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Abstract. High-accuracy atmospheric (carbon dioxide) CO2 concentration data are critical in understanding the global 11 

carbon cycle, but there is still a lack of a high-resolution CO2 product with long-term and global seamless coverage. In this 12 

study, a global continuous 8-day XCO2 (column-averaged CO2 dry air mole fraction) product (GCXCO2) was reconstructed at 13 

a spatial resolution of 0.05° from 2000 to 2020, based on OCO-2 satellite data. An ensemble machine learning stacking 14 

regression model, which combines light gradient boosting machine (LGBM), extreme gradient boosting (XGB), extremely 15 

randomized trees (ETR), gradient boosting regression (GBR), and random forest (RF), was utilized to model the relationships 16 

between XCO2 data and auxiliary satellite, simulation data, and meteorological data. A dynamic normalization strategy was 17 

developed to handle the great temporal variation issue and ensure the temporal expansion of the prediction model. Multiple 18 

validation methods were applied to comprehensively evaluate the spatial and temporal generalization ability of the model and 19 

product. The 10-fold cross-validation shows an overall satisfactory result at a global scale, with R2
 = 0.974 and root-mean-20 

square error (RMSE) = 0.551 ppm (parts per million). Further spatial extension and temporal prediction experiments also 21 

proved that dependable results could be obtained in the regions and time periods without valid OCO-2 satellite observations 22 

(R2 = 0.958 and R2 = 0.886, respectively). Compared with Total Carbon Column Observing Network (TCCON) ground station 23 

observations, the GCXCO2 product performs better than the model simulation data, demonstrating a better accuracy and a 24 

higher spatial resolution. Based on the GCXCO2 product, an upward annual trend of approximately 2.09 ppm/year can be 25 

found for global XCO2 between 2000 and 2020, and significant differences are found between the Northern and Southern 26 

hemispheres in different seasons. This product may well be the first remote sensing-based global high-precision long-term 27 

XCO2 dataset, which will help advance the understanding of climate change and carbon balance. The dataset can be obtained 28 

freely at https://doi.org/10.5281/zenodo.10083102 (Guan and Sun, 2023). 29 
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1 Introduction 30 

The continuous increase of greenhouse gases in the atmosphere has already induced severe global climate change problems 31 

(Hegerl and Cubasch, 1996; Wuebbles and Jain, 2001; Lioubimtseva and Adams, 2004; Lonngren and Bai, 2008; Zhang and 32 

Caldeira, 2015) and significantly impacted human well-being (Tagwi, 2022). Carbon dioxide (CO2) is one of the main 33 

greenhouse gases, and the global average CO2 has increased from 336.85 ppm in 1979 to 417.06 ppm in 2022, according to 34 

the National Oceanic and Atmospheric Administration (NOAA). Therefore, high-precision quantitative assessment of global 35 

CO2 concentration is crucial for addressing the constantly changing situation. 36 

At present, CO2 column concentration data are obtained based on three main methods: ground station observations, model 37 

simulation, and satellite estimation. Ground stations usually use a Fourier transform spectrometer (FTS) to directly measure 38 

solar radiation in the near-infrared band, thereby inverting the concentration of CO2 without the effects of aerosols and clouds. 39 

This method, as used by the Total Carbon Column Observing Network (TCCON), can observe column-averaged CO2 dry air 40 

mole fraction (XCO2) with a high accuracy and low uncertainty, but is usually limited by the sparse distribution of stations 41 

and the fact that it is difficult to conduct CO2 monitoring in large regions. Model simulation methods consider the physical, 42 

chemical, and biological processes of CO2, and estimates its concentration and carbon flux through an atmospheric transport 43 

model (Krol et al., 2005), such as CarbonTracker (CT), the Copernicus Atmosphere Monitoring Service (CAMS), and the 44 

Global Carbon Assimilation System (GCASv2) (Jiang et al., 2021). By assimilating carbon emission inventories and CO2 45 

observation data, the model simulation XCO2 usually shows a relatively high accuracy at the intercontinental scale (Kong et 46 

al., 2019), but its spatial resolution is too coarse for regional applications (Mustafa et al., 2020). For example, the spatial 47 

resolution of the CT dataset is only 3 × 2 degrees, and the spatial resolution of the CAMS global greenhouse gas reanalysis 48 

(EGG4) dataset is 0.75 × 0.75 degrees. 49 

In recent years, satellite remote sensing based estimation has become a new way to obtain XCO2 data with a higher spatial 50 

resolution, and a series of satellite products have been published based on various sensors. The satellites used for monitoring 51 

the global distribution of CO2 include the Greenhouse Gases Observing Satellite (GOSAT) (Yokota et al., 2009) and the 52 

GOSAT-2 satellite, which were launched in 2009 and 2018 by Japan, respectively. The United States launched the Orbiting 53 

Carbon Observatory-2 (OCO-2) satellite in 2014 (Eldering et al., 2017) and the OCO-3 satellite in 2019 (Eldering et al., 2019). 54 

China launched the TanSat satellite in 2016 (Ran and Li, 2019). Satellite observation from space-based platforms can achieve 55 

high-resolution repeated observations, and thus timely and accurate detection of changes in XCO2 can be achieved (Liu et al., 56 

2020). However, due to the satellite orbit and observation angle limitations, there are serious missing data problems in the 57 

current satellite products. As shown in Fig. 1, all the observations of the OCO-2 satellite over one month show a strip-shaped 58 

pattern with apparent gaps, and there are only a few observations in high-latitude areas. These issues make it almost impossible 59 

to monitor global CO2 concentration and carbon flux using only remote sensing data. 60 
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 61 

Figure 1. The distribution of the OCO-2 satellite observations for January 2015. 62 

As a result, a series of seamless mapping methods have been developed in recent years, in order to solve the missing data issue 63 

of the satellite observations and obtain continuous XCO2 data. These methods can be divided into three main types: 64 

reconstruction-based methods, fusion-based methods, and data-driven methods. The reconstruction-based methods mainly 65 

consider the spatial and temporal continuity and correlation of the XCO2 distribution in the product itself to fill the gaps, and 66 

thus they do not require any other auxiliary data (Yue et al., 2015; He et al., 2020; Ma et al., 2021). For this reason, these 67 

methods are easy to implement, but they cannot reconstruct areas well that have sparse satellite observations. The fusion-based 68 

methods integrate multiple data sources, including satellite data (Jing et al., 2014; Jin et al., 2022) and model simulation data 69 

(Mingwei et al., 2017; Sheng et al., 2022; Liang et al., 2023), to obtain seamless XCO2. These methods can integrate multi-70 

source observations to obtain seamless data with a stable accuracy, but the spatial resolution is still limited. Over the last two 71 

years, data-driven methods have become a popular way to obtain continuous XCO2 data by establishing the relationships 72 

between XCO2 and related explanatory variables (Li et al., 2022; Zhang and Liu, 2023). Machine learning is the most widely 73 

used method, which has a strong nonlinear fitting capability, and can thus achieve a higher precision than the other methods 74 

(He et al., 2022; Li et al., 2022; Zhang et al., 2022; Zhang and Liu, 2023). Based on machine learning, several XCO2 datasets 75 

have been produced and the spatio-temporal variation has been analyzed in different regions. 76 

Although previous studies have already produced several global products, there are still obvious limitations. First of all, most 77 

of the current global coverage products only focus on the XCO2 mapping in terrestrial areas, and the ocean areas are neglected. 78 

As a result, this is still not globally continuous mapping and cannot meet the demands of global carbon change research. This 79 

may be due to the abundance of explanatory variables in terrestrial areas, while there is a lack of such variables in ocean 80 
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regions. Secondly, a true long-term global XCO2 product is still lacking, and most of the previous studies have only 81 

reconstructed the years in which satellite data are available. Therefore, only a few years of data can be used for long-term 82 

analysis. This may be due to the significant changes in XCO2, making it difficult for the model to expand in the temporal 83 

dimension. Finally, the previously produced XCO2 products have still not been well validated, with the spatial and temporal 84 

extension capacity overlooked. Although the commonly used 10-fold cross-validation and ground station data can evaluate the 85 

quantitative performance of the model, the accuracy in the regions and times without satellite observations is not well assessed. 86 

In summary, the current XCO2 products cannot truly achieve long-term global coverage and have not verified the accuracy of 87 

areas without satellite observations. It is therefore necessary to develop new XCO2 mapping methods to overcome these 88 

shortcomings. 89 

Therefore, the aim of this study was to produce a novel global seamless XCO2 product (GCXCO2) with a long temporal 90 

coverage and high spatio-temporal resolution, based on a machine learning method. The main objectives of this study were: 1) 91 

to develop a true global seamless XCO2 mapping method based on ensemble machine learning, covering both terrestrial and 92 

ocean areas; 2) to comprehensively evaluate the spatio-temporal stability of the model and product based on various validation 93 

methods; and 3) to analyze the global XCO2 distribution and variation characteristics in different seasons and years, based on 94 

this product. 95 

2 Material and methods 96 

2.1 Data sources 97 

2.1.1 OCO-2 satellite data 98 

The OCO-2 satellite uses three-channel high-resolution imaging grating spectrometers to measure the reflected sunlight in the 99 

short-wave-infrared (SWIR) CO2 bands and in the near-infrared (NIR) molecular oxygen (O2) A band (Oyafuso et al., 2017), 100 

with a revisit period of 16 days and an equator crossing time of approximately 1:30 pm. The OCO-2 satellite cross-slit width 101 

is approximately 1.29 km at nadir, with 2.25 km in footprint length along-track. The OCO-2 version 10 Level 2 Full Physics 102 

(OCO2_L2_Lite_FP_10r) products from 2015 to 2020 were used in this study, which can provide daily XCO2, solar-induced 103 

fluorescence (SIF), and other atmospheric surface properties after radiometric correction. The XCO2 variable with high quality 104 

(flag = 0) in the products was selected and aggregated into regular grid data with a spatial resolution of 0.05 degrees and a 105 

temporal resolution of 8 days. We selected the grid cells with more than 10 observations during a period and took the mean 106 

value as the observation value. 107 

2.1.2 TCCON data  108 

The TCCON, which was established in 2004, is a global greenhouse gas observation network based on FTSs (Toon et al., 109 

2009), mainly monitoring gases such as CO2, methane (CH4), and nitrous oxide (N2O) in the atmosphere (Yang et al., 2020). 110 
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The direct solar spectra are measured in the NIR band to retrieve the column abundances of these gases. Currently, the TCCON 111 

has a total of 30 operating stations around the world, with five stations no longer operating and four potential future stations. 112 

In this study, version GGG2020 data (https://tccondata.org/) were used, and the observation data with a fractional variation in 113 

solar intensity (FVSI) value of more than 5% were filtered out. There are 30 stations with observation records covering 2004 114 

to 2020. The location of each station used in this study is shown in Fig. 2. It is clear that all the stations are located in land 115 

areas, mainly distributed in North America, Europe, and East Asia in the Northern Hemisphere, and rarely in the Southern 116 

Hemisphere. 117 

 118 

Figure 2. The distribution of the TCCON stations used in this study.  119 

2.1.3 Remote sensing auxiliary data 120 

The remote sensing auxiliary data used in this study were the Enhanced Vegetation Index (EVI), chlorophyll-a (CHL-a) data, 121 

and Moderate-resolution Imaging Spectroradiometer (MODIS) land surface reflectance data. Vegetation plays a critical role 122 

in CO2 absorption in ecosystems (Vicca, 2018), but there is a lack of variables that measure both terrestrial and ocean vegetation. 123 

Therefore, different key variables were selected in this study, with EVI and CHL-a representing the CO2 uptake capacity of 124 

land and ocean, respectively. MODIS reflectance band 6 (1628–1652 nm) and band 7 (2105–2155 nm) data, which are close 125 

to the observation band of the OCO-2 satellite, were also utilized. The reflectance and EVI data can be downloaded from 126 

(https://ladsweb.modaps.eosdis.nasa.gov/), and the CHL-a data can be obtained from the Ocean Biology Processing Group 127 

(https://oceancolor.gsfc.nasa.gov/). In order to process the missing EVI, CHL-a, and reflectance data, the adaptive spatio-128 

temporal tensor completion (ST-Tensor) method (Chu et al., 2021) was applied to reconstruct the global seamless remote 129 

sensing auxiliary data. The EVI and CHL-a variables were both normalized to generate the fused CHLEVI variable, which 130 

can effectively represent the global CO2 absorption capacity. 131 
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2.1.4 Model simulation data 132 

NOAA’s CarbonTracker version CT2022 dataset (Jacobson et al., 2023) and the CAMS EGG4 dataset were used as XCO2 133 

model simulation data and to provide the initial spatial distribution of CO2. These datasets can be downloaded from the Global 134 

Monitoring Laboratory (https://gml.noaa.gov/) and (https://ads.atmosphere.copernicus.eu/), respectively. CarbonTracker is a 135 

CO2 measurement and modeling system, which is used to track the global carbon sources and sinks. It should be noted that the 136 

CT2022 dataset assimilates data from 559 stations provided by 66 laboratories around the world, and the data have been 137 

adjusted for the changes in fossil fuel emissions caused by the COVID-19 pandemic. In contrast, the EGG4 dataset focuses on 138 

the greenhouse gases of CO2 and CH4 and assimilates the observation data of the GOSAT, Envisat, MetOp-A, and MetOp-B 139 

satellites. However, the data have not been adjusted for the effect of the COVID-19 pandemic. This may have led to significant 140 

deviations in the XCO2 simulated by CAMS for several years around 2019. Therefore, the utilization of two XCO2 model 141 

simulation datasets can provide more information and reduce the dependence of the results on a single set of model simulation 142 

data.  143 

2.1.5 Meteorological data 144 

The meteorological data selected for the modeling were obtained from the Modern-Era Retrospective analysis for Research 145 

and Applications, Version 2 (MERRA-2). MERRA-2 is the first long-term global reanalysis to assimilate space-based 146 

observations of aerosols, and provides data from 1980 to the present (Gelaro et al., 2017). In this study, global continuous 147 

meteorological variables were utilized to establish nonlinear relationships with XCO2, including air temperature (TEM), wind 148 

(U component, V component), specific humidity (QV), sea level pressure (SLP), and surface incoming shortwave flux 149 

(SWGDN). These variables are fundamental factors affecting atmospheric transport and vegetation growth, which can be 150 

downloaded from (https://disc.gsfc.nasa.gov/datasets?keywords=merra2&page=1).  151 

The remote sensing auxiliary data, model simulation data, and meteorological data were all auxiliary data for the model input, 152 

and were resampled with spatial and temporal resolutions of 0.05 degrees and 8 days, respectively. The detailed information 153 

of the variables can be found in Table 1. 154 

 155 
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Table 1. The detailed information of the auxiliary data used in this study. 164 

Data type Source Variable Temporal resolution 
Spatial 

resolution 

Remote sensing data 

MOD09CMG Reflectance Daily 0.05° 

MOD13C1 EVI 16 days 0.05° 

MODIS OBPG CHL-a 8 days 0.05° 

CO2 simulation data 
CT2022 CT 3 h 3°× 2° 

CAMS EGG4 CAMS 3 h 0.75°×0.75° 

Meteorological data MERRA-2 

TEM 

Daily 0.5°×0.625° 

QV 

Wind (U,V) 

SLP 

SWGDN 

2.2 Model description 165 

2.2.1 Overall workflow 166 

The long-term global continuous XCO2 mapping process can be divided into three steps (Fig. 3): data processing, model 167 

training and validation, and XCO2 mapping and spatio-temporal analysis. 168 

Step 1: Data processing. By using seamless auxiliary data to match the gridded OCO-2 satellite data, a total of 4833846 data 169 

were obtained for 2015 to 2020. The OCO-2 satellite observations were regarded as the true values, and the other variables 170 

were used as explanatory variables. Due to the continuous increase of XCO2 from 2000 to 2020, if we directly trained the 171 

model with the OCO-2 satellite XCO2 as the true values, there would be an out-of-range problem during the model prediction, 172 

which means that the model had not learned the corresponding CO2 concentration. 173 

A dynamic normalization strategy was introduced to address this issue. The XCO2 normalization was implemented separately 174 

for each period so that the model labels were not limited by the XCO2 range, which is the reason why this is called dynamic 175 

normalization. Specifically, we calculated the maximum and minimum values of the global model simulation CT values for 176 

each period, with the maximum value multiplied by 1.02 (as MAX) and the minimum value multiplied by 0.98 (as MIN). Then 177 

the CT, CAMS, and OCO-2 satellite observation XCO2 data were normalized to 0–1 using MAX and MIN. 178 

Step 2: Model training and validation. Based on dynamic normalization, 150000 OCO-2 matched data from 2015 to 2018 179 

were selected at random to establish the nonlinear relationships between the XCO2 and auxiliary data. The ensemble machine 180 

learning stacking regression model was selected for the modeling. For the trained stacking regression model, various validation 181 

methods were designed to validate the spatial and temporal generalization ability, including 10-fold cross-validation, spatial 182 

expansibility validation, temporal extension validation, and ground station data validation. 183 

https://doi.org/10.5194/essd-2023-465
Preprint. Discussion started: 17 November 2023
c© Author(s) 2023. CC BY 4.0 License.



8 

 

Step 3: Mapping and spatio-temporal analysis. We produced the global XCO2 product with full coverage of 0.05 degrees every 184 

8 days from 2000 to 2020. The model trained in Step 2 was used to produce the global maps from 2003 to 2020. Due to the 185 

lack of CAMS and CHLEVI from 2000 to 2002, we removed these variables and trained another model for the mapping from 186 

2000 to 2002. The corresponding model validation results are included in the supplementary material (Figs. S1–S5). Based on 187 

the product for 2000 to 2020, the spatial distribution characteristics of XCO2 in different seasons and years were explored. At 188 

the same time, the change trends of XCO2 at the global scale and different latitude areas were analyzed. 189 

 190 

Figure 3. The overall workflow of this study. 191 

2.2.2 Stacking regression model 192 

Stacking regression (Wolpert, 1992) is an ensemble machine learning method that combines multiple basic regression models 193 

with a meta-regression model, which can minimize the error rate of the multiple regression models. The model structure 194 

typically consists of two layers, with the first layer containing the many basic regression models and the second layer 195 

containing the meta-regression model. For the input variables, each basic model predicts a value and inputs the predicted value 196 
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into the meta model to compute the final prediction. Previous studies (Sesmero et al., 2015) have shown that the stacking is an 197 

effective way to improve the performance of the model. In general, it is necessary to choose regressors with significant 198 

differences in the first layer, in order to combine different model characteristics. Meanwhile, simple regression model is usually 199 

selected for the second layer (Ting and Witten, 1997), to prevent overfitting of the model. 200 

In this study, five basic models were selected in the first layer of the stacking regression model (Fig. 3): light gradient boosting 201 

machine (LGBM) regression, extreme gradient boosting (XGB) regression, extremely randomized trees (ETR) regression, 202 

gradient boosting regression (GBR), and random forest (RF) regression. These models all perform well and have different 203 

characteristics. LGBM, XGB, and GBR are boosting models that continuously improve on the weak regressors, but their 204 

improvement strategies are different. ETR and RF are bagging models that use multiple independent decision trees for the 205 

regression, but the splitting methods for the tree nodes are different. In the second layer, we selected ridge regression model 206 

to deal with the multicollinearity problem of the first layer output value. Compared with ordinary linear regression, the ridge 207 

regression (Hoerl and Kennard, 1970) adds L2 regularization constraint to the coefficient of loss function, which can avoid the 208 

significant change of coefficient and make the regression model more stable. Based on the stacking regression model, the 209 

nonlinear relationships between XCO2 and the explanatory variables were constructed as shown in Eq. (1) : 210 

𝑂𝐶𝑂2_𝑁 = f(𝑇𝐸𝑀, 𝑄𝑉, 𝑈, 𝑉, 𝑆𝐿𝑃, 𝑆𝑊𝐺𝐷𝑁, 𝑅𝐸𝐹6, 𝑅𝐸𝐹7, 𝐶𝑇_𝑁, 𝐶𝐴𝑀𝑆_𝑁, 𝐶𝐻𝐿𝐸𝑉𝐼, 𝑆𝐶𝑌𝐶𝐿𝐸)                                                       (1) 211 

In the equation, the meaning of auxiliary variables such as TEM can be found in Section 2.1.3 to Section 2.1.5. REF6 and 212 

REF7 represent the MODIS reflectance band 6 and band 7 data, respectively. OCO2_N, CT_N, and CAMS_N represent the 213 

corresponding normalized variables, and f refers to the nonlinear relationships built on the stacking regression model. 214 

Considering the periodicity and seasonality of XCO2 variation (Zhang and Liu, 2023), the SCYCLE variable was designed to 215 

describe this characteristic, which is equal to the sine value of the cycle of one year, which is calculated as shown in Eq. (2) 216 

(the range of cycle values is 1 to 46) : 217 

  𝑆𝐶𝑌𝐶𝐿𝐸 = sin (𝑐𝑦𝑐𝑙𝑒 ∗ π/23)                                                                                                                                               (2) 218 

2.3 Model validation 219 

Typically, 10-fold cross-validation and ground station data have been widely used in past studies to evaluate the model. 220 

However, these methods cannot fully validate the spatial and temporal generalization ability and the decay performance. In 221 

this study, two more validation methods were designed to sufficiently evaluate the model’s spatio-temporal performance, i.e., 222 

spatial expansibility validation and temporal extension validation. For all of the validation methods, we calculated the R² and 223 

root-mean-square error (RMSE) as the evaluation indicators. It should be noted that we denormalized the output of the stacking 224 

regression model by using the MAX and MIN of the corresponding period when calculating the evaluation indicators. The 225 

specific meanings of the four validation methods are as follows. 226 
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2.3.1 Ten-fold cross-validation 227 

In general, 10-fold cross-validation (Breiman and Spector, 1992) can evaluate the model’s accuracy on the whole dataset and 228 

determine whether the model is overfitting. In this study, the matched OCO-2 data from 2015 to 2018 were randomly divided 229 

into 10 subsets to validate the stacking regression model. The 10-fold cross-validation uses nine subsets to train the model and 230 

one subset to test the model each time, and repeats this operation 10 times to test each subset.  231 

2.3.2 Spatial expansibility validation 232 

The distribution of OCO-2 observations is very sparse, with many areas without samples, and the accuracy of these areas has 233 

not been validated by 10-fold cross-validation. Therefore, spatial expansibility validation was designed to evaluate the spatial 234 

generalization ability of the stacking regression model. The global area was divided into 23 regions according to the shape of 235 

the OCO-2 satellite observation bands (Fig. 1, the solid lines). Similar to the 10-fold cross-validation, the matched OCO-2 data 236 

between 2015 and 2018 from each region were used separately for the validation, while 150000 data were randomly selected 237 

from other regions to train the stacking regression model. Based on this method, we could simulate the missing OCO-2 satellite 238 

observations in large areas and evaluate the spatial prediction ability of the stacking regression model. 239 

2.3.3 Temporal extension validation 240 

The existing studies mainly concentrated on the same period for the model training and validation, and ignored the stability of 241 

the model in the temporal dimension. This means that it is difficult to determine the performance of the model in different 242 

years. Therefore, temporal extension validation was designed to verify the decay performance of the stacking regression model 243 

in the temporal dimension, to ensure consistency of the product quality. Here, the matched OCO-2 data from 2019 to 2020 244 

were used to assess the stacking regression model trained by data from 2015 to 2018.  245 

2.3.4 Ground station observation validation 246 

The XCO2 accuracy measured by the TCCON stations is constrained with a precision better than 0.25% (1-sigma) under clear 247 

or partly cloudy skies (Messerschmidt et al., 2011), which is approximately less than 0.5 ppm (Mostafavi Pak et al., 2023), so 248 

it is suitable to use TCCON XCO2 data to quantitatively evaluate the prediction deviation of the stacking regression model. In 249 

this study, the TCCON station observations were averaged to an 8-day resolution and matched to the corresponding 0.05-250 

degree grid. In order to eliminate the potential impact of the satellite observations on the accuracy of the ground station 251 

validation, we removed the records with both station observations and OCO-2 satellite estimations. Finally, a total of 6291 252 

records from 30 stations were obtained for the ground station observation validation. 253 
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3 Results and analysis 254 

The 10-fold cross-validation, spatial expansibility validation, temporal extension validation, and ground station observation 255 

validation were implemented to assess the performance of the stacking regression model and GCXCO2 product. The results of 256 

these validation methods are presented in turn in this section. The annual and seasonal distribution of global XCO2 is then 257 

explored, and the long time-series XCO2 changes at a global scale and different latitudes are analyzed. 258 

3.1 Ten-fold cross-validation result 259 

The training dataset was divided into 10 subsets for the 10-fold cross-validation, and then each subset was validated separately. 260 

All the validation results are summarized in a scatter plot (Fig. 4), where the overall results show a high accuracy, with the R² 261 

equal to 0.974 and the RMSE equal to 0.551 ppm. The high R2 and low RMSE show that the stacking regression model has 262 

an excellent fitting ability on the full training dataset. In addition, the R2 and RMSE of each validation result are very close 263 

(Table S1), indicating that the trained stacking regression model is very stable and there is no overfitting of the model. The 264 

regression slope of the trend line is 0.97, which is very close to 1, further indicating good consistency between the predicted 265 

values and the OCO-2 XCO2. Therefore, the stacking regression model performs well in the 10-fold cross-validation, showing 266 

a high ability for XCO2 prediction, with only small deviation between the predicted and OCO-2 values. 267 

 268 

Figure 4. The overall results of the 10-fold cross-validation (all the validation results are summarized in a scatter plot). 269 

3.2 Spatial expansibility validation result 270 

The global region was divided into 23 areas according to the shape of the satellite observations for the spatial expansibility 271 

validation, which allowed us to verify the prediction accuracy for areas without satellite observations. The results show an 272 

average R2 of 0.958 and an average RMSE of 0.692 ppm (Fig. 5) in the 23 regions. The maximum R2 is 0.979 and the minimum 273 
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R2 is 0.937, and the RMSE ranges from 0.451 to 0.877 ppm. These results all demonstrate a good accuracy with minimal 274 

differences, which proves that the stacking regression model has a strong generalization ability in different regions. Even if 275 

there are no satellite observations in an area, the accuracy of the prediction results is still good. At the same time, the areas 276 

with higher R2 typically have lower RMSE, and are mainly distributed in the ocean areas, ranging from 140°E to 180°E, 60°W 277 

to 40°W, and 140°W to 180°W. In contrast, the regions with high RMSE have higher continental proportions, primarily ranging 278 

from 120°W to 80°W, 20°W to 20°E, and 60°E to 100°E. Previous studies (Connor et al., 2016) have calculated that the total 279 

XCO2 error of the OCO-2 satellite over ocean is usually smaller than that over land, which may be the reason for the relatively 280 

poor accuracy in regions with strong sea-land cross-heterogeneity. Taking the area from 20°W to 20°E as an example, the 281 

overall validation accuracy of this area is satisfactory, but its land proportion is relatively high, resulting in a slightly lower 282 

overall R2 than the areas with a higher proportion of ocean. In summary, there is little difference between the results for the 283 

different strips, and they all show a good accuracy, indicating that the stacking regression model shows a stable spatial 284 

generalization ability. 285 

 286 
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Figure 5. The results of the spatial expansibility validation, which represent the accuracy of each region (the solid line divisions) 287 

being verified separately. 288 

3.3 Temporal extension validation result 289 

The matched OCO-2 data from 2019 to 2020 were used to evaluate the temporal extension performance of the trained stacking 290 

regression model. The OCO-2 satellite has few observation samples over 8 days, so it is necessary to assess the prediction 291 

accuracy of the trained stacking regression model during periods with few or no satellite observations. The validation results 292 

are still good, with R2 = 0.886 and RMSE = 0.823 ppm. The XCO2 from the different sources between 2019 to 2020 is 293 

compared in Fig. 6. The results (Fig. 6 (a), (b), and (c)) show that the predicted XCO2 obtained using dynamic normalization 294 

has the highest R2 and the lowest RMSE, compared to the model simulation XCO2. The CT XCO2 has numerous discrete 295 

points in the 395–405 ppm range, and there is a phenomenon of underestimation in the 410–420 ppm range. The accuracy of 296 

the CAMS XCO2 is generally lower than that of the CT XCO2. The CAMS data are underestimated in the 400–410 ppm range 297 

and overestimated in the 410–420 ppm range. In contrast, the predicted results are more consistent with the trend of the OCO-298 

2 satellite observations, with a trend line slope near 1 and RMSE less than 1 ppm. This fully proves that the predicted results 299 

are superior to the model simulation data in the quantitative evaluation and are closer to the satellite observation level.  300 

In order to prove the necessity of using the dynamic normalization strategy, the result obtained without adopting this strategy 301 

is demonstrated in Fig. 6 (d). This indicates that the model without using dynamic normalization cannot predict high XCO2 302 

values correctly because the corresponding labels are not learned during the model training. Moreover, the model also cannot 303 

deal well with discrete points ranging from 400 to 405 ppm. There have been data-driven studies (Zhang and Liu, 2023) that 304 

have attempted to integrate multiple satellite data sources to expand the label range and avoid this phenomenon. However, it 305 

is difficult to ensure the consistency and high accuracy of the label data, and this has not truly solved the problem of inaccurate 306 

prediction caused by the label range. In contrast, the results obtained in this study (Fig. 6 (c)) show that the dynamic 307 

normalization strategy can effectively solve the problem of not being able to predict values beyond the training label range. In 308 

addition, the use of this strategy makes the model have good robustness in terms of temporal extension, and the prediction 309 

accuracy is higher than that of the model simulation data.  310 
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 311 

Figure 6. Comparison of the XCO2 from different sources between 2019 to 2020: (a) CT vs. OCO-2, (b) CAMS vs. OCO-2, 312 

(c) XCO2 predicted using dynamic normalization vs. OCO-2, (d) XCO2 predicted without using dynamic normalization vs. 313 

OCO-2. 314 

3.4 Ground station observations validation result 315 

3.4.1 Individual station validation result 316 

All the TCCON station observations records from 2004 to 2020 were compared with the corresponding prediction values. The 317 

results show a high-precision result with an average R2 of 0.947 and an average RMSE of 1.064 ppm (Table 2). In detail, there 318 

are 27 stations with R2 greater than 0.90 and 14 stations with RMSE less than 1 ppm. The PA station has the highest R2 of 319 

0.994 and the DF station has the lowest RMSE of 0.584 ppm. The R2 values of the FC, MA, and XH stations are relatively 320 

low, but their RMSE values are all less than 2 ppm. This may be due to the significant changes in XCO2 within a 0.05-degree 321 

grid, so that the station observations cannot represent the characteristics of this region. Meanwhile, the small number of station 322 

observations may also contribute to the low R2 values. To sum up, the accuracy of the TCCON station validation is satisfactory, 323 
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with high correlation and little error between the predicted and observed XCO2. The scatter plot results for each station are 324 

included in the supplementary material (Fig. S6). 325 

Table 2. TCCON station validation results from 2004 to 2020. The R2 and RMSE were calculated from the station observation 326 

records and the stacking regression model predictions. 327 

Station Location R2 RMSE Station Location R2 RMSE 

BR Bremen, Germany 0.987 1.659 LH Lauder, New Zealand 0.947 1.590 

BU Burgos, Philippines 0.962 0.679 LL Lauder, New Zealand 0.976 0.644 

CI Caltech, USA 0.981 0.99 LR Lauder, New Zealand 0.909 0.776 

DF Dryden, USA 0.991 0.584 MA Manaus, Brazil 0.634 0.831 

ET East Trout Lake, Canada 0.980 0.795 NI Nicosia, Cyprus 0.900 1.120 

EU Eureka, Canada 0.992 1.805 NY Ny-Ålesund, Svalbard 0.993 1.353 

FC Four Corners, USA 0.867 0.869 OC Lamont, OK (USA) 0.989 0.847 

GM Garmisch, Germany 0.987 1.477 OR Orléans, France 0.988 1.129 

HF Hefei, China 0.929 1.246 PA Park Falls, WI (USA) 0.994 1.003 

IF Indianapolis, IN, USA 0.961 0.808 PR Paris, France 0.962 1.079 

IZ Izaña, Tenerife 0.989 0.825 RA Reunion Island 0.984 0.611 

JC JPL, Pasadena, CA, USA 0.937 0.638 RJ Rikubetsu, Japan 0.958 1.222 

JF JPL, Pasadena, CA, USA 0.981 1.028 SO Sodankylä, Finland 0.993 1.075 

JS Saga, Japan 0.980 0.996 TK Tsukuba, Japan 0.936 1.335 

KA Karlsruhe, Germany 0.967 1.087 XH Xianghe, China 0.764 1.819 

3.4.2 Overall comparison between CT, CAMS, and GCXCO2 328 

The CT data, CAMS data, and the prediction results obtained in this study were compared with all the station observations. 329 

Overall, the prediction results have the highest R2 and the lowest RMSE from 2004 to 2020 (Fig. 7 (a), (b), and (c)). The 330 

RMSE of the prediction results decreases by approximately 0.502 ppm and 0.677 ppm when compared to the CT and CAMS 331 

data, respectively. Despite the high R2 between CT, CAMS, and the station observations, there is a slight improvement in the 332 

R2 of the prediction results. From the scatter plot distribution, there is an overestimation of CAMS data from 375 to 390 ppm 333 

in Fig. 7 (b), and a slight underestimation of CT data from 400 to 415 ppm in Fig. 7 (a). In contrast, the prediction results 334 

alleviate the overestimation and underestimation problem of the model simulation data, with fewer discrete points. The 335 

comparison of the model training periods (Fig. 7 (d), (e), and (f)) and model extrapolation periods (Fig. 7 (h), (i), and (j)) also 336 

shows that our prediction results can significantly reduce the error of the model simulation data. 337 
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 338 

Figure 7. All the TCCON station observations vs. the CT data, CAMS data, and the prediction results obtained in this study, 339 

from 2004 to 2020. The data for (a), (b), and (c) are from 2004 to 2020. The data for (d), (e), and (f) are from 2015 to 2018, 340 

which is the period for model training. The data for (h), (i), and (j) are from the other years, which is the period for model 341 

extrapolation. 342 

3.4.3 Yearly comparison between CT, CAMS, and GCXCO2 343 

Furthermore, the CT data, CAMS data, and the prediction results obtained in this study were compared with the station 344 

observations from different years to verify the accuracy of the product for each year (Fig. 8). Firstly, it is clear that the CAMS 345 

data have a relatively high R2 from 2004 to 2012 and a relatively low R2 from 2013 to 2020. However, the RMSE of the CAMS 346 

data is relatively high from 2004 to 2012 and relatively low from 2013 to 2020. This shows that the CAMS data quality varies 347 

greatly over the time series. Secondly, the R2 and RMSE of the CT data vary relatively little in different years, with a stable 348 

data quality and performance that is superior to the CAMS data. Compared with the CT and CAMS data, the prediction results 349 

obtained in this study have the highest R2 and the lowest RMSE in most years, which shows that the prediction results also 350 

have a significant advantage in the temporal dimension. 351 
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 352 

Figure 8. All the TCCON station observations vs. the CT data, CAMS data, and the prediction results obtained in this study, 353 

based on different years from 2004 to 2020. 354 

3.5 XCO2 spatio-temporal analysis 355 

3.5.1 XCO2 annual and seasonal distribution 356 

We analyzed the global distribution characteristics of XCO2 in 2000, 2010, and 2020 (Fig. 9 (a), (b), and (c)). The global mean 357 

XCO2 for these three years is 368.63 ppm, 388.18 ppm, and 411.52 ppm, respectively. The global XCO2 distribution is very 358 

similar in these years and the high-value areas of XCO2 in these three years primarily distributed between the equator and 359 

40°N. The high XCO2 values on land are mainly in South-East Asia, Central Africa, southern North America, and northern 360 

South America. The low XCO2 values are mainly found in the Southern Hemisphere, Outer Mongolia, and Greenland in the 361 

Northern Hemisphere. Figure 9 (d), (e), and (f) shows the trend of XCO2 changes from 2000 to 2010, from 2010 to 2020, and 362 

from 2000 to 2020, respectively. Overall, the global XCO2 growth rate from 2000 to 2020 was between 2.06 and 2.22 ppm. 363 

The growth rate of XCO2 in the first decade (2000 to 2010) was between 1.91 and 2.13 ppm, while the growth rate in the 364 

second decade (2010 to 2020) was between 2.28 and 2.42 ppm. This indicates that the growth rate of XCO2 has increased on 365 

the global scale in the past decade. At different time periods, the difference in global XCO2 growth rate is not significant, and 366 

regions with slightly higher XCO2 growth rates are mainly in East Asia, Central Africa, and South America. 367 
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 368 

Figure 9. Global annual global XCO2 mean distribution and trend. (a), (b), (c) represent annual global XCO2 mean distribution 369 

in 2000, 2010, and 2020, respectively. (d) represents the trend of XCO2 changes from 2000 to 2010, (e) represents the trend of 370 

XCO2 changes from 2010 to 2020, and (f) represents the trend of XCO2 changes from 2000 to 2020. 371 

 372 

We further analyzed the distribution of XCO2 in the different seasons of spring (March, April, May), summer (June, July, 373 

August), autumn (September, October, November), and winter (December, January, February). The average value of each 374 

season for 21 years is shown in Fig. 10. The high XCO2
 values are mainly seen in spring and winter, while the low XCO2 375 

values are mainly found in summer and autumn. The region from 40°N to 40°S is a high-value region during summer and 376 

autumn. During spring and winter, there is a significant difference in XCO2 between the Northern and Southern hemispheres, 377 
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roughly divided by the equator, which may be due to two factors. Firstly, the decrease in vegetation quantity in spring and 378 

winter leads to a decrease in CO2 absorption by the ecosystem. Secondly, human activities at this time consume more energy, 379 

leading to significant CO2 emissions. In spring, CO2 concentrations are higher in East Asia, South Asia, Central Africa, Central 380 

America, and Europe. In summer, CO2 concentrations in Russia, Canada, and Europe are relatively low, while concentrations 381 

in other regions on land are similar. When it comes to autumn, Singapore, Indonesia, Brazil, the eastern United States, and 382 

eastern China are regions with relatively high CO2 concentrations. The distribution of CO2 in winter is similar to that in spring, 383 

but the concentration of CO2 in the marine areas of the Northern Hemisphere is relatively low. In general, the annual 384 

distribution of CO2 is similar in spring and winter, indicating that spring and winter have a significant impact on CO2 385 

concentration during the year. 386 

 387 

Figure 10. Seasonal distribution of global average XCO2 from 2000 to 2020. 388 

3.5.3 XCO2 long time-series change 389 

The global average change in XCO2 every 8 days from 2000 to 2020 is shown in Fig. 11 (a). The fitting trend line indicates 390 

that global XCO2 has shown an upward trend, with an average increase of 0.0458 ppm every 8 days and an annual increase of 391 

approximately 2.09 ppm. This reveals the significant increase in atmospheric CO2 concentration from 2000 to 2020, which 392 

may be due to human activities and the burning of fossil fuels (Jiang et al., 2022). At the same time, the global XCO2 has 393 

shown an obvious seasonal trend, showing an increasing trend from January to March and September to December, and a 394 
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downward trend from April to August. The beginning of April has seen the highest XCO2 of the year, while the beginning of 395 

September has seen the lowest XCO2 of the year. The seasonal changes of XCO2 each year may be related to plant growth 396 

(Yuan et al., 2018). In winter, when plant growth slows and photosynthesis decreases, CO2 concentrations in the atmosphere 397 

usually rise slightly. In summer, the growth of plants increases and they absorb more CO2, causing the concentration of CO2 398 

in the atmosphere to decrease. Based on the distribution of the concentrations around the trend line, it can be seen that the CO2 399 

growth rate from 2000 to 2008 was close to the annual average of 2.09 ppm, the growth rate from 2009 to 2015 was lower 400 

than the annual average, and the growth rate from 2015 to 2020 was higher than the annual average. 401 

The global region was divided into 18 regions based on a latitude bandwidth of 10° to analyze the temporal variation 402 

characteristics of XCO2 at different latitudes. The result (Fig. 11 (b)) indicates that the changes in XCO2 at different latitudes 403 

were similar to the global changes, and they all showed a continuous upward trend. The XCO2 was close in the different 404 

latitudes in summer, while the XCO2 in the Northern Hemisphere was significantly higher than that in the Southern Hemisphere 405 

in winter. Meanwhile, we found that XCO2 value changed sharply at the equator, with significant differences between the 406 

Northern and Southern Hemisphere in winter. 407 

 408 

Figure 11. XCO2 long time-series change: (a) Changes in global average XCO2 every 8 days from 2000 to 2020. 2001-46 409 

represents the 46th cycle of 2001 (eight days per cycle). (b) Long-term change of XCO2 at different latitudes (2000–2020). 410 

4 Discussion 411 

4.1 Comparison of stacking regression and basic regression 412 

 To verify the effectiveness of the stacking regression model, we compared the 10-fold cross-validation R2 and RMSE between 413 

stacking regression and basic regression (Fig. 12). The mean R2 of the stacking regression cross-validation is 0.974, which is 414 

better than the basic regression. At the same time, the RMSE of the stacking regression model is also the lowest, at only 415 
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0.551 ppm, indicating that the stacking regression model is very stable. Among the five basic regressors, the GBR model 416 

performs the worst, the LGBM and XGB models have an R2 greater than 0.96, while the ETR and RF models perform better. 417 

With respect to the RMSE, the GBR model shows the worst performance, followed by the LGBM and XGB models, while the 418 

ETR and RF models achieve better results. Overall, from the quantitative results, the stacking regression model performs the 419 

best. 420 

 421 

Figure 12. Comparison of the 10-fold cross-validation results between stacking regression and basic regression (Each point 422 

represents the result of each validation, and the curve represents the normal distribution curve; IQR refers to interquartile range 423 

of data). 424 

Furthermore, we also compared the spatial distribution of the stacking regression product, ETR product, CAMS data, and CT 425 

data. Typical regions from different periods were selected in Fig. 13. Overall, the stacking regression product and ETR product 426 

have more spatial details than the CT and CAMS model simulation data, and their spatial distributions are consistent. In the 427 

case of the 45th period of 2003, we chose East Asia for comparision and found that the spatial details of the stacking regression 428 

product are richer than that of ETR product. Meanwhile, the spatial distributions of the stacking regression product and ETR 429 

product are more consistent with the CAMS data in this period. In the case of the 45th period of 2020, we chose Amazon 430 

region for comparision and found that stacking regression product still have better spatial distribution. However, the stacking 431 

regression product in this period is more similar to CT data and differ from the situation in 2003. This may be due to the high 432 

accuracy of CAMS data in 2003 and the low accuracy near 2019, which is consistent with our results in section 3.4.3. This 433 

phenomenon indicates that our product fully combines the advantages of CAMS and CT data, reducing the uncertainty of 434 

XCO2 spatial distribution. Therefore, although ETR and the stacking regression model are relatively close in the quantitative 435 

results, it is clear that the stacking regression model shows advantages in the spatial distribution, and we believe that stacking 436 

regression is more suitable for the mapping of global high spatio-temporal resolution and high-accuracy XCO2. 437 
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 438 

Figure 13. Comparison of the spatial distribution between the stacking regression product, ETR product, CAMS data, and CT 439 

data in different periods. 440 

4.2 Variable importance analysis 441 

In order to explore which variable has a significant impact on XCO2, we used the permutation importance method to evaluate 442 

the importance of the explanatory variables. The results of this method depend on the decrease in the performance score of the 443 
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model after the variables are randomly rearranged (Breiman, 2001). The specific calculation process is as follows. Firstly, 444 

select an evaluation index (such as R2 or RMSE) for the trained model and calculate the initial score on the validation set. Then, 445 

randomly shuffle each variable in the validation set and recalculate the corresponding score of the model. The importance of 446 

a variable is defined as the difference between the recalculated score and the initial score. 447 

Here, R2 was selected as the evaluation index for the variable importance analysis. Each variable was randomly shuffled 10 448 

times, and the change in R2 based on the evaluation results was calculated. The results (Fig. 14) indicate that CT and CAMS 449 

are the two main influencing variables, due to the strong correlation between the model simulation data and satellite observation 450 

data (Mustafa et al., 2020). In this study, CT data plays a more important role than CAMS data, which may be due to the higher 451 

correlation between the CT2022 data and the OCO-2 satellite data. In addition, we found that the SCYCLE variable causes a 452 

0.149 change in R2, indicating that XCO2 has significant periodicity, which is consistent with our analysis result in Section 453 

3.5.2. The other auxiliary variables together also can cause a 0.149 change in R2, indicating that the selected auxiliary variables 454 

can effectively supplement information for the mapping of XCO2. For the meteorological data, QV has the greatest impact, 455 

contributing to a change of 0.037. In terms of the remote sensing auxiliary data, REF6 has the greatest impact, indicating that 456 

remote sensing data still play a certain role in XCO2 mapping. Although the importance of remote sensing auxiliary data is not 457 

very high, the spatial distribution details of the GCXCO2 product are all derived from the remote sensing auxiliary data.  458 

 459 

 460 

Figure 14. The importance of each explanatory variable calculated by the permutation importance method. 461 
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4.3 Innovation and limitations 462 

In this study, a high-accuracy global XCO2 dataset was generated—the GCXCO2 product—with a spatial resolution of 0.05 463 

degrees and a temporal resolution of 8 days, from 2000 to 2020. Furthermore, the newly proposed spatio-temporal validation 464 

method acted as a supplement to the existing validation methods. 465 

The contributions of this work are as follows. Firstly, a method for global seamless XCO2 mapping covering terrestrial and 466 

ocean areas was developed, based on remote sensing data, model simulation data, and meteorological data. The results 467 

demonstrate the high accuracy and stable spatio-temporal scalability of the model. Compared to the existing products (Li et 468 

al., 2022; Zhang et al., 2022; Zhang and Liu, 2023), which all cover terrestrial areas, the GCXCO2 product covers both 469 

terrestrial and ocean areas and achieves a full spatial coverage. Secondly, the use of the dynamic normalization strategy in the 470 

model training effectively improves the generalization ability of the model in the temporal dimension. Due to the large range 471 

of XCO2, it is almost impossible to directly use short-term concentration values to construct a model to achieve long-term 472 

inversion, and the results without using dynamic normalization show obvious errors. However, we solved the key problems 473 

by using a moving normalization method with the help of model simulations, and thus we can first achieve 21-year mapping. 474 

It means that it is possible to rely on short-term satellite observations for long-term XCO2 mapping. Finally, we developed a 475 

novel validation method to evaluate the spatio-temporal extensibility in the absence of OCO-2 satellite observations. The 476 

spatial expansibility and temporal extension validations also prove the high accuracy of the GCXCO2 product. 477 

However, there are still some limitations to this work. Firstly, the global XCO2 mapping method is heavily reliant on the XCO2 478 

model simulation data, which limits the real-time production ability. Future research should attempt to utilize more suitable 479 

remote sensing explanatory variables for real-time mapping. Meanwhile, we only used OCO-2 satellite observations in this 480 

study, and future studies could use multiple satellite data sources to obtain more samples, which would involve multi-sensor 481 

fusion and put forward a higher requirement for data processing. Finally, although the various validation methods have 482 

confirmed the high accuracy of the stacking regression model and product, we were unable to analyze the authenticity of the 483 

spatial distribution of the product, due to the lack of real high-resolution seamless XCO2 data. Therefore, exploring validation 484 

methods for the spatial distribution is also a potential research direction. 485 

5 Data availability 486 

The long-term (2000-2020) global XCO2 dataset GCXCO2 can be obtained freely at https://doi.org/10.5281/zenodo.10083102 487 

(Guan and Sun, 2023). The data is stored in NetCDF file format, with a time resolution of 8 day and a spatial resolution of 488 

0.05 degree. The file is named after “year-cycle”, for example, 2000-01 represents the XCO2 data for the first eight day of 489 

2000. 490 
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6 Conclusion 491 

In this study, the stacking regression model was utilized to construct the nonlinear relationships between the OCO-2 satellite 492 

XCO2 data and satellite observations, model simulation data, and meteorological data for global seamless XCO2 mapping. The 493 

high spatio-temporal resolution (8-day, 0.05 degree) global GCXCO2 product covering 2000 to 2020 was produced. The 10-494 

fold cross-validation results (R2 = 0.974, RMSE = 0.551 ppm) and the TCCON station validation results (R2= 0.988, RMSE = 495 

1.140 ppm) confirmed that the model and product have an overall good performance and accuracy. Furthermore, the results of 496 

the spatial expansibility validation (R2 = 0.958, RMSE = 0.692 ppm) and temporal extension validation (R2 = 0.886, RMSE = 497 

0.823 ppm) also demonstrated that the stacking regression model has an excellent spatio-temporal generalization ability. The 498 

innovative use of dynamic normalization enabled the model to expand in the temporal dimension and successfully generated 499 

the product covering 21 years. More importantly, the comparison at different scales proved that the GCXCO2 product has a 500 

higher spatial resolution and accuracy than the model simulation data, and is closer to the accuracy level of the OCO-2 satellite 501 

data. 502 

According to the GCXCO2 product, the seasonal distribution of global XCO2 varies significantly, and the XCO2 in the Northern 503 

Hemisphere is clearly higher than that in the Southern Hemisphere in spring and winter. Meanwhile, from 2000 to 2020, the 504 

global mean XCO2 has risen from 368.65 ppm to 411.49 ppm, indicating an average annual increase of approximately 505 

2.09 ppm and revealing apparent global-scale changes. The XCO2 at different latitudes has also shown a similar upward trend 506 

and seasonal variation characteristics in the long time series.  507 

The GCXCO2 product generated in this study will be of great significance for regional carbon monitoring, carbon policy 508 

formulation, and global carbon flux calculations, and can also provide seamless CO2 data for global climate change studies, 509 

ecological research, and other studies. 510 
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