 2022; Chen 



et al., 2023; Zhou et al., 2023); 3) threshold segmentation based on prior knowledge such as phenology 

or spectra (Zhong et al., 2016); 4) combining unsupervised classification with cluster assignment (Wang 

et al., 2019; You et al., 2023). Supervision classification methods relied on ground samples heavily, while 

the 2nd and 3rd methods are both based on reliable and accurate thresholds. However, mapping soybean 

by these methods was mainly applied in small areas, very few covering over a larger region. Because of 

sufficient field samples, supervision classification can achieve maps with a higher accuracy, which is 

relatively mature method used widely. However, collecting sufficient field samples is extremely time, 

money, and labor consumed, and unsuitable for long-term years over larger areas (Luo et al., 2022). 

Furthermore, the threshold-based methods (the 2nd and 3rd) have been applied into large areas, however, 

determining the thresholds will inevitably bring significant uncertainty, especially for the areas with high 

heterogeneity in climate, environment, and planting patterns. Thus, these methods show low 

reproducibility, further hindering their application across diverse geographic areas. As for mapping 

soybean, it is still a big challenge due to their similar growth characteristics with many other summer 

crops (Wang et al., 2020; Di Tommaso et al., 2021). The thresholds that work well in some areas did not 

perform well in other areas (Graesser and Ramankutty, 2017; Guo et al., 2018).” 

 

Reference: 

Chen, H., Li, H., Liu, Z., Zhang, C., Zhang, S., and Atkinson, P. M.: A novel Greenness and Water Content Composite Index 

(GWCCI) for soybean mapping from single remotely sensed multispectral images, Remote Sens. Environ., 295, 113679, 

https://doi.org/10.1016/j.rse.2023.113679, 2023. 

Di Tommaso, S., Wang, S., and Lobell, D. B.: Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops, 

Environ. Res. Lett., 16, 125002, https://doi.org/10.1088/1748-9326/ac358c, 2021. 

Graesser, J. and Ramankutty, N.: Detection of cropland field parcels from Landsat imagery, Remote Sens. Environ., 201, 165–180, 

https://doi.org/10.1016/j.rse.2017.08.027, 2017. 

Guo, W., Ren, J., Liu, X., Chen, Z., Wu, S., and Pan, H.: Winter wheat mapping with globally optimized threshold under total 

quantity constraint of statistical data, Journal of Remote Sensing, 22, 1023–1041, https://doi.org/10.11834/jrs.20187468, 2018. 

Huang, Y., Qiu, B., Chen, C., Zhu, X., Wu, W., Jiang, F., Lin, D., and Peng, Y.: Automated soybean mapping based on canopy water 

content and chlorophyll content using Sentinel-2 images, Int. J. Appl. Earth Obs., 109, 102801, 

https://doi.org/10.1016/j.jag.2022.102801, 2022. 

Li, H., Song, X.-P., Hansen, M. C., Becker-Reshef, I., Adusei, B., Pickering, J., Wang, L., Wang, L., Lin, Z., Zalles, V., Potapov, P., 

Stehman, S. V., and Justice, C.: Development of a 10-m resolution maize and soybean map over China: Matching satellite-based 

crop classification with sample-based area estimation, Remote Sens. Environ., 294, 113623, 

https://doi.org/10.1016/j.rse.2023.113623, 2023. 

Luo, Y., Zhang, Z., Zhang, L., Han, J., Cao, J., and Zhang, J.: Developing High-Resolution Crop Maps for Major Crops in the 

European Union Based on Transductive Transfer Learning and Limited Ground Data, Remote Sens., 14, 1809, 

https://doi.org/10.3390/rs14081809, 2022. 

Shangguan, Y., Li, X., Lin, Y., Deng, J., and Yu, L.: Mapping spatial-temporal nationwide soybean planting area in Argentina using 

Google Earth Engine, Int. J. Remote Sens., 43, 1724–1748, https://doi.org/10.1080/01431161.2022.2049913, 2022. 

Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S. V., and Hansen, 

M. C.: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and 

field survey, Remote Sens. Environ., 190, 383–395, https://doi.org/10.1016/j.rse.2017.01.008, 2017. 

Wang, S., Azzari, G., and Lobell, D. B.: Crop type mapping without field-level labels: Random forest transfer and unsupervised 

clustering techniques, Remote Sens. Environ., 222, 303–317, https://doi.org/10.1016/j.rse.2018.12.026, 2019. 

Wang, S., Di Tommaso, S., Deines, J. M., and Lobell, D. B.: Mapping twenty years of corn and soybean across the US Midwest 



using the Landsat archive, Sci. Data, 7, 307, https://doi.org/10.1038/s41597-020-00646-4, 2020. 

You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., and Xiao, X.: The 10-m crop type maps in Northeast China 

during 2017–2019, Sci. Data, 8, 41, https://doi.org/10.1038/s41597-021-00827-9, 2021. 

You, N., Dong, J., Li, J., Huang, J., and Jin, Z.: Rapid early-season maize mapping without crop labels, Remote Sens. Environ., 

290, 113496, https://doi.org/10.1016/j.rse.2023.113496, 2023. 

Zhong, L., Hu, L., Yu, L., Gong, P., and Biging, G. S.: Automated mapping of soybean and corn using phenology, ISPRS J. 

Photogramm. Remote Sens., 119, 151–164, https://doi.org/10.1016/j.isprsjprs.2016.05.014, 2016. 

Zhou, W., Wei, H., Chen, Y., Zhang, X., Hu, J., Cai, Z., Yang, J., Hu, Q., Xiong, H., Yin, G., and Xu, B.: Monitoring intra-annual 

and interannual variability in spatial distribution of plastic-mulched citrus in cloudy and rainy areas using multisource remote 

sensing data, European Journal of Agronomy, 151, 126981, https://doi.org/10.1016/j.eja.2023.126981, 2023. 

 

Comment 5: L121: Please justify the impact of using TOA reflectance, rather than surface 

reflectance, on classification results. 

Reply: During using Sentinel-2 imagery in our study, we encountered difficult with the L2A product 

on the GEE platform in terms of temporal coverage in China. Taking the Northeast as an example, 

the L2A data was only available after December 2018, whereas the L1C product offered complete 

coverage from 2017 onwards. Consequently, for crop mapping prior to 2019, L2A was not a viable 

option. To be consistency, we opted for the L1C product for mapping soybean. 

Furthermore, to ensure the reliability of L1C product for classification, we analyzed spectral and 

vegetation indices time series from field samples in Daqing, Heilongjiang Province, for both L1C 

and L2A products in 2019 (Figures 1-2). The difference between two spectral profiles is minimal. 

More importantly, the L1C-based spectral and vegetation indices also demonstrated effective 

separability between soybeans and other crops. Thus, to preserve the temporal integrity without 

compromising classification accuracy, we chose Sentinel's L1C (TOA), rather than L2A (SR). 

In section 2.2.1 of the revised manuscript, we have added an explanation for our choose for L1C 

instead of L2A. 

“... last access: September 2023). Because of the longer-term coverage of Sentinel-2 Level-1C TOA 

reflectance data, and the nearly identical spectral profile time series extracted from both products, we 

opt to use L1C products instead of L2A, considering that TOA images fully meet the crop classification 

requirements (You and Dong, 2020; Han et al., 2021; Luo et al., 2022).” 

 

Reference: 

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhang, J., and Li, Z.: The RapeseedMap10 database: annual maps of rapeseed at a 

spatial resolution of 10 m based on multi-source data, Earth Syst. Sci. Data, 13, 2857–2874, https://doi.org/10.5194/essd-13-2857-

2021, 2021. 

Luo, Y., Zhang, Z., Zhang, L., Han, J., Cao, J., and Zhang, J.: Developing High-Resolution Crop Maps for Major Crops in the 

European Union Based on Transductive Transfer Learning and Limited Ground Data, Remote Sens., 14, 1809, 

https://doi.org/10.3390/rs14081809, 2022. 

You, N. and Dong, J.: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth 

Engine, ISPRS J. Photogramm. Remote Sens., 161, 109–123, https://doi.org/10.1016/j.isprsjprs.2020.01.001, 2020. 

 



 

Figure 1. Temporal profiles of L2A products for major crops in Daqing, Heilongjiang based on ground 

samples. 

 

Figure 2. Temporal profiles of L1C products for major crops in Daqing, Heilongjiang based on ground 

samples. 

 

Comment 6: L123: Depending on the platform/sensor used, red edge bands are also typical 

“traditional bands” in vegetation-related studies. 

Reply: Thank you for pointing out the issue. Indeed, the red-edge bands have been deployed on 



various sensors and have become primary application bands. We have removed the expressions that 

could cause ambiguity in the revised manuscript: 

“In addition to the traditional bands (i.e., the visible and near-infrared bands), tThe red-edge bands and 

shortwave infrared bands equipped with sentinel-2 play a great role in enhancing the accuracy of crop 

classification.” 

 

Comment 7: L135: Please specify what is the “gaps”? If it is related to crop growth, how the 

“average” procedure was conducted? 

Reply: Specifically, ‘gaps’ means the missing phenological observations in a certain year at some 

agricultural meteorological stations we collected. For the missing values, we inserted averages of 

the observations from the nearest years before and after the missing year. For example, if the 

flowering date in 2017 was missing, we inserted the average of flowering dates in 2016 and 2018 at 

that station as a substitute. We have rewritten and clarified this issue in section 2.2.2 of the revised 

manuscript: 

“In cases of missing observation for a specific year, we inserted the average of two closest observations 

before and after the year. For instance, if there was missing data of flowering date in 2017, we filled it 

with the average of flowering records in 2016 and 2018 at the same station.” 

 

Comment 8: L189: it seems the purpose of this paragraph is to provide an overview of the method. 

The details regarding the “soybean mapping” can be merged with the sections below. 

Reply: Thank you for the constructive suggestion. We have streamlined the description of soybean 

mapping methodology in this paragraph, and merged the details with the following sections as you 

suggested. Such revision really enhances the clarity and conciseness of the methodology section. 

 

Comment 9: L198-L200: I recon this is also the step that deals with the data gaps due to cloud? 

Please add more details regarding the method incorporated (e.g. moving window size etc?) if 

possible. 

Reply: Yes, the time series reconstruction is carried out to simultaneously fill data gaps caused by 

cloud removal and smooth some anomalies. In order to obtain 10-day composite time series, as well 

as considering the revisit cycle of Sentinel-2 and computational efficiency, we set the half-window 

size to 10 days. We have added the details in the revised manuscript: 

“To fill the data gaps caused by cloud removal and smooth anomalies, Sentinel-2 time series was 

reconstructed by moving median composite method, resulting in a 10-day interval composite time series. 

We set the half-window size for the moving median methods to 10 days considering the 5-day revisit 

cycle of Sentinel-2 and computational efficiency.” 

 

Comment 10: L203: no-cropland --> non-cropland 

Reply: Thank you for pointing out this mistake, we have corrected it throughout the manuscript. 

 

Comment 11: L204: you might need to define the “starting and ending dates of the growing season” 

first. 

Reply: Following your suggestions, we have defined the sowing dates recorded at the nearest AMS 

as the starting dates of growing season, and the harvesting dates as ending dates. This has been 

clarified in section 2.3.2 “(1) Potential area identification” in our revised manuscript: 



“To minimize the impact from non-croplands, we firstly determine the potential cropping areas by 

masking GLAD cropland layer over study area. Sentinel-2 images within growing season were extracted 

by taking the sowing date and harvesting date recorded at the nearest agricultural meteorological station 

(AMS) as the starting and ending dates of the growing season, respectively.” 

 

Comment 12: L206: Please provide the full name for EVI first. And, revise the sentence slightly, 

“… we masked out the pixels with maximum EVI less than 0.4 during the growing seasons”. Please 

also justify how the threshold (0.4) for fallow land was determined. 

Reply: Thank you for your suggestion. We identified the pixels with maximum EVI values < 0.4 as 

fallow land because the maximum EVI values for crops are all > 0.4 (except for few outliers) based 

on all ground samples in 2019 (Figure S1). In addition, studies on crop mapping across China also 

put forward that EVI values in croplands generally exceed 0.4 at peak growth (Li et al., 2014; Zhang 

et al., 2017; Han et al., 2022). Thus, using 0.4 as a threshold allows us to strictly remove fallow land. 

We have provided additional explanations for the threshold choice in the revised manuscript: 

“Based on the cropland extracted, we filtered out the pixels exhibiting an Enhanced Vegetation Index 

(EVI) maximum value during the growing season less than 0.4 to remove fallow land according to the 

analysis of ground samples (Fig. S1) and previous studies, which found that almost all crops had 

maximum EVI values above 0.4 (Li et al., 2014; Zhang et al., 2017; Han et al., 2022).” 

Reference: 

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., and Tao, F.: Annual paddy rice planting area and 

cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020, Agric. Syst., 200, 103437, 

https://doi.org/10.1016/j.agsy.2022.103437, 2022. 

Li, L., Friedl, M. A., Xin, Q., Gray, J., Pan, Y., and Frolking, S.: Mapping Crop Cycles in China Using MODIS-EVI Time Series, 

Remote Sens., 6, 2473–2493, https://doi.org/10.3390/rs6032473, 2014. 

Zhang, G., Xiao, X., Biradar, C. M., Dong, J., Qin, Y., Menarguez, M. A., Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R. B., 

Ding, M., and Moore, B.: Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015, Sci. Total Environ., 

579, 82–92, https://doi.org/10.1016/j.scitotenv.2016.10.223, 2017. 

 

Figure S1. Box plot of the EVI maximum in 2019 based on ground samples. 



 

Comment 13: L296- : it is good that the authors noticed the large estimation uncertainties in small-

planting regions (figure 4, and figures 5). It would help to justify why this happened by looking into 

several regions and checking the reasons. 

Also, given the great similarities of maize and soybean index profiles (Figure 3), it is important to 

check whether the overestimated regions belong to maize crops? Since the classifiers are trained for 

individual regions, the authors might consider increasing the number of clusters for sparsely 

planting regions if maize is mixing with soybean due to their similarities? One potential way to 

check is to compare the ChinaSoyArea10m with the GLAD layer, especially the overestimating 

regions? 

Reply: Yes, we compared ChinaSoyArea10m with the GLAD layer in the Shandong region, as the 

consistency between GLAD and statistics is higher there. Apart from the pixels consistently 

recognized as soybeans by both layers, some cornfields identified by the GLAD layer are classified 

into soybeans by ChinaSoyArea10m (Figure 3).  

 
Figure 3. Visual comparison of GLAD (a1-a2) and ChinaSoyArea10m (b1-b2) in China (a1-b1) and a typical 

area in Shandong province (a2-b2).  

 

In some provinces where we might overestimate soybean areas (e.g. Sichuan, Shaanxi, and Shanxi), 

GLAD significantly underestimated the soybean areas comparing with statistics (Figure 4). 

Therefore, it is very hard for us to determine which product is more accurate and reliable in such 

areas sparsely planted. We have discussed the uncertainties in details in the first paragraph of section 

3.1.  

“This uncertainty, particularly overestimation, could be caused by the low proportion of soybean 

cultivation. In areas where maize or other same-season crops are planted in a much larger proportion than 

soybeans, soybeans, as a less prevalent crop, pose a challenge for classifiers to distinctly recognize them 

as a separate category, resulting in clusters being identified as soybeans containing maize or other crops.” 



 
Figure 4. Box plot of soybean areas of statistics and GLAD map in Sichuan, Shaanxi, and Shanxi. 

 

Comment 14: L315: to me, “became higher and higher” is not a scientific way to describe the trend 

here. Please consider “increased” or similar terms for the statement if it is a critical finding. 

Reply: Thanks! We have used ‘increased’ in the manuscript. 

 

Comment 15: L353: It is good to see the authors outline the limitations of the proposed method in 

regard to its sensitivity to data availability and applicability in sparsely planted regions. It would be 

good to have some insights into the advantages of the method compared to the mentioned GLAD 

and CDL products and promote its applications in some suggested circumstances. 

Reply: Thank you for your suggestion. We have added a section on our advantages and potential 

applicability. We highlighted the strengths of our method: its independence from extensive 

requirements for samples, and its capability for rapid mapping in other regions along with excellent 

spatial scalability. Unlike the previous products relied on extensive sample points for supervised 

classification, our approach could be applied into other major soybean-producing areas with simple 

inputs. 

4.1 Our advantages and potential applicability  

The methodology developed for identifying soybean planting areas indicate several notable 

strengths that make it an attractive option for wide application. Firstly, it operates independently, 

without extensive ground samples required. The conventional approaches depend on quantities of 

observational data, with much money, time, and labor consumed. In contrast, our strategy leverages 

a specific, pre-existing set of samples to discern soybean characteristics, which can accurately map 

annual dynamics without updated requirement in annual samples. Consequently, this method 

significantly weakens limitations in crop classification during years without specific samples, 

enabling crop mapping consistently and continually. 

Another key advantage of our spectra-phenology integration approach is its quick applicability 

over larger areas, coupled with excellent spatial scalability. The only inputs required are the 

phenological information of soybeans and the number of other primary crops during the same 

growing season in the targeted area. This allows to classify crop swiftly and efficiently without 

additional inputs for background knowledge or setting complex thresholds. The input of 

phenological information in each prefecture enhanced the zonal adaptive assessment of soybean 



growth status across various areas, thereby facilitating crop classification. This innovative approach 

ensures its applicability into other soybean-producing areas, showcasing its potential for broader 

implementation. 

  



Response to reviewer #2: 

Many thanks for your thoughtful and valuable comments and suggestions, which are very helpful 

in improving our manuscript. We have conducted substantial new experiments and analyses to 

ensure that the study is more comprehensive and rigorous, and our maps are more reliable. Our 

responses to the comments point-by-point are included below in blue. The corresponding changes 

in the revised manuscript are shown in purple. 

 

General comment: The ms employed two steps method to map soybean at large scale in China for 

2017-2021. While the topic and the generated dataset have great potential to benefit the agriculture 

community in both research and operational monitoring aspects, there are some major flaws that 

need to be addressed to enhance the scientific soundness of the paper and the reliability of the data. 

The authors listed three objectives. The new data product of soybean maps was generated and openly 

shared to address the third objective. However, the first two objectives have not been thoroughly 

investigated. Further examination is required to test the method's robustness in extracting soybean 

fields across different regions. Although the nationwide validation using ground samples shows 

generally acceptable accuracy, the variations in accuracy among regions need to be illustrated. This 

can be easily done as the classification was applied at the prefecture level. Additionally, the accuracy 

in low soybean growing regions should be specified. The proposed method appears to be ineffective 

in accurately extracting soybean fields and lacks effectiveness in non-soybean producing provinces. 

In this case, it may not be meaningful to generate soybean map at a national scale while most non-

producing provinces presents unreliable results. Additionally, the validation process is questionable 

since the data used to determine soybean clusters was also used in the validation. 

Reply: Thank you for such expert questions, which do help us to deepen our study. To respond fully 

the above problems, we have correspondingly revised the manuscript.  

(1) We illustrated the accuracy assessment results based on statistics and samples in each sub-zone, 

and explained the differences among regions. 

➢ The variations in accuracy among sub-zones based on statistics validation: 

“The mapping accuracy in Zone I closely matched county-level statistics, showing high consistency 

(R2=0.86). Zones II-IV also demonstrated reasonable agreement (R2=0.50~0.69), despite relatively lower 

accuracy due to the scarcer planted areas (Fig. S5). No significant trend deviation from statistics was 

indicated for the mapping area in Zone I, with slight overestimates for Zone II and III, and underestimates 

for Zone IV (Fig. S5). These accuracy variations are acceptable, given the challenges in accurately 

identifying soybeans in regions where they are planted less prevalently. Specifically, maize is more 

dominant than soybeans in Zone II, while Zone III is characterized by diverse crops and complex planting 

patterns. Underestimation in Zone IV is possibly due to fewer clear observations in the southwest. 

Nevertheless, the overall accuracy across the zones is acceptable.” 



 

Figure S5. Comparison of soybean areas with county-level statistics in (a) Zone I, (b) Zone II, (c) Zone III, 

and (d) Zone IV in 2017 and 2018. 

 

➢ The variations in accuracy among sub-zones based on samples validation: 

“The overall accuracy for each sub-zone in 2019 varied from 83.58% to 90.67% (Table S1). Specifically, 

Zone I demonstrated the highest producer’s accuracy for soybean at 88.31%, aligning with its high 

consistency with statistics. Zone III achieved the highest overall accuracy at 90.67%, attributed to its 

superior user’s accuracy for soybean, indicating fewer misclassifications, and effective differentiation 

from non-soybean crops (Table S1). The producer’s accuracy in Zone IV was relatively lower at 63.89%, 

possibly due to the limited samples, high heterogeneity, and fewer clear observations (Table S1).” 

Table S1. Confusion matrix of the soybean maps in each sub-zone in 2019. 

 Reference Map Producer’s 

Accuracy 

User’s 

Accuracy 

F1 

Score 

Overall 

Accuracy Soybean Non-Soybean 

I Soybean 922 122 88.31% 81.09% 0.85 87.12% 

Non-Soybean 215 1358 86.33% 91.76% 0.89 

II Soybean 233 74 75.90% 86.30% 0.81 83.58% 

Non-Soybean 37 332 89.97% 81.77% 0.86 

III Soybean 101 26 79.53% 98.06% 0.88 90.67% 

Non-Soybean 2 171 98.84% 86.80% 0.92 

IV Soybean 23 13 63.89% 92.00% 0.75 87.18% 

Non-Soybean 2 79 97.53% 85.87% 0.91 



(2) We further discussed the mapping accuracy in the areas planted sparely. Although the verification 

accuracy there are not as good as those in main producing areas, its accuracy is still acceptable. The 

effectiveness in key regions indicates the potential application of our method, and the mapping 

nationwide provides insights for differentiated policy formulation across regions. Therefore, it is 

meaningful to map soybean area on a national scale (see Reply for Comment 8 for more details). 

We have explained the accuracy differences in lower soybean producing areas (see (1) above), and 

added the reasons into the discussion section for the higher uncertainty there and possible solutions 

in the future (see Reply for Comment 9). 

(3) We updated the validation results in the manuscript (see Reply for Comment 7). All points are 

divided according to the ratio of 3:7, which are used to determine the standard curves of each sub-

zone and verify the mapping accuracy to ensure scientific and independent verification. 

 

Specific comments: 

Comment 1: Line 29, Cropland Data Layer or Crop Data Layer? The existing maps are described 

as crop type maps not cropland maps. 

Reply: Thank you pointing out the issue. The full name of CDL was not specified in the publication, 

and we have changed its full name to Crop Data Layer since this dataset represents crop types. 

 

Comment 2: In second paragraph of introduction section, it is recommended to specify the research 

study areas for each citation when highlighting their work. For example, line 52 to 55. I thought the 

research generated 20-years maize-soybean maps for whole China but it is not. 

Reply: Thank you for your valuable comments. We have checked all the citations in the second 

paragraph and have specified the studied areas that were not clearly stated in the revised manuscript: 

“More recently, 20-year soybean-corn maps with 30 m resolution across the US Midwest have been 

generated by collecting a large number of samples and using green chlorophyll vegetation index (GCVI) 

time series features, which is a large-scale, high-precision soybean mapping attempt (Wang et al., 2020).” 

 

Comment 3: Line 145-147, does National Bureau of Statistics of China provide county and 

prefecture level data? How to you use national and provincial data to validate at county and 

prefecture level information? 

Reply: We accessed to statistical yearbooks through the National Bureau of Statistics and obtained 

yearly county- and prefecture-level soybean planting area statistics from the yearbook of each 

county or province. We have declared this in the revised manuscript: 

“we utilized agricultural census data obtained from the statistical yearbook of each county or province 

by accessing National Bureau of Statistics of China (http://www.stats.gov.cn/, last accessed: June 2023).” 

Accordingly, we used finer statistics at county- and prefecture- level for validation, rather than 

national and provincial data. 

 

Comment 4: Line 215-217, how high the uncertainty resulting from the cloud cover or miss values 

during the proposed period? 

Reply: Yes, it is really interesting to quantify how much of the uncertainty from the cloud cover or 

miss values during the proposed period (from 15 days before the podding date to 15 days after the 

full-seed date). We summarized the clear observations during the proposed period in each year 

(Figure 1) and found that few areas in Zones I-III and less than 10% of the areas in Zone IV had 0 



or 1 clear observation in each year (except for 2017). Majority of areas have more than 1 clear 

observation during the proposed period, so the maximum EVI can be detected. Moreover, we tried 

to minimize the uncertainty by reconstructing the time series, and we took an example for details: 

We selected the area with cloud cover during the proposed period in 2018 (Figure 2a). The 

Sentinel-2 median composite image showed that some parts of the land was bare soil, with the 

corresponding ground sample points marked as wheat (different from the growing period of 

soybean). We extracted the non-fallow areas (Figure 2b), seasonal crop areas (Figure 2c), and the 

difference of the two layers representing non-seasonal crop areas (Figure 2d). The removed plots 

correspond precisely to the wheat samples and the bare soil areas in Figure 2a. The extraction results 

show that even with substantial cloud cover during the proposed period, areas covered by clouds 

are not removed as non-seasonal crops because time series reconstruction minimize the impacts of 

cloud cover as much as possible. We have clarified this in section 2.3.2 “(1) Potential area 

identification” of the revised manuscript and discussed the uncertainty in section 4. 

“Moreover, the impacts of cloud-covered pixels appearing in the proposed period is minimized since we 

have reconstructed the original EVI time series.” 

 

Figure 1. The times of clear observations in proposed period by sub-zone in (a) 2017, (b) 2018, (c) 2019, (d) 

2020, and (e) 2021. 

 

Figure 2. Case of seasonal crop identification. (a) RGB composite image comprise red (Band 4), green (Band 

3), and blue (Band 2) bands from Sentinel-2 median composite images during the proposed period; (b) areas 



of fallow land removed on the cropland layer; (c) areas of non-seasonal crop land removed on the areas 

corresponding to (b); (d) non-seasonal crop mask.  

 

Comment 5: Line 255-257 not clearly stated. Any quantitative information to determine whether 

crops are major ones or minor ones? It is problematic when statistical area of some crops in double 

cropping pattern, for example double rice. 

Reply: Sorry for the ambiguity. We collected the statistical area for seasonal crops (including rice, 

maize, soybean, cotton, peanuts, sesame, sweet potato, and sorghum) in each prefecture in 2018. 

We defined “major crops” as those species cumulatively representing 95% of the whole seasonal 

cropping area, with an additional category for “other crops” to determine the number of clusters k. 

We have added the definition in section 2.3.2 “(3) Unsupervised learning”: 

“The classifier was trained individually on each prefecture based on the number of clusters k input. The 

cluster number k is defined as the number of “major crops” that constituting 95% of the total area for 

seasonal crops (including rice, maize, soybean, cotton, peanuts, sesame, sweet potato, and sorghum) 

according to prefecture-level statistics, and plus one for “other crops”.” 

Double cropping pattern was mainly distributed in zone II and III, where soybean and other seasonal 

crops are planted in turn with winter crops (Yan et al., 2019). In particular, double-cropping rice is 

mainly planted in region III (Pan et al., 2021a). We collected statistical planting area of single-

cropping rice and double-cropping late rice, treating them as two categories because of the different 

growing seasons. 

 

Reference: 

Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan, W.: High Resolution Distribution Dataset of Double-

Season Paddy Rice in China, Remote Sens., 13, 4609, https://doi.org/10.3390/rs13224609, 2021. 

Yan, H., Liu, F., Qin, Y., Niu, Z., Doughty, R., and Xiao, X.: Tracking the spatio-temporal change of cropping intensity in China 

during 2000–2015, Environ. Res. Lett., 14, 035008, https://doi.org/10.1088/1748-9326/aaf9c7, 2019. 

 

Comment 6: Ground samples were only collected from 2017 to 2019 in five provinces. How do 

you determine the whether the clusters are closest to the soybean samples in other 9 provinces and 

2020-2021 when DTW is applied? Even during 2017 to 2019, you don’t have soybean samples 

collected during the ground survey. 

Reply: The analysis showed the standard curves of soybean is very similar in a certain area during 

our studied years (Figure 3). Therefore, we determined the standard curves in each sub-zone, which 

can be applied into other years or the similar cropping systems. In provinces without ground samples, 

we manually select the reference points based on GLAD soybean-maize map (Figure 4 corresponds 

to Figure 1 modified in MS). The criterions selected are: (1) located in large plots; (2) false color 

composite image (R: NIR, G: SWIR2, B: SWIR1) at the peak of growing season (Song et al., 2017; 

You and Dong, 2020); (3) phenological characteristics similar to local observations. The seasonal 

change of soybean for each zone does not vary from year to year based on our analysis (Figure 3), 

thus the characteristic curves in 2019 were taken as uniform standard.  



 

Figure 3. EVI of soybean ground samples in a same area from 2017 to 2019. 

 

 

Figure 4. The study area including 14 provinces (including Chongqing Municipality) and spatial distribution 

of ground samples and reference points across China in (a) 2019, (b) 2017, and (c) 2018. 

 

We updated the description of data sources in section 2.2.4 “Census data and ground samples” of 

the manuscript: 

“We used both ground samples and reference points based on available datasets to determine soybean 

standard curves and assess the reliability of the soybean maps (Fig. 1). All points were randomly divided 

in a 3:7 ratio for standard curve calculation and accuracy validation, respectively (Dong et al., 2020). We 

collected ground samples from field surveys from 2017 to 2019 in Heilongjiang (HLJ), Inner Mongolia 

(NMG), Anhui (AH), Henan (HN), and Jilin (JL), which account for more than 70% of the country’s 

total soybean planting area (Table 1). Crop types (soybean, maize, rice, wheat, others) and other land 

cover types were recorded. To ensure the impartiality of verification results, we only selected crop 

samples for validation. In provinces without ground samples, we manually selected reference points on 

large soybean plots based on GLAD (https://glad.earthengine.app/view/china-crop-map, last access: 

March 2024) soybean layer. The criterions selected are: (1) located in large plots; (2) false color 

composite image (R: NIR, G: SWIR2, B: SWIR1) at the peak of growing season (Song et al., 2017; You 

and Dong, 2020); (3) phenological characteristics similar to local observations. Additionally, the 

https://glad.earthengine.app/view/china-crop-map


reference points of maize, single-cropping rice and double-cropping rice in 2019 were selected based on 

GLAD maize layer, high resolution single-season rice map (https://doi.org/10.57760/sciencedb.06963, 

last access: March 2024), and double-season rice map (https://doi.org/10.12199/nesdc.ecodb.rs.2022.012, 

last access: March 2024) with the same principle to explore the spectral characteristics of crops in each 

sub-zone of the studied areas. The overall accuracy of all available maps in 2019 is above 85% (Pan et 

al., 2021; Li et al., 2023; Shen et al., 2023).” 

 

Reference: 

Dong, J., Fu, Y., Wang, J., Tian, H., Fu, S., Niu, Z., Han, W., Zheng, Y., Huang, J., and Yuan, W.: Early-season mapping of winter 

wheat in China based on Landsat and Sentinel images, Earth Syst. Sci. Data, 12, 3081–3095, https://doi.org/10.5194/essd-12-3081-

2020, 2020. 

Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan, W.: High Resolution Distribution Dataset of Double-

Season Paddy Rice in China, Remote Sens., 13, 4609, https://doi.org/10.3390/rs13224609, 2021. 

Li, H., Song, X.-P., Hansen, M. C., Becker-Reshef, I., Adusei, B., Pickering, J., Wang, L., Wang, L., Lin, Z., Zalles, V., Potapov, P., 

Stehman, S. V., and Justice, C.: Development of a 10-m resolution maize and soybean map over China: Matching satellite-based 

crop classification with sample-based area estimation, Remote Sens. Environ., 294, 113623, 

https://doi.org/10.1016/j.rse.2023.113623, 2023. 

Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., and Yuan, W.: High-resolution distribution maps of 

single-season rice in China from 2017 to 2022, Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, 

2023. 

Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S. V., and Hansen, 

M. C.: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and 

field survey, Remote Sens. Environ., 190, 383–395, https://doi.org/10.1016/j.rse.2017.01.008, 2017. 

You, N. and Dong, J.: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth 

Engine, ISPRS J. Photogramm. Remote Sens., 161, 109–123, https://doi.org/10.1016/j.isprsjprs.2020.01.001, 2020. 

 

Comment 7: Those ground samples were used in both cluster assignments and validation. 

Scientifically, independent validation shall be applied. 

Reply: Thank you very much for your instructive comments. Yes, the ground samples used to cluster 

assignment and validation should be separated. The samples were randomly divided according to 

the ratio of 3:7 for standard curves calculation and accuracy validation respectively. The average 

characteristic curves of the points drawn according to the 30% ratio are almost indistinguishable 

from the average curves of all points. The accuracy verification results of 70% sample points are 

updated as follows: 

Table 2. Confusion matrix of the soybean maps during 2017-2019. 

 Reference Map Producer’s 

Accuracy 

User’s 

Accuracy 

F1 

Score 

Overall 

Accuracy Soybean Non-Soybean 

2017 Soybean 679 352 65.86% 72.47% 0.69 77.08% 

Non-Soybean 258 1372 84.17% 79.58% 0.82 

2018 Soybean 799 246 76.46% 74.19% 0.75 85.16% 

Non-Soybean 278 2208 88.82% 89.98% 0.89 

2019* Soybean 1279 235 84.48% 83.32% 0.84 86.77% 

Non-Soybean 256 1940 88.34% 89.20% 0.89 

* Including ground samples and nationwide reference points based on existing datasets. 

https://doi.org/10.57760/sciencedb.06963
https://doi.org/10.12199/nesdc.ecodb.rs.2022.012


 

Comment 8: According to the validation in 3.1, it seems that the mapping accuracy is much lower 

in counties with less soybean area at both county and prefecture level. This does not surprise me 

due to the combined resolution bias and the algorithm uncertainties. This raise up another question, 

is it meaningful to generate soybean maps at almost whole national scale? 

Reply: We recognize the limitations in non-main producing areas, yet it still makes sense to conduct 

a nationwide soybean areas extraction based on the following reasons. 

(1) The validation accuracy of each sub-zone is acceptable. By integrating ground samples with 

reference points from existing datasets, we have supplemented the validation results for each sub-

zone in 2019 (Table S1). The OA values reached 83.58% ~ 90.67%, with only producer’s accuracy 

of Zone IV was relatively lower at 63.89%, which may be due to the limited samples, high 

heterogeneity, and fewer clear observations. 

(2) Errors can be caused by multiple sources. In scarcer planted areas, the misclassification or 

omissions show a greater impact on the results. In addition to classifier constraints, the mapping 

area aggregate based on pixel counts may also lead to errors due to mixed pixels and resolution 

limitations in scattered planting areas. 

(3) The method still has great application potential in main soybean-producing areas. Our mapping 

results showed robust interannual high R2 and OA, demonstrating that mapping is valid and reliable 

in key areas. Therefore, the method can be used in other major soybean production areas in the 

world and has great practical application potential. 

(4) Conducting nationwide soybean mapping is beneficial, providing insights for practical use and 

method improvement in future. Even with uncertainties in non-main producing areas, identifying 

possible soybean distributions can provide references for local agricultural monitoring and policy 

making. In addition, understanding soybean planting patterns in different regions and further 

exploring the spatial differences in production are very beneficial to soybean production adjustment 

at the national level. The method can be further improved by collecting more detailed crop pattern 

information, classifying on finer scale, improving classification algorithms, and integrating more 

various data sources to identify soybean plots in these regions (see Reply for Comment 9 for more 

details). 

 

Comment 9: The discussion needs significant improvements. The author discussed the limitations 

of the research while ignoring the strong points of the research. Also, the uncertainty of the 

classification at small-scale soybean cultivation areas shall be addressed from a more theoretical 

way. 

Reply: Thank you for your instructive suggestion. We added “4.1 Our advantages and potential 

applicability” to the discussion. We highlighted the strengths of our method: its independence from 

extensive requirements for samples, and its capability for rapid mapping in other regions along with 

excellent spatial scalability. Unlike the previous products relied on extensive samples for supervised 

classification, our approach could be applied into other major soybean-producing areas with simple 

inputs. 

4.1 Our advantages and potential applicability  

The methodology developed for identifying soybean planting areas indicate several notable 

strengths that make it an attractive option for wide application. Firstly, it operates independently, 

without extensive ground samples required. The conventional approaches depend on quantities of 



observational data, with much money, time, and labor consumed. In contrast, our strategy leverages 

a specific, pre-existing set of samples to discern soybean characteristics, which can accurately map 

annual dynamics without updated requirement in annual samples. Consequently, this method 

significantly weakens limitations in crop classification during years without specific samples, 

enabling crop mapping consistently and continually. 

Another key advantage of our spectra-phenology integration approach is its quick applicability 

over larger areas, coupled with excellent spatial scalability. The only inputs required are the 

phenological information of soybeans and the number of other primary crops during the same 

growing season in the targeted area. This allows to classify crop swiftly and efficiently without 

additional inputs for background knowledge or setting complex thresholds. The input of 

phenological information in each prefecture enhanced the zonal adaptive assessment of soybean 

growth status across various areas, thereby facilitating crop classification. This innovative approach 

ensures its applicability into other soybean-producing areas, showcasing its potential for broader 

implementation. 

 

In addition, we added a reasonable explanation for the limitations from classifiers in section 4.3 and 

discussed possible means for future research. This error is caused by characteristics of the algorithm, 

such as strong dependence on the initial cluster center, spherical cluster assumption, etc. In future 

research, we could reduce the uncertainty by adjusting the classification scale, optimizing data 

preprocessing and using improved algorithms. 

“The lower accuracy in soybean area sparely planted could be explained by the characteristics of K-

means algorithm. K-means algorithm is developed to minimize the distance between each point within a 

cluster and the cluster’s centroid. When the sample size in a particular category substantially exceeds 

those of others, the algorithm might preferentially optimize the cohesion of the larger category, and would 

neglect the accurate clustering for smaller categories (Tan et al., 2016). The effectiveness of K-means 

classification is highly dependent on the selection of initial clustering centers. In scenarios of unbalanced 

categories, initial centers randomly selected might inadequately represent the minor categories, resulting 

in inaccurate results (Tan et al., 2016). Additionally, K-means assumes that each cluster is spherical; 

therefore, it does not perform well when clusters are non-spherical and uneven in size and density. Hence, 

in areas with unbalanced crop categories, the algorithm faces challenge to assign each crop to a 

corresponding cluster precisely (Tan et al., 2016; Wang et al., 2019). 

Our regional adaptive large-area crop mapping method in future will further be improved by the 

follows: (1) Classification on a finer scale by specifying a more precise number of target clusters can 

reduce spatial heterogeneity and emphasize the relative importance of non-dominant categories, and 

increase classification accuracy consequently (Li and Yang, 2017). (2) Optimizing data preprocessing 

methods. Outliers can interrupt classification because the unsupervised methods is highly sensitive to 

anomalies (Raykov et al., 2016; Wang et al., 2019). Therefore, eliminating outliers can further improve 

the classification validity. In addition, since K-means weights all dimensions equally, minimizing the 

features’ correlation and reducing irrelevant variables are also important means to enhance the 

classification effect (Hastie et al., 2009). (3) Improving algorithm performance. A variety of algorithms 

have been proposed to address the inherent defects of K-means (Ahmed et al., 2020), such as by 

optimizing the initial clustering center (e.g., K-means++), weighting classes (e.g., Weighted k-means), 

and non-spherical clustering assumptions (e.g., DBSCAN, Spectral Clustering) (Ester et al., 1996; Bach 

and Jordan, 2003; Kerdprasop et al., 2005; Arthur and Vassilvitskii, 2007). The improved algorithms will 



address the issues on complex and highly diverse crop classification in some degrees (Li et al., 2022; 

Rivera et al., 2022). (4) Better post-processing of data. Misclassification of field ridges and image 

speckles is inevitable during mapping crops over large areas. With the progress of computing power, 

auxiliary data and image processing algorithms can further eliminate these issues (Liu et al., 2018a; Li 

and Qu, 2019; Hamano et al., 2023). We are sure that integrating cloud computing platforms with 

advanced algorithms will provide substantial potential for accurate crop identification covering larger 

areas in future.” 

 

Reference: 

Ahmed, M., Seraj, R., and Islam, S. M. S.: The k-means Algorithm: A Comprehensive Survey and Performance Evaluation, 

Electronics, 9, 1295, https://doi.org/10.3390/electronics9081295, 2020. 

Arthur, D. and Vassilvitskii, S.: k-means++: The advantages of careful seeding, in: Soda, 1027–1035, 2007. 

Bach, F. and Jordan, M.: Learning spectral clustering, in: Advances in neural information processing systems, 2003. 

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with 

noise, in: kdd, 226–231, 1996. 

Hamano, M., Shiozawa, S., Yamamoto, S., Suzuki, N., Kitaki, Y., and Watanabe, O.: Development of a method for detecting the 

planting and ridge areas in paddy fields using AI, GIS, and precise DEM, Precis. Agric., 24, 1862–1888, 

https://doi.org/10.1007/s11119-023-10021-z, 2023. 

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H.: The elements of statistical learning: data mining, inference, and 

prediction, Springer, 2009. 

Kerdprasop, K., Kerdprasop, N., and Sattayatham, P.: Weighted k-means for density-biased clustering, in: International conference 

on data warehousing and knowledge discovery, 488–497, https://doi.org/10.1007/11546849_48, 2005. 

Li, B. and Yang, L.: Clustering accuracy analysis of building area in high spatial resolution remote sensing images based on k-

means algorithm, in: 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST), 2017 2nd International 

Conference on Frontiers of Sensors Technologies (ICFST), 174–178, https://doi.org/10.1109/ICFST.2017.8210497, 2017. 

Li, T., Johansen, K., and McCabe, M. F.: A machine learning approach for identifying and delineating agricultural fields and their 

multi-temporal dynamics using three decades of Landsat data, ISPRS J. Photogramm. Remote Sens., 186, 83–101, 

https://doi.org/10.1016/j.isprsjprs.2022.02.002, 2022. 

Li, Y. and Qu, H.: LSD and Skeleton Extraction Combined with Farmland Ridge Detection, in: Advances in Intelligent, Interactive 

Systems and Applications, Cham, 446–453, https://doi.org/10.1007/978-3-030-02804-6_59, 2019. 

Liu, H., Zhang, J., Pan, Y., Shuai, G., Zhu, X., and Zhu, S.: An Efficient Approach Based on UAV Orthographic Imagery to Map 

Paddy With Support of Field-Level Canopy Height From Point Cloud Data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 

2034–2046, https://doi.org/10.1109/JSTARS.2018.2829218, 2018. 

Raykov Y. P., Boukouvalas A., Baig F., and Little M. A.: What to Do When K-Means Clustering Fails: A Simple yet Principled 

Alternative Algorithm, PLOS ONE, 11, e0162259, https://doi.org/10.1371/journal.pone.0162259, 2016. 

Rivera, A. J., Pérez-Godoy, M. D., Elizondo, D., Deka, L., and del Jesus, M. J.: Analysis of clustering methods for crop type 

mapping using satellite imagery, Neurocomputing, 492, 91–106, https://doi.org/10.1016/j.neucom.2022.04.002, 2022. 

Tan, P.-N., Steinbach, M., and Kumar, V.: Introduction to data mining, Pearson Education India, 2016. 

Wang, S., Azzari, G., and Lobell, D. B.: Crop type mapping without field-level labels: Random forest transfer and unsupervised 

clustering techniques, Remote Sens. Environ., 222, 303–317, https://doi.org/10.1016/j.rse.2018.12.026, 2019. 

 

Comment 10: The ms does not consider the soybean-maize intercropping systems in part of China. 

Reply: We have considered all cropping patterns related with soybean as possible. For example, we 

have identified the banded areas planted by soybean as shown in Figure 4. Soybean and other crops 



are interplanted with the narrowest strip width detectable at about 2-3 pixels, equivalent to 20-30 

meters. However, if the strip widths in soybean-maize intercropping system are less than a meter 

(Yang et al., 2014; Du et al., 2018), the 10-meter resolution provided by Sentinel-2 imagery will fail 

in capturing these planting stripes due to mixed pixels problems. With the help of higher resolution 

remote sensing data, such as sub-meter level satellite images or local unmanned aerial vehicle (UAV) 

images, such dense intercropping systems will be identified more accurately. We added discussion 

to state the uncertainty caused by this agricultural pattern: 

“The growth periods of soybean, peanut, potato, and maize are similar, dominantly indicated by a mixed 

planting pattern, which has contributed to the low accuracy of non-main soybean producing areas in 

southern China (Liu et al., 2020). Additionally, soybeans are intercropped with maize or other crops in 

some areas, where the strip width is less one meter (Yang et al., 2014; Du et al., 2018). This planting 

pattern will introduce the mixed pixels problem as well under the background of 10 m resolution crop 

mapping.” 

 

Figure 4. The case of soybean banded planting pattern in northeast China. 

 

Reference: 

Du, J., Han, T., Gai, J., Yong, T., Sun, X., Wang, X., Yang, F., Liu, J., Shu, K., Liu, W., and Yang, W.: Maize-soybean strip 

intercropping: Achieved a balance between high productivity and sustainability, J. Integr. Agric., 17, 747–754, 

https://doi.org/10.1016/S2095-3119(17)61789-1, 2018. 

Yang, F., Huang, S., Gao, R., Liu, W., Yong, T., Wang, X., Wu, X., and Yang, W.: Growth of soybean seedlings in relay strip 

intercropping systems in relation to light quantity and red:far-red ratio, Field Crops Res., 155, 245–253, 

https://doi.org/10.1016/j.fcr.2013.08.011, 2014. 

  



Response to reviewer #3: 

Many thanks for your thoughtful and valuable comments and suggestions, which are very helpful 

in improving our manuscript. We have conducted substantial new experiments and analyses to 

ensure that the study is more comprehensive and rigorous, and our maps are more reliable. Our 

responses to the comments point-by-point are included below in blue. The corresponding changes 

in the revised manuscript are shown in purple. 

 

General comment: This manuscript developed a phenological- and pixel-based soybean area 

mapping (PPS) method to identify soybean on a large scale and generated a dataset of soybean 

planting areas across China. The topic is significant for sustainable soybean production and 

management. However, the proposed methodology lacks notable innovation when compared to 

prior studies. Given the intricate spectral variations within soybeans and the fragmentated nature of 

agricultural landscapes across China, the presented method fails to demonstrate its robustness across 

diverse regions and time periods, therefore raising concerns about the reliability of the resulting 

soybean map. Furthermore, certain descriptions of the proposed method lack essential details and 

specific contents are not easy to follow. Below, I have provided several detailed comments: 

Reply: Thank you for the expert questions, which do encourage us to comb our method and add 

more detailed experiments to demonstrate the robustness of our approach and the reliability of the 

resulting soybean maps. We explained all these details by three sections (innovation, accuracy, and 

methods’ details). 

(1) Innovation: We firstly obtained the characteristic spectra and growth curves of soybean in 

different areas during the key observed growth periods, and then trained local unsupervised 

classifiers to self-adapt to cross-regional growth variability, which have avoided huge requirement 

for extensive ground samples. The Regional Adaptation Spectra-Phenology Integration (RASP) 

framework proposed is novel and can be repeatable into other major areas planted by soybean with 

simple inputs, providing a solution for mapping annual soybean dynamics with a higher resolution 

(please see the details in the revised method section of the new edition from line 231-312 in page 

11-15). 

(2) Accuracy: In our results of accuracy assessment, we have used so many data available from 

different years to verify the reliability of our soybean maps by several methods, including visual 

comparison, comparing soybean areas retrieved with county- and prefecture- statistical books, and 

point verification with confusion matrix separately by sub-zone. Very few previous studies have 

assessed comprehensively maps’ accuracy by the three methods. To demonstrate the robustness of 

mapping across diverse regions, we added the accuracy results of statistical data verification and 

point verification in each sub-zone. 

➢ The variations in accuracy among sub-zones based on statistics validation: 

“The mapping accuracy in Zone I closely matched county-level statistics, showing high consistency 

(R2=0.86). Zones II-IV also demonstrated reasonable agreement (R2=0.50~0.69), despite relatively lower 

accuracy due to the scarcer planted areas (Fig. S5). No significant trend deviation from statistics was 

indicated for the mapping area in Zone I, with slight overestimates for Zone II and III, and underestimates 

for Zone IV (Fig. S5). These accuracy variations are acceptable, given the challenges in accurately 

identifying soybeans in regions where they are planted less prevalently. Specifically, maize is more 

dominant than soybeans in Zone II, while Zone III is characterized by diverse crops and complex planting 

patterns. Underestimation in Zone IV is possibly due to fewer clear observations in the southwest. 



Nevertheless, the overall accuracy across the zones is acceptable.” 

 

Figure S5. Comparison of soybean areas with county-level statistics in (a) Zone I, (b) Zone II, (c) Zone III, 

and (d) Zone IV in 2017 and 2018. 

 

➢ The variations in accuracy among sub-zones based on samples validation: 

“The overall accuracy for each sub-zone in 2019 varied from 83.58% to 90.67% (Table S1). Specifically, 

Zone I demonstrated the highest producer’s accuracy for soybean at 88.31%, aligning with its high 

consistency with statistics. Zone III achieved the highest overall accuracy at 90.67%, attributed to its 

superior user’s accuracy for soybean, indicating fewer misclassifications, and effective differentiation 

from non-soybean crops (Table S1). The producer’s accuracy in Zone IV was relatively lower at 63.89%, 

possibly due to the limited samples, high heterogeneity, and fewer clear observations (Table S1).” 

Table S1. Confusion matrix of the soybean maps in each sub-zone in 2019. 

 Reference Map Producer’s 

Accuracy 

User’s 

Accuracy 

F1 

Score 

Overall 

Accuracy Soybean Non-Soybean 

I Soybean 922 122 88.31% 81.09% 0.85 87.12% 

Non-Soybean 215 1358 86.33% 91.76% 0.89 

II Soybean 233 74 75.90% 86.30% 0.81 83.58% 

Non-Soybean 37 332 89.97% 81.77% 0.86 

III Soybean 101 26 79.53% 98.06% 0.88 90.67% 

Non-Soybean 2 171 98.84% 86.80% 0.92 

IV Soybean 23 13 63.89% 92.00% 0.75 87.18% 

Non-Soybean 2 79 97.53% 85.87% 0.91 



(3) Method descriptions in details: We have added the necessary details to the method we proposed 

in method section of our MS. To fully and positively respond all your valuable and suggestive 

comments, we also further listed them point by point in the follows. 

 

Specific comments: 

Comment 1: Line83-93: The expression and logic are not clear. I suggest that the authors reorganize 

“method (5)” to emphasize its key theory, advantages and disadvantages. Additionally, Line93-98 

should be revised to describe the fundamental theory and performance of those method proposed by 

prior researchers. Furthermore, in Introduction section, the authors didn’t introduce the fundamental 

concept behind the proposed method, nor highlighted the current issues faced by previous efforts in 

large-scale soybean mapping. 

Reply: Thank you for your instructive suggestion. We have followed you to modify all these 

sentences thoroughly in the Introduction section:  

(1) We have reorganized the previous researches and divided the remote sensing-based crop 

classification methods used widely into four categories. Method 5 in the original text has been 

incorporated into supervised classification. Additionally, we revised the corresponding section, as 

well as discussing the advantages and disadvantages of each method: 

“Mapping crops by remote sensing can be categorized into four methods : 1) supervision classification 

based on a large number of field samples or high quality training labels (Song et al., 2017; You et al., 

2021; Shangguan et al., 2022; Li et al., 2023); 2) developing some composite indexes based on the feature 

bands and determining the binary classification using appropriate thresholds (Huang et al., 2022; Chen 

et al., 2023; Zhou et al., 2023); 3) threshold segmentation based on prior knowledge such as phenology 

or spectra (Zhong et al., 2016); 4) combining unsupervised classification with cluster assignment (Wang 

et al., 2019; You et al., 2023). Supervision classification methods relied on ground samples heavily, while 

the 2nd and 3rd methods are both based on reliable and accurate thresholds. However, mapping soybean 

by these methods was mainly applied in small areas, very few covering over a larger region. Because of 

sufficient field samples, supervision classification can achieve maps with a higher accuracy, which is 

relatively mature method used widely. However, collecting sufficient field samples is extremely time, 

money, and labor consumed, and unsuitable for long-term years over larger areas (Luo et al., 2022). 

Furthermore, the threshold-based methods (the 2nd and 3rd) have been applied into large areas, however, 

determining the thresholds will inevitably bring significant uncertainty, especially for the areas with high 

heterogeneity in climate, environment, and planting patterns. Thus, these methods show low 

reproducibility, further hindering their application across diverse geographic areas. As for mapping 

soybean, it is still a big challenge due to their similar growth characteristics with many other summer 

crops (Wang et al., 2020; Di Tommaso et al., 2021). The thresholds that work well in some areas did not 

perform well in other areas (Graesser and Ramankutty, 2017; Guo et al., 2018). These limitations restrict 

accurate soybean maps available, especially over large regions in China.” 

 

(2) We have described the fundamental theory and the performance of prior researches mentioned 

in the original line 93-98 as you suggested: 

“For example, the phenological observations at the agricultural meteorological stations were employed 

as a reference to detect the critical phenological dates of pixels through inflexion- and threshold-based 

methods, thereby generating planting areas for three major crops in China with R2 greater than 0.8 

compared to county statistics (Luo et al., 2020). The time-weighted dynamic time warping method based 



on the similarity of phenological curves of Normalized Difference Vegetation Index (NDVI) has 

successfully estimated the planting area of maize in China, with provincial averages for producer’s and 

user’s accuracies at 0.76 and 0.82, respectively (Shen et al., 2022). Phenological-based Vertical transmit 

Horizontal receive (VH) polarized time series accurately captured temporal characteristics of soybeans, 

thus were used for an unsupervised classifier to map the seasonal soybeans, achieving an overall accuracy 

over 80% in Ujjain district (Kumari et al., 2019).” 

 

(3) We have highlighted the issues faced by previous studies in large regional soybean mapping and 

supplement the theoretical basis of our approach proposed: 

“... These limitations restrict accurate soybean maps available, especially over large regions in China. 
Given the challenges of collecting sufficient field samples over larger region and the limited adaptability 

to environmental variations of threshold-based method, previous researches have yet to achieve multi-

year, high-resolution soybean maps nationwide.” 

... 

“... By integrating unsupervised classification’s regional scalability with specific local soybean growth 

signs from phenological data, we fully leverage soybean’s characteristic spectra and vegetation indices 

during key growth periods across different areas. Through training the local unsupervised classifier to 

accommodate the crop growth variability across regions, and avoiding extensive jobs on collecting 

samples, the approach provides an effective solution for regional adaptive large-area crop mapping.” 

 

Reference: 

Chen, H., Li, H., Liu, Z., Zhang, C., Zhang, S., and Atkinson, P. M.: A novel Greenness and Water Content Composite Index 

(GWCCI) for soybean mapping from single remotely sensed multispectral images, Remote Sens. Environ., 295, 113679, 

https://doi.org/10.1016/j.rse.2023.113679, 2023. 

Di Tommaso, S., Wang, S., and Lobell, D. B.: Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops, 

Environ. Res. Lett., 16, 125002, https://doi.org/10.1088/1748-9326/ac358c, 2021. 

Graesser, J. and Ramankutty, N.: Detection of cropland field parcels from Landsat imagery, Remote Sens. Environ., 201, 165–180, 

https://doi.org/10.1016/j.rse.2017.08.027, 2017. 

Guo, W., Ren, J., Liu, X., Chen, Z., Wu, S., and Pan, H.: Winter wheat mapping with globally optimized threshold under total 

quantity constraint of statistical data, J. Remote Sens., 22, 1023–1041, https://doi.org/10.11834/jrs.20187468, 2018. 

Huang, Y., Qiu, B., Chen, C., Zhu, X., Wu, W., Jiang, F., Lin, D., and Peng, Y.: Automated soybean mapping based on canopy water 

content and chlorophyll content using Sentinel-2 images, Int. J. Appl. Earth Obs. Geoinformation, 109, 102801, 

https://doi.org/10.1016/j.jag.2022.102801, 2022. 

Kumari, M., Murthy, C. S., Pandey, V., and Bairagi, G. D.: Soybean Cropland Mapping Using Multi-Temporal Sentinel-1 Data, 

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLII-3-W6, 109–114, https://doi.org/10.5194/isprs-archives-XLII-3-W6-

109-2019, 2019. 

Li, H., Song, X.-P., Hansen, M. C., Becker-Reshef, I., Adusei, B., Pickering, J., Wang, L., Wang, L., Lin, Z., Zalles, V., Potapov, P., 

Stehman, S. V., and Justice, C.: Development of a 10-m resolution maize and soybean map over China: Matching satellite-based 

crop classification with sample-based area estimation, Remote Sens. Environ., 294, 113623, 

https://doi.org/10.1016/j.rse.2023.113623, 2023. 

Luo, Y., Zhang, Z., Li, Z., Chen, Y., Zhang, L., Cao, J., and Tao, F.: Identifying the spatiotemporal changes of annual harvesting 

areas for three staple crops in China by integrating multi-data sources, Environ. Res. Lett., 15, 074003, 

https://doi.org/10.1088/1748-9326/ab80f0, 2020. 

Luo, Y., Zhang, Z., Zhang, L., Han, J., Cao, J., and Zhang, J.: Developing High-Resolution Crop Maps for Major Crops in the 



European Union Based on Transductive Transfer Learning and Limited Ground Data, Remote Sens., 14, 1809, 

https://doi.org/10.3390/rs14081809, 2022. 

Shangguan, Y., Li, X., Lin, Y., Deng, J., and Yu, L.: Mapping spatial-temporal nationwide soybean planting area in Argentina using 

Google Earth Engine, Int. J. Remote Sens., 43, 1724–1748, https://doi.org/10.1080/01431161.2022.2049913, 2022. 

Shen, R., Dong, J., Yuan, W., Han, W., Ye, T., and Zhao, W.: A 30 m Resolution Distribution Map of Maize for China Based on 

Landsat and Sentinel Images, J. Remote Sens., 2022, 2022/9846712, https://doi.org/10.34133/2022/9846712, 2022. 

Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S. V., and Hansen, 

M. C.: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and 

field survey, Remote Sens. Environ., 190, 383–395, https://doi.org/10.1016/j.rse.2017.01.008, 2017. 

Wang, S., Azzari, G., and Lobell, D. B.: Crop type mapping without field-level labels: Random forest transfer and unsupervised 

clustering techniques, Remote Sens. Environ., 222, 303–317, https://doi.org/10.1016/j.rse.2018.12.026, 2019. 

Wang, S., Di Tommaso, S., Deines, J. M., and Lobell, D. B.: Mapping twenty years of corn and soybean across the US Midwest 

using the Landsat archive, Sci. Data, 7, 307, https://doi.org/10.1038/s41597-020-00646-4, 2020. 

You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., and Xiao, X.: The 10-m crop type maps in Northeast China 

during 2017–2019, Sci. Data, 8, 41, https://doi.org/10.1038/s41597-021-00827-9, 2021. 

You, N., Dong, J., Li, J., Huang, J., and Jin, Z.: Rapid early-season maize mapping without crop labels, Remote Sens. Environ., 

290, 113496, https://doi.org/10.1016/j.rse.2023.113496, 2023. 

Zhong, L., Hu, L., Yu, L., Gong, P., and Biging, G. S.: Automated mapping of soybean and corn using phenology, ISPRS J. 

Photogramm. Remote Sens., 119, 151–164, https://doi.org/10.1016/j.isprsjprs.2016.05.014, 2016. 

Zhou, W., Wei, H., Chen, Y., Zhang, X., Hu, J., Cai, Z., Yang, J., Hu, Q., Xiong, H., Yin, G., and Xu, B.: Monitoring intra-annual 

and interannual variability in spatial distribution of plastic-mulched citrus in cloudy and rainy areas using multisource remote 

sensing data, Eur. J. Agron., 151, 126981, https://doi.org/10.1016/j.eja.2023.126981, 2023. 

 

Comment 2: Fig.1 shows that there are more soybean agrometeorological observation stations in 

Jiangxi Province than in Sichuan Province. So, why does the study area not include regions in South 

China, especially prefectures in the Jiangxi Province? 

Reply: Yes, more soybean AMSs are located in Jiangxi Province, but we did not retrieve soybean 

areas there because of the quality limitations of Sentinel images available nowadays. Moreover, 

soybean planted in Southern China are generally scattered in fragmented and more complicated 

fields. It will be a very big challenge for smoothly selecting the specific features of a certain minor 

crop among many dominant crops. We excluded Southern China, including Jiangxi province, 

considering the above difficulties and their minor roles relative to the overall soybean production in 

China. All our responses to this comment are showed specifically as follows: 

(1) According to the provincial statistics, the soybean planting area of the top 13 provinces accounts 

for over 90% of the whole national production, with only below 10% from other provinces. 

Therefore, despite of phenological observations available, we excluded the province from our 

analyses because of their minimal contribution. 

(2) In Southern China, soybeans can be cultivated in multiple patterns, including double, triple, or 

even year-round cropping (Wang and Gai, 2002). Moreover, such cropping patterns are 

characterized by different intercropping and cropping rotation between soybean and other crops. 

Thus, how and when soybean is planted there are decided by local farmers optionally. This means 

that the growth phases of soybeans are inconsistent, consequently the standard curves are very hard 

to identify. Moreover, phenological data from local AMS could not be representative, and can’t 

reveal local reality. The larger complexity in cropping patterns and more inputs required for 



accurately identifying soybean, therefore, make us exclude the Southern China from our studied 

areas. 

 

Reference: 

Wang, Y. and Gai, J.: Study on the ecological regions of soybean in China II ∙ Ecological environment and representative varieties, 

Chinese Journal of Applied Ecology, 71–75, 2002. 

 

Comment 3: As stated in lines 149-151, the regions chosen to validate the classification results 

didn’t include samples from fragmented planting regions with small soybean cultivation areas. 

Could this validation approach potentially lead to an overestimation of the overall validation 

accuracy? Additionally, there is a lack of a spatial distribution map for these field samples. 

Reply: Many thanks for this valuable suggestion. We have followed you to include more samples 

(2019 soybean and other crop reference points from the openly products available, including 

fragmented planting regions with small soybean cultivation areas) to validate the accuracy of our 

soybean maps in other growing regions. 

In provinces without ground samples, we manually selected reference points on large soybean 

plots based on GLAD (https://glad.earthengine.app/view/china-crop-map, last access: March 2024) 

soybean layer. The criterions selected are: (1) located in large plots; (2) false color composite image (R: 

NIR, G: SWIR2, B: SWIR1) at the peak of growing season (Song et al., 2017; You and Dong, 2020); (3) 

phenological characteristics similar to local observations. Additionally, the reference points of maize, 

single-cropping rice and double-cropping rice in 2019 were selected based on GLAD maize layer, high 

resolution single-season rice map (https://doi.org/10.57760/sciencedb.06963, last access: March 2024), 

and double-season rice map (https://doi.org/10.12199/nesdc.ecodb.rs.2022.012, last access: March 2024) 

with the same principle to explore the spectral characteristics of crops in each sub-zone of the studied 

areas. The overall accuracy of all available maps in 2019 is above 85% (Pan et al., 2021; Li et al., 2023; 

Shen et al., 2023). 

We plotted the spatial distribution of ground samples and reference points as showed by Figure 

1 below and modified Figure 1 in the edited MS. We have added the details of the reference points 

to the data section in revised manuscript. 

 

Reference: 

Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan, W.: High Resolution Distribution Dataset of Double-

Season Paddy Rice in China, Remote Sens., 13, 4609, https://doi.org/10.3390/rs13224609, 2021. 

Li, H., Song, X.-P., Hansen, M. C., Becker-Reshef, I., Adusei, B., Pickering, J., Wang, L., Wang, L., Lin, Z., Zalles, V., Potapov, P., 

Stehman, S. V., and Justice, C.: Development of a 10-m resolution maize and soybean map over China: Matching satellite-based 

crop classification with sample-based area estimation, Remote Sens. Environ., 294, 113623, 

https://doi.org/10.1016/j.rse.2023.113623, 2023. 

Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., and Yuan, W.: High-resolution distribution maps of 

single-season rice in China from 2017 to 2022, Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, 

2023. 

Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S. V., and Hansen, 

M. C.: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and 

field survey, Remote Sens. Environ., 190, 383–395, https://doi.org/10.1016/j.rse.2017.01.008, 2017. 

You, N. and Dong, J.: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth 

https://doi.org/10.57760/sciencedb.06963
https://doi.org/10.12199/nesdc.ecodb.rs.2022.012


Engine, ISPRS J. Photogramm. Remote Sens., 161, 109–123, https://doi.org/10.1016/j.isprsjprs.2020.01.001, 2020. 

 

Figure 1. The study area including 14 provinces (including Chongqing Municipality) and spatial distribution 

of ground samples and reference points across China in (a) 2019, (b) 2017, and (c) 2018. 

 

In addition, we updated the point validation results (Table 2) and inserted the validation for each 

sub-zone to the supplemental material (Table S1 above). We further explain the differences in 

accuracy between regions in the revised manuscript (see Reply for General comment above). 

Table 2. Confusion matrix of the soybean maps during 2017-2019. 

 Reference Map Producer’s 

Accuracy 

User’s 

Accuracy 

F1 

Score 

Overall 

Accuracy Soybean Non-Soybean 

2017 Soybean 679 352 65.86% 72.47% 0.69 77.08% 

Non-Soybean 258 1372 84.17% 79.58% 0.82 

2018 Soybean 799 246 76.46% 74.19% 0.75 85.16% 

Non-Soybean 278 2208 88.82% 89.98% 0.89 

2019* Soybean 1279 235 84.48% 83.32% 0.84 86.77% 

Non-Soybean 256 1940 88.34% 89.20% 0.89 

* Including ground samples and nationwide reference points based on existing datasets. 

 

Comment 4: L206-207: References are needed to support these statements. 

Reply: Thank you for your suggestion. The selection of threshold values is based on our analysis of 

ground samples and previous studies. We have supplemented the references here. 

“Based on the cropland extracted, we filtered out the pixels exhibiting an Enhanced Vegetation Index 

(EVI) maximum value during the growing season less than 0.4 to remove fallow land according to the 

analysis of ground samples (Fig. S1) and previous studies, which found that almost all crops had 

maximum EVI values above 0.4 (Li et al., 2014; Zhang et al., 2017; Han et al., 2022).” 



 

Figure S1. Box plot of the EVI maximum in 2019 based on all ground samples. 

 

Reference: 

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., and Tao, F.: Annual paddy rice planting area and 

cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020, Agric. Syst., 200, 103437, 

https://doi.org/10.1016/j.agsy.2022.103437, 2022. 

Li, L., Friedl, M. A., Xin, Q., Gray, J., Pan, Y., and Frolking, S.: Mapping Crop Cycles in China Using MODIS-EVI Time Series, 

Remote Sens., 6, 2473–2493, https://doi.org/10.3390/rs6032473, 2014. 

Zhang, G., Xiao, X., Biradar, C. M., Dong, J., Qin, Y., Menarguez, M. A., Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R. B., 

Ding, M., and Moore, B.: Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015, Sci. Total Environ., 

579, 82–92, https://doi.org/10.1016/j.scitotenv.2016.10.223, 2017. 

 

Comment 5: The main crop types and cropping intensity vary across regions with different climate 

conditions. However, Fig.3 (a-i) only presents spectral curves for soybean planting in Northern 

China. Are the phenological characteristics described in “(2) Feature selection” also applicable to 

soybeans planted in Southwestern China? I suggest that the authors also provide spectral curves of 

soybean and main crops planted in South China. 

Reply: Yes, the main crop types and cropping intensity do vary across regions with different climate 

conditions. Using the reference points described in Reply for Comment 3, we explored the spectral 

and vegetation indices characteristics of major crops in each region. All these selected crops grow 

the similar season as those of soybeans, which further are proved by the temporal consistent profiles 

across different sub-zones (Fig. S2-S4). We found notable differences in SWIR1, SWIR2, and 

SIWSI indices between soybean and rice during the early growth period. In mid and late growth 

phases, EVI, NIR, Red Edge2 and Red Edge3 values of soybean fields were significantly higher 

than other crops. The consistent differences are basis mentioned in the feature selection section, 

which further substantiate that the selected features can be applicable and potentially repeatable into 

various regions. We have added the following figure S2-S4 to the supplementary materials and 

stated in the revised manuscript: 

“All these spectral-phenological characteristics are also applicable to soybeans planted in other sub-

zones (Fig. S2-S4).” 



 

Figure S2. Temporal profiles of (a-i) for major crops in Zone II. 

 

 

Figure S3. Temporal profiles of (a-i) for major crops in Zone III. 

 



 

Figure S4. Temporal profiles of (a-i) for major crops in Zone IV. 

 

Comment 6: The authors need provide example figures illustrating the result of “time window from 

15 days before the podding date (DOYpodding) to 15 days after the full-seed date (DOYseed)”  

Reply: Thank you for your insight suggestion. We have followed you to plot example figures 

(illustrating the result of “time window from 15 days before DOYpodding to 15 days after DOYseed) 

for identifying seasonal crops under single and double cropping patterns (Figure 2). We confined 

the peak value detected in soybean growing period to ensure the rationality of our method in the 

single or double cropping systems. We have added the figure into the revised manuscript. 

 
Figure 2. Schematic diagram of seasonal crop identification for (a) single - and (b) double - 

cropping systems. 

 

Comment 7: L241-242: these contents are confusing, is there any typo? 

Reply: We are so sorry for the confusion expression. We have revised it to the follow: 

“Meanwhile, the timing of TCARI reaching saturation significantly differs among soybean, rice, and 

wheat (Fig. 4i).” 

 

Comment 8: L255-256：How did you determine the number of K-mean clusters based on statistics? 

Further explanation is needed for clarity. 



Reply: We collected the statistical area for seasonal crops (including rice, maize, soybean, cotton, 

peanuts, sesame, sweet potato, and sorghum) of each prefecture in 2018. We defined “major crops” 

as those species cumulatively representing 95% of the total seasonal crop area, with an additional 

category for all “other crops” to determine the number of clusters k. We have added the process 

determining the number of K-mean cluster into section 2.3.2 “(3) Unsupervised learning”: 

“The classifier was trained individually on each prefecture based on the number of clusters k input. The 

cluster number k is defined as the number of “major crops” that constituting 95% of the total area for 

seasonal crops (including rice, maize, soybean, cotton, peanuts, sesame, sweet potato, and sorghum) 

according to prefecture-level statistics, and plus one for “other crops”.” 

 

Comment 9: The DTW step is not clearly described: 

(1) I wonder whether the length and time coverage of S2 time series used for calculating DTW 

distance vary across different AEZs? 

Reply: Yes, the length and time coverage of S2 time series is different for each sub-zone. According 

to the soybean sowing and maturity dates recorded at AMSs, we set the time coverage of Zone I-IV 

to April-September, May-October, June-October, and August-November, respectively. This 

selection of time spans ensures that the full growing season of soybeans is included in each sub-

zone. 

 

(2) Did the authors use averaged time series for 100 random points and those for all field samples 

around the whole China to calculate DTW distances? If so, it is important to note that the spectral 

differences between crops in North and South China may affect the validity of DTW calculation 

results. Have you considered the impact of intra-class spectral differences in soybean samples from 

different regions on the DTW calculation results and the final classification results? 

Reply: Yes, the DTW distances are key parameters for distinguishing soybean from other crops. 

We determined the standard time series for each sub-zone separately. We randomly selected the 30% 

sample points (Dong et al., 2020) in each sub-zone and calculated the averages to determine the 

soybean standard curves, since the soybean growth periods and their related curves in same sub-

zone do not differ hugely. For the classification results in each prefecture, we randomly select 100 

points to calculate the averages and determine their standard curves for all crop category, and 

separately calculate the DTW distance of standard curves between the soybean and all crops. 

As for your worry about the spectral differences between crops in North and South, our method 

proposed will not impact the DTW (calculated in a prefecture) validity because of their weak 

difference among a prefecture. Similarly for the intra-class spectral differences for soybean samples 

of different regions, such differences do not particularly impact DTW values and the final 

classification results because of soybean standard curves developed respectively in each sub-zone. 

  

Reference: 

Dong, J., Fu, Y., Wang, J., Tian, H., Fu, S., Niu, Z., Han, W., Zheng, Y., Huang, J., and Yuan, W.: Early-season mapping of winter 

wheat in China based on Landsat and Sentinel images, Earth Syst. Sci. Data, 12, 3081–3095, https://doi.org/10.5194/essd-12-3081-

2020, 2020. 

 

(3) Line 219-221: Did the authors use all the above 8 feature to calculate DTW distances? How did 

you integrated the 8 DTW distances into the final DTW value used for classification? 



Reply: Yes, we calculated the DTW distances for these 8 features. The averaged DTW distance for 

all features was used to assess the similarity degree with the standard curve. 

 

(4) “The cluster closest to the samples was identified as the soybean cluster.” How did you 

determine the threshold? 

Reply: We did not use a threshold here. Based on the DTW distance of their standard curves for 

each crop category and soybean, the cluster with the minimum distance among all categories is 

selected as soybean. Taking into account of all above questions you provided, we updated the 

method details in the Cluster assignment section in the revised manuscript: 

“We then used dynamic time warping (DTW) method to measure the similarity between each cluster’s 

eight features involved in classification and the soybean standard curves. We averaged the data of 30% 

samples in each sub-zone to establish the standard curves, reducing the impact of regional phenological 

variations. The time coverage of Zone I-IV was set to April-September, May-October, June-October, and 

August-November, respectively, which are corresponding with the soybean growing season. The cluster 

with the minimal average DTW value was identified as the soybean cluster.” 

 

Comment 10: Fig.8 (a1-3) depict false-color composite images composed of bands 4, 3, and 2. 

Distinguishing between soybeans and non-soybeans in these images is visually difficult. It is 

recommended to present images composited with other bands. The authors can refer to the following 

article, which uses the shortwave infrared band for false-color compositing. 

 

Song X-P, Potapov P V, Krylov A, King L, Di Bella C M, Hudson A, Khan A, Adusei B, Stehman 

S V,Hansen M C. National-scale soybean mapping and area estimation in the United States using 

medium resolution satellite imagery and field survey. Remote Sens. Environ., 2017, 190: 383-395 

You N,Dong J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 

imagery and Google Earth Engine. ISPRS-J. Photogramm. Remote Sens., 2020, 161: 109-123 

 

Reply: Thank you for your advice. We updated false color composite images (R: NIR, G: SWIR2, 

B: SWIR1) to identify soybean plots more clearly. The reflectance differences between soybean and 

other crops in these bands do be greater than that in red, green and blue bands. Many thanks for 

your expert advice, which really encourage us to deepen our study！ 



 

Figure 3. Visual comparison of our soybean maps and existing products in typical regions in 

2019. 

 

Comment 11: Fig. 9 indicates that there is a notably low frequency of clear observations in Sichuan 

Province, with the majority of areas showing zero clear observations per month. How can it be 

ensured that a complete 10-day composited time series is generated for DTW calculations in this 

region? 

Reply: Yes, low frequency of clear observations was notably observed in Sichuan Province. For the 

areas with lower clear observations, beside the 10-day time series composite, we also conducted a 

gap-filling method on the composite time series by replacing the observations by the median of 

three adjacent observations (i.e., previous, current, and subsequent observations), to ensure the 

integrity of the time series as much as possible. We supplement in the “Data Processing” section:  

“In areas with notably limited clear observations, a gap-filling method was conducted on the composite 

time series. This method involves substituting any given observation with the median value from three 

neighboring observations (i.e., previous, current, and subsequent observations) to maximize the 

continuity and completeness of time series.” 

 

Such fewer clear observations are inevitable, especially for a study over a larger region and long-

term period. Although the 10-day composite time series were generated as far as possible, honestly, 

the uncertainty is inevitably introduced at times (such as 2017) and regions (such as the southwest) 



where there are particularly few clear observations. We added discussion to the “4.2 The uncertainty 

from image quality” section:  

“In areas with quite lower clear observations, despite a gap-filling method was conducted to 

generate complete 10-day composite time series, higher uncertainty is inevitable. The gap-filling 

time series might contain duplicate values, which cannot accurately reflect the crop growth process 

in reality. Obviously, the total number of images available in 2017 over the study areas was significantly 

fewer than those of other years (Fig.10a1-e1) ... This might explain the lower user’s accuracy of 

soybean in Zone IV compared to other sub-zones (Table S1) and low overall accuracy based on sample 

verification in 2017 (Table 2).” 

 

Comment 12: A considerable number of pixels corresponding to field ridges were inaccurately 

classified as soybeans in the 2020 map, particularly evident in East Heilongjiang, North Shandong 

and Henan Province. Can the authors consider the use of post-processing methods to eliminate this 

issue? 

Reply: Thank you for pointing out the problem. We agree that ridge identification is a very 

important issue in remote sensing mapping, however it is still difficult to address the issue across a 

larger area. The main reasons are as follows:  

(1) The ridge width is very narrow, and the 10m resolution image is often unable to accurately 

distinguish between the field and the ridge. It is generally accepted that the identification and 

elimination of the ridge is based on centimeter-level images (such as unmanned aerial vehicle 

images).  

(2) We summarized the methods widely used to identify and eliminate the field ridges nowadays.  

⚫ Machine learning and deep learning methods. A labeled training dataset was used to train the 

model to identify planting areas and ridge area (Hamano et al., 2023). 

⚫ Point cloud processing technology. Point cloud data can reflect the height of the ground canopy, 

and the height of the ridge is often lower than that of the crop, so a suitable threshold can be 

adopted to distinguish the ridge from the crop (Liu et al., 2018)； 

⚫ Image processing and computer vision methods. The ridge has its special shape, such as a 

slender shape similar to a road or a closed border. Edge detection, morphological processing 

and other methods can extract features from remote sensing images to help identify and 

distinguish ridges (Li and Qu, 2019)。 

Therefore, considering the relatively weaker impacts of the field ridge on crop mapping over a larger 

areas, and the complex image processing algorithms (which will consume huge computing power), 

we have not realized the field ridge identification after trading off the cartographic accuracy and 

calculation cost. In future studies, with the improvement of data accuracy and algorithm update, the 

identification of field ridge will be a key step in large-scale crop mapping. Following your 

suggestions, we added the discussion to “4.3 Limitations in small-scale planting areas” section:  

“Our regional adaptive large-area crop mapping method in future will further be improved by the 

follows: … (4) Better post-processing of data. Misclassification of field ridges and image speckles is 

inevitable during mapping crops over large areas. With the progress of computing power, auxiliary data 

and image processing algorithms can further eliminate these issues (Liu et al., 2018; Li and Qu, 2019; 

Hamano et al., 2023). We are sure that integrating cloud computing platforms with advanced algorithms 

will provide substantial potential for accurate crop identification covering larger areas in future.” 

 



Reference: 

Hamano, M., Shiozawa, S., Yamamoto, S., Suzuki, N., Kitaki, Y., and Watanabe, O.: Development of a method for detecting the 

planting and ridge areas in paddy fields using AI, GIS, and precise DEM, Precis. Agric., 24, 1862–1888, 

https://doi.org/10.1007/s11119-023-10021-z, 2023. 

Li, Y. and Qu, H.: LSD and Skeleton Extraction Combined with Farmland Ridge Detection, in: Advances in Intelligent, Interactive 

Systems and Applications, Cham, 446–453, https://doi.org/10.1007/978-3-030-02804-6_59, 2019. 

Liu, H., Zhang, J., Pan, Y., Shuai, G., Zhu, X., and Zhu, S.: An Efficient Approach Based on UAV Orthographic Imagery to Map 

Paddy With Support of Field-Level Canopy Height From Point Cloud Data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 

2034–2046, https://doi.org/10.1109/JSTARS.2018.2829218, 2018. 

 

  



Response to reviewer #4: 

Many thanks for your thoughtful and valuable comments and suggestions, which are very helpful 

in improving our manuscript. We have conducted substantial new experiments and analyses to 

ensure that the study is more comprehensive and rigorous, and our maps are more reliable. Our 

responses to the comments point-by-point are included below in blue. The corresponding changes 

in the revised manuscript are shown in purple. 

 

General comment: Mei et al's work mapped the soybean planting areas across China with a high 

spatial resolution of 10 meters, spanning from 2017 to 2021, provided important information for 

sustainable soybean production and management, as well as agricultural system modeling and 

optimization. In this work, authors summarized five methods of mapping crops by remote sensing. 

The advantages and uncertainties of each method were compared, and a highly effective for 

accurately mapping crops over a larger region method named combining unsupervised classification 

and post-classification methods applied in this paper. They accomplished this by Sentinel-2 remote 

sensing images from the GEE platform with cropland layer and detailed phenology observations. 

They validated the results with the census data at both county- and prefecture-level, and with the 

two existing datasets (CDL and GLAD maize-soybean map). 

Overall, I find this work to be valuable. However, I have some concerns regarding the robustness 

from the sparse number of AMSs in SW Zonal IV and uncertainty in quality of satellite imagery. I 

hope the authors will consider these points and provide further clarification in their responses and/or 

revisions. Please find my major comments and minor for clarification below. 

Reply: Thank you for your positive and constructive comments, which surely encourage us to 

further enhance our research quality.  

To evaluate the variance in mapping accuracy across different regions, we enhanced each sub-zone’s 

accuracy assessment using statistics and samples (see Reply for Comment 2). Zone IV’s mapping 

results achieved a consistency R2 of 0.69 with county-level statistics, deemed satisfactory (Figure 

S5). Validation based on samples indicated an overall soybean accuracy of 87.18% in Zone IV, 

though it exhibited a relatively lower producer’s accuracy of 63.89% than that of other sub-zones 

(Table S1). Although the verification accuracy there are not as good as those in main producing 

areas, its accuracy is still acceptable. These findings are highlighted in our results, alongside a 

comparison the differences in accuracy across regions. To fully and positively respond all your 

valuable and suggestive comments, we also further listed them point by point in the follows. 

 

Major comments: 

Comment 1: The text mentions the need for 10-day time series composite images per month, but 

in certain areas, the average monthly count of clear observations is insufficient to meet this 

requirement. Can the existing time series composite methods be optimized to accommodate the 

inadequacy of observational data? 

Reply: Yes, we have optimized the time series composite methods as possible. For the areas with 

lower clear observations, beside the 10-day time series composite, we also conducted a gap-filling 

method on the composite time series by replacing the observations by the median of three adjacent 

observations (i.e., previous, current, and subsequent observations), to ensure the integrity of the time 

series as much as possible. We supplement in the “Data Processing” section: 

“In areas with notably limited clear observations, a gap-filling method was conducted on the composite 



time series. This method involves substituting any given observation with the median value from three 

neighboring observations (i.e., previous, current, and subsequent observations) to maximize the 

continuity and completeness of time series.” 

Naturally, although the 10-day composite time series were generated as far as possible, this 

inevitably introduces uncertainty at times (such as 2017) and regions (such as the southwest) where 

there are particularly few clear observations. We added discussion to the “4.2 The uncertainty from 

image quality” section:  

“In areas with quite lower clear observations, despite a gap-filling method was conducted to 

generate complete 10-day composite time series, higher uncertainty is inevitable. The gap-filling 

time series might contain duplicate values, which cannot accurately reflect the crop growth process 

in reality. Obviously, the total number of images available in 2017 over the study areas was significantly 

fewer than those of other years (Fig.10a1-e1) ... This might explain the lower user’s accuracy of 

soybean in Zone IV compared to other sub-zones (Table S1) and low overall accuracy based on sample 

verification in 2017 (Table 2).” 

 

Comment 2: The observations per month of satellite imagery in SW Zonal IV are less, and the 

AMSs in this zonal also only have two sites. Whether it is possible to increase the observational 

data or phenological data from remote sensing to test the robust. 

Reply: Your suggestion is very helpful. In order to test the robustness of mapping in different 

regions, we supplemented the statistical data validation of partitions and the point validation based 

on existing data sets, further demonstrating the mapping accuracy of Zone IV. Zone IV’s mapping 

results achieved a consistency R2 of 0.69 with county-level statistics, deemed satisfactory (Figure 

S5). Validation based on samples indicated an overall soybean accuracy of 0.87 in Zone IV, though 

it exhibited a relatively lower producer accuracy of 0.64 than that of other sub-zones (Table S1). 

Overall, the accuracy of each sub-zone is acceptable despite some variations. 

➢ The variations in accuracy among sub-zones based on statistics validation: 

“The mapping accuracy in Zone I closely matched county-level statistics, showing high consistency 

(R2=0.86). Zones II-IV also demonstrated reasonable agreement (R2=0.50~0.69), despite relatively lower 

accuracy due to the scarcer planted areas (Fig. S5). No significant trend deviation from statistics was 

indicated for the mapping area in Zone I, with slight overestimates for Zone II and III, and underestimates 

for Zone IV (Fig. S5). These accuracy variations are acceptable, given the challenges in accurately 

identifying soybeans in regions where they are planted less prevalently. Specifically, maize is more 

dominant than soybeans in Zone II, while Zone III is characterized by diverse crops and complex planting 

patterns. Underestimation in Zone IV is possibly due to fewer clear observations in the southwest. 

Nevertheless, the overall accuracy across the zones is acceptable.” 



 

Figure S5. Comparison of soybean areas with county-level statistics in (a) Zone I, (b) Zone II, (c) Zone III, 

and (d) Zone IV in 2017 and 2018. 

➢ The variations in accuracy among sub-zones based on samples validation: 

“The overall accuracy for each sub-zone in 2019 varied from 83.58% to 90.67% (Table S1). Specifically, 

Zone I demonstrated the highest producer’s accuracy for soybean at 88.31%, aligning with its high 

consistency with statistics. Zone III achieved the highest overall accuracy at 90.67%, attributed to its 

superior user’s accuracy for soybean, indicating fewer misclassifications, and effective differentiation 

from non-soybean crops (Table S1). The producer’s accuracy in Zone IV was relatively lower at 63.89%, 

possibly due to the limited samples, high heterogeneity, and fewer clear observations (Table S1).” 

Table S1. Confusion matrix of the soybean maps in each sub-zone in 2019. 

 Reference Map Producer’s 

Accuracy 

User’s 

Accuracy 

F1 

Score 

Overall 

Accuracy Soybean Non-Soybean 

I Soybean 922 122 88.31% 81.09% 0.85 87.12% 

Non-Soybean 215 1358 86.33% 91.76% 0.89 

II Soybean 233 74 75.90% 86.30% 0.81 83.58% 

Non-Soybean 37 332 89.97% 81.77% 0.86 

III Soybean 101 26 79.53% 98.06% 0.88 90.67% 

Non-Soybean 2 171 98.84% 86.80% 0.92 

IV Soybean 23 13 63.89% 92.00% 0.75 87.18% 

Non-Soybean 2 79 97.53% 85.87% 0.91 

 

 



Comment 3: To determine the potential cropping areas, authors filtered the pixels exhibiting an 

EVI maximum value during the growing season greater than 0.4 to remove fallow land. For spatial 

variation across four zonal, the constant threshold would bring some uncertainty. I expect to see 

more evidence for selecting 0.4 or a sensitivity analysis of threshold can also be implemented. 

Reply: We identified the pixels with maximum EVI values < 0.4 as fallow land because the 

maximum EVI values for crops are all > 0.4 (except for few outliers) based on all ground samples 

in 2019 (Figure S1). In addition, studies on crop mapping across China also put forward that EVI 

values in croplands generally exceed 0.4 at peak growth (Li et al., 2014; Zhang et al., 2017; Han et 

al., 2022). Thus, using 0.4 as a threshold allows us to strictly remove fallow land. We have provided 

additional explanations for the threshold choice in the revised manuscript: 

“Based on the cropland extracted, we filtered out the pixels exhibiting an Enhanced Vegetation Index 

(EVI) maximum value during the growing season less than 0.4 to remove fallow land according to the 

analysis of ground samples (Fig. S1) and previous studies, which found that almost all crops had 

maximum EVI values above 0.4 (Li et al., 2014; Zhang et al., 2017; Han et al., 2022).” 

 

Reference: 

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., and Tao, F.: Annual paddy rice planting area and 

cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020, Agric. Syst., 200, 103437, 

https://doi.org/10.1016/j.agsy.2022.103437, 2022. 

Li, L., Friedl, M. A., Xin, Q., Gray, J., Pan, Y., and Frolking, S.: Mapping Crop Cycles in China Using MODIS-EVI Time Series, 

Remote Sens., 6, 2473–2493, https://doi.org/10.3390/rs6032473, 2014. 

Zhang, G., Xiao, X., Biradar, C. M., Dong, J., Qin, Y., Menarguez, M. A., Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R. B., 

Ding, M., and Moore, B.: Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015, Sci. Total Environ., 

579, 82–92, https://doi.org/10.1016/j.scitotenv.2016.10.223, 2017. 

 

Figure S1. Box plot of the EVI maximum in 2019 based on all ground samples. 

 

 

Minor comments: 

Comment 4: Line 58: “same areas” means the north China? 



Reply: Yes, “same areas” here refers to northeast China. We changed it to “three provinces of 

Northeast China” in the revised manuscript to clarify the meaning. 

 

Comment 5: Line 180, Figure2: The label on the left in Figure2 (i.e. ‘Data processing‘ and 

‘Accuracy assessment’) are set to rotate 180° to match reading habits. 

Reply: Thank you for your suggestion. We have angled all the labels on the left side of the diagram 

for easier reading (Figure 2). 

 

Comment 6: Line 180, Figure2: In step2, part (2) of the dashed box is confusing. What the color 

represents? If I understand correctly, they represent different layers of indexes. It is recommended 

to put the abbreviation to the right of the color layers. 

Reply: Yes, we have redrawn part (2) of the figure and marked the band or index abbreviations 

accordingly as you suggested (Figure 2). 

 

Figure 2. The Regional Adaption Spectra-Phenology Integration methodology for retrieving soybean planting 

area. 

 


