Dear Editors and Reviewers:

Sincere thanks for the evaluation of this work and your valuable comments and suggestions for

improving this manuscript. We carefully considered the concerning points and have conducted

numerous additional experiments and analyses in our manuscript (essd-2023-467) titled

“ChinaSoyAreal0m: a dataset of soybean planting areas with a spatial resolution of 10 m

across China from 2017 to 2021”. Here we submit the revised version, which has been modified

according to the comments from the reviewers. The major changes that we made in the revised

manuscript are summarized as follows:
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We have redesigned and added several figures to make the information conveyed clearer and
more comprehensive.

The introduction has been reorganized to systematically review the common methods and the
challenges encountered in soybean areas mapping. We have elaborated on how these challenges
are addressed by our novel framework, the Regional Adaption Spectra-Phenology Integration
(RASP) method.

We supplemented the accuracy verification of each sub-zone based on county-level statistics,
and explained the method’s performance difference across various regions, which further
demonstrated the robustness of the method.

Additional validation using reference points from existing datasets has been conducted to
elucidate the accuracy differences across regions, further showcasing practical applicability of
the mapping method.

We further refined the discussion section, added the advantages of the method, and
supplemented the limitations and future improvement directions of the method from a more
theoretical perspective.

Supplementary materials related to the methodology and result figures have been added.

More details of the data sources and methods were listed in the revised manuscript.

We attach the detailed item-by-item response to all comments and suggestions for the evaluation.

Yours sincerely,

Zhao Zhang and co-authors



NOTIFICATION FROM THE EDITOR:

(1) Please ensure that the colour schemes used in your maps and charts allow readers with colour
vision deficiencies to correctly interpret your findings (see e.g. FO3). Please check your figures
using the Coblis Color Blindness Simulator (https://www.color-blindness.com/coblis-color-
blindness-simulator/) and revise the colour schemes accordingly.

Reply: We have checked the figures in our manuscript using the Coblis Color Blindness Simulator,
as recommended and ensured ensure that they are distinguishable and interpretable by readers with

colour vision deficiencies.

(2) I noticed that your figure 8 contains maps. For the next revision, I kindly ask you to clarify
whether you have created the maps or were they created by a map provider? If the maps were not
created by you, please provide in your revised file that the copyright is denoted in the figure itself.
If this is not possible, please provide it in the caption.

Reply: The maps presented in our manuscript were created by the authors using publicly available
administrative boundary data. Therefore, no copyright statement is required.

COMMENTS FROM REVIEWERS:

Response to reviewer #1:

Many thanks for your thoughtful and valuable comments and suggestions, which are very helpful
in improving our manuscript. We have conducted new experiments and analyses to ensure that the
study is more comprehensive and rigorous, and our maps are more reliable. Our responses to the
comments point-by-point are included below in blue. The corresponding changes in the revised

manuscript are shown in purple.

General comment: The article proposed an unsupervised method for identifying soybean crops
within the defined croplands across China. The topic is interesting, and also important for
sustainable agricultural development due to its large spatial and long-term coverage. The data is
well collected and processed, and the results are properly presented. I would suggest some minor
revisions as listed below.

Reply: Thank you for your positive and constructive comments, which surely encourage us to
further enhance our research quality. We carefully revised our manuscript and provided a point-by-
point response below. Moreover, we have positively addressed all points in the revised edition,
which will be updated after responding all referees’ comments.

Comment 1: L.43: Not sure what are the “shortcomings of domestic supply”?

Reply: Sincerely apologize for the ambiguousness here. We have changed “shortcomings” into
“shortages” throughout the manuscript.

We have further elucidated the issue of soybean supply in China in our revised manuscript. The
shortages of soybean supply in China are evident in its growing dependence on imports and the
decreasing share of soybean production. Specifically, the yield per unit area of soybean in China is
substantially lower than that of other major crops, such as wheat, rice, and maize (Liu et al., 2021).
In addition, as China shifts from domestic cultivation of soybeans to importation, a considerable



amount of arable land is being repurposed for the cultivation of other, more productive crops (Cui
and Shoemaker, 2018).
These points have been comprehensively addressed and supplemented with supporting literature in
the revised manuscript:

“Given the rapid growth of demand and the shortages of domestic supply due to low yield and low self-

sufficiency, mapping soybean planting areas across China is crucial for sustainable soybean production

and management (Cui and Shoemaker, 2018; Liu et al., 2021).”

Reference:

Cui, K. and Shoemaker, S. P.: A look at food security in China, npj Sci. Food, 2, 4, https://doi.org/10.1038/s41538-018-0012-x,
2018.

Liu, Z., Ying, H., Chen, M., Bai, J., Xue, Y., Yin, Y., Batchelor, W. D., Yang, Y., Bai, Z., Du, M., Guo, Y., Zhang, Q., Cui, Z., Zhang,
F., and Dou, Z.: Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon

footprints, Nat. Food, 2, 426433, https://doi.org/10.1038/543016-021-00300-1, 2021.

Comment 2: [.46: Please add references to previous studies.
Reply: Yes, we have followed you to add references here.

“Soybean planting area in some regions of China was mapped in previous studies (You et al., 2021;

Huang et al., 2022; Chen et al., 2023), but long-term soybean maps over all major producing areas in

China have not been available.”

Comment 3: L59-62: 1 would suggest revising the statements as “the previous studies made
laudable efforts to craft a comprehensive national maize-soybean map for China in 2019 by
combining field data and regression estimators (Li et al., 2023). Nonetheless, these studies were
confined to specific regions or a single year, despite prior attempts to accurately map soybean
cultivation areas.”

Reply: Thank you very much for your instructive comments. Your suggestion has indeed made the
statement clearer and more logically coherent. We have revised the sentence as you suggested.

Comment 4: L64-70: to me, this is not “generally” way of categorizing remote sensing
classification methods. Supervised and unsupervised are the widely accepted categories. I would
suggest authors revise the paragraph, link the specific classification method mentioned in L71-78
to each category, and discuss the pros and cons.

Reply: Yes, we have reorganized the previous researches and divided the commonly used remote
sensing-based crop classification methods into four categories. In addition to the supervised and
unsupervised classification in machine learning that you mentioned, considering that threshold
segmentation based on prior knowledge and new composite index methods based on feature bands
are two other methods of crop mapping, we have summarized the methods into four types. Method
5 in the original text has been incorporated into supervised classification. Additionally, we revised
the corresponding section, as well as discussing the advantages and disadvantages of each method:

“Mapping crops by remote sensing can be categorized into four methods : 1) supervision classification

based on a large number of field samples or high quality training labels (Song et al., 2017; You et al.,
2021: Shangguan et al., 2022; Li et al., 2023); 2) developing some composite indexes based on the feature

bands and determining the binary classification using appropriate thresholds (Huang et al., 2022: Chen




et al., 2023; Zhou et al., 2023); 3) threshold segmentation based on prior knowledge such as phenology

or spectra (Zhong et al., 2016):; 4) combining unsupervised classification with cluster assignment (Wang

etal., 2019: You et al., 2023). Supervision classification methods relied on ground samples heavily, while

the 2™ and 3™ methods are both based on reliable and accurate thresholds. However, mapping soybean

by these methods was mainly applied in small areas, very few covering over a larger region. Because of

sufficient field samples, supervision classification can achieve maps with a higher accuracy, which is

relatively mature method used widely. However, collecting sufficient field samples is extremely time,

money. and labor consumed, and unsuitable for long-term years over larger areas (Luo et al., 2022).

Furthermore, the threshold-based methods (the 2" and 3™) have been applied into large areas, however,

determining the thresholds will inevitably bring significant uncertainty, especially for the areas with high
heterogeneity in climate, environment, and planting patterns. Thus, these methods show low

reproducibility, further hindering their application across diverse geographic areas. As for mapping

soybean, it is still a big challenge due to their similar growth characteristics with many other summer

crops (Wang et al., 2020; Di Tommaso et al., 2021). The thresholds that work well in some areas did not

perform well in other areas (Graesser and Ramankutty, 2017; Guo et al., 2018).”

Reference:

Chen, H., Li, H., Liu, Z., Zhang, C., Zhang, S., and Atkinson, P. M.: A novel Greenness and Water Content Composite Index
(GWCCI) for soybean mapping from single remotely sensed multispectral images, Remote Sens. Environ., 295, 113679,
https://doi.org/10.1016/j.rs¢.2023.113679, 2023.

Di Tommaso, S., Wang, S., and Lobell, D. B.: Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops,
Environ. Res. Lett., 16, 125002, https://doi.org/10.1088/1748-9326/ac358¢, 2021.

Graesser, J. and Ramankutty, N.: Detection of cropland field parcels from Landsat imagery, Remote Sens. Environ., 201, 165-180,
https://doi.org/10.1016/j.rse.2017.08.027, 2017.

Guo, W., Ren, J., Liu, X., Chen, Z., Wu, S., and Pan, H.: Winter wheat mapping with globally optimized threshold under total
quantity constraint of statistical data, Journal of Remote Sensing, 22, 1023—1041, https://doi.org/10.11834/jrs.20187468, 2018.
Huang, Y., Qiu, B., Chen, C., Zhu, X., Wu, W., Jiang, F., Lin, D., and Peng, Y.: Automated soybean mapping based on canopy water
content and chlorophyll content wusing Sentinel-2 images, Int. J. Appl. Earth Obs., 109, 102801,
https://doi.org/10.1016/j.jag.2022.102801, 2022.

Li, H., Song, X.-P., Hansen, M. C., Becker-Reshef, 1., Adusei, B., Pickering, J., Wang, L., Wang, L., Lin, Z., Zalles, V., Potapov, P.,
Stehman, S. V., and Justice, C.: Development of a 10-m resolution maize and soybean map over China: Matching satellite-based
crop classification with sample-based area estimation, Remote Sens. Environ., 294, 113623,
https://doi.org/10.1016/j.rse.2023.113623, 2023.

Luo, Y., Zhang, Z., Zhang, L., Han, J., Cao, J., and Zhang, J.: Developing High-Resolution Crop Maps for Major Crops in the
European Union Based on Transductive Transfer Learning and Limited Ground Data, Remote Sens., 14, 1809,
https://doi.org/10.3390/rs14081809, 2022.

Shangguan, Y., Li, X., Lin, Y., Deng, J., and Yu, L.: Mapping spatial-temporal nationwide soybean planting area in Argentina using
Google Earth Engine, Int. J. Remote Sens., 43, 1724—1748, https://doi.org/10.1080/01431161.2022.2049913, 2022.

Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S. V., and Hansen,
M. C.: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and
field survey, Remote Sens. Environ., 190, 383-395, https://doi.org/10.1016/j.rse.2017.01.008, 2017.

Wang, S., Azzari, G., and Lobell, D. B.: Crop type mapping without field-level labels: Random forest transfer and unsupervised
clustering techniques, Remote Sens. Environ., 222, 303-317, https://doi.org/10.1016/j.rse.2018.12.026, 2019.

Wang, S., Di Tommaso, S., Deines, J. M., and Lobell, D. B.: Mapping twenty years of corn and soybean across the US Midwest



using the Landsat archive, Sci. Data, 7, 307, https://doi.org/10.1038/s41597-020-00646-4, 2020.

You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., and Xiao, X.: The 10-m crop type maps in Northeast China
during 2017-2019, Sci. Data, 8, 41, https://doi.org/10.1038/s41597-021-00827-9, 2021.

You, N., Dong, J., Li, J., Huang, J., and Jin, Z.: Rapid early-season maize mapping without crop labels, Remote Sens. Environ.,
290, 113496, https://doi.org/10.1016/j.rse.2023.113496, 2023.

Zhong, L., Hu, L., Yu, L., Gong, P., and Biging, G. S.: Automated mapping of soybean and corn using phenology, ISPRS J.
Photogramm. Remote Sens., 119, 151-164, https://doi.org/10.1016/j.isprsjprs.2016.05.014, 2016.

Zhou, W., Wei, H., Chen, Y., Zhang, X., Hu, J., Cai, Z., Yang, J., Hu, Q., Xiong, H., Yin, G., and Xu, B.: Monitoring intra-annual
and interannual variability in spatial distribution of plastic-mulched citrus in cloudy and rainy areas using multisource remote

sensing data, European Journal of Agronomy, 151, 126981, https://doi.org/10.1016/j.¢ja.2023.126981, 2023.

Comment 5: L121: Please justify the impact of using TOA reflectance, rather than surface
reflectance, on classification results.

Reply: During using Sentinel-2 imagery in our study, we encountered difficult with the L2A product
on the GEE platform in terms of temporal coverage in China. Taking the Northeast as an example,
the L2A data was only available after December 2018, whereas the L1C product offered complete
coverage from 2017 onwards. Consequently, for crop mapping prior to 2019, L2A was not a viable
option. To be consistency, we opted for the L1C product for mapping soybean.

Furthermore, to ensure the reliability of L1C product for classification, we analyzed spectral and
vegetation indices time series from field samples in Daqing, Heilongjiang Province, for both L1C
and L2A products in 2019 (Figures 1-2). The difference between two spectral profiles is minimal.
More importantly, the L1C-based spectral and vegetation indices also demonstrated effective
separability between soybeans and other crops. Thus, to preserve the temporal integrity without
compromising classification accuracy, we chose Sentinel's L1C (TOA), rather than L2A (SR).

In section 2.2.1 of the revised manuscript, we have added an explanation for our choose for L1C
instead of L2A.

“... last access: September 2023). Because of the longer-term coverage of Sentinel-2 Level-1C TOA

reflectance data, and the nearly identical spectral profile time series extracted from both products, we

opt to use L1C products instead of L2A, considering that TOA images fully meet the crop classification
requirements (You and Dong, 2020; Han et al., 2021; Luo et al., 2022).”

Reference:

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhang, J., and Li, Z.: The RapeseedMap10 database: annual maps of rapeseed at a
spatial resolution of 10 m based on multi-source data, Earth Syst. Sci. Data, 13, 28572874, https://doi.org/10.5194/essd-13-2857-
2021, 2021.

Luo, Y., Zhang, Z., Zhang, L., Han, J., Cao, J., and Zhang, J.: Developing High-Resolution Crop Maps for Major Crops in the
European Union Based on Transductive Transfer Learning and Limited Ground Data, Remote Sens., 14, 1809,
https://doi.org/10.3390/rs14081809, 2022.

You, N. and Dong, J.: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth

Engine, ISPRS J. Photogramm. Remote Sens., 161, 109—123, https://doi.org/10.1016/].isprsjprs.2020.01.001, 2020.
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Figure 1. Temporal profiles of L2A products for major crops in Daqing, Heilongjiang based on ground

samples.
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Figure 2. Temporal profiles of L1C products for major crops in Daqing, Heilongjiang based on ground

samples.

Comment 6: L123: Depending on the platform/sensor used, red edge bands are also typical
“traditional bands” in vegetation-related studies.

Reply: Thank you for pointing out the issue. Indeed, the red-edge bands have been deployed on



various sensors and have become primary application bands. We have removed the expressions that

could cause ambiguity in the revised manuscript:

13 P

The red-edge bands and
shortwave infrared bands equipped with sentinel-2 play a great role in enhancing the accuracy of crop

classification.”

Comment 7: L135: Please specify what is the “gaps”? If it is related to crop growth, how the
“average” procedure was conducted?

Reply: Specifically, ‘gaps’ means the missing phenological observations in a certain year at some
agricultural meteorological stations we collected. For the missing values, we inserted averages of
the observations from the nearest years before and after the missing year. For example, if the
flowering date in 2017 was missing, we inserted the average of flowering dates in 2016 and 2018 at
that station as a substitute. We have rewritten and clarified this issue in section 2.2.2 of the revised
manuscript:

“In cases of missing observation for a specific year, we inserted the average of two closest observations

before and after the year. For instance, if there was missing data of flowering date in 2017, we filled it

with the average of flowering records in 2016 and 2018 at the same station.”

Comment 8: L189: it seems the purpose of this paragraph is to provide an overview of the method.
The details regarding the “soybean mapping” can be merged with the sections below.

Reply: Thank you for the constructive suggestion. We have streamlined the description of soybean
mapping methodology in this paragraph, and merged the details with the following sections as you
suggested. Such revision really enhances the clarity and conciseness of the methodology section.

Comment 9: L198-L.200: I recon this is also the step that deals with the data gaps due to cloud?
Please add more details regarding the method incorporated (e.g. moving window size etc?) if
possible.

Reply: Yes, the time series reconstruction is carried out to simultaneously fill data gaps caused by
cloud removal and smooth some anomalies. In order to obtain 10-day composite time series, as well
as considering the revisit cycle of Sentinel-2 and computational efficiency, we set the half-window
size to 10 days. We have added the details in the revised manuscript:

“To fill the data gaps caused by cloud removal and smooth anomalies, Sentinel-2 time series was

reconstructed by moving median composite method, resulting in a 10-day interval composite time series.

We set the half-window size for the moving median methods to 10 days considering the 5-day revisit

cycle of Sentinel-2 and computational efficiency.”

Comment 10: L203: no-cropland --> non-cropland
Reply: Thank you for pointing out this mistake, we have corrected it throughout the manuscript.

Comment 11: L.204: you might need to define the “starting and ending dates of the growing season”
first.

Reply: Following your suggestions, we have defined the sowing dates recorded at the nearest AMS
as the starting dates of growing season, and the harvesting dates as ending dates. This has been
clarified in section 2.3.2 “(1) Potential area identification” in our revised manuscript:



“To minimize the impact from non-croplands, we firstly determine the potential cropping areas by
masking GLAD cropland layer over study area. Sentinel-2 images within growing season were extracted

by taking the sowing date and harvesting date recorded at the nearest agricultural meteorological station

(AMNS) as the starting and ending dates of the growing season, respectively.”

Comment 12: L206: Please provide the full name for EVI first. And, revise the sentence slightly,
“... we masked out the pixels with maximum EVI less than 0.4 during the growing seasons”. Please
also justify how the threshold (0.4) for fallow land was determined.

Reply: Thank you for your suggestion. We identified the pixels with maximum EVI values < 0.4 as
fallow land because the maximum EVI values for crops are all > 0.4 (except for few outliers) based
on all ground samples in 2019 (Figure S1). In addition, studies on crop mapping across China also
put forward that EVI values in croplands generally exceed 0.4 at peak growth (Li et al., 2014; Zhang
etal.,2017; Han et al., 2022). Thus, using 0.4 as a threshold allows us to strictly remove fallow land.
We have provided additional explanations for the threshold choice in the revised manuscript:

“Based on the cropland extracted, we filtered out the pixels exhibiting an Enhanced Vegetation Index

(EVI) maximum value during the growing season less than 0.4 to remove fallow land according to the

analysis of ground samples (Fig. S1) and previous studies, which found that almost all crops had

maximum EVI values above 0.4 (Li et al., 2014; Zhang et al., 2017; Han et al., 2022).”

Reference:

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., and Tao, F.: Annual paddy rice planting area and
cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020, Agric. Syst., 200, 103437,
https://doi.org/10.1016/j.agsy.2022.103437, 2022.

Li, L., Friedl, M. A., Xin, Q., Gray, J., Pan, Y., and Frolking, S.: Mapping Crop Cycles in China Using MODIS-EVI Time Series,
Remote Sens., 6, 24732493, https://doi.org/10.3390/rs6032473, 2014.

Zhang, G., Xiao, X., Biradar, C. M., Dong, J., Qin, Y., Menarguez, M. A., Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R. B.,
Ding, M., and Moore, B.: Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015, Sci. Total Environ.,
579, 82-92, https://doi.org/10.1016/j.scitotenv.2016.10.223, 2017.
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Figure S1. Box plot of the EVI maximum in 2019 based on ground samples.



Comment 13: L.296- : it is good that the authors noticed the large estimation uncertainties in small-
planting regions (figure 4, and figures 5). It would help to justify why this happened by looking into
several regions and checking the reasons.

Also, given the great similarities of maize and soybean index profiles (Figure 3), it is important to
check whether the overestimated regions belong to maize crops? Since the classifiers are trained for
individual regions, the authors might consider increasing the number of clusters for sparsely
planting regions if maize is mixing with soybean due to their similarities? One potential way to
check is to compare the ChinaSoyArealOm with the GLAD layer, especially the overestimating
regions?

Reply: Yes, we compared ChinaSoyArealOm with the GLAD layer in the Shandong region, as the
consistency between GLAD and statistics is higher there. Apart from the pixels consistently
recognized as soybeans by both layers, some cornfields identified by the GLAD layer are classified
into soybeans by ChinaSoyArealOm (Figure 3).
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Figure 3. Visual comparison of GLAD (al-a2) and ChinaSoyArealOm (b1-b2) in China (al-b1) and a typical

area in Shandong province (a2-b2).

In some provinces where we might overestimate soybean areas (e.g. Sichuan, Shaanxi, and Shanxi),
GLAD significantly underestimated the soybean areas comparing with statistics (Figure 4).
Therefore, it is very hard for us to determine which product is more accurate and reliable in such
areas sparsely planted. We have discussed the uncertainties in details in the first paragraph of section
3.1

“This uncertainty, particularly overestimation, could be caused by the low proportion of soybean

cultivation. In areas where maize or other same-season crops are planted in a much larger proportion than

soybeans, soybeans, as a less prevalent crop, pose a challenge for classifiers to distinctly recognize them

as a separate category, resulting in clusters being identified as soybeans containing maize or other crops.”
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Figure 4. Box plot of soybean areas of statistics and GLAD map in Sichuan, Shaanxi, and Shanxi.

Comment 14: L315: to me, “became higher and higher” is not a scientific way to describe the trend
here. Please consider “increased” or similar terms for the statement if it is a critical finding.
Reply: Thanks! We have used ‘increased’ in the manuscript.

Comment 15: L353: It is good to see the authors outline the limitations of the proposed method in
regard to its sensitivity to data availability and applicability in sparsely planted regions. It would be
good to have some insights into the advantages of the method compared to the mentioned GLAD
and CDL products and promote its applications in some suggested circumstances.

Reply: Thank you for your suggestion. We have added a section on our advantages and potential
applicability. We highlighted the strengths of our method: its independence from extensive
requirements for samples, and its capability for rapid mapping in other regions along with excellent
spatial scalability. Unlike the previous products relied on extensive sample points for supervised
classification, our approach could be applied into other major soybean-producing areas with simple

inputs.

4.1 Our advantages and potential applicability

The methodology developed for identifying soybean planting areas indicate several notable

strengths that make it an attractive option for wide application. Firstly, it operates independently,

without extensive ground samples required. The conventional approaches depend on quantities of

observational data, with much money, time, and labor consumed. In contrast, our strategy leverages

a specific, pre-existing set of samples to discern soybean characteristics, which can accurately map

annual dynamics without updated requirement in annual samples. Consequently, this method

significantly weakens limitations in crop classification during years without specific samples,

enabling crop mapping consistently and continually.

Another key advantage of our spectra-phenology integration approach is its quick applicability

over larger areas, coupled with excellent spatial scalability. The only inputs required are the

phenological information of soybeans and the number of other primary crops during the same

growing season in the targeted area. This allows to classify crop swiftly and efficiently without

additional inputs for background knowledge or setting complex thresholds. The input of

phenological information in each prefecture enhanced the zonal adaptive assessment of soybean




growth status across various areas, thereby facilitating crop classification. This innovative approach

ensures its applicability into other soybean-producing areas, showcasing its potential for broader
implementation.




Response to reviewer #2:

Many thanks for your thoughtful and valuable comments and suggestions, which are very helpful
in improving our manuscript. We have conducted substantial new experiments and analyses to
ensure that the study is more comprehensive and rigorous, and our maps are more reliable. Our
responses to the comments point-by-point are included below in blue. The corresponding changes
in the revised manuscript are shown in purple.

General comment: The ms employed two steps method to map soybean at large scale in China for
2017-2021. While the topic and the generated dataset have great potential to benefit the agriculture
community in both research and operational monitoring aspects, there are some major flaws that
need to be addressed to enhance the scientific soundness of the paper and the reliability of the data.
The authors listed three objectives. The new data product of soybean maps was generated and openly
shared to address the third objective. However, the first two objectives have not been thoroughly
investigated. Further examination is required to test the method's robustness in extracting soybean
fields across different regions. Although the nationwide validation using ground samples shows
generally acceptable accuracy, the variations in accuracy among regions need to be illustrated. This
can be easily done as the classification was applied at the prefecture level. Additionally, the accuracy
in low soybean growing regions should be specified. The proposed method appears to be ineffective
in accurately extracting soybean fields and lacks effectiveness in non-soybean producing provinces.
In this case, it may not be meaningful to generate soybean map at a national scale while most non-
producing provinces presents unreliable results. Additionally, the validation process is questionable
since the data used to determine soybean clusters was also used in the validation.

Reply: Thank you for such expert questions, which do help us to deepen our study. To respond fully
the above problems, we have correspondingly revised the manuscript.

(1) We illustrated the accuracy assessment results based on statistics and samples in each sub-zone,
and explained the differences among regions.

»  The variations in accuracy among sub-zones based on statistics validation:

“The mapping accuracy in Zone I closely matched county-level statistics, showing high consistency

(R’=0.86). Zones II-1V also demonstrated reasonable agreement (R’=0.50~0.69), despite relatively lower

accuracy due to the scarcer planted areas (Fig. S5). No significant trend deviation from statistics was

indicated for the mapping area in Zone I, with slight overestimates for Zone II and III, and underestimates

for Zone IV (Fig. S5). These accuracy variations are acceptable, given the challenges in accurately

identifying soybeans in regions where they are planted less prevalently. Specifically, maize is more

dominant than soybeans in Zone II, while Zone III is characterized by diverse crops and complex planting

patterns. Underestimation in Zone IV is possibly due to fewer clear observations in the southwest.

Nevertheless, the overall accuracy across the zones is acceptable.”
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Figure SS. Comparison of soybean areas with county-level statistics in (a) Zone I, (b) Zone II, (¢) Zone I1I,
and (d) Zone IV in 2017 and 2018.

»  The variations in accuracy among sub-zones based on samples validation:
“The overall accuracy for each sub-zone in 2019 varied from 83.58% to 90.67% (Table S1). Specifically,

Zone I demonstrated the highest producer’s accuracy for soybean at 88.31%. aligning with its high

consistency with statistics. Zone III achieved the highest overall accuracy at 90.67%. attributed to its

superior user’s accuracy for soybean, indicating fewer misclassifications, and effective differentiation

from non-soybean crops (Table S1). The producer’s accuracy in Zone IV was relatively lower at 63.89%.

possibly due to the limited samples, high heterogeneity, and fewer clear observations (Table S1).”

Table S1. Confusion matrix of the soybean maps in each sub-zone in 2019.

Reference Map Producer’s User’s Fi Overall

Soybean Non-Soybean Accuracy Accuracy Score  Accuracy

I Soybean 922 122 88.31% 81.09% 0.85 87.12%
Non-Soybean 215 1358 86.33% 91.76% 0.89

Il Soybean 233 74 75.90% 86.30% 0.81 83.58%
Non-Soybean 37 332 89.97% 81L.77% 0.86

Il Soybean 101 26 79.53% 98.06% 0.88 90.67%
Non-Soybean 2 171 98.84% 86.80% 0.92

IV Soybean 23 13 63.89% 92.00% 0.75 87.18%

Non-Soybean 2 79 97.53% 85.87% 0.91




(2) We further discussed the mapping accuracy in the areas planted sparely. Although the verification
accuracy there are not as good as those in main producing areas, its accuracy is still acceptable. The
effectiveness in key regions indicates the potential application of our method, and the mapping
nationwide provides insights for differentiated policy formulation across regions. Therefore, it is
meaningful to map soybean area on a national scale (see Reply for Comment 8 for more details).
We have explained the accuracy differences in lower soybean producing areas (see (1) above), and
added the reasons into the discussion section for the higher uncertainty there and possible solutions
in the future (see Reply for Comment 9).

(3) We updated the validation results in the manuscript (see Reply for Comment 7). All points are
divided according to the ratio of 3:7, which are used to determine the standard curves of each sub-

zone and verify the mapping accuracy to ensure scientific and independent verification.

Specific comments:

Comment 1: Line 29, Cropland Data Layer or Crop Data Layer? The existing maps are described
as crop type maps not cropland maps.

Reply: Thank you pointing out the issue. The full name of CDL was not specified in the publication,

and we have changed its full name to Crop Data Layer since this dataset represents crop types.

Comment 2: In second paragraph of introduction section, it is recommended to specify the research
study areas for each citation when highlighting their work. For example, line 52 to 55. I thought the
research generated 20-years maize-soybean maps for whole China but it is not.

Reply: Thank you for your valuable comments. We have checked all the citations in the second

paragraph and have specified the studied areas that were not clearly stated in the revised manuscript:

“More recently, 20-year soybean-corn maps with 30 m resolution across the US Midwest have been
generated by collecting a large number of samples and using green chlorophyll vegetation index (GCVI)

time series features, which is a large-scale, high-precision soybean mapping attempt (Wang et al., 2020).”

Comment 3: Line 145-147, does National Bureau of Statistics of China provide county and
prefecture level data? How to you use national and provincial data to validate at county and
prefecture level information?

Reply: We accessed to statistical yearbooks through the National Bureau of Statistics and obtained
yearly county- and prefecture-level soybean planting area statistics from the yearbook of each
county or province. We have declared this in the revised manuscript:

“we utilized agricultural census data obtained from the statistical yearbook of each county or province
by accessing National Bureau of Statistics of China (http://www.stats.gov.cn/, last accessed: June 2023).”
Accordingly, we used finer statistics at county- and prefecture- level for validation, rather than

national and provincial data.

Comment 4: Line 215-217, how high the uncertainty resulting from the cloud cover or miss values
during the proposed period?

Reply: Yes, it is really interesting to quantify how much of the uncertainty from the cloud cover or
miss values during the proposed period (from 15 days before the podding date to 15 days after the
full-seed date). We summarized the clear observations during the proposed period in each year
(Figure 1) and found that few areas in Zones I-I1I and less than 10% of the areas in Zone IV had 0



or 1 clear observation in each year (except for 2017). Majority of areas have more than 1 clear
observation during the proposed period, so the maximum EVI can be detected. Moreover, we tried
to minimize the uncertainty by reconstructing the time series, and we took an example for details:

We selected the area with cloud cover during the proposed period in 2018 (Figure 2a). The
Sentinel-2 median composite image showed that some parts of the land was bare soil, with the
corresponding ground sample points marked as wheat (different from the growing period of
soybean). We extracted the non-fallow areas (Figure 2b), seasonal crop areas (Figure 2¢), and the
difference of the two layers representing non-seasonal crop areas (Figure 2d). The removed plots
correspond precisely to the wheat samples and the bare soil areas in Figure 2a. The extraction results
show that even with substantial cloud cover during the proposed period, areas covered by clouds
are not removed as non-seasonal crops because time series reconstruction minimize the impacts of
cloud cover as much as possible. We have clarified this in section 2.3.2 “(1) Potential area
identification” of the revised manuscript and discussed the uncertainty in section 4.

“Moreover, the impacts of cloud-covered pixels appearing in the proposed period is minimized since we

have reconstructed the original EVI time series.”
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Figure 1. The times of clear observations in proposed period by sub-zone in (a) 2017, (b) 2018, (c) 2019, (d)
2020, and (e) 2021.
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Figure 2. Case of seasonal crop identification. (a) RGB composite image comprise red (Band 4), green (Band

3), and blue (Band 2) bands from Sentinel-2 median composite images during the proposed period; (b) areas



of fallow land removed on the cropland layer; (c) areas of non-seasonal crop land removed on the areas

corresponding to (b); (d) non-seasonal crop mask.

Comment 5: Line 255-257 not clearly stated. Any quantitative information to determine whether
crops are major ones or minor ones? It is problematic when statistical area of some crops in double
cropping pattern, for example double rice.

Reply: Sorry for the ambiguity. We collected the statistical area for seasonal crops (including rice,
maize, soybean, cotton, peanuts, sesame, sweet potato, and sorghum) in each prefecture in 2018.
We defined “major crops” as those species cumulatively representing 95% of the whole seasonal
cropping area, with an additional category for “other crops” to determine the number of clusters .
We have added the definition in section 2.3.2 “(3) Unsupervised learning”:

“The classifier was trained individually on each prefecture based on the number of clusters & input. The

cluster number £ is defined as the number of “major crops” that constituting 95% of the total area for

seasonal crops (including rice, maize, soybean, cotton, peanuts, sesame, sweet potato, and sorghum)

99 99

according to prefecture-level statistics, and plus one for “other crops”.

Double cropping pattern was mainly distributed in zone II and I1I, where soybean and other seasonal
crops are planted in turn with winter crops (Yan et al., 2019). In particular, double-cropping rice is
mainly planted in region III (Pan et al., 2021a). We collected statistical planting area of single-
cropping rice and double-cropping late rice, treating them as two categories because of the different

growing seasons.

Reference:

Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan, W.: High Resolution Distribution Dataset of Double-
Season Paddy Rice in China, Remote Sens., 13, 4609, https://doi.org/10.3390/rs13224609, 2021.

Yan, H., Liu, F., Qin, Y., Niu, Z., Doughty, R., and Xiao, X.: Tracking the spatio-temporal change of cropping intensity in China
during 2000-2015, Environ. Res. Lett., 14, 035008, https://doi.org/10.1088/1748-9326/aaf9¢7, 2019.

Comment 6: Ground samples were only collected from 2017 to 2019 in five provinces. How do
you determine the whether the clusters are closest to the soybean samples in other 9 provinces and
2020-2021 when DTW is applied? Even during 2017 to 2019, you don’t have soybean samples
collected during the ground survey.

Reply: The analysis showed the standard curves of soybean is very similar in a certain area during
our studied years (Figure 3). Therefore, we determined the standard curves in each sub-zone, which
can be applied into other years or the similar cropping systems. In provinces without ground samples,
we manually select the reference points based on GLAD soybean-maize map (Figure 4 corresponds
to Figure 1 modified in MS). The criterions selected are: (1) located in large plots; (2) false color
composite image (R: NIR, G: SWIR2, B: SWIR1) at the peak of growing season (Song et al., 2017;
You and Dong, 2020); (3) phenological characteristics similar to local observations. The seasonal
change of soybean for each zone does not vary from year to year based on our analysis (Figure 3),
thus the characteristic curves in 2019 were taken as uniform standard.
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Figure 3. EVI of soybean ground samples in a same area from 2017 to 2019.
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Figure 4. The study area including 14 provinces (including Chongqing Municipality) and spatial distribution
of ground samples and reference points across China in (a) 2019, (b) 2017, and (c) 2018.

We updated the description of data sources in section 2.2.4 “Census data and ground samples” of
the manuscript:

“We used both ground samples and reference points based on available datasets to determine soybean

standard curves and assess the reliability of the soybean maps (Fig. 1). All points were randomly divided

in a 3:7 ratio for standard curve calculation and accuracy validation, respectively (Dong et al., 2020). We

collected ground samples from field surveys from 2017 to 2019 in Heilongjiang (HLJ), Inner Mongolia
(NMG), Anhui (AH), Henan (HN), and Jilin (JL), which account for more than 70% of the country’s
total soybean planting area (Table 1). Crop types (soybean, maize, rice, wheat, others) and other land
cover types were recorded. To ensure the impartiality of verification results, we only selected crop

samples for validation. In provinces without ground samples, we manually selected reference points on

large soybean plots based on GLAD (https://glad.earthengine.app/view/china-crop-map, last access:

March 2024) soybean layer. The criterions selected are: (1) located in large plots; (2) false color

composite image (R: NIR, G: SWIR2. B: SWIR1) at the peak of growing season (Song et al., 2017; You

and Dong, 2020); (3) phenological characteristics similar to local observations. Additionally, the



https://glad.earthengine.app/view/china-crop-map

reference points of maize, single-cropping rice and double-cropping rice in 2019 were selected based on

GLAD maize layer, high resolution single-season rice map (https://doi.org/10.57760/sciencedb.06963,
last access: March 2024), and double-season rice map (https://doi.org/10.12199/nesdc.ecodb.rs.2022.012,

last access: March 2024) with the same principle to explore the spectral characteristics of crops in each

sub-zone of the studied areas. The overall accuracy of all available maps in 2019 is above 85% (Pan et
al., 2021; Li et al., 2023; Shen et al., 2023).”

Reference:

Dong, J., Fu, Y., Wang, J., Tian, H., Fu, S., Niu, Z., Han, W., Zheng, Y., Huang, J., and Yuan, W.: Early-season mapping of winter
wheat in China based on Landsat and Sentinel images, Earth Syst. Sci. Data, 12, 3081-3095, https://doi.org/10.5194/essd-12-3081-
2020, 2020.

Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan, W.: High Resolution Distribution Dataset of Double-
Season Paddy Rice in China, Remote Sens., 13, 4609, https://doi.org/10.3390/rs13224609, 2021.

Li, H., Song, X.-P., Hansen, M. C., Becker-Reshef, 1., Adusei, B., Pickering, J., Wang, L., Wang, L., Lin, Z., Zalles, V., Potapov, P.,
Stehman, S. V., and Justice, C.: Development of a 10-m resolution maize and soybean map over China: Matching satellite-based
crop classification with sample-based area estimation, Remote Sens. Environ., 294, 113623,
https://doi.org/10.1016/j.rse.2023.113623, 2023.

Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., and Yuan, W.: High-resolution distribution maps of
single-season rice in China from 2017 to 2022, Earth Syst. Sci. Data, 15, 32033222, https://doi.org/10.5194/essd-15-3203-2023,
2023.

Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S. V., and Hansen,
M. C.: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and
field survey, Remote Sens. Environ., 190, 383395, https://doi.org/10.1016/j.rse.2017.01.008, 2017.

You, N. and Dong, J.: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth

Engine, ISPRS J. Photogramm. Remote Sens., 161, 109—123, https://doi.org/10.1016/j.isprsjprs.2020.01.001, 2020.

Comment 7: Those ground samples were used in both cluster assignments and validation.
Scientifically, independent validation shall be applied.

Reply: Thank you very much for your instructive comments. Yes, the ground samples used to cluster
assignment and validation should be separated. The samples were randomly divided according to
the ratio of 3:7 for standard curves calculation and accuracy validation respectively. The average
characteristic curves of the points drawn according to the 30% ratio are almost indistinguishable
from the average curves of all points. The accuracy verification results of 70% sample points are
updated as follows:

Table 2. Confusion matrix of the soybean maps during 2017-2019.

Reference Map Producer’s  User’s F1 Overall

Soybean Non-Soybean Accuracy Accuracy  Score  Accuracy

2017  Soybean 679 352 65.86% 72.47% 069  77.08%
Non-Soybean 258 1372 84.17% 79.58% 0.82

2018  Soybean 799 246 76.46% 74.19% 0.75 85.16%
Non-Soybean 278 2208 88.82% 89.98% 0.89

2019* Soybean 1279 235 84.48% 83.32% 0.84  86.77%
Non-Soybean 256 1940 88.34% 89.20% 0.89

* Including ground samples and nationwide reference points based on existing datasets.


https://doi.org/10.57760/sciencedb.06963
https://doi.org/10.12199/nesdc.ecodb.rs.2022.012

Comment 8: According to the validation in 3.1, it seems that the mapping accuracy is much lower
in counties with less soybean area at both county and prefecture level. This does not surprise me
due to the combined resolution bias and the algorithm uncertainties. This raise up another question,
is it meaningful to generate soybean maps at almost whole national scale?

Reply: We recognize the limitations in non-main producing areas, yet it still makes sense to conduct
a nationwide soybean areas extraction based on the following reasons.

(1) The validation accuracy of each sub-zone is acceptable. By integrating ground samples with
reference points from existing datasets, we have supplemented the validation results for each sub-
zone in 2019 (Table S1). The OA values reached 83.58% ~ 90.67%, with only producer’s accuracy
of Zone IV was relatively lower at 63.89%, which may be due to the limited samples, high
heterogeneity, and fewer clear observations.

(2) Errors can be caused by multiple sources. In scarcer planted areas, the misclassification or
omissions show a greater impact on the results. In addition to classifier constraints, the mapping
area aggregate based on pixel counts may also lead to errors due to mixed pixels and resolution
limitations in scattered planting areas.

(3) The method still has great application potential in main soybean-producing areas. Our mapping
results showed robust interannual high R? and OA, demonstrating that mapping is valid and reliable
in key areas. Therefore, the method can be used in other major soybean production areas in the
world and has great practical application potential.

(4) Conducting nationwide soybean mapping is beneficial, providing insights for practical use and
method improvement in future. Even with uncertainties in non-main producing areas, identifying
possible soybean distributions can provide references for local agricultural monitoring and policy
making. In addition, understanding soybean planting patterns in different regions and further
exploring the spatial differences in production are very beneficial to soybean production adjustment
at the national level. The method can be further improved by collecting more detailed crop pattern
information, classifying on finer scale, improving classification algorithms, and integrating more
various data sources to identify soybean plots in these regions (see Reply for Comment 9 for more
details).

Comment 9: The discussion needs significant improvements. The author discussed the limitations
of the research while ignoring the strong points of the research. Also, the uncertainty of the
classification at small-scale soybean cultivation areas shall be addressed from a more theoretical
way.

Reply: Thank you for your instructive suggestion. We added “4.1 Our advantages and potential
applicability” to the discussion. We highlighted the strengths of our method: its independence from
extensive requirements for samples, and its capability for rapid mapping in other regions along with
excellent spatial scalability. Unlike the previous products relied on extensive samples for supervised
classification, our approach could be applied into other major soybean-producing areas with simple
mputs.

4.1 Our advantages and potential applicability

The methodology developed for identifying soybean planting areas indicate several notable

strengths that make it an attractive option for wide application. Firstly, it operates independently,

without extensive ground samples required. The conventional approaches depend on quantities of




observational data, with much money, time, and labor consumed. In contrast, our strategy leverages

a specific, pre-existing set of samples to discern soybean characteristics, which can accurately map

annual dynamics without updated requirement in annual samples. Consequently, this method

significantly weakens limitations in crop classification during years without specific samples,

enabling crop mapping consistently and continually.

Another key advantage of our spectra-phenology integration approach is its quick applicability

over larger areas, coupled with excellent spatial scalability. The only inputs required are the

phenological information of soybeans and the number of other primary crops during the same

growing season in the targeted area. This allows to classify crop swiftly and efficiently without

additional inputs for background knowledge or setting complex thresholds. The input of

phenological information in each prefecture enhanced the zonal adaptive assessment of soybean

growth status across various areas, thereby facilitating crop classification. This innovative approach

ensures its applicability into other soybean-producing areas, showcasing its potential for broader
implementation.

In addition, we added a reasonable explanation for the limitations from classifiers in section 4.3 and
discussed possible means for future research. This error is caused by characteristics of the algorithm,
such as strong dependence on the initial cluster center, spherical cluster assumption, etc. In future
research, we could reduce the uncertainty by adjusting the classification scale, optimizing data
preprocessing and using improved algorithms.

“The lower accuracy in soybean area sparely planted could be explained by the characteristics of K-

means algorithm. K-means algorithm is developed to minimize the distance between each point within a
cluster and the cluster’s centroid. When the sample size in a particular category substantially exceeds

those of others, the algorithm might preferentially optimize the cohesion of the larger category, and would
neglect the accurate clustering for smaller categories (Tan et al., 2016). The effectiveness of K-means
classification is highly dependent on the selection of initial clustering centers. In scenarios of unbalanced

categories, initial centers randomly selected might inadequately represent the minor categories, resulting
in inaccurate results (Tan et al., 2016). Additionally, K-means assumes that each cluster is spherical;

therefore, it does not perform well when clusters are non-spherical and uneven in size and density. Hence,

in areas with unbalanced crop categories, the algorithm faces challenge to assign each crop to a

corresponding cluster precisely (Tan et al., 2016; Wang et al., 2019).

Our regional adaptive large-area crop mapping method in future will further be improved by the

follows: (1) Classification on a finer scale by specifying a more precise number of target clusters can

reduce spatial heterogeneity and emphasize the relative importance of non-dominant categories, and

increase classification accuracy consequently (Li and Yang, 2017). (2) Optimizing data preprocessin

methods. Outliers can interrupt classification because the unsupervised methods is highly sensitive to
anomalies (Raykov et al., 2016; Wang et al., 2019). Therefore, eliminating outliers can further improve
the classification validity. In addition, since K-means weights all dimensions equally, minimizing the

features’ correlation and reducing irrelevant variables are also important means to enhance the
classification effect (Hastie et al., 2009). (3) Improving algorithm performance. A variety of algorithms

have been proposed to address the inherent defects of K-means (Ahmed et al., 2020), such as by

optimizing the initial clustering center (e.g., K-means++), weighting classes (e.g., Weighted k-means

and non-spherical clustering assumptions (e.g2., DBSCAN, Spectral Clustering) (Ester et al., 1996; Bach
and Jordan, 2003; Kerdprasop et al., 2005; Arthur and Vassilvitskii, 2007). The improved algorithms will




address the issues on complex and highly diverse crop classification in some degrees (Li et al., 2022;

Rivera et al., 2022). (4) Better post-processing of data. Misclassification of field ridges and image

speckles is inevitable during mapping crops over large areas. With the progress of computing power,

auxiliary data and image processing algorithms can further eliminate these issues (Liu et al., 2018a; Li

and Qu, 2019; Hamano et al., 2023). We are sure that integrating cloud computing platforms with

advanced algorithms will provide substantial potential for accurate crop identification covering larger

areas in future.”

Reference:

Ahmed, M., Seraj, R., and Islam, S. M. S.: The k-means Algorithm: A Comprehensive Survey and Performance Evaluation,
Electronics, 9, 1295, https://doi.org/10.3390/electronics9081295, 2020.

Arthur, D. and Vassilvitskii, S.: k-means++: The advantages of careful seeding, in: Soda, 1027-1035, 2007.

Bach, F. and Jordan, M.: Learning spectral clustering, in: Advances in neural information processing systems, 2003.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with
noise, in: kdd, 226-231, 1996.

Hamano, M., Shiozawa, S., Yamamoto, S., Suzuki, N., Kitaki, Y., and Watanabe, O.: Development of a method for detecting the
planting and ridge areas in paddy fields using Al, GIS, and precise DEM, Precis. Agric., 24, 1862-1888,
https://doi.org/10.1007/s11119-023-10021-z, 2023.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H.: The elements of statistical learning: data mining, inference, and
prediction, Springer, 2009.

Kerdprasop, K., Kerdprasop, N., and Sattayatham, P.: Weighted k-means for density-biased clustering, in: International conference
on data warehousing and knowledge discovery, 488—497, https://doi.org/10.1007/11546849 48, 2005.

Li, B. and Yang, L.: Clustering accuracy analysis of building area in high spatial resolution remote sensing images based on k-
means algorithm, in: 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST), 2017 2nd International
Conference on Frontiers of Sensors Technologies (ICFST), 174—178, https://doi.org/10.1109/ICFST.2017.8210497, 2017.

Li, T., Johansen, K., and McCabe, M. F.: A machine learning approach for identifying and delineating agricultural fields and their
multi-temporal dynamics using three decades of Landsat data, ISPRS J. Photogramm. Remote Sens., 186, 83-101,
https://doi.org/10.1016/j.isprsjprs.2022.02.002, 2022.

Li, Y. and Qu, H.: LSD and Skeleton Extraction Combined with Farmland Ridge Detection, in: Advances in Intelligent, Interactive
Systems and Applications, Cham, 446—453, https://doi.org/10.1007/978-3-030-02804-6_59, 2019.

Liu, H., Zhang, J., Pan, Y., Shuai, G., Zhu, X., and Zhu, S.: An Efficient Approach Based on UAV Orthographic Imagery to Map
Paddy With Support of Field-Level Canopy Height From Point Cloud Data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11,
2034-2046, https://doi.org/10.1109/JSTARS.2018.2829218, 2018.

Raykov Y. P., Boukouvalas A., Baig F., and Little M. A.: What to Do When K-Means Clustering Fails: A Simple yet Principled
Alternative Algorithm, PLOS ONE, 11, €0162259, https://doi.org/10.1371/journal.pone.0162259, 2016.

Rivera, A. J., Pérez-Godoy, M. D., Elizondo, D., Deka, L., and del Jesus, M. J.: Analysis of clustering methods for crop type
mapping using satellite imagery, Neurocomputing, 492, 91-106, https://doi.org/10.1016/j.neucom.2022.04.002, 2022.

Tan, P.-N., Steinbach, M., and Kumar, V.: Introduction to data mining, Pearson Education India, 2016.

Wang, S., Azzari, G., and Lobell, D. B.: Crop type mapping without field-level labels: Random forest transfer and unsupervised
clustering techniques, Remote Sens. Environ., 222, 303-317, https://doi.org/10.1016/j.rse.2018.12.026, 2019.

Comment 10: The ms does not consider the soybean-maize intercropping systems in part of China.
Reply: We have considered all cropping patterns related with soybean as possible. For example, we
have identified the banded areas planted by soybean as shown in Figure 4. Soybean and other crops



are interplanted with the narrowest strip width detectable at about 2-3 pixels, equivalent to 20-30

meters. However, if the strip widths in soybean-maize intercropping system are less than a meter

(Yang et al., 2014; Du et al., 2018), the 10-meter resolution provided by Sentinel-2 imagery will fail

in capturing these planting stripes due to mixed pixels problems. With the help of higher resolution

remote sensing data, such as sub-meter level satellite images or local unmanned aerial vehicle (UAV)
images, such dense intercropping systems will be identified more accurately. We added discussion

to state the uncertainty caused by this agricultural pattern:

“The growth periods of soybean, peanut, potato, and maize are similar, dominantly indicated by a mixed

planting pattern, which has contributed to the low accuracy of non-main soybean producing areas in

southern China (Liu et al., 2020). Additionally, soybeans are intercropped with maize or other crops in

some areas, where the strip width is less one meter (Yang et al., 2014; Du et al., 2018). This planting

pattern will introduce the mixed pixels problem as well under the background of 10 m resolution crop

”»

mapping.
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Figure 4. The case of soybean banded planting pattern in northeast China.

Reference:

Du, J., Han, T., Gai, J., Yong, T., Sun, X., Wang, X., Yang, F., Liu, J., Shu, K., Liu, W., and Yang, W.: Maize-soybean strip
intercropping: Achieved a balance between high productivity and sustainability, J. Integr. Agric., 17, 747-754,
https://doi.org/10.1016/S2095-3119(17)61789-1, 2018.

Yang, F., Huang, S., Gao, R., Liu, W., Yong, T., Wang, X., Wu, X., and Yang, W.: Growth of soybean seedlings in relay strip
intercropping systems in relation to light quantity and red:far-red ratio, Field Crops Res., 155, 245-253,
https://doi.org/10.1016/j.fcr.2013.08.011, 2014.



Response to reviewer #3:

Many thanks for your thoughtful and valuable comments and suggestions, which are very helpful
in improving our manuscript. We have conducted substantial new experiments and analyses to
ensure that the study is more comprehensive and rigorous, and our maps are more reliable. Our
responses to the comments point-by-point are included below in blue. The corresponding changes
in the revised manuscript are shown in purple.

General comment: This manuscript developed a phenological- and pixel-based soybean area
mapping (PPS) method to identify soybean on a large scale and generated a dataset of soybean
planting areas across China. The topic is significant for sustainable soybean production and
management. However, the proposed methodology lacks notable innovation when compared to
prior studies. Given the intricate spectral variations within soybeans and the fragmentated nature of
agricultural landscapes across China, the presented method fails to demonstrate its robustness across
diverse regions and time periods, therefore raising concerns about the reliability of the resulting
soybean map. Furthermore, certain descriptions of the proposed method lack essential details and
specific contents are not easy to follow. Below, | have provided several detailed comments:

Reply: Thank you for the expert questions, which do encourage us to comb our method and add
more detailed experiments to demonstrate the robustness of our approach and the reliability of the
resulting soybean maps. We explained all these details by three sections (innovation, accuracy, and
methods’ details).

(1) Innovation: We firstly obtained the characteristic spectra and growth curves of soybean in
different areas during the key observed growth periods, and then trained local unsupervised
classifiers to self-adapt to cross-regional growth variability, which have avoided huge requirement
for extensive ground samples. The Regional Adaptation Spectra-Phenology Integration (RASP)
framework proposed is novel and can be repeatable into other major areas planted by soybean with
simple inputs, providing a solution for mapping annual soybean dynamics with a higher resolution
(please see the details in the revised method section of the new edition from line 231-312 in page
11-15).

(2) Accuracy: In our results of accuracy assessment, we have used so many data available from
different years to verify the reliability of our soybean maps by several methods, including visual
comparison, comparing soybean areas retrieved with county- and prefecture- statistical books, and
point verification with confusion matrix separately by sub-zone. Very few previous studies have
assessed comprehensively maps’ accuracy by the three methods. To demonstrate the robustness of
mapping across diverse regions, we added the accuracy results of statistical data verification and
point verification in each sub-zone.

»  The variations in accuracy among sub-zones based on statistics validation:

“The mapping accuracy in Zone I closely matched county-level statistics, showing high consistency

(R’=0.86). Zones II-1V also demonstrated reasonable agreement (R’=0.50~0.69), despite relatively lower

accuracy due to the scarcer planted areas (Fig. S5). No significant trend deviation from statistics was

indicated for the mapping area in Zone I, with slight overestimates for Zone II and III, and underestimates

for Zone IV (Fig. S5). These accuracy variations are acceptable, given the challenges in accurately

identifying soybeans in regions where they are planted less prevalently. Specifically, maize is more

dominant than soybeans in Zone II, while Zone I1I is characterized by diverse crops and complex planting
patterns. Underestimation in Zone IV is possibly due to fewer clear observations in the southwest.




Nevertheless, the overall accuracy across the zones is acceptable.”
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Figure SS. Comparison of soybean areas with county-level statistics in (a) Zone I, (b) Zone II, (¢) Zone I1I,
and (d) Zone IV in 2017 and 2018.

»  The variations in accuracy among sub-zones based on samples validation:
“The overall accuracy for each sub-zone in 2019 varied from 83.58% to 90.67% (Table S1). Specifically,

Zone I demonstrated the highest producer’s accuracy for soybean at 88.31%. aligning with its high
consistency with statistics. Zone III achieved the highest overall accuracy at 90.67%. attributed to its

superior user’s accuracy for soybean, indicating fewer misclassifications, and effective differentiation

from non-soybean crops (Table S1). The producer’s accuracy in Zone IV was relatively lower at 63.89%.

possibly due to the limited samples, high heterogeneity, and fewer clear observations (Table S1).”

Table S1. Confusion matrix of the soybean maps in each sub-zone in 2019.

Reference Map Producer’s User’s Fi Overall

Soybean Non-Soybean Accuracy Accuracy Score  Accuracy

I Soybean 922 122 88.31% 81.09% 0.85 87.12%
Non-Soybean 215 1358 86.33% 91.76% 0.89

Il Soybean 233 74 75.90% 86.30% 0.81 83.58%
Non-Soybean 37 332 89.97% 81L.77% 0.86

Il Soybean 101 26 79.53% 98.06% 0.88 90.67%
Non-Soybean 2 171 98.84% 86.80% 0.92

IV Soybean 23 13 63.89% 92.00% 0.75 87.18%
Non-Soybean 2 79 97.53% 85.87% 0.91




(3) Method descriptions in details: We have added the necessary details to the method we proposed
in method section of our MS. To fully and positively respond all your valuable and suggestive
comments, we also further listed them point by point in the follows.

Specific comments:

Comment 1: Line83-93: The expression and logic are not clear. | suggest that the authors reorganize
“method (5)” to emphasize its key theory, advantages and disadvantages. Additionally, Line93-98
should be revised to describe the fundamental theory and performance of those method proposed by
prior researchers. Furthermore, in Introduction section, the authors didn’t introduce the fundamental
concept behind the proposed method, nor highlighted the current issues faced by previous efforts in
large-scale soybean mapping.

Reply: Thank you for your instructive suggestion. We have followed you to modify all these
sentences thoroughly in the Introduction section:

(1) We have reorganized the previous researches and divided the remote sensing-based crop
classification methods used widely into four categories. Method 5 in the original text has been
incorporated into supervised classification. Additionally, we revised the corresponding section, as
well as discussing the advantages and disadvantages of each method:

“Mapping crops by remote sensing can be categorized into four methods : 1) supervision classification

based on a large number of field samples or high quality training labels (Song et al., 2017: You et al.,

2021:; Shangguan et al., 2022; Li et al., 2023); 2) developing some composite indexes based on the feature

bands and determining the binary classification using appropriate thresholds (Huang et al., 2022; Chen

et al., 2023; Zhou et al., 2023); 3) threshold segmentation based on prior knowledge such as phenology

or spectra (Zhong et al., 2016): 4) combining unsupervised classification with cluster assignment (Wang

etal., 2019; You et al., 2023). Supervision classification methods relied on ground samples heavily, while

the 2™ and 3™ methods are both based on reliable and accurate thresholds. However, mapping soybean

by these methods was mainly applied in small areas, very few covering over a larger region. Because of

sufficient field samples, supervision classification can achieve maps with a higher accuracy, which is

relatively mature method used widely. However, collecting sufficient field samples is extremely time,

money. and labor consumed, and unsuitable for long-term years over larger areas (Luo et al., 2022).

Furthermore, the threshold-based methods (the 2" and 3™) have been applied into large areas, however,

determining the thresholds will inevitably bring significant uncertainty, especially for the areas with high
heterogeneity in climate, environment, and planting patterns. Thus, these methods show low

reproducibility, further hindering their application across diverse geographic areas. As for mapping

soybean, it is still a big challenge due to their similar growth characteristics with many other summer

crops (Wang et al.. 2020; Di Tommaso et al., 2021). The thresholds that work well in some areas did not

perform well in other areas (Graesser and Ramankutty, 2017; Guo et al., 2018). These limitations restrict

accurate soybean maps available, especially over large regions in China.”

(2) We have described the fundamental theory and the performance of prior researches mentioned
in the original line 93-98 as you suggested:

“For example, the phenological observations at the agricultural meteorological stations were employed

as a reference to detect the critical phenological dates of pixels through inflexion- and threshold-based

methods, thereby generating planting areas for three major crops in China with R? greater than 0.8

compared to county statistics (Luo et al., 2020). The time-weighted dynamic time warping method based




on the similarity of phenological curves of Normalized Difference Vegetation Index (NDVI) has
successfully estimated the planting area of maize in China, with provincial averages for producer’s and
user’s accuracies at 0.76 and 0.82, respectively (Shen et al., 2022). Phenological-based Vertical transmit
Horizontal receive (VH) polarized time series accurately captured temporal characteristics of soybeans,

thus were used for an unsupervised classifier to map the seasonal soybeans, achieving an overall accuracy
over 80% in Ujjain district (Kumari et al., 2019).”

(3) We have highlighted the issues faced by previous studies in large regional soybean mapping and
supplement the theoretical basis of our approach proposed:

“... These limitations restrict accurate soybean maps available, especially over large regions in China.
Given the challenges of collecting sufficient field samples over larger region and the limited adaptability

to environmental variations of threshold-based method, previous researches have yet to achieve multi-

year, high-resolution soybean maps nationwide.”

“..._.By integrating unsupervised classification’s regional scalability with specific local soybean growth

signs from phenological data, we fully leverage soybean’s characteristic spectra and vegetation indices

during key growth periods across different areas. Through training the local unsupervised classifier to

accommodate the crop growth variability across regions, and avoiding extensive jobs on collecting

samples, the approach provides an effective solution for regional adaptive large-area crop mapping.”

Reference:

Chen, H., Li, H., Liu, Z., Zhang, C., Zhang, S., and Atkinson, P. M.: A novel Greenness and Water Content Composite Index
(GWCCI) for soybean mapping from single remotely sensed multispectral images, Remote Sens. Environ., 295, 113679,
https://doi.org/10.1016/j.rse.2023.113679, 2023.

Di Tommaso, S., Wang, S., and Lobell, D. B.: Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops,
Environ. Res. Lett., 16, 125002, https://doi.org/10.1088/1748-9326/ac358c, 2021.

Graesser, J. and Ramankutty, N.: Detection of cropland field parcels from Landsat imagery, Remote Sens. Environ., 201, 165-180,
https://doi.org/10.1016/j.rse.2017.08.027, 2017.

Guo, W., Ren, J., Liu, X., Chen, Z., Wu, S., and Pan, H.: Winter wheat mapping with globally optimized threshold under total
quantity constraint of statistical data, J. Remote Sens., 22, 1023—1041, https://doi.org/10.11834/jrs.20187468, 2018.

Huang, Y., Qiu, B., Chen, C., Zhu, X., Wu, W., Jiang, F., Lin, D., and Peng, Y.: Automated soybean mapping based on canopy water
content and chlorophyll content using Sentinel-2 images, Int. J. Appl. Earth Obs. Geoinformation, 109, 102801,
https://doi.org/10.1016/j.jag.2022.102801, 2022.

Kumari, M., Murthy, C. S., Pandey, V., and Bairagi, G. D.: Soybean Cropland Mapping Using Multi-Temporal Sentinel-1 Data,
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLII-3-W6, 109—-114, https://doi.org/10.5194/isprs-archives-XLII-3-W6-
109-2019, 2019.

Li, H., Song, X.-P., Hansen, M. C., Becker-Reshef, I., Adusei, B., Pickering, J., Wang, L., Wang, L., Lin, Z., Zalles, V., Potapov, P.,
Stehman, S. V., and Justice, C.: Development of a 10-m resolution maize and soybean map over China: Matching satellite-based
crop classification with sample-based arca estimation, Remote Sens. Environ., 294, 113623,
https://doi.org/10.1016/j.rse.2023.113623, 2023.

Luo, Y., Zhang, Z., Li, Z., Chen, Y., Zhang, L., Cao, J., and Tao, F.: Identifying the spatiotemporal changes of annual harvesting
areas for three staple crops in China by integrating multi-data sources, Environ. Res. Lett., 15, 074003,
https://doi.org/10.1088/1748-9326/ab80£0, 2020.

Luo, Y., Zhang, Z., Zhang, L., Han, J., Cao, J., and Zhang, J.: Developing High-Resolution Crop Maps for Major Crops in the



European Union Based on Transductive Transfer Learning and Limited Ground Data, Remote Sens., 14, 1809,
https://doi.org/10.3390/rs14081809, 2022.

Shangguan, Y., Li, X., Lin, Y., Deng, J., and Yu, L.: Mapping spatial-temporal nationwide soybean planting area in Argentina using
Google Earth Engine, Int. J. Remote Sens., 43, 1724—1748, https://doi.org/10.1080/01431161.2022.2049913, 2022.

Shen, R., Dong, J., Yuan, W., Han, W., Ye, T., and Zhao, W.: A 30 m Resolution Distribution Map of Maize for China Based on
Landsat and Sentinel Images, J. Remote Sens., 2022, 2022/9846712, https://doi.org/10.34133/2022/9846712, 2022.

Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S. V., and Hansen,
M. C.: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and
field survey, Remote Sens. Environ., 190, 383-395, https://doi.org/10.1016/j.rse.2017.01.008, 2017.

Wang, S., Azzari, G., and Lobell, D. B.: Crop type mapping without field-level labels: Random forest transfer and unsupervised
clustering techniques, Remote Sens. Environ., 222, 303-317, https://doi.org/10.1016/j.rse.2018.12.026, 2019.

Wang, S., Di Tommaso, S., Deines, J. M., and Lobell, D. B.: Mapping twenty years of corn and soybean across the US Midwest
using the Landsat archive, Sci. Data, 7, 307, https://doi.org/10.1038/s41597-020-00646-4, 2020.

You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., and Xiao, X.: The 10-m crop type maps in Northeast China
during 2017-2019, Sci. Data, 8, 41, https://doi.org/10.1038/s41597-021-00827-9, 2021.

You, N., Dong, J., Li, J., Huang, J., and Jin, Z.: Rapid early-season maize mapping without crop labels, Remote Sens. Environ.,
290, 113496, https://doi.org/10.1016/j.rse.2023.113496, 2023.

Zhong, L., Hu, L., Yu, L., Gong, P., and Biging, G. S.: Automated mapping of soybean and corn using phenology, ISPRS J.
Photogramm. Remote Sens., 119, 151-164, https://doi.org/10.1016/j.isprsjprs.2016.05.014, 2016.

Zhou, W., Wei, H., Chen, Y., Zhang, X., Hu, J., Cai, Z., Yang, J., Hu, Q., Xiong, H., Yin, G., and Xu, B.: Monitoring intra-annual
and interannual variability in spatial distribution of plastic-mulched citrus in cloudy and rainy areas using multisource remote

sensing data, Eur. J. Agron., 151, 126981, https://doi.org/10.1016/j.¢ja.2023.126981, 2023.

Comment 2: Fig.1 shows that there are more soybean agrometeorological observation stations in
Jiangxi Province than in Sichuan Province. So, why does the study area not include regions in South
China, especially prefectures in the Jiangxi Province?

Reply: Yes, more soybean AMSs are located in Jiangxi Province, but we did not retrieve soybean
areas there because of the quality limitations of Sentinel images available nowadays. Moreover,
soybean planted in Southern China are generally scattered in fragmented and more complicated
fields. It will be a very big challenge for smoothly selecting the specific features of a certain minor
crop among many dominant crops. We excluded Southern China, including Jiangxi province,
considering the above difficulties and their minor roles relative to the overall soybean production in
China. All our responses to this comment are showed specifically as follows:

(1) According to the provincial statistics, the soybean planting area of the top 13 provinces accounts
for over 90% of the whole national production, with only below 10% from other provinces.
Therefore, despite of phenological observations available, we excluded the province from our
analyses because of their minimal contribution.

(2) In Southern China, soybeans can be cultivated in multiple patterns, including double, triple, or
even year-round cropping (Wang and Gai, 2002). Moreover, such cropping patterns are
characterized by different intercropping and cropping rotation between soybean and other crops.
Thus, how and when soybean is planted there are decided by local farmers optionally. This means
that the growth phases of soybeans are inconsistent, consequently the standard curves are very hard
to identify. Moreover, phenological data from local AMS could not be representative, and can’t
reveal local reality. The larger complexity in cropping patterns and more inputs required for



accurately identifying soybean, therefore, make us exclude the Southern China from our studied

arcas.

Reference:
Wang, Y. and Gai, J.: Study on the ecological regions of soybean in China II - Ecological environment and representative varieties,

Chinese Journal of Applied Ecology, 71-75, 2002.

Comment 3: As stated in lines 149-151, the regions chosen to validate the classification results
didn’t include samples from fragmented planting regions with small soybean cultivation areas.
Could this validation approach potentially lead to an overestimation of the overall validation
accuracy? Additionally, there is a lack of a spatial distribution map for these field samples.

Reply: Many thanks for this valuable suggestion. We have followed you to include more samples
(2019 soybean and other crop reference points from the openly products available, including
fragmented planting regions with small soybean cultivation areas) to validate the accuracy of our
soybean maps in other growing regions.

In provinces without ground samples, we manually selected reference points on large soybean
plots based on GLAD (https://glad.earthengine.app/view/china-crop-map, last access: March 2024)
soybean layer. The criterions selected are: (1) located in large plots; (2) false color composite image (R:
NIR, G: SWIRZ2, B: SWIR1) at the peak of growing season (Song et al., 2017; You and Dong, 2020); (3)
phenological characteristics similar to local observations. Additionally, the reference points of maize,
single-cropping rice and double-cropping rice in 2019 were selected based on GLAD maize layer, high
resolution single-season rice map (https://doi.org/10.57760/sciencedb.06963, last access: March 2024),
and double-season rice map (https://doi.org/10.12199/nesdc.ecodb.rs.2022.012, last access: March 2024)
with the same principle to explore the spectral characteristics of crops in each sub-zone of the studied
areas. The overall accuracy of all available maps in 2019 is above 85% (Pan et al., 2021; Li et al., 2023;
Shen et al., 2023).

We plotted the spatial distribution of ground samples and reference points as showed by Figure
1 below and modified Figure 1 in the edited MS. We have added the details of the reference points
to the data section in revised manuscript.

Reference:

Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan, W.: High Resolution Distribution Dataset of Double-
Season Paddy Rice in China, Remote Sens., 13, 4609, https://doi.org/10.3390/rs13224609, 2021.

Li, H., Song, X.-P., Hansen, M. C., Becker-Reshef, 1., Adusei, B., Pickering, J., Wang, L., Wang, L., Lin, Z., Zalles, V., Potapov, P.,
Stehman, S. V., and Justice, C.: Development of a 10-m resolution maize and soybean map over China: Matching satellite-based
crop classification with sample-based area estimation, Remote Sens. Environ., 294, 113623,
https://doi.org/10.1016/j.rse.2023.113623, 2023.

Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., and Yuan, W.: High-resolution distribution maps of
single-season rice in China from 2017 to 2022, Earth Syst. Sci. Data, 15, 3203-3222, https://doi.org/10.5194/essd-15-3203-2023,
2023.

Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S. V., and Hansen,
M. C.: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and
field survey, Remote Sens. Environ., 190, 383-395, https://doi.org/10.1016/j.rse.2017.01.008, 2017.

You, N. and Dong, J.: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth


https://doi.org/10.57760/sciencedb.06963
https://doi.org/10.12199/nesdc.ecodb.rs.2022.012

Engine, ISPRS J. Photogramm. Remote Sens., 161, 109—123, https://doi.org/10.1016/j.isprsjprs.2020.01.001, 2020.
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Figure 1. The study area including 14 provinces (including Chongqing Municipality) and spatial distribution
of ground samples and reference points across China in (a) 2019, (b) 2017, and (c) 2018.

In addition, we updated the point validation results (Table 2) and inserted the validation for each
sub-zone to the supplemental material (Table S1 above). We further explain the differences in

accuracy between regions in the revised manuscript (see Reply for General comment above).

Table 2. Confusion matrix of the soybean maps during 2017-2019.

Reference Map Producer’s  User’s F1 Overall

Soybean Non-Soybean Accuracy Accuracy  Score  Accuracy

2017  Soybean 679 352 65.86% 72.47% 069  77.08%
Non-Soybean 258 1372 84.17% 79.58% 0.82

2018  Soybean 799 246 76.46% 74.19% 0.75 85.16%
Non-Soybean 278 2208 88.82% 89.98% 0.89

2019* Soybean 1279 235 84.48% 83.32% 0.84 86.77%
Non-Soybean 256 1940 88.34% 89.20% 0.89

* Including ground samples and nationwide reference points based on existing datasets.

Comment 4: L206-207: References are needed to support these statements.

Reply: Thank you for your suggestion. The selection of threshold values is based on our analysis of
ground samples and previous studies. We have supplemented the references here.

“Based on the cropland extracted, we filtered out the pixels exhibiting an Enhanced Vegetation Index

(EVI) maximum value during the growing season less than 0.4 to remove fallow land according to the

analysis of ground samples (Fig. S1) and previous studies, which found that almost all crops had

maximum EVI values above 0.4 (Li et al., 2014; Zhang et al., 2017; Han et al., 2022).”
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Figure S1. Box plot of the EVI maximum in 2019 based on all ground samples.

Reference:

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., and Tao, F.: Annual paddy rice planting area and
cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020, Agric. Syst., 200, 103437,
https://doi.org/10.1016/j.agsy.2022.103437, 2022.

Li, L., Friedl, M. A., Xin, Q., Gray, J., Pan, Y., and Frolking, S.: Mapping Crop Cycles in China Using MODIS-EVI Time Series,
Remote Sens., 6, 2473-2493, https://doi.org/10.3390/rs6032473, 2014.

Zhang, G., Xiao, X., Biradar, C. M., Dong, J., Qin, Y., Menarguez, M. A., Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R. B.,
Ding, M., and Moore, B.: Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015, Sci. Total Environ.,
579, 82-92, https://doi.org/10.1016/j.scitotenv.2016.10.223, 2017.

Comment 5: The main crop types and cropping intensity vary across regions with different climate
conditions. However, Fig.3 (a-i) only presents spectral curves for soybean planting in Northern
China. Are the phenological characteristics described in “(2) Feature selection” also applicable to
soybeans planted in Southwestern China? | suggest that the authors also provide spectral curves of
soybean and main crops planted in South China.

Reply: Yes, the main crop types and cropping intensity do vary across regions with different climate
conditions. Using the reference points described in Reply for Comment 3, we explored the spectral
and vegetation indices characteristics of major crops in each region. All these selected crops grow
the similar season as those of soybeans, which further are proved by the temporal consistent profiles
across different sub-zones (Fig. S2-S4). We found notable differences in SWIR1, SWIR2, and
SIWSI indices between soybean and rice during the early growth period. In mid and late growth
phases, EVI, NIR, Red Edge2 and Red Edge3 values of soybean fields were significantly higher
than other crops. The consistent differences are basis mentioned in the feature selection section,
which further substantiate that the selected features can be applicable and potentially repeatable into
various regions. We have added the following figure S2-S4 to the supplementary materials and
stated in the revised manuscript:

“All these spectral-phenological characteristics are also applicable to soybeans planted in other sub-
zones (Fig. S2-S4).”
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Figure S3. Temporal profiles of (a-i) for major crops in Zone III.
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Figure S4. Temporal profiles of (a-i) for major crops in Zone IV.

Comment 6: The authors need provide example figures illustrating the result of “time window from

15 days before the podding date (DOYpodding) to 15 days after the full-seed date (DOY'seed)”

Reply: Thank you for your insight suggestion. We have followed you to plot example figures
(illustrating the result of “time window from 15 days before DOY podding t0 15 days after DOY seed)
for identifying seasonal crops under single and double cropping patterns (Figure 2). We confined
the peak value detected in soybean growing period to ensure the rationality of our method in the

single or double cropping systems. We have added the figure into the revised manuscript.

(a)

Legend
m wend S0S
— Maize
— Rice
— Soybean
— Wheat
07 ® Peak date
7
O Observed date
& 050 /
/
/
/
0.25 /
Sowing date
0.00

1 Restricted window!
i isdi & f

The growing season of soybean

EOS

(®

Legend

~ Maize

— Single rice
= Soybean
~ Double rice
@ Peak date

©  Observed date

SO8

! Restricted window |
S days 1

EOS

. Haresting dute

Figure 2. Schematic diagram of seasonal crop identification for (a) single - and (b) double -
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Comment 7: L241-242: these contents are confusing, is there any typo?

Reply: We are so sorry for the confusion expression. We have revised it to the follow:

“Meanwhile, the timing of TCARI reaching saturation significantly differs among soybean, rice, and

300

wheat (Fig. 4i).”

Comment 8: L255-256: How did you determine the number of K-mean clusters based on statistics?

Further explanation is needed for clarity.



Reply: We collected the statistical area for seasonal crops (including rice, maize, soybean, cotton,
peanuts, sesame, sweet potato, and sorghum) of each prefecture in 2018. We defined “major crops”
as those species cumulatively representing 95% of the total seasonal crop area, with an additional
category for all “other crops” to determine the number of clusters . We have added the process
determining the number of K-mean cluster into section 2.3.2 “(3) Unsupervised learning’:

“The classifier was trained individually on each prefecture based on the number of clusters & input. The

cluster number £ is defined as the number of “major crops” that constituting 95% of the total area for

seasonal crops (including rice, maize, soybean, cotton, peanuts, sesame, sweet potato, and sorghum)

99 99

according to prefecture-level statistics, and plus one for “other crops”.

Comment 9: The DTW step is not clearly described:

(1) I wonder whether the length and time coverage of S2 time series used for calculating DTW
distance vary across different AEZs?

Reply: Yes, the length and time coverage of S2 time series is different for each sub-zone. According
to the soybean sowing and maturity dates recorded at AMSs, we set the time coverage of Zone [-1V
to April-September, May-October, June-October, and August-November, respectively. This
selection of time spans ensures that the full growing season of soybeans is included in each sub-

zoneg.

(2) Did the authors use averaged time series for 100 random points and those for all field samples
around the whole China to calculate DTW distances? If so, it is important to note that the spectral
differences between crops in North and South China may affect the validity of DTW calculation
results. Have you considered the impact of intra-class spectral differences in soybean samples from
different regions on the DTW calculation results and the final classification results?

Reply: Yes, the DTW distances are key parameters for distinguishing soybean from other crops.
We determined the standard time series for each sub-zone separately. We randomly selected the 30%
sample points (Dong et al., 2020) in each sub-zone and calculated the averages to determine the
soybean standard curves, since the soybean growth periods and their related curves in same sub-
zone do not differ hugely. For the classification results in each prefecture, we randomly select 100
points to calculate the averages and determine their standard curves for all crop category, and
separately calculate the DTW distance of standard curves between the soybean and all crops.

As for your worry about the spectral differences between crops in North and South, our method
proposed will not impact the DTW (calculated in a prefecture) validity because of their weak
difference among a prefecture. Similarly for the intra-class spectral differences for soybean samples
of different regions, such differences do not particularly impact DTW values and the final
classification results because of soybean standard curves developed respectively in each sub-zone.

Reference:

Dong, J., Fu, Y., Wang, J., Tian, H., Fu, S., Niu, Z., Han, W., Zheng, Y., Huang, J., and Yuan, W.: Early-season mapping of winter
wheat in China based on Landsat and Sentinel images, Earth Syst. Sci. Data, 12, 3081-3095, https://doi.org/10.5194/essd-12-3081-
2020, 2020.

(3) Line 219-221: Did the authors use all the above 8 feature to calculate DTW distances? How did
you integrated the 8 DTW distances into the final DTW value used for classification?



Reply: Yes, we calculated the DTW distances for these 8 features. The averaged DTW distance for
all features was used to assess the similarity degree with the standard curve.

(4) “The cluster closest to the samples was identified as the soybean cluster.” How did you
determine the threshold?

Reply: We did not use a threshold here. Based on the DTW distance of their standard curves for
each crop category and soybean, the cluster with the minimum distance among all categories is
selected as soybean. Taking into account of all above questions you provided, we updated the
method details in the Cluster assignment section in the revised manuscript:

“We then used dynamic time warping (DTW) method to measure the similarity between each cluster’s
eight features involved in classification and the soybean standard curves. We averaged the data of 30%
samples in each sub-zone to establish the standard curves, reducing the impact of regional phenological
variations. The time coverage of Zone I-1V was set to April-September, May-October, June-October, and
August-November, respectively, which are corresponding with the soybean growing season. The cluster

with the minimal average DTW value was identified as the soybean cluster.”

Comment 10: Fig.8 (al-3) depict false-color composite images composed of bands 4, 3, and 2.
Distinguishing between soybeans and non-soybeans in these images is visually difficult. It is
recommended to present images composited with other bands. The authors can refer to the following
article, which uses the shortwave infrared band for false-color compositing.

Song X-P, Potapov P V, Krylov A, King L, Di Bella C M, Hudson A, Khan A, Adusei B, Stehman
S V,Hansen M C. National-scale soybean mapping and area estimation in the United States using
medium resolution satellite imagery and field survey. Remote Sens. Environ., 2017, 190: 383-395
You N,Dong J. Examining earliest identifiable timing of crops using all available Sentinel 1/2
imagery and Google Earth Engine. ISPRS-J. Photogramm. Remote Sens., 2020, 161: 109-123

Reply: Thank you for your advice. We updated false color composite images (R: NIR, G: SWIR2,
B: SWIR1) to identify soybean plots more clearly. The reflectance differences between soybean and
other crops in these bands do be greater than that in red, green and blue bands. Many thanks for
your expert advice, which really encourage us to deepen our study!
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Figure 3. Visual comparison of our soybean maps and existing products in typical regions in
2019.

Comment 11: Fig. 9 indicates that there is a notably low frequency of clear observations in Sichuan
Province, with the majority of areas showing zero clear observations per month. How can it be
ensured that a complete 10-day composited time series is generated for DTW calculations in this
region?

Reply: Yes, low frequency of clear observations was notably observed in Sichuan Province. For the
areas with lower clear observations, beside the 10-day time series composite, we also conducted a
gap-filling method on the composite time series by replacing the observations by the median of
three adjacent observations (i.e., previous, current, and subsequent observations), to ensure the
integrity of the time series as much as possible. We supplement in the “Data Processing” section:
“In areas with notably limited clear observations, a gap-filling method was conducted on the composite

time series. This method involves substituting any given observation with the median value from three

neighboring observations (i.e., previous, current, and subsequent observations) to maximize the

continuity and completeness of time series.”

Such fewer clear observations are inevitable, especially for a study over a larger region and long-
term period. Although the 10-day composite time series were generated as far as possible, honestly,
the uncertainty is inevitably introduced at times (such as 2017) and regions (such as the southwest)



where there are particularly few clear observations. We added discussion to the “4.2 The uncertainty
from image quality” section:
“In areas with quite lower clear observations, despite a gap-filling method was conducted to

generate complete 10-day composite time series, higher uncertainty is inevitable. The gap-filling

time series might contain duplicate values, which cannot accurately reflect the crop growth process

in reality. Obviously, the total number of images available in 2017 over the study areas was significantly
fewer than those of other years (Fig.10al-el) ... This might explain the lower user’s accuracy of

soybean in Zone IV compared to other sub-zones (Table S1) and low overall accuracy based on sample
verification in 2017 (Table 2).”

Comment 12: A considerable number of pixels corresponding to field ridges were inaccurately

classified as soybeans in the 2020 map, particularly evident in East Heilongjiang, North Shandong

and Henan Province. Can the authors consider the use of post-processing methods to eliminate this

issue?

Reply: Thank you for pointing out the problem. We agree that ridge identification is a very

important issue in remote sensing mapping, however it is still difficult to address the issue across a

larger area. The main reasons are as follows:

(1) The ridge width is very narrow, and the 10m resolution image is often unable to accurately

distinguish between the field and the ridge. It is generally accepted that the identification and

elimination of the ridge is based on centimeter-level images (such as unmanned aerial vehicle

images).

(2) We summarized the methods widely used to identify and eliminate the field ridges nowadays.

®  Machine learning and deep learning methods. A labeled training dataset was used to train the
model to identify planting areas and ridge area (Hamano et al., 2023).

® Point cloud processing technology. Point cloud data can reflect the height of the ground canopy,
and the height of the ridge is often lower than that of the crop, so a suitable threshold can be
adopted to distinguish the ridge from the crop (Liu et al., 2018);

® [mage processing and computer vision methods. The ridge has its special shape, such as a
slender shape similar to a road or a closed border. Edge detection, morphological processing
and other methods can extract features from remote sensing images to help identify and
distinguish ridges (Li and Qu, 2019),

Therefore, considering the relatively weaker impacts of the field ridge on crop mapping over a larger

areas, and the complex image processing algorithms (which will consume huge computing power),

we have not realized the field ridge identification after trading off the cartographic accuracy and

calculation cost. In future studies, with the improvement of data accuracy and algorithm update, the

identification of field ridge will be a key step in large-scale crop mapping. Following your

suggestions, we added the discussion to “4.3 Limitations in small-scale planting areas” section:

“Our regional adaptive large-area crop mapping method in future will further be improved by the

follows: ... (4) Better post-processing of data. Misclassification of field ridges and image speckles is

inevitable during mapping crops over large areas. With the progress of computing power, auxiliary data

and image processing algorithms can further eliminate these issues (Liu et al., 2018; Li and Qu, 2019;
Hamano et al., 2023). We are sure that integrating cloud computing platforms with advanced algorithms

will provide substantial potential for accurate crop identification covering larger areas in future.”




Reference:

Hamano, M., Shiozawa, S., Yamamoto, S., Suzuki, N., Kitaki, Y., and Watanabe, O.: Development of a method for detecting the
planting and ridge areas in paddy fields using Al, GIS, and precise DEM, Precis. Agric., 24, 1862-1888,
https://doi.org/10.1007/s11119-023-10021-z, 2023.

Li, Y. and Qu, H.: LSD and Skeleton Extraction Combined with Farmland Ridge Detection, in: Advances in Intelligent, Interactive
Systems and Applications, Cham, 446—453, https://doi.org/10.1007/978-3-030-02804-6_59, 2019.

Liu, H., Zhang, J., Pan, Y., Shuai, G., Zhu, X., and Zhu, S.: An Efficient Approach Based on UAV Orthographic Imagery to Map
Paddy With Support of Field-Level Canopy Height From Point Cloud Data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11,
2034-2046, https://doi.org/10.1109/JSTARS.2018.2829218, 2018.



Response to reviewer #4:

Many thanks for your thoughtful and valuable comments and suggestions, which are very helpful
in improving our manuscript. We have conducted substantial new experiments and analyses to
ensure that the study is more comprehensive and rigorous, and our maps are more reliable. Our
responses to the comments point-by-point are included below in blue. The corresponding changes
in the revised manuscript are shown in purple.

General comment: Mei et al's work mapped the soybean planting areas across China with a high
spatial resolution of 10 meters, spanning from 2017 to 2021, provided important information for
sustainable soybean production and management, as well as agricultural system modeling and
optimization. In this work, authors summarized five methods of mapping crops by remote sensing.
The advantages and uncertainties of each method were compared, and a highly effective for
accurately mapping crops over a larger region method named combining unsupervised classification
and post-classification methods applied in this paper. They accomplished this by Sentinel-2 remote
sensing images from the GEE platform with cropland layer and detailed phenology observations.
They validated the results with the census data at both county- and prefecture-level, and with the
two existing datasets (CDL and GLAD maize-soybean map).

Overall, 1 find this work to be valuable. However, | have some concerns regarding the robustness
from the sparse number of AMSs in SW Zonal 1V and uncertainty in quality of satellite imagery. |
hope the authors will consider these points and provide further clarification in their responses and/or
revisions. Please find my major comments and minor for clarification below.

Reply: Thank you for your positive and constructive comments, which surely encourage us to
further enhance our research quality.

To evaluate the variance in mapping accuracy across different regions, we enhanced each sub-zone’s
accuracy assessment using statistics and samples (see Reply for Comment 2). Zone 1V’s mapping
results achieved a consistency R? of 0.69 with county-level statistics, deemed satisfactory (Figure
S5). Validation based on samples indicated an overall soybean accuracy of 87.18% in Zone 1V,
though it exhibited a relatively lower producer’s accuracy of 63.89% than that of other sub-zones
(Table S1). Although the verification accuracy there are not as good as those in main producing
areas, its accuracy is still acceptable. These findings are highlighted in our results, alongside a
comparison the differences in accuracy across regions. To fully and positively respond all your
valuable and suggestive comments, we also further listed them point by point in the follows.

Major comments:

Comment 1: The text mentions the need for 10-day time series composite images per month, but
in certain areas, the average monthly count of clear observations is insufficient to meet this
requirement. Can the existing time series composite methods be optimized to accommodate the
inadequacy of observational data?

Reply: Yes, we have optimized the time series composite methods as possible. For the areas with
lower clear observations, beside the 10-day time series composite, we also conducted a gap-filling
method on the composite time series by replacing the observations by the median of three adjacent
observations (i.e., previous, current, and subsequent observations), to ensure the integrity of the time
series as much as possible. We supplement in the “Data Processing” section:

“In areas with notably limited clear observations, a gap-filling method was conducted on the composite




time series. This method involves substituting any given observation with the median value from three
neighboring observations (i.e., previous, current, and subsequent observations) to maximize the
continuity and completeness of time series.”

Naturally, although the 10-day composite time series were generated as far as possible, this
inevitably introduces uncertainty at times (such as 2017) and regions (such as the southwest) where
there are particularly few clear observations. We added discussion to the “4.2 The uncertainty from
image quality” section:

“In areas with quite lower clear observations, despite a gap-filling method was conducted to

generate complete 10-day composite time series, higher uncertainty is inevitable. The gap-filling

time series might contain duplicate values, which cannot accurately reflect the crop growth process

in reality. Obviously, the total number of images available in 2017 over the study areas was significantly
fewer than those of other years (Fig.10al-el) ... This might explain the lower user’s accuracy of

soybean in Zone IV compared to other sub-zones (Table S1) and low overall accuracy based on sample
verification in 2017 (Table 2).”

Comment 2: The observations per month of satellite imagery in SW Zonal IV are less, and the
AMSs in this zonal also only have two sites. Whether it is possible to increase the observational
data or phenological data from remote sensing to test the robust.

Reply: Your suggestion is very helpful. In order to test the robustness of mapping in different
regions, we supplemented the statistical data validation of partitions and the point validation based
on existing data sets, further demonstrating the mapping accuracy of Zone IV. Zone IV’s mapping
results achieved a consistency R? of 0.69 with county-level statistics, deemed satisfactory (Figure
S5). Validation based on samples indicated an overall soybean accuracy of 0.87 in Zone IV, though
it exhibited a relatively lower producer accuracy of 0.64 than that of other sub-zones (Table S1).
Overall, the accuracy of each sub-zone is acceptable despite some variations.

»  The variations in accuracy among sub-zones based on statistics validation:

“The mapping accuracy in Zone I closely matched county-level statistics, showing high consistency

(R’=0.86). Zones II-1V also demonstrated reasonable agreement (R’=0.50~0.69), despite relatively lower

accuracy due to the scarcer planted areas (Fig. S5). No significant trend deviation from statistics was

indicated for the mapping area in Zone I, with slight overestimates for Zone II and III, and underestimates

for Zone IV (Fig. S5). These accuracy variations are acceptable, given the challenges in accurately

identifying soybeans in regions where they are planted less prevalently. Specifically, maize is more

dominant than soybeans in Zone II, while Zone III is characterized by diverse crops and complex planting

patterns. Underestimation in Zone IV is possibly due to fewer clear observations in the southwest.

Nevertheless, the overall accuracy across the zones is acceptable.”
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Figure SS. Comparison of soybean areas with county-level statistics in (a) Zone I, (b) Zone 11, (c) Zone III,

and (d) Zone IV in 2017 and 2018.
»  The variations in accuracy among sub-zones based on samples validation:
“The overall accuracy for each sub-zone in 2019 varied from 83.58% to 90.67% (Table S1). Specifically,

Zone I demonstrated the highest producer’s accuracy for soybean at 88.31%. aligning with its high
consistency with statistics. Zone III achieved the highest overall accuracy at 90.67%. attributed to its

superior user’s accuracy for soybean, indicating fewer misclassifications, and effective differentiation

from non-soybean crops (Table S1). The producer’s accuracy in Zone IV was relatively lower at 63.89%.

possibly due to the limited samples, high heterogeneity, and fewer clear observations (Table S1).”

Table S1. Confusion matrix of the soybean maps in each sub-zone in 2019.

Reference Map Producer’s User’s F1 Overall

Soybean Non-Soybean Accuracy Accuracy Score  Accuracy

| Soybean 922 122 88.31% 81.09% 0.85 87.12%
Non-Soybean 215 1358 86.33% 91.76% 0.89

Il Soybean 233 74 75.90% 86.30% 0.81 83.58%
Non-Soybean 37 332 89.97% 81.77% 0.86

Il Soybean 101 26 79.53% 98.06% 0.88 90.67%
Non-Soybean 2 171 98.84% 86.80% 0.92

IV Soybean 23 13 63.89% 92.00% 0.75 87.18%

Non-Soybean 2 79 97.53% 85.87% 0.91




Comment 3: To determine the potential cropping areas, authors filtered the pixels exhibiting an
EVI maximum value during the growing season greater than 0.4 to remove fallow land. For spatial
variation across four zonal, the constant threshold would bring some uncertainty. | expect to see
more evidence for selecting 0.4 or a sensitivity analysis of threshold can also be implemented.
Reply: We identified the pixels with maximum EVI values < 0.4 as fallow land because the
maximum EVI values for crops are all > 0.4 (except for few outliers) based on all ground samples
in 2019 (Figure S1). In addition, studies on crop mapping across China also put forward that EVI
values in croplands generally exceed 0.4 at peak growth (Li et al., 2014; Zhang et al., 2017; Han et
al., 2022). Thus, using 0.4 as a threshold allows us to strictly remove fallow land. We have provided
additional explanations for the threshold choice in the revised manuscript:

“Based on the cropland extracted, we filtered out the pixels exhibiting an Enhanced Vegetation Index

(EVI) maximum value during the growing season less than 0.4 to remove fallow land according to the

analysis of ground samples (Fig. S1) and previous studies, which found that almost all crops had

maximum EVI values above 0.4 (Li et al., 2014; Zhang et al., 2017; Han et al., 2022).”

Reference:

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., and Tao, F.: Annual paddy rice planting area and
cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020, Agric. Syst., 200, 103437,
https://doi.org/10.1016/j.agsy.2022.103437, 2022.

Li, L., Friedl, M. A., Xin, Q., Gray, J., Pan, Y., and Frolking, S.: Mapping Crop Cycles in China Using MODIS-EVI Time Series,
Remote Sens., 6, 24732493, https://doi.org/10.3390/rs6032473, 2014.

Zhang, G., Xiao, X., Biradar, C. M., Dong, J., Qin, Y., Menarguez, M. A., Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R. B.,
Ding, M., and Moore, B.: Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015, Sci. Total Environ.,
579, 82-92, https://doi.org/10.1016/j.scitotenv.2016.10.223, 2017.
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Figure S1. Box plot of the EVI maximum in 2019 based on all ground samples.

Minor comments:
Comment 4: Line 58: “same areas” means the north China?



Reply: Yes, “same areas” here refers to northeast China. We changed it to “three provinces of
Northeast China” in the revised manuscript to clarify the meaning.

Comment 5: Line 180, Figure2: The label on the left in Figure2 (i.e. ‘Data processing‘ and
‘Accuracy assessment’) are set to rotate 180° to match reading habits.

Reply: Thank you for your suggestion. We have angled all the labels on the left side of the diagram
for easier reading (Figure 2).

Comment 6: Line 180, Figure2: In step2, part (2) of the dashed box is confusing. What the color
represents? If | understand correctly, they represent different layers of indexes. It is recommended
to put the abbreviation to the right of the color layers.

Reply: Yes, we have redrawn part (2) of the figure and marked the band or index abbreviations
accordingly as you suggested (Figure 2).
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Figure 2. The Regional Adaption Spectra-Phenology Integration methodology for retrieving soybean planting

area.



