
Response to reviewer #1: 
General comment: The article proposed an unsupervised method for identifying soybean crops 
within the defined croplands across China. The topic is interesting, and also important for 
sustainable agricultural development due to its large spatial and long-term coverage. The data is 
well collected and processed, and the results are properly presented. I would suggest some minor 
revisions as listed below. 
Thank you for your positive and constructive comments, which surely encourage us to further 
enhance our research quality. We carefully revised our manuscript and provided a point-by-point 
response below. Moreover, we have positively addressed all points in the revised edition, which will 
be updated after responding all referees’ comments. 
 
Comment 1: L43: Not sure what are the “shortcomings of domestic supply”? 
Sincerely apologize for the ambiguousness here. We have changed “shortcomings” into “shortages” 
throughout the manuscript. 
We have further elucidated the issue of soybean supply in China in our revised manuscript. The 
shortages of soybean supply in China are evident in its growing dependence on imports and the 
decreasing share of soybean production. Specifically, the yield per unit area of soybean in China is 
substantially lower than that of other major crops, such as wheat, rice, and maize (Liu et al., 2021). 
In addition, as China shifts from domestic cultivation of soybeans to importation, a considerable 
amount of arable land is being repurposed for the cultivation of other, more productive crops (Cui 
and Shoemaker, 2018). 
These points have been comprehensively addressed and supplemented with supporting literature in 
the revised manuscript: 
“Given the rapid growth of demand and the shortages of domestic supply due to low yield and low self-
sufficiency, mapping soybean planting areas across China is crucial for sustainable soybean production 
and management (Cui and Shoemaker, 2018; Liu et al., 2021).” 
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F., and Dou, Z.: Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon 
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Comment 2: L46: Please add references to previous studies. 
Yes, we have followed you to add references here. 
“Soybean planting area in some regions of China was mapped in previous studies (You et al., 2021; 
Huang et al., 2022; Chen et al., 2023), but long-term soybean maps over all major producing areas in 
China have not been available.” 
 
Comment 3: L59-62: I would suggest revising the statements as “the previous studies made laudable 
efforts to craft a comprehensive national maize-soybean map for China in 2019 by combining field 
data and regression estimators (Li et al., 2023). Nonetheless, these studies were confined to specific 
regions or a single year, despite prior attempts to accurately map soybean cultivation areas.” 



Thank you very much for your instructive comments. Your suggestion has indeed made the 
statement clearer and more logically coherent. We have revised the sentence as you suggested. 
 
Comment 4: L64-70: to me, this is not “generally” way of categorizing remote sensing classification 
methods. Supervised and unsupervised are the widely accepted categories. I would suggest authors 
revise the paragraph, link the specific classification method mentioned in L71-78 to each category, 
and discuss the pros and cons. 
Yes, we have reorganized the previous researches and divided the commonly used remote sensing-
based crop classification methods into four categories. In addition to the supervised and 
unsupervised classification in machine learning that you mentioned, considering that threshold 
segmentation based on prior knowledge and new composite index methods based on feature bands 
are two other methods of crop mapping, we have summarized the methods into four types. Method 
5 in the original text has been incorporated into supervised classification. Additionally, we revised 
the corresponding section, as well as discussing the advantages and disadvantages of each method: 
“Mapping crops by remote sensing can be categorized into four methods : 1) supervision classification 
based on a large number of field samples or high quality training labels (Song et al., 2017; You et al., 
2021; Shangguan et al., 2022; Li et al., 2023); 2) developing some composite indexes based on the feature 
bands and determining the binary classification using appropriate threshold value (Huang et al., 2022; 
Chen et al., 2023; Zhou et al., 2023); 3) threshold segmentation based on prior knowledge such as 
phenology or spectra (Zhong et al., 2016); 4) combining unsupervised classification with post-
classification (Wang et al., 2019; You et al., 2023). Supervision classification methods relied on ground 
samples heavily, while the 2nd and 3rd methods are both based on reliable and accurate thresholds. 
However, mapping soybean by these methods was mainly applied in small areas, very few covering over 
a larger region. Because of sufficient field samples, supervision classification can achieve maps with a 
higher accuracy, which is relatively mature method used widely. However, collecting sufficient field 
samples is extremely time, money, and labor costly, and unsuitable for long-term years and over larger 
areas (Luo et al., 2022). Furthermore, the threshold-based methods (the 2nd and 3rd) have been applied 
into large areas, however, determining the thresholds will inevitably bring significant uncertainty, 
especially for the areas with high heterogeneity in climate, environment, and planting patterns. Thus, 
reproducibility of these methods is low, further hindering their application across diverse geographic 
areas. As for mapping soybean, it is still a big challenge due to their similar growth characteristics with 
many other summer crops (Wang et al., 2020; Di Tommaso et al., 2021). The thresholds that work well 
in some areas did not perform well in other areas (Graesser and Ramankutty, 2017; Guo et al., 2018). 
These limitations restrict accurate soybean maps available, especially over large regions in China.” 
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Comment 5: L121: Please justify the impact of using TOA reflectance, rather than surface 
reflectance, on classification results. 
During using Sentinel-2 imagery in our study, we encountered difficult with the L2A product on the 
GEE platform in terms of temporal coverage in China. Taking the Northeast as an example, the L2A 
data was only available after December 2018, whereas the L1C product offered complete coverage 
from 2017 onwards. Consequently, for crop mapping prior to 2019, L2A was not a viable option. 
To be consistency, we opted for the L1C product for mapping soybean. 
Furthermore, to ensure the reliability of L1C product for classification, we analyzed spectral and 
vegetation indices time series from field samples in Daqing, Heilongjiang Province, for both L1C 
and L2A products in 2019 (Figures 1-2). The difference between two spectral profiles is minimal. 
More importantly, the L1C-based spectral and vegetation indices also demonstrated effective 
separability between soybeans and other crops. Thus, to preserve the temporal integrity without 
compromising classification accuracy, we chose Sentinel's L1C (TOA), rather than L2A (SR). 
In section 2.2.1 of the revised manuscript, we have added an explanation for our choose for L1C 



instead of L2A. 
“... last access: September 2023). Because of the longer temporal coverage of Sentinel-2 Level-1C 
TOA reflectance data, and the nearly identical spectral profile time series extracted from both products 
demonstrating that TOA images can equally full fill crop classification requirements, we opt for using 
L1C products instead of L2A (You and Dong, 2020; Han et al., 2021; Luo et al., 2022).” 
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Figure 1. Temporal profiles of L2A products for major crops in Daqing, Heilongjiang based on ground 

samples. 



 
Figure 2. Temporal profiles of L1C products for major crops in Daqing, Heilongjiang based on ground 

samples. 
 
Comment 6: L123: Depending on the platform/sensor used, red edge bands are also typical 
“traditional bands” in vegetation-related studies. 
Thank you for pointing out the issue. Indeed, the red-edge bands have been deployed on various 
sensors and have become primary application bands. We have removed the expressions that could 
cause ambiguity in the revised manuscript: 
“In addition to the traditional bands (i.e., the visible and near-infrared bands), tThe red-edge bands and 
shortwave infrared bands equipped with sentinel-2 play a great role in enhancing the accuracy of crop 
classification.” 
 
Comment 7: L135: Please specify what is the “gaps”? If it is related to crop growth, how the 
“average” procedure was conducted? 
Specifically, ‘gaps’ means the missing phenological observations in a certain year at some 
agricultural meteorological stations we collected. For the missing values, we inserted averages of 
the observations from the nearest years before and after the missing year. For example, if the 
flowering date in 2017 was missing, we inserted the average of flowering dates in 2016 and 2018 at 
that station as a substitute. We have rewritten and clarified this issue in section 2.2.2 of the revised 
manuscript: 
“In cases of missing observation for a specific year, we inserted the average of two closest observations 
before and after the year. For instance, if there was missing data of flowering date in 2017, we filled it 
with the average of flowering records in 2016 and 2018 at the same station.” 
 



Comment 8: L189: it seems the purpose of this paragraph is to provide an overview of the method. 
The details regarding the “soybean mapping” can be merged with the sections below. 
Thank you for the constructive suggestion. We have streamlined the description of soybean mapping 
methodology in this paragraph, and merged the details with the following sections as you suggested. 
Such revision really enhances the clarity and conciseness of the methodology section. 
 
Comment 9: L198-L200: I recon this is also the step that deals with the data gaps due to cloud? 
Please add more details regarding the method incorporated (e.g. moving window size etc?) if 
possible. 
Yes, the time series reconstruction is carried out to simultaneously fill data gaps caused by cloud 
removal and smooth some anomalies. In order to obtain 10-day composite time series, as well as 
considering the revisit cycle of Sentinel-2 and computational efficiency, we set the half-window size 
to 10 days. We have added the details in the revised manuscript: 
“To fill the data gaps caused by cloud removal and smooth anomalies, Sentinel-2 time series was 
reconstructed by moving median composite method, resulting in a 10-day interval composite time series. 
We set the half-window size for the moving median methods to 10 days considering the 5-day revisit 
cycle of Sentinel-2 and computational efficiency.” 
 
Comment 10: L203: no-cropland --> non-cropland 
Thank you for pointing out this mistake, we have corrected it throughout the manuscript. 
 
Comment 11: L204: you might need to define the “starting and ending dates of the growing season” 
first. 
Following your suggestions, we have defined the sowing dates recorded at the nearest AMS as the 
starting dates of growing season, and the harvesting dates as ending dates. This has been clarified 
in section 2.3.2 “(1) Potential area identification” in our revised manuscript: 
“To minimize the impact from non-croplands, we firstly determine the potential cropping areas by 
masking GLAD cropland layer over study area. Sentinel-2 images within growing season were extracted 
by taking the sowing date and harvesting date recorded at the nearest agricultural meteorological station 
(AMS) as the starting and ending dates of the growing season, respectively.” 
 
Comment 12: L206: Please provide the full name for EVI first. And, revise the sentence slightly, 
“… we masked out the pixels with maximum EVI less than 0.4 during the growing seasons”. Please 
also justify how the threshold (0.4) for fallow land was determined. 
Thank you for your suggestion. We have followed you to provide the full name of EVI in the revised 
manuscript. We identified the pixels with maximum EVI values < 0.4 as fallow land because the 
maximum EVI values for crops are all > 0.4 (except for a few outliers) (Figure 3) based on all 
ground samples in 2019 (Figure 3). Thus, using 0.4 as a threshold allows us to strictly remove fallow 
land (Li et al., 2014). We have provided additional explanations for the threshold choice in the 
revised manuscript: 
“Based on the cropland extracted, we filtered the pixels exhibiting an Enhanced Vegetation Index (EVI) 
maximum value during the growing season greater than 0.4 to remove fallow land, because ground 
samples and previous studies showed that nearly all crops had maximum EVI values above 0.4. (Li et 
al., 2014).” 
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Figure 3. Box plot of the EVI maximum in 2019 based on ground samples. 
 
Comment 13: L296- : it is good that the authors noticed the large estimation uncertainties in small-
planting regions (figure 4, and figures 5). It would help to justify why this happened by looking into 
several regions and checking the reasons. 
 
Also, given the great similarities of maize and soybean index profiles (Figure 3), it is important to 
check whether the overestimated regions belong to maize crops? Since the classifiers are trained for 
individual regions, the authors might consider increasing the number of clusters for sparsely 
planting regions if maize is mixing with soybean due to their similarities? One potential way to 
check is to compare the ChinaSoyArea10m with the GLAD layer, especially the overestimating 
regions? 
Yes, we compared ChinaSoyArea10m with the GLAD layer in the Shandong region, as the 
consistency between GLAD and statistics is higher there. Apart from the pixels consistently 
recognized as soybeans by both layers, some cornfields identified by the GLAD layer are classified 
into soybeans by ChinaSoyArea10m.  



 
Figure 4. Visual comparison of GLAD (a1-a2) and ChinaSoyArea10m (b1-b2) in China (a1-b1) and a typical 

area in Shandong province (a2-b2).  

 
In some provinces where we might overestimate soybean areas (e.g. Sichuan, Shaanxi, and Shanxi), 
GLAD significantly underestimated the soybean areas comparing with statistics (Figure 5). 
Therefore, it is very hard for us to determine which product is more accurate and reliable in such 
areas sparsely planted. We have discussed the uncertainties in details in the first paragraph of section 
3.1.  
“This uncertainty, particularly overestimation, could be caused by the low proportion of soybean 
cultivation. In areas where maize or other same-season crops are planted in a much larger proportion than 
soybeans, soybeans, as a less prevalent crop, pose a challenge for classifiers to distinctly recognize them 
as a separate category, resulting in clusters being identified as soybeans containing maize or other crops.” 

 
Figure 5. Box plot of soybean areas of statistics and GLAD map in Sichuan, Shaanxi, and Shanxi. 



 
Comment 14: L315: to me, “became higher and higher” is not a scientific way to describe the trend 
here. Please consider “increased” or similar terms for the statement if it is a critical finding. 
Thanks! We have used ‘increased’ in the manuscript. 
 
Comment 15: L353: It is good to see the authors outline the limitations of the proposed method in 
regard to its sensitivity to data availability and applicability in sparsely planted regions. It would be 
good to have some insights into the advantages of the method compared to the mentioned GLAD 
and CDL products and promote its applications in some suggested circumstances. 
Thank you for your suggestion. We have added a section on our advantages and potential 
applicability. We highlighted the strengths of our method: its independence from extensive 
requirements for samples, and its capability for rapid mapping in other regions along with excellent 
spatial scalability. Unlike the previous products relied on extensive sample points for supervised 
classification, our approach could be applied into other major soybean-producing areas with simple 
inputs. 

4.1 Our advantages and potential applicability  

The methodology developed for identifying soybean planting areas indicate several notable 
strengths that make it an attractive option for wide application. Firstly, it operates independently, 
without extensive ground samples required. The conventional approaches depend on quantities of 
observational data, with much money, time, and labor consumed. In contrast, our strategy leverages 
a specific, pre-existing set of sample points to discern soybean characteristics. This approach can 
accurately map annual dynamics of soybean planting areas without updated requirement in annual 
samples. Consequently, this method significantly weakens limitations in crop classification during 
years without specific samples, enabling crop mapping consistently and continually. 
Another key advantage of our spectra-phenology integration approach is its rapid applicability over 
wide areas, coupled with excellent spatial scalability. The only inputs required for our mapping 
technique are the phenological information of soybeans and other primary crops during the same 
growing season in the target area. This allows to classify crop swiftly and efficiently without 
additional needs for background knowledge or setting complex thresholds. The input of 
phenological information in each prefecture ensured that the zonal adaptive soybean growth status 
across various regions could be taken into account in classification. Given that soybeans exhibit 
similar spectral characteristics during identical phenological stages from the same sub-zone in the 
study area, our method utilizes standard soybean sample curves from various regions to identify 
clusters most likely representing soybeans. This innovative approach ensures our methodology's 
applicability across major soybean-producing regions, showcasing its potential for broader 
implementation. 
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