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Abstract. Recent decades have seen an exponential rise in the application of machine learning in geoscience. However, 

fundamental differences distinguish geoscience data from most other data types. Geoscience datasets are typically multi-

dimensional, and contain 1-D (drillholes), 2-D (maps or cross-sections), and 3-D volumetric and point data (models/voxels). 15 

Geoscience data quality is a product of its resolution and the precision of the methods used to acquire it. The dimensionality, 

resolution, and precision of each layer within a geoscience dataset translates to limitations in spatiality, scale and uncertainty 

of resulting interpretations. Historically, geoscience datasets were overlaid cartographically, to incorporate subjective, 

experience-driven knowledge, and variances in scale, and resolution. These nuances and limitations that underpin the reliability 

of automated interpretation are well understood by geoscientists, but rarely appropriately transferred to data science. For true 20 

integration of geoscience data, such issues cannot be overlooked without consequence. To apply data analytics to complex 

geoscience data (e.g., hydrothermal mineral systems) effectively, methodologies that characterise the system quantitatively, 

using collocated analyses, at a common scale should be sought. This paper provides research and exploration insights from an 

innovative district-wide, scale-integrated, geoscience data project, which analysed 1,590 samples from 23 mineral deposits 

and prospects across the Cloncurry District, Queensland, Australia. Ten different analytical techniques, including density, 25 

magnetic susceptibility, remanent magnetisation, anisotropy of magnetic susceptibility, radiometrics, conductivity, scanning 

electron microscopy (SEM)-based automated mineralogy, geochemistry, and short-wave infrared (SWIR) hyperspectral data 

with 561 columns of scale-integrated data (+2151 columns of SWIR). All data were collected on 2 cm x 2.5 cm sample 

cylinders; a scale at which the confidence in coupling of data from techniques can be high. These data are integrated by design, 

to eliminate the need to downscale coarser measurements via assumptions, inferences, inversions, and interpolations. This 30 

scale-consistent approach is critical to quantitative characterisation of mineral systems and has numerous applications to 

mineral exploration, such as linking alteration paragenesis with structural controls and petrophysical zonation. 
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1 Introduction 40 

With the increase in computer power and the algorithmic advances of the last decade(s), there is a new wave of statistical 

application to data analytics (Biamonte et al., 2017), with machine learning steadily gaining popularity since the turn of the 

millennium (Figure 1), proving effective for many applications (e.g., retail, finance). Not surprisingly, this new enthusiasm 

has spread to data-heavy fields of science, which has led to an exponential increase in the adaptation of machine learning to 

the analysis of geoscience data since ca 2010 (Figure 1). However, there are fundamental differences that distinguish 45 

geoscience data from most other data types to which machine-learning methods are commonly applied.  

Geoscience datasets have highly variable precision and resolution, which drastically effects the resolution at which datasets 

can be confidently scaled and correlated. Geoscience data are also intrinsically multiscale, are used at a range of scales. 

Geoscience data are multidimensional, comprising a range of 1, 2 and 3 dimensional products, that are typically transformed 

and collocated to a common 2-D (i.e., map based) or 3-D (i.e., model based) framework to facilitate interrogation, integration 50 

and application (Figure 2, 3). Remote sensing and geophysics provide information about a wide range of crustal depths from 

surface imagery to near surface (e.g., EM, magnetics) and deep crustal imaging (e.g., MT, gravity). 

A major application of geoscience data is mineral exploration, which utilises multiple techniques across a range of resolutions, 

spatial distributions, depth sensitivities and precisions to vector toward mineralisation, narrowing the search space from the 

terrane to deposit scales. Exploration is guided by geological knowledge, ranging from assumptions (e.g., generic deposit 55 

characteristics) to qualitative interpretations and hard data. During the early stages of exploration, the integration of that data 

is largely qualitative, map-based (2-D), and incorporates multiple scales of data. The approach is tried and tested, is often 

effective, and is appropriate given that nature of the data utilised.  However, it is primarily qualitative, and can overlook some 

of the intrinsic properties of the data, including sparsity and their multi- scale, -resolution and -dimensional nature. True 

integration of geoscience data (e.g., using modern data analytics such as machine learning), cannot overlook these issues 60 

without consequence. Accurate scaling of multi-resolution and -dimensional data can be achieved using geophysics, provided 

scale- consistent, collocated ore body knowledge is available. Such quantitative knowledge of mineral systems allows 

conversion of mineral system processes into scalable properties, which constrain geophysical models, facilitate true 

quantitative integration, and underpin predictive mineral discovery. 

 Here we present (to our knowledge) the world’s first publicly available, district-wide, scale integrated, collocated, geoscience 65 

dataset. It incorporates 2712 columns of data (NB. >2000 of these are hyperspectral data), from 10 different techniques, and 
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includes detailed petrophysical data, such as density, magnetic susceptibility, remanent magnetisation, magnetic fabrics 

(AMS), radiometrics, and conductivity. It contains comprehensive mineralogy and mineral texture and alteration information 

based on TIMA-SEM scans. Is also contains comprehensive geochemistry (from both portable XRF analyses and analyses of 

powders) and hyperspectral data. It contains information for 1,590 samples (many with three specimen each), extracted from 70 

23 deposits and prospects: Altia, Artemis, Brumby, Barbara, Cameron River, Cannington, Canteen, Cormorant, E1 North, 

Eloise, Ernest Henry, Great Australia, Kalman, Kulthor, Little Eva, Maronan, Merlin, Monakoff, Mt Colin, Osborne, Starra-

276, SWAN/Domain 81 and Trekelano.  

This dataset allows all the major techniques used in mineral exploration and deposit characterisation to be correlated and 

contrasted at the same scale by providing quantitative, integrated insights into the processes that control geophysical signatures 75 

and better informing our understanding of the relationships between alteration and structure. This dataset is integrated by 

design, is “complex” data (many columns) not “big” data (many rows). But, if used to its full potential, it can enable more 

effective translation of geochemical, structural, and geological processes into physical parameters and potentially help make 

big data tangible in the mineral resources sector. It can help shift the current paradigm in mineral exploration (i.e., using a 

mixture of qualitative and quantitative data at different scales), toward the fully quantitative, scale-consistent datasets that can 80 

enable future mineral system space. We hope that this dataset will lead to new discoveries that are so vital to the economy of 

the Mount Isa region, Australia, and furthermore hope it provides the impetus and inspiration for re-thinking the role of data 

in the outcomes of data analytics. 

2 Background 

2.1 Geoscience Data 85 

Geoscience datasets have highly variable precision across different data types and scales, which drastically effect the resolution 

at which datasets can be confidently correlated. They are intrinsically multiscale and are commonly collected and analysed at 

a range of different scales. In mineral exploration (for example) several different scales are used, including the terrane, regional, 

camp, deposit and sub-deposit scales (e.g., drillholes, individual samples: Figure 2). Scale in this sense may mean resolution 

(pixel) size of a 2-D image/raster, the voxel size or the interpreted or interpolated 3-D volume (Figure 3, 4) but can also refer 90 

to the volume from which an analysis is conducted or the area on which a measurement is made. This varies greatly across 

techniques from the > km3 to < mm3 scale. For example, geochemical data, spatially, is simple point data relative to the scale 

and depth complexities associated with geophysics. However the volume/area of those points varies across several orders of 

magnitude from meters to microns (µm) depending on the method of analysis (Figure 4). For example, the measured volumes 

of various techniques utilised at the deposit scales (e.g., 1 m composite assay, palaeomagnetic plug, single-point portable X-95 

ray fluorescence (pXRF) measurement, and laser induced breakdown spectroscopy (LIBS)) span 11 orders of magnitude (i.e., 
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1x1011 variation: Figure 4). Complexities associated with the scale of different datasets may render data un-integrable even if 

they are collocated. 

In addition to these scale/ resolution issues, geoscience data are also multi-dimensional, comprising 1-D information (e.g., drill 

holes), 2-D information in both map and cross-sections, and 3-D data (e.g., grids and voxels: Figure 3). This multi-dimensional 100 

aspect is atypical in most other spatial data. For example, in a demographics dataset used to define the optimal location of new 

services, every piece of information is related to a single point (e.g., where a person lives) which has a unique spatial (X, Y) 

location. Although the demographics data may have a Z location, the third dimension is relatively inconsequential in the 

context of the demographic dataset. Many geoscience datasets (e.g., ground geochemistry) are indeed comparable, with each 

point corresponding to a specific X, Y point on a surface, and numerous variables attributed to each point (e.g., Cu, Pb, etc). 105 

Neither dataset has any depth penetration, and the areal coverage of the data are infinitesimal in relation to the area of 

investigation (i.e., each point corresponds to a singular point, rather than describing a substantial 3-D volume). Interpreting 

simple X,Y datasets is, not surprisingly, relatively uncomplicated in regards to dealing with scale, and dimensionality, even 

though one could use any manner of complex analysis. The addition of a 3-D data, as is common in many geoscience datasets 

(e.g., especially mineral and petroleum exploration data), and uncertainties related to depth sensitivities of different techniques, 110 

adds another level of complexity, and with it, additional data sparsity. This complexity of dimensionality interacts variably 

with scale and/or resolution complexities across a range of data types and acquisition methodologies (Figure 3).  

Data sparsity is a major factor for all types of geosciences data, but specifically for its application, e.g., in mineral exploration. 

Sparsity can be defined as a function of scale, resolution and dimensionality, but in practise is more typically a function of 

logistical factors such as project budget / workforce and site accessibility (e.g., Section 2). Scale, resolution and by association 115 

data sparsity are inherently linked to mineral exploration strategy (Figure 4 a, b). Exploration typically starts at a terrane scale, 

using regional-scale datasets (e.g., geophysics and remote sensing) to define major crustal pathways, geodynamic triggers and 

indicators of fertility (Smillie et al., 2017). Successively higher resolution, datasets and/or more scale-, and depth- appropriate 

technologies are utilised to reduce the search space approximately 3-5 orders of magnitude (Figure 4 a, b) to a relatively small 

area of perceived favourability (i.e., camp to prospect scales). Focussing of exploration to the sub-camp scale typically triggers 120 

a shift from low cost, typically qualitative, predictive methodologies to high cost, quantitative, direct detection (Figure 4a: 

McCuaig et al., 2010), such as drilling, assaying, and surface geochemistry, which hopefully define prospect. The switch to 

detection methodologies at the camp- to prospect- scale coincides with a shift to higher resolution, multi-scale, multi-modal 

and multi-dimensional data (Figure 3B).  

To define a statistically valid (e.g., JORC compliant) resource requires high resolution, quantitative, spatially representative 125 

data that can be extrapolated/interpolated upward to the deposit scale Figure 4 b. Hence, to get from the prospect- to deposit-

scale effectively requires a switch from mainly qualitative to quantitative methods AND a quantum leap (approx. 12 orders of 

magnitude) in scale to the drill hole / sample scale. Resources are defined by working backwards from the drill-scale to the 

deposit scale (Figure 4 b). A resource can only be proven by improving data volume (sampling more) to the point where 

statistical confidence in the upscaling technique (e.g., kriging) is achieved. This resource definition stage (i.e., the end goal of 130 
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mineral exploration) requires the volume sampled (both resource and waste) to be within 2 orders of magnitude of the volume 

of the resource. But at all other scales of exploration, the ratio of sampled rock to area of interest is effectively infinitesimal. 

For example, at the Terrane (or mineral system) scale that ratio is between 1x10-8 (based on 2500 drillholes) and 1x10-14 (based 

on 1500 palaeomag Plugs, as sampled here). Thereby attempting to sample a mineral system holistically by sampling more 

will not be effective. Sampling smarter, and better addressing the inherent resolution and dimensionality issues, and depth 135 

limitations when transforming scaling and integrating data should be more effective. 

2.2 Data Scaling and Translation 

A range of approaches have been developed to address scaling issues in geographical, geological and geophysical data. For 

example, GoogleEarthTM imagery (e.g., Gröger et al., 2005) use various functions to represent maps and 3-D buildings 

differently depending on the scale at which the user is zoomed in. This requires the database to have different resolution 140 

imagery and different scaled models available that can be loaded on the fly, and therefore the approach is multi-scale rather 

than scaleable. Unfortunately, similar approaches are not yet widely adopted across the geosciences, due in part to many of 

the complexities outlined above. There are, however, numerous commonly used statistical approaches used for up- and down-

scaling of geoscience data, including fractal, geostatistical, general statistical, and machine-learning methodologies, Bayesian-

, process-, and probability-based approaches, and resampling / interpolation (Je, et al., 2019).  145 

Interpolation is commonly used to simultaneously re-scale raw data (e.g., geophysical surveys) and also translate the spatial 

dimensionality of that data (e.g., from a grid of points or series of lines to a surface / raster). In many cases, the resolution of 

the input data varies substantially in the X- and Y- dimensions, e.g., for aeromagnetic data, along line resolution of ~8m and 

across line resolution of 200 m are common survey specifications. In most cases interpolation of survey data therefore involves 

down sampling along lines (i.e., 5 x 8 m) and upscaling across lines (i.e., 1/5 x 200m) to produce a raster of intermediate 150 

resolution. A maximum resolution of 40 m can be achieved in this example, but the grid resolution, and methodology for 

interpolation (e.g., inverse distance, minimum curvature, kriging) are user choices. Such methods are limited to a degree by 

the scale of the data (are scale dependant), but also involve human choices, are therefore inherently non-unique. Although 

scaled data products are commonly utilised and integrated as data, they are data products sensu stricto. Scaled data products, 

interpolations and/or interpretations are nevertheless crucial intermediary products that allow disparate sources to be translated 155 

to a common spatial framework (e.g., maps, models), analysed, integrated and in some cases (e.g., drilling, geophysics) 

translated and/or inverted to 3-D data products.  

 Scaling and translation of multi-scale, multi-dimensional datasets into 3-D can be achieved using a range of different 

techniques in two major categories, geostatistical and geophysical methodologies. A range of geostatistical techniques are 

utilised in geosciences to predict variables based on spatial datasets (Dumakor-Dupey and Arya, 2021). Inverse distance 160 

weighting (IDW) and kriging are commonly applied to mineral resource estimation to upscale point data to 3-D volumes with 

calculated ore grade prediction. A common methodology used to translate potential field geophysics into 3-D is to adopt a 
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voxel framework, and attribute petrophysical properties to voxels based on inversion of the geophysical field data. Whilst 

convenient, such approaches can easily overlook issues of scale and depth of investigation. For example, gravity and magnetics 

data can be jointly inverted using grid data despite a hundred-fold difference in their resolution. If the resolution and depth 165 

sensitivities of the data used to derive 3-D volumes of the sub-surface vary substantially with our scale of investigation, so too 

should models. Use of voxel inversions in integration also requires the user to address the inherent issue of non-uniqueness, 

which is particularly problematic for inversion of vector properties (e.g., remanent magnetisation). This can be undertaken 

probabilistically (e.g., Giraud, et al., 2023) based on any given number of possible models, or geophysically based on 

petrophysical constraints (Austin et al., 2023). Neither approach is optimal (i.e., probability doesn’t need to honour physics 170 

whereas petrophysical constraints are limited by sampling), but ultimately geophysical models need to honour physics not 

probability. We therefore need probabilistic models that can honour petrophysical constraints, but more importantly we must 

have those petrophysical constraints in a form that can be integrated with other geoscience data. 

2.3 Data Integration 

Historically, geoscience datasets have been gathered incrementally, often over extended timescales, by different people, in 175 

different institutions, for different purposes. Geological surveys and companies often have set methodologies for data 

collection, but these evolve sporadically, and there are no universally accepted ways of collecting, analysing, or even reporting 

geoscience data. Traditionally, geoscience data would be overlain in a manner more similar to cartography than true data 

integration. Such map-based integration is more art than science, but nevertheless provides a qualitative means of assimilating 

multiple datasets, with different scales, precision, depth of analysis to a common framework. Geoscientists undertaking this 180 

form of integration, may account for some of the differences in scale and resolution on the fly, but beyond that, can overlook 

that each layer provides information at different scale/resolution, often with variable depths of investigation, and large 

variations in sparsity. In this cartographic approach to data integration, overlooking the scale-resolution-dimensionality issue 

may not substantially affect the outcome. 

 This traditional cartographic approach is utilised by a range of modern, data-based methodologies for exploration including 185 

various methods of mineral prospectivity mapping; MPM, which utilise GIS-based applications to analyse and integrate multi-

source and multi-scale exploration data (Yousefi, et al., 2021). Whilst effective at regional to camp scale, MPM has struggled 

to deal effectively with complex, multi-scale data used to characterise ore-forming processes (Porwal and Kreuzer, 

2010; Yousefi et al., 2019). Therefore, improved characterisation of ore-forming processes at multiple scales are essential to 

improving the effectiveness of MPM (Kreuzer et al., 2020; Yousefi et al., 2021), and furthermore novel 3-D approaches to 190 

data integration (e.g.,. Li et al., 2024; Deng et al., 2022; Xiang, et al., 2020). 

 Volumetrically, once geoscience data are scaled and translated to make predictions about 3-D geology, it must be accepted 

that there are far fewer knowns than unknowns. Much of our understanding is interpretation, not fact, and consequently, the 

https://www.sciencedirect.com/science/article/pii/S0375674221001175#bb0520
https://www.sciencedirect.com/science/article/pii/S0375674221001175#bb0520
https://www.sciencedirect.com/science/article/pii/S0375674221001175#bb0710
https://www.sciencedirect.com/science/article/pii/S0375674221001175#bb0350
https://www.sciencedirect.com/science/article/pii/S0375674221001175#bb0710
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uncertainty associated with each dataset, in the context of a large 3-D volume of rocks (e.g., the Cloncurry District) is very 

high. As we integrate additional data types, the uncertainty propagates, and is often poorly captured in our models. 195 

 The many nuances, limitations, and pitfalls associated with most types of geoscience data significantly affect the outcomes of 

modern data-driven approaches. In many cases, these issues are well understood by domain experts, but such knowledge is 

often not appropriately transferred to data scientists. Some of the main issues include: 

1. Understanding the effects of sample size, resolution, and dimensionality of different types of data, and the limitations 

thereof.  200 

2. Recognition of the differences between various geophysical techniques, imaging, and point sample analysis (i.e., 

differences in intrinsic scale, resolution and implications for depth of investigation).  

3. Realisation that differences in the way data are scaled (e.g., simple subjective interpretation, hand contouring, interpolation, 

and inversion) impact the precision of the resultant datasets. 

4. Knowing that some datasets are partially compatible in some instances (e.g., magnetics and gravity often overlap), but most 205 

datasets are not, they often describe unrelated properties, at different scales and/or different crustal levels (e.g., geophysics). 

 

2.4 Integration by design 

We must work at a range of scales in geosciences, but the issues highlighted above make holistic approaches to mineral system 

knowledge problematic, particularly at larger scales. Therefore, rather than starting at the large scale, i.e., starting with a large 210 

area and attempting to force disparate datasets to describe concise voxels (3D pixels) in a model, it may be advantageous to 

characterise mineral systems a scale we can be confident of the coupling of the datasets (i.e., at the small-scale). The integrated 

characterisation approach builds on traditional approaches use in hard rock petrophysics (e.g., Mutton and Shaw, 1979; 

Brescianini et al., 1992; Webb and Rowston, 1995; Bishop and Emerson, 1999; Austin and Blenkinsop, 2008; Austin et al., 

2013) by linking properties to quantitative geological information. Similar approaches that collect scale constrained, collocated 215 

datasets are increasingly being adopted globally (e.g., Enkin et al., 2016, 2020; Dentith et al., 2020; Leväniemi and Hokka, 

2022). Although working at the sample scale may not allow extrapolation across large areas or volumes mathematically, it 

does provide quantitative, collocated, characterisation of a suite measurable parameters and at a consistent scale. Those 

measurements are on a range of different volumes (ranging between palaeomagnetic plugs, and pXRF spots; Figure 4c). 

However, using a systematic approach (e.g., Section 4.1) we can ensure samples are both homogeneous and representative of 220 

the mineral system. That consistency of approach circumvents the potential volume issues between various data streams to a 

large degree. Cloncurry METAL (Austin et al., 2024) is therefore a truly integrated dataset which does not require  

assumptions, inferences, inversions, and interpolations prior to integration.  

Scale integrated, collocated dataset can be utilised, with confidence, for a variety of statistical and machine learning 

approaches, to understand the mineral system holistically. The outcomes from scale constrained analyses can be utilised to 225 

make better use of a suite of compatible but spatially distinct techniques at expanded scales, where their own specific nuances 

of scale, resolution and dimensionality, can be accommodated more effectively. For example, if a particular pattern that 
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suggests mineralisation is related to a specific radiometric and magnetic signature, we can target such patterns in those specific 

regional datasets. As a by-product this approach provides ammunition to make better informed decisions about which datasets 

are crucial, and where individual dataset should be improved in terms of coverage, and/or resolution, and/or depth penetration 230 

and/or precision. 

3 Study Area 

The Cloncurry District (Figure 5) is a richly endowed region in northwest Queensland, Australia, that contains a range of 

mineral systems which produced deposits of various commodities, including base metals, precious metals, and rare earth 

elements. It has undergone a protracted structural and metasomatic history (e.g., Foster and Austin, 2008; Rubenach, 2013). 235 

Whilst there is much conjecture as to the genesis of deposits and timing of different styles of mineralisation (e.g., Groves et 

al., 2010; Hitzman et al., 1992; Hitzman and Porter, 2000; Williams et al., 2005), there is general agreement on the broad 

timing of major structural, metamorphic, magmatic, metasomatic and mineralisation events (Figure 6).  

The Cloncurry district is very diverse in terms of the types and styles of mineralisation present. It is notable as an iron oxide 

copper-gold (IOCG) district, but in many ways, there are few sensu stricto IOCG deposits present (e.g., Ernest Henry, SWAN, 240 

E1 North) based on earliest classifications (e.g., Hitzman, et al., 1992). Many deposits could be referred to as IOCG-related 

(e.g., Monakoff, Starra, Osborne), but Broken Hill Type (BHT), skarn, and volcanogenic massive sulphide (VMS) types are 

also present. Various studies have recognised a continuum between different mineralisation styles in different deposits (e.g., 

Williams, 1998; Austin and Blenkinsop, 2009; Little, 2019), and the Cloncurry deposits comprise components of iron-apatite 

(Kiruna-style), magnetite-dominant IOCG, pyrrhotite-dominant iron sulphide copper-gold (ISCG), and hematite-dominant 245 

IOCG assemblages. There is also an array of skarn-like assemblages (Williams and Heinemann, 1993; Williams and Baker, 

1995; Roache, T. J., et al., 2005). These include dolomite-magnetite-chalcopyrite (e.g., Starra-276; Patterson et al., 2016), to 

calcite-pyrrhotite-sphalerite-chalcopyrite assemblages (e.g., Artemis: Austin et al., 2016a; Knorsch et al., 2020), calcite-

pyrrhotite-chalcopyrite assemblages (e.g., Canteen; Austin et al., 2016b), calcite-pyrrhotite-galena (Maronan; Austin et al., 

2016c), calcite-barite-fluorite-magnetite-chalcopyrite (e.g., Monakoff; Austin et al., 2016d). High temperature garnet, 250 

pyroxene and amphibole-rich (i.e., non-carbonate) ‘skarn-like’ varieties are present, predominantly in the more Pb-Zn rich 

mineralisation types including Cannington (Chapman and Williams, 1998; Roach et al., 2005), Pegmont (Williams et al, 1998), 

Maramungee (Williams and Heinmann, 1993) and Maronan (De Jong, 1995; Austin et al., 2016c). Austin and Blenkinsop 

(2009) suggested some of these deposits have characteristics which are transitional with those generally considered part of 

VMS (e.g., Maronan: Austin et al., 2016c) and/ or IOCG style systems (e.g., Monakoff: Austin et al., 2016d). 255 

 Overall, the Cloncurry District is geochemically, structurally, geophysically and metallogenically complex. It has long been 

a challenging terrane for explorers, and many, often conflicting interpretations have been generated for the district over the 

last century. Geophysical techniques (primarily aeromagnetic surveys) were instrumental in the last major round of discoveries 

including Ernest Henry (Webb and Rowston, 1995), Osborne (Anderson and Logan, 1992), Cannington (Walters et al., 2001) 
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and Eloise (Brescianini et al., 1992), but are becoming less fruitful as bullseye targets are increasingly exhausted, and the 260 

search space becomes deeper. GIS-based statistical approaches to mineral prospectivity mapping (e.g., Mustard et al., 2004, 

Ford and Blenkinsop, 2008; Austin at Blenkinsop, 2009; Cole et al., 2020) have have provided some new targets, but are often 

poorly constrained by quantitative mineral system characterisation. Both geophysical and mineral prospectivity mapping 

approaches to exploration may increasingly be failing due to adoption of generic deposit models that misrepresent the 

complexity and variability of the mineral system. 265 

Within the global context, the district is unparalleled in its diversity of mineralisation styles, related alteration assemblages, 

and associated geophysical signatures. It is lithologically diverse, preserves a distinct metamorphic gradient (i.e., upper 

amphibolite in the SSE, to lower greenschist in the north: Foster and Austin, 2008), exhibits complex and heterogenous 

deformation, and consequently variable rheological conditions across several mineralising stages (Figure 6). The diversity of 

mineralisation styles produced is primarily a consequence of rheological, metamorphic and structural inhomogeneity. It is 270 

challenging to pigeonhole different styles of mineralisation within the district, but perhaps these seemingly disparate mineral 

deposits are part of a larger interrelated mineral system. The dataset that presented here, provides a unique opportunity to 

examine this complex mineral system through quantitative and scale-consistent means. We believe that this style of dataset is 

a pre-requisite to the next paradigm shift in exploration of the Cloncurry District, and will lead challenge how we use data to 

explore in this highly complex piece of the Earth’s crust. 275 

4. Sampling Strategy  

The aim of this project was to develop a comprehensive sample suite which is representative of the deposits and prospects in 

the Cloncurry district (Figure 5), with particular focus on the significant resources, the Ernest Henry, Starra, Osborne, SWAN, 

Eloise and Cannington deposits. Systematic sampling was critical for maximising exploration insights into the mineral system. 

Our ability to sample representatively was mainly limited by our access to material, and hence dependent on maintaining 280 

relationships with key stakeholders including the Geological Survey of Queensland and collaborating mining/ exploration 

companies.  

Ideally, sampling strategy was driven by or at least informed by company geologists with a priori understanding of individual 

deposits. However, holistic sampling is always limited by where holes are drilled and what core is available for sampling. In 

some instances, ideal holes were drilled early, and were sometimes degraded via oxidation, unlocatable, lacked appropriate 285 

orientation data, or were assayed to the extent that little material remained. Drilling is commonly focussed on the core of a 

deposits, and in some instances, there was lack of drill-core available to sample through the distal footprint and into 

background, and/or along strike. In such cases surface and open pit sampling has been conducted.  

Field surface sampling in ancient highly weathered terranes introduces an additional bias because the availability of fresh 

material is a direct function of the competence of the material. For example, at Starra differential weathering results in the 290 

competent silicic ironstone forming a prominent ridge of outcrop, but minimal (and highly weathered) exposures of host rocks 
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in the foot- and hanging- walls. Open mine pits provide opportunities to sample the local footprint, but also introduce sampling 

biases. For example, in-situ rocks can only be sampled from pit walls, where they are accessed by a haul road, and considered 

competent enough to stand under. The core of the system generally coincides with the base of the pit, which of often filled 

with water and/or loose material making it inaccessible, and in some cases exposed underground workings and mine wall 295 

instability may render parts of the pit off-limits.  

In sampling for petrophysical properties we must opportunistic, utilising whichever sampling approaches will provide the best 

coverage of a specific deposit, whilst also maintaining strict sampling protocols, e.g., not oversampling mineralised sections. 

 Several basic criteria should always be adopted, as outlined below.  

4.1.2 Zonation 300 

The aim of the drill hole selection and sampling was to provide a representative, scale–consistent, sample suite across each 

mineral system. Sampling covering the ore zone, and proximal, medial and distal alteration, through to background in both the 

hanging wall to footwall was conducted for each deposit or prospect. This is relatively straightforward for upright linear 

systems with clearly defined foot- and hanging walls such as Starra-276 (Section 2.2.4). However, different deposits styles 

present different challenges. Breccia pipes (e.g., Ernest Henry, SWAN, Brumby, E1-North), may be concentrically zoned, and 305 

Broken Hill Type systems may comprise complexly folded, zoned stratiform mineralisation in addition to  fault-controlled 

replacement.  

To adequately capture the mineral system requires appropriate coverage both across and along strike, several strategies have 

been adopted based on the complexity of the deposit and the material available to sample.  

1. For deposits under cover with a wealth of near-mine drilling (e.g., Ernest Henry; Figure 7) it was possible to sample 310 

core to distal zonation across and along strike variability using diamond drill core.  

2. In open pit mines with limited drill hole availability (e.g., Osborne: Figure 8), we undertook hybrid sampling of 

diamond core and open pit blocks / palaeomagnetic cores to improve areal coverage.  

3. In underground mines where drill holes through the distal footprint were limited (E.g., Starra-276; Figure 9), we 

undertook hybrid sampling of diamond core and surface blocks / palaeomagnetic cores. 315 

4. Deposits modified by near surface alteration (e.g., Starra-276, E1-North), also required surface to depth sampling to 

capture possible overprinting effects. 

5. For complex, structurally, metamorphically and metasomatically modified deposits with no obvious alteration 

footprint (e.g., Cannington; Figure 10), we utilised local geologists to ensure coverage of all lithologies and ore types.  

4.1.3 Sample Spacing 320 

Representative sample spacing down hole throughout a mineral system is critical to ensure a representative view of the 3-D 

volume of the system is captured in the dataset, but is rarley possible due to a range of factors. Inhibiting factors for drill core 

sampling include variability in the quality of core (e.g., due to weathering, shearing, cracking), unsuitable sample volumes, 
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mainly as a result of assaying (e.g., different core sizes and with full, ½ or ¼ core), and whether individual lengths of core 

were oriented. Sample frequency for surface sampling is mainly limited by where fresh rocks crop out, and mine sampling is 325 

mainly limited by the location of mine walls and other safety factors.  Furthermore, the extent of zonation in mineral deposits 

and their alteration halos vary widely, ranging from < 1 meter to kilometres in scale, so sampling frequency was varied 

depending on the size and complexity of the system locally to capture a representative suite of samples. In complex and 

heterogenous lithologies, sampling frequency was higher (e.g., <1 m in mineralised zone), whereas in more homogenous and 

distal lithologies, sampling frequency was typically reduced (e.g., >10 m). 330 

4.1.4 Representativity 

Samples were selected to be representative of the lithology of that part of the hole (i.e., similar to the majority of the core 

across several trays) in order to capture the bulk physical properties of that lithology. Adopting this strategy allows for up-

scaling of the physical properties with some confidence for use in geophysical modelling. Whilst some of the sampling 

conducted adheres to this methodology quite stringently, there are cases of oversampling through the mineralised zones, under-335 

sampling through the mineralised zones where no core remained in the tray, and cases where samples could not be obtained 

due to lack of appropriately sized or appropriately oriented core.  

4.1.5 Orientation 

Oriented samples are critical for geographic corrections to both anisotropy of magnetic susceptibility (AMS) and remanent 

magnetisation measurements. In some cases, where holes are drilled at near vertical orientation, caution should be taken in 340 

interpreting AMS and palaeomagnetic results, because where dip approaches 90˚, the strike of the orientation becomes 

increasingly unreliable. However, in general, holes will tend to lift with depth, and as the plunge decreases, the orientation 

becomes increasingly reliable (even at orientations of ~85˚).  

4.2 Sample Distribution 

The data here presented were gathered from 1,590 samples, taken from 23 mineral deposits and prospects across the Cloncurry 345 

District, Queensland. Sampling undertaken spanned almost a decade, starting with pilot projects from 2011– 2014 and then 

under two major Queensland Government Funded projects; Uncover Cloncurry 2015–2016, and Cloncurry METAL (2018–

2021).  

4.2.1 Uncover Cloncurry Samples 

The Uncover Cloncurry project collected relatively few samples per deposit but provides a broad overview of the true range 350 

of mineralisation styles present in the Cloncurry Mineral System. Deposits and prospect types sampled include Broken Hill 

Type (BHT) deposits, such as Altia Pb-Zn-Ag, Artemis Zn-Cu, Maronan Pb-Zn-Ag, Iron Oxide Copper-Gold type, including 
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Brumby Cu-Au, E1 Cu-Au, Kalman Cu-Au-Mo, Monakoff Cu-Au, Trekelano Cu-Au and related breccia sulphide ores (e.g., 

Merlin Mo-REE), Iron Sulphide Copper-Gold (ISCG) type, including Canteen Cu-Au, Cormorant Cu-Au, and skarns (e.g., 

Mount Colin). Sampling was undertaken on only one or two diamond drill holes for many of these deposits and prospects, and 355 

in some cases, the sampling may not be sufficiently representative. However, in many cases a significant number of diamond 

drill hole were sampled (e.g., Maronan, Brumby) and in some cases blocks and hand-drilled samples were extracted from mine 

pit walls (e.g., Monakoff, E1). Information on the location and geological context of those samples can be found in the Uncover 

Cloncurry reports, e.g., Austin et al., (2016 a-h), Gazley et al., (2016a, 2017) and Patterson et al., (2016a-b) and/or discussed 

further below. 360 

4.2.2 Ernest Henry Cu-Au Deposit 

Ernest Henry is the most comprehensively sampled deposit in this dataset, with samples from ten diamond drill holes (Figure 

7). The bulk of the holes intersect the core of the deposit (e.g., EH691, EH550 and EH435), with representative holes 

intersecting the proximal (e.g., EH631), medial (e.g., EH632) and distal (e.g., EHMT001) parts of the alteration footprints 

across strike to the southeast. Other holes are intended to sample the proximal (e.g., EH147), medial (e.g., EH 242) and distal 365 

zones (e.g., MMA002 and MMA003) along strike to the northeast of the deposit. Sampling of Ernest Henry was completed in 

four different phases. Initial sampling of EH691 was completed onsite at the Ernest Henry Mine in 2015. Phases 2–4 were 

completed as drill holes were made available at the GSQ core facility in Zillmere, Queensland, Australia. A summary of the 

drill holes sampled is provided in Figure 7, and detailed descriptions of the samples and the context within the deposit and its 

environs are provided in Schlegel et al. (2021, 2022); Austin and McFarlane (2021) and Austin et al. (2021). 370 

4.2.3 Osborne Cu-Au Deposit 

Osborne was sampled both from diamond drill core and from within the open pit (Figure 8). The two sampled drill holes 

(OSHQ0067 and TTNQ0364, total of 42 samples) cut across the mineralised zone in the near-surface and towards the base of 

the underground mineral resource respectively. Hand-drilled cores and oriented block samples (52 in total) were collected 

from several traverses across key sections of the open pit, providing excellent coverage of the deposit (particularly the lower 375 

and upper ironstone horizons). Numerous samples were also taken outside the mineralised horizons. However, it was not 

possible to undertake a representative sampling grid due to several factors including ground instability (i.e., the large debris 

slope in the middle of the mine), which contributed to the lack of samples between the two main ironstone horizons. Other 

complicating factors included risks associated with working under high/steep pit walls, and restricted access to areas in which 

underground workings were exposed. All the samples were accurately surveyed courtesy of Chinova mine surveyor, and 380 

further information on samples and their context within the deposit and its environs are provided in McFarlane et al. (2021a). 
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4.2.4 Starra-276 Au-Cu Deposit 

Starra-276 was sampled from drill core and at surface and was intended as a pilot study for collection of surface samples. 

However, the local outcrop is so dominated by highly competent (silicified) hematite-ironstones that very few samples could 

be obtained from the incompetent, weathered and eroded units on either side. This resulted in 27 hand-drilled and block samples 385 

from the surface at Starra-276 (Figure 9a). Most of the samples obtained from the surface ironstones, cropping out above and 

to the north and south of Starra-276. These were collected to assess along-strike geochemical variability in the ironstones, and 

for comparison with samples from depth to test the vertical zonation within the system (e.g., super- or hypo- gene enrichment). 

The remaining samples are from three diamond drill holes which form an E-W cross-section through the system with 38 

samples from STQ1095 (Patterson et al., 2016) complimented by a further 61 drill core samples from two scissor holes 390 

(STQ1098 , STQ1099W1) covering the foot and hanging wall of the deposit (Figure 9b). Whilst on-site, detailed magnetic 

susceptibility logs for the scissored drill holes were acquired, which can be used for comparison with geochemical data. Further 

information on sampling and their context within the deposit and its environs are provided in McFarlane et al. (2021b).  

4.2.5 Cannington Ag-Zn-Pb Deposit 

Ten drill holes were sampled at the Cannington Mine site, aiming to cover the deposit from north to south and shallow to deep 395 

(Figure 10). The 190 samples collected provide a representative suite of the seven different styles of mineralisation found at 

Cannington, i.e., the Kheri, Cuckadoo, Broadlands, Glenholme, Burnham, Inveravon, and Nittsdale types, and a representative 

selection of the host rocks of the deposit in both the northern and southern zones. Samples were taken from outside the system 

into the core mineralisation types to assess the proximal to distal footprint of the system. Although there are uncertainties as 

to the extent of the footprint of the Cannington deposit (many suggest a small alteration footprint), we aimed to get a 400 

representative selection of what the local geologists interpret as the footprint, referred to as SHMU (sillimanite-muscovite 

shist). Drill hole CAD934, which skims the periphery of the system from shallow levels to beneath the body, provides an 

opportunity to test the extent of the deposit footprint. Further information on samples and their context within the deposit and 

its environs are provided in Pearce et al. (2021). 

4.2.6 SWAN Cu-Au Deposit 405 

The SWAN-Mt-Elliot camp was sampled from 4 drill cores, three from the SWAN system, and one from Mt. Elliot ~900 m 

to the east.  MEQ1215 (56 samples) was drilled into the hanging-wall of the SWAN system, dipping to the southwest through 

the main ore/breccia body. Additional holes were selected to generate a representative E-W cross section through the SWAN 

system, intersecting the distal and proximal alteration zones, through the main ore/breccia body. Drillholes MEHQ07105 (8 

samples) and MEHQ011130 (52 samples) are to the east of MEQ1215 and are scissored holes which cut through the main 410 

breccia body from the east and west respectively. MEQ-95-208 is sampled from ~195 m depth in the Mount Elliot hanging, 
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through a 'skarnoid’ mineralised zone and into the footwall. Further information on sampling and their context within the 

deposit and its environs are provided in Stromberg et al., (2021) and Patterson et al., 2016. 

4.2.7 Eloise Au-Cu Deposit 

Eloise was sampled at a 30 m average sample interval from numerous drill cores for a total of 58 samples. Sampling focussed 415 

on Eloise Deeps and three satellite deposits. Several short intervals from Eloise Deeps (drill holes ED62 and ED60), and Macy 

(MA03E), Chloe (EN003) and Middle West (EAM130) were sampled. A long drill hole through the main orebody at Eloise 

Deeps (ED126) was systematically sampled. The samples selected at each of the four mineralised bodies are representative of 

the main lithologies that host the deposits, capture their proximal to distal footprints and intersect the various lodes. Further 

information on sampling and their context within the deposit and its environs are provided in Birchall et al. (2021).  420 

5 Methods 

5.1 Sample Preparation 

The samples were extracted from surface and mine sampling (Starra-276, Osborne, Monakoff, E1) and diamond drill holes as 

outlined in section 4, produced a range of different physical samples requiring different initial preparation prior to analyses., 

including:  425 

1. 25 mm diameter cores, drilled in situ with a petrol-powered rock drill. These samples were oriented in situ using a 

sun compass which is unaffected by extreme local magnetic fields present at many sites. These samples in some cases 

need to be re-assembled and glued, before being marked with orientation lines. 

2. 10-50 cm blocks extracted with cold chisel and hammer from the surface outcrops and open pits. These samples were 

also oriented using a sun compass in the field. The sun compass orientation marks are used to draw azimuth lines on 430 

the block surface. The block is then drilled perpendicular to the orientation surface using a 25 mm diamond coring 

drill. The orientation mark is thus transferred from block surface to the top of the 25 mm core.  

3. 10-30 cm pieces of either ½ NQ (48 mm diameter) or ¼ HQ (63 mm diameter) core sampled from diamond drill 

holes. The orientation method for diamond core differs from the standard palaeomagnetic method, with marks 

pointing downward along the base of the hole (Figure 11). Therefore, orientations were re-marked to the standard 435 

palaeomagnetic system prior to re-drilling and cutting (Figure 11). In this system:  Palaeomagnetic Azimuth = 

Diamond drill dip azimuth - 90˚; Palaeomagnetic dip = 90˚ - Diamond drill plunge. Once drill core samples were 

marked in the standard palaeomagnetic method was used to drill down the axis of each sample to produce 25 mm 

cores.  

All samples were sawn into 22 mm long segments referred to as paleomagnetic plugs or ‘rounds’ (Figure 11, 12). Cylinders 440 

of this dimension provide a good approximation of a dipole magnetic source (Riisager & Abrahamsen, 2003). At least three 

rounds were made from each sample where possible, to provide statistically reasonable mean values for the petrophysical 
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measurements. Preparing three samples also allowed for one sample to be used for geochemistry and mineralogy and one for 

Alternating Field Demagnetisation (AFD), with one reserved for other analyses. Samples were labelled with unique specimen 

codes and re-marked up with orientation lines (Figure 11), to enable measurements of vector information, e.g., palaeomagnetic 445 

vectors and magnetic fabrics (i.e., anisotropy of magnetic susceptibility; AMS). A range of analytical techniques, illustrated 

in Figure 12 and outlined below, were undertaken on up to 3 specimens per sample, as outlined in Section 5.2. 

5.2 Techniques (methods, instrumentation, data processing and pitfalls) 

5.2.1 Density Measurements 

The density of an object is defined as mass per unit volume, but it is commonly assumed to be the weight in air of a unit 450 

volume of an object at a specific temperature (Johnson and Olhoeft, 2017). Petrophysical studies, routinely consider sample 

weight to be equivalent to mass due to the minimal discrepancy. “Density” may refer to either bulk dry bulk density, in which 

the solid material and pore space are considered, and/ or saturated bulk density (grain density) in which only the volume of 

solid material is considered. Bulk density, especially of sedimentary rocks, varies significantly with fluid content (water) within 

pore spaces (Johnson and Olhoeft, 2017), but in most cases crystalline igneous, metamorphic, and metasomatic rocks (i.e., 455 

almost all rocks observed in this study) preserve sufficiently low porosity, that the dry and saturated bulk densities are 

effectively equivalent (i.e., within 0.001 gcm-3). Densities should be stated in SI units (kg/m3) but are more commonly reported 

as g/cm3 (three orders of magnitude smaller), mainly for ease of use. 

Specific gravity, as measured in study, is a the density relative to a standard substance (commonly water). Based on the 

Archimedes principle Specific Gravity (SG) is calculated as the ratio of the weight /mass of a rock sample in air at a stated 460 

temperature to the weight / mass in air of a unit in a volume of gas-free distilled water at a stated temperature (Johnson and 

Olhoeft, 2017). In this study, SG values were calculated based on weight measurements made using a Mettler Toledo MS204TS 

analytical balance, which is designed specifically for making SG measurements of this kind (Figure 13). An earlier version of 

the same instrument the Mettler Toledo AG204 was utilised for some legacy samples (see column U in the database).  

Samples were initially weighed in air and then subsequently weighed in distilled water.  465 

The SG and volume of each sample was calculated using the following equations: 

Eq. (1)  𝜌 =
𝐴 × 𝜌𝐿

𝐴 −𝐵
   Eq. (2)  𝑉 =  

𝐴

𝜌
 

Where ρ = density, A = sample weight in air, B = sample weight in liquid, ρL = density of the liquid, and V = sample volume. 

SG values for up to three specimens per sample (columns P-R in the database) were used to derive mean SG values (column 

S) and an associated standard deviation (column T). Although SG is dimensionless, being a ratio of two densities, we report it 470 

here in density units (gcm-3) because the denominator (the density of water) is effectively a constant (approximately 1 gcm-3) 

and therefore the SG is effectively equivalent to bulk density. 

Volume results determined using the Archimedes principle are utilised to make volume corrections to various other 

petrophysical parameters, specifically magnetic susceptibility and NRM measurements. 

https://www.britannica.com/science/density
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5.2.2 Magnetic Susceptibility Measurements 475 

Magnetic Susceptibility measurements are the most common type of petrophysical quantity collected in mineral exploration, 

and along with measurements of remanent magnetisation allow determination of the in-situ magnetisation of different 

lithologies and alteration styles, that can be used to constrain forward modelling and inversion.  Magnetic susceptibility 

measurements were made using an Agico MFK1-A Kappabridge magnetometer. However, for legacy samples, other 

instruments may have been utilised (see column AA in the database).  480 

The MFK1 Kappabridge apparatus consists of the Pick-Up Unit, Control Unit and Computer, and represents a precision fully 

automatic inductivity bridge. It automatically zeros between readings and automatic compensates for the thermal drift of the 

bridge and automatically switches to appropriate range. The measuring coils are designed as 6th-order compensated solenoids 

with a high field homogeneity. The instrument is based on micro-electronic components, with two microprocessors controlling 

all functions of the Kappabridge, and is fully controlled by an external laptop computer. The output signal from pick-up coils 485 

is amplified, filtered and digitalized, and raw data are transferred directly to the computer in the form of .RAN files and or 

.AMS files, which are native formats for AGICO’s AnisoftTM 4.2 and 5.0 software packages. 

Bulk susceptibility measurements were taken with the field strength set at 200 A/m to maximise the dynamic range of the 

sensor. The MFK1-A calculates magnetic susceptibility values based on a nominal sample volume of 10 cm3 and as such, the 

results were later corrected using volumes calculated during density measurements.  490 

Users should be aware that in magnetite-rich rocks with susceptibilities greater than 0.1 SI (especially above 1 SI) the self-

demagnetisation effect considerably suppresses the intrinsic magnetic susceptibility of a rock (e.g., Austin et al., 2014). The 

measured magnetic susceptibilities reported in Austin et al. (2024) incorporate both the intrinsic susceptibility and suppression 

due to the self-demagnetising field. However, our measurements are also limited by the measurement range of the MFK-1A 

instrument which can realistically only measure 10 cm3 samples up to susceptibilities of approx. 2.25 SI. Measurements of the 495 

most magnetite-rich and/or mushketovite-rich ironstones (which may have intrinsic susceptibilities of 10-20 SI; Clark, 1988) 

are likely beyond the detection limits of the instrument and may therefore be supressed to some degree.  

Magnetic susceptibility measurements were made on up to three specimens for each sample (columns V-X in the database) to 

derive a mean magnetic susceptibility value (column Y) for the sample and an associated standard deviation (column Z). 

Magnetic susceptibility is commonly plotted relative to density to compare the properties of different deposit types and their 500 

alteration haloes. A linear plot is used here for ore deposits mainly because it provides a clear indication of the relative magnetic 

mineral contents relative to a linear magnetite trend (Figure 14). A Henkel plot (logarithm of magnetic susceptibility against 

density; Enkin et al., 2020) is used to better differentiate more weakly magnetic samples from the alteration footprint (Figure 

15). The data correlate well with similar studies, e.g., the Big Bear IOCG deposits (Enkin et al., 2016), with IOCG deposits 

(e.g., Ernest Henry and SWAN) plotting just above the Quartz-Feldspar-Calcite + Magnetite line of Enkin et al. (2020). 505 
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5.2.3 Remanent Magnetisation Measurements 

The direction of remanent magnetism is important in understanding the overall magnetization strength and direction in highly 

magnetised mineralised bodies (e.g., Peculiar Knob; Schmidt et al., 2007). Understanding remanent magnetism is crucial to 

determining confidence in the resultant 3-D model because it facilitates a reliable estimation of the impact of remanent 

magnetization on the overall (i.e., induced + remanent) magnetization of the prospect. Where magnetised rocks have a high 510 

Koenigsberger ratio (high ratio of remanent to induced magnetization), and where the remanent magnetisation direction is 

significantly oblique to the inducing field, anomalies will be incorrectly modelled if they do not account for the remanent 

magnetisation. 

At least two rounds from each sample underwent natural remanent magnetisation (NRM) measurements. The process requires 

the input of the sample orientation data to correct the measured magnetisation direction to geographic coordinates. For the 515 

Cloncurry METAL project, all samples were measured using an AGICO JR-6 spinner magnetometer. However, many of the 

legacy samples which are included in the Cloncurry METAL database (Austin et al., 2024) have been measured on a 2G 

Enterprises 755R three-axis cryogenic magnetometer and/or a custom-made CSIRO three-axis spinner fluxgate magnetometer.  

The JR-6 spinner magnetometer is the world’s most sensitive and accurate instrument for measurement of remanent 

magnetization of rocks based on classical (non-cryogenic) principle and is the standard for palaeomagnetism world-wide 520 

(AGICO, 2021). It functions by rotating the rock specimen at a constant angular speed inside the Pick-Up Unit inside a pair of 

coils. An alternating current (AC) voltage is induced in the coils whose amplitude and phase depend on the magnitude and 

direction of the remanent magnetization (RM) vector of the specimen. The resultant voltage is amplified, filtered and digitized. 

Using harmonic analysis, the computer calculates two rectangular components of the projection of RM vector into the plane 

perpendicular to the axis of rotation. The JR-6A version used, has an automatic specimen holder which changes the position 525 

of the specimen during measurement to get the complete vector automatically. The measurement process is fully controlled by 

a PC notebook or desktop and the data are interpreted using AGICO’s Rema software. 

The 2G cryogenic magnetometer uses three superconducting-quantum-interference-devices (SQUIDS) to measure the three 

components of the magnetic field with magnetic dipole moment noise of less than 1 x 10-12 A/m. Unfortunately, this system 

does not have the dynamic range necessary to measure strongly magnetised specimens. Strongly magnetised specimens 530 

therefore had to be measured on the 3-axis spinner magnetometer. The 3-axis spinner utilises a fluxgate magnetometer 

positioned adjacent to the sample spinning mechanism. The results of the NRM measurements yielded a magnitude, 

declination, and inclination of the magnetisation direction. The data extracted from the 2G and custom spinner magnetometers 

is comprised of simple ASCII file which require substantial re-formatting before interpretation using Pmag software developed 

by Phil Schmidt (CSIRO). Remanent magnetisation and Koenigsberger ratio are commonly plotted relative to density (Figure 535 

16) and/or magnetic susceptibility to characterise the dominant magnetic minerals (e.g., Hematite, magnetite and pyrrhotite) 

within deposits and their footprints which generally form under different redox conditions. 
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5.2.4 Conductivity 

Minerals act as semiconductors or insulators (silicates and oxides) in crustal rocks. In metal exploration, unlike fluid-saturated 

rocks in petroleum petrophysics, conductivity is not primarily related to ions in pore fluids. Instead, conductivity is heavily 540 

dependent on the presence and interconnectivity (fabric) of metal-bearing minerals, especially chalcopyrite and galena.  

Conductivity measurements were carried out up to three rounds per sample. A KT-20 Handheld Susceptibility and 

Conductivity Meter was set to 100 kHz which provided a sensitivity as low as 0.1 S/m. The equipment is widely used in the 

industry for susceptibility measurements but is prone to providing ambiguous results. A custom-made holder was utilised to 

counter ambiguity caused by the operator. This ensured the measurements always had the flat end of the round centred on the 545 

sensor. The results were viewed directly on the instrument display and imported into the accompanying GeoView program. 

Subsequently, they were exported as discrete records in .CSV format, which were collated for the database by .BAT script and 

then cross-checked against a measurement log. Users of this data should be aware that electrical resistivity and conductivity 

measurements are highly scale-dependent (Fitzpatrick, 2006). Fitzpatrick (2006) suggests conductivity should be measured on 

1 m diamond core to get reliable results. Whilst conductivity is measured at a consistent scale across all samples, the sample 550 

size is sub-optimal, and our conductivity measurements should be considered useful estimations of where sulphide occurs. 

Chargeability is not scale dependent and would be a more suitable data to collect on small cores such as those used in this 

study. 

5.2.5 Radiometrics 

Radioactive isotopes have played an important role as a heat source during the Earth’s history, and heat generation from 555 

intrusions is often included in geological models. The overall radioactivity is known to have been higher at the time of the 

formation of the Cloncurry METAL project deposits. Relevant for heat production in these rocks are the radioactive isotopes 

of Uranium (238U), Thorium (232Th) and Potassium (40K). The heat generated per second by these elements (µWkg-1) would 

be presented as concentrations cU, cTh, and cK, respectively, the total Qr is the heat produced by radioactivity in the rock 

(Rybach, 1976, 1988): 560 

 

Eq. (3) Qr = 95.2cU + 25.6cTh + 0.00348cK 

  

Radiometric measurements were conducted with a Radiation Solutions RS-332 Gamma-Ray Spectrometer and a custom-made 

tray holding up to three rounds per measurement. For most samples, all three slots were used for Assay Mode measurements 565 

collected over 300 second (5 minute) run-time. The accompanying RS Analyst program was used to catalogue and export of 

the data. Results were tabulated with K (Potassium-40), U (Uranium/Radium), Th (Thorium-232), Dose and Dose rate, using 

respective data units (%, ppm, µSv etc). The data was imported into the database together with the measurement ID, a note on 

the number of rounds in each of the measurements. Standard radiometric ratios, K:U, K:Th, U:Th, Th/K, U/K, U2/K were 
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calculated and also listed in the database. These ratios are a means of normalising the relative proportions of K, Th and U in 570 

different rock types, independent of their total count, to differentiate K, Th and U anomalism. It has long been recognised that 

Uranium anomalism in airborne radiometric data correlates with mineralisation and fluid pathways at numerous sites within 

the study area (Lambourn and Shelley, 1972). However, gamma-ray spectrometry at the sample scale provides a petrophysical 

means of integrating mineralogical and geochemical understanding of ore formation providing knowledge that can be used to 

better interrogate airborne radiometric datasets (e.g., Austin et al., 2021 d, Austin, 2021b).  Uranium anomalous specimen (i.e., 575 

those with U2:K > 10 in Figure 17) have distinct mineralogical properties. They all occur in IOCG or ISCG deposits and 

prospects and contain carbonates (either calcite and/or dolomite) and apatite. They are mineralogically complex and preserve 

mixed feldspar, titanium and iron oxide and iron sulphide assemblages (e.g., contain both magnetite and pyrrhotite, magnetite 

and hematite, and/or titanite ± rutile and ilmenite). Walshe et al. (2016) has argued that the distribution of andesine-ilmenite 

assemblages versus K-feldspar-titanite assemblages can be used to define pH and/or redox gradients in IOCG systems.  580 

5.2.6 Structural Fabrics 

Methods 

Anisotropy of magnetic susceptibility (AMS) is a second-order symmetric tensor that maps alignment of iron in the crystal 

lattice (Biedermann, et al., 2015) and therefore maps mineral alignment in rocks (Figure 18). AMS is often used as a proxy for 

mineral texture in geologic applications (Biedermann, et al., 2015). AMS fabrics have been related to numerous events through 585 

a range of temperature-pressure conditions, from viscous flow in magmas (e.g., Knight and Walker, 1988; Ferré et al. 2002) 

through to folding and ductile-brittle shearing during relatively late stages of orogenesis (e.g., Torsvik et al., 1992; Greiling 

and Verma, 2001, Austin et al., 2019b). 

Anisotropy of magnetic susceptibility (AMS) measurements were made on most samples using an AGICO MFK1-A 

Kappabridge magnetometer. The MFK1-A effectively measures the axes of maximum, intermediate, and minimum 590 

susceptibility and relates those to the fabric of the magnetic grains with the rock.  

For legacy samples (Uncover Cloncurry), 64 measurements are taken while spinning the specimen about the X, Y, and Z axes 

individually, using a conventional single axis rotator attachment. The field sensor is zeroed after the sample is inserted into the 

pick-up coil thereby eliminating any field bias from the measurements made as the sample is rotated. Then one bulk 

susceptibility value is measured along one axis and the complete susceptibility tensor is combined from these measurements. 595 

For Cloncurry METAL measurements, a 3D-rotator attachment was used. The 3D-rotator spins the specimen simultaneously 

about two axes with different velocities enabling the determination of 320 directional susceptibilities during a single 

measurement phase (constituting an excellent 3-D distribution within a sphere). Once the specimen is inserted into the rotator, 

measurement is fully automated, requiring no additional manipulation to measure the full AMS tensor, and halving the time 

for measurement. The output signal from pick-up coils is amplified, filtered, and digitalized, and raw data are transferred 600 
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directly to the computer in the form of .RAN files and or .AMS files, which are native formats for AGICO’s Anisoft 4.2 and 

5.0 software packages (Chadima and Jelinek, 2009), either of which can be used to view and analyse the data. 

Data 

The AMS data are displayed for each specimen separately in the database: Specimen A: columns CG-DC; Specimen B: 

columns DD-DZ; Specimen C: columns DD-DZ. The resulting data are comprised of a bulk susceptibility (column CH in the 605 

case of Spec A) and three orthogonal tensors that together define the AMS ellipsoid. The three tensors are the long-axis (K1), 

an intermediate-axis (K2) and a short axis (K3). Each of these tensors is comprised of a relative intensity (i.e., a multiplier of 

the bulk susceptibility) for that tensor (e.g., column CJ) a declination (or dip Azimuth: e.g., column CM) and vector inclination 

(or plunge: e.g., CP) and alpha 95 errors for each (e.g., CS and CV). The AMS ellipsoid is geographically corrected relative 

to drill-hole or surface sample orientation and can be visualised using stereonets.  610 

Anisoft 4.2 was used to assess the quality and clustering, whether the magnetic fabrics within specific lithologies or structures 

have a preferred orientation overall and whether the distribution of orientations reflect a specific type of fabric within that rock 

(e.g., axial, axial planar or planar distributions: Závada, et al., 2017). Three main parameters, introduced by Jelinek (1981), 

are commonly calculated from the results to differentiate the style of fabrics present. P (e.g., column DA) is equal to K1/K3 

and corresponds to the anisotropy factor. Rocks with high P values are highly anisotropic, whereas rocks with P≈1 are isotropic. 615 

L (e.g., column CY) is equal to K1/K3 and defines the extent to which a rock has a lineation (i.e., if K1>K2≈K3 the ellipsoid 

is prolate and the rock has lineation). F (e.g., column CZ) is equal to K2/K3 and defines the extent to which a rock is foliated 

(i.e., if K1≈K2>K3 the ellipsoid is oblate, and the rock has a foliation). Other Jelinek (1981) parameters included, are Pj (e.g., 

column DB) the corrected degree of anisotropy which takes the shape parameter into consideration and T (e.g., column DC) 

the shape parameter (0=isotropic; +1>T>0 = oblate (planar) ellipsoid; -1<T<0 = prolate (linear) ellipsoid). An example data 620 

output from Anisoft 4.2 software and an interpretation of that data are presented in Figure 19. 

Processing 

The data collection process involved individual analysis of up to three specimens (i.e., sub samples) for some properties (e.g., 

magnetic susceptibility), up to three samples simultaneously for others (e.g., radiometrics), and only one specimen but one 

was analysed for other (e.g., TIMA). It is not practical to present this data as a database, due mainly to the extent of additional 625 

calculations and metadata required by each of the individual techniques. The Cloncurry METAL “database” (Austin et al., 

2024) is therefore provided as a single spreadsheet. Vector properties / tensors such as AMS ellipsoids required trigonometric 

vector addition to calculate weighted mean lineations (i.e., K1 vectors: columns FK-FL) with corresponding intensity (column 

FM) and weighted mean foliations (i.e., inverse weighted planes to K3: columns FO-FP) with corresponding intensity (column 

FQ) for each sample. These calculations, which incorporate both vectors and the relative intensity of the fabrics provide 630 

weighted mean foliation and lineation data for each sample, which are compatible with traditional measurements used in 

structural geology. 
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Mean length is also calculated for the mean lineation (column FN) and mean foliation (column FR) as a measure of certainty 

of the results. The mean length is the vector sum of two or more vectors divided by the sum of the vector lengths (i.e., a 

measure of the parallelism of the vectors) which provides an effective measure of the relative textural homogeneity of the 635 

sample. Samples with a mean length >90% are considered texturally consistent. Whilst sample with mean length <90% have 

fabrics that are inconsistent to at least some degree the user should note that the result is highly dependent on the number of 

vectors used in the calculation. Regardless of the number of vectors included in the calculation, a mean length of 100% 

indicates all vectors are parallel. Where two vectors are used in the calculation, a mean length of 95% approximates two vectors 

of equal intensity are 30˚ offset from each other; a mean length of 85% approximates two vectors of equal length offset 45˚ 640 

from each other; and a mean length of 50% approximates two vectors of equal length offset 90˚ from each other. Where three 

vectors are used in the calculation a mean length of 92% approximates three vectors of equal intensity are 30˚ offset from each 

other; a mean length of 80% approximates three vectors of equal intensity are 45˚ offset from each other; a mean length of 

33% approximates three vectors of equal intensity are 90˚ offset from each other. Where three vectors are used in the 

calculation a mean length of zero is possible (but highly unlikely) if three vectors of equal intensity are offset 120˚ from each 645 

other. 

5.2.7 Automated Mineral Mapping  

Sample Preparation 

After the petrophysical analyses were completed, samples were polished for automated mineral mapping. Where possible, the 

rounds were polished on the side opposite to the Palaeoazimuth markings (see Section 3.1) and without resin impregnation on 650 

the surface, however resin was required for more porous samples. 

Automated mineral mapping was conducted using a Mira TescanTM field emission gun (FEG) scanning electron microscope 

(SEM), coupled with three EDAX Energy Dispersive X-ray Spectroscopy (EDS) detectors, a backscatter electron (BSE) 

detector and the Tescan Integrated Mineral Analyser (TIMA) software package. The automated modal mineralogy setting on 

the SEM utilises a 25 keV, 6 nA, 26 nm electron beam and a 10 µm pixel size was chosen for analyses with a required minimum 655 

of 1000 X-ray counts per pixel. Standard electron beam alignment, focussing and instrument calibration, including BSE and 

EDS detector calibration, were carried out before each analysis run of up to 22 samples. 

An area ~23 mm in diameter of the polished surface was scanned, with an average analysis time of 1 hour and 50 minutes at 

10 µm pixel resolution, producing mineral phase and BSE data for each sample. If the SEM scans over an unrecognised mineral 

phase, a grain boundary, or poorly polished section due to the presence of clay minerals or sample fractures, unclassified 660 

(black) pixels will occur in the dataset and in the phase panoramas. Any unrecognised, genuine phases can be later added 

mineral library in the TIMA software. While the TIMA SEM system is operating in modal mineralogy mode, it produces 

volume percent mineral abundances down to 0.01 vol. % detection limits, which can be exported as a .csv along with the 
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mineral phase.png images (e.g., Figure 20) that are integral to interpreting alteration mineral assemblages and textural 

relationships of each sample. 665 

Mineral Classification Methods 

For each of the deposits studied in this project, a CSIRO-developed, X-ray spectra-matching mineral classification library was 

generated. The ‘legacy’ Uncover Cloncurry samples were considered in the development of each library and were reprocessed 

accordingly. The new mineral classification libraries have improved previously misclassified or unclassified phases (i.e., 

scapolite and plagioclase at Ernest Henry and sillimanite/andalusite and pyroxenes at SWAN) found in the Uncover Cloncurry 670 

datasets. On average, each of the deposit-specific mineral classification libraries include more than 150 minerals, which have 

been generated from international standards from Web Mineral’s Mineralogy Database, semi-quantitative Electron Backscatter 

Diffraction (EBSD) analyses, which were acquired with an Oxford detector on the TIMA SEM, or microprobe standards. Any 

minerals that were imported directly from the international Web Mineral database were done so in consultation with the 

available literature for each of the deposits and in-built spectra-matching and spectra-quantification calculators in the TIMA 675 

software.  

In the mineral classification library, each mineral is constrained by its mineral chemistry (Figure 21) and furthermore, the 

expected X-ray count range per element within the mineral. The X-ray count ranges are guided by the reference spectra, but 

generally need to be refined for each mineral as the computed ranges can be misleading. Additional elemental constraints with 

low-to-background X-ray count values are often added when minerals of similar composition need to be differentiated (Figure 680 

22). Due to many minerals existing as variations of their solid solutions, in some cases, small impurities such as Fe and Mg in 

muscovite (Figure 22) are allowed into the mineral definition. The primary and secondary constraints are particularly important 

for minerals that have undergone multiple stages of alteration and include common and unusual impurities, for example the 

grossular- and spessartine-rich almandine garnet species found at the Cannington deposit (Pearce et al., 2021). 

5.2.9 Geochemistry 685 

Portable XRF data were collected using an Olympus Vanta pXRF instrument, which has a 50 kV, 4-Watt rhodium (Rh) X-ray 

tube and a large-area Silicon Drift Detector. Analytical beam times were 20 seconds and utilized a 10 kV and 40 kV beam in 

Geochem mode. Measurements were checked against 5 known (matrix-matched) diamond core standards and a silica blank to 

check efficacy and instrument drift during data acquisition. However the data presented in the database (Austin et al., 2024) is 

uncalibrated against the standards as the instrument measurements closely matched the standard values. The instrument drift 690 

was also monitored by repeating one unique standard and a blank every 20 analyses. Measurements were taken on the polished 

surface of the TIMA rounds apart from samples which were set using resin prior to polishing due to poor rock quality/friability 

(e.g., some SWAN samples). The resin has a significant impact on the pXRF results due signal attenuation and interference, 

and so measurements were undertaken on the unresined back of the samples. The front resined sides were also measured for 

small test set of 23 samples from SWAN, confirming that the data are unusable as all elemental concentrations are attenuated 695 
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by as much as two orders of magnitude. All pXRF data in the database (columns NY to QQ) includes the proportion of the 

element present and associated reading error (1 standard error), both of which are displayed in parts per million (ppm). Light 

elements, defined as those with atomic number <11 (i.e., Na and lighter) cannot be quantified by pXRF and so the total 

proportion of all light elements (LE_concentration) is presented however in columns QP, with the respective error in column 

QQ (both in ppm).  700 

5.2.10 Hyperspectral Data 

Data Collection  

Hyperspectral data in the VNIR-SWIR (350-2500 nm) spectral regions was collected using ASD (Analytical Spectral Device) 

Fieldspec4 spectrometer. Data was collected on the polished TIMA round surfaces for 100 averages, and the instrument was 

calibrated with using a standard white reference material. Spectra were viewed and analysed in The Spectral Geologist (TSG) 705 

software. Collecting spectral data on a polished surface is not the ideal measurement condition and imparts some noise on the 

spectra due to scattering effects which are largely related to the mineral assemblage present (e.g., more sulphide or iron oxide 

rich samples are generally noisier). However, hyperspectral measurements were not a component of the original Uncover 

datasets and were added as a database component for the METAL datasets mid-way through sampling, and so a significant 

number of METAL samples as well as the ~500 Uncover Cloncurry samples were already polished prior to the onset of data 710 

collection. 

A key component of creating a fully scalable and integrable geoscience database, is that all the data are measured in a consistent 

manner with measurements from different methods on the same sample surface. And so, a suite of 23 test samples from Ernest 

Henry were measured pre and post polishing, to evaluate the impact of polished vs. unpolished samples on the spectral results. 

The primary difference between the spectra from the rough and polished surface is in the overall shape of the spectral 715 

background which is observed as systematically lower VSalbedo (reflectance albedo over 450-2450 nm) and higher SWIR 

spectral contrast pfit (range of reflectance over [1300,2500] nm, de-trended by a 3rd order poly fit) in the polished samples 

(Figure 23). A minor but systematic difference is also observed in the spectral outputs from polished and unpolished samples 

for commonly used scalars (e.g., 2250D and 2200D). However, the outcome is the same trend across the sample suite for both 

the polished and unpolished sample, and negligible changes to the qualitative TSA (uTSAS) outputs were observed (Figure 720 

23). Given the test sample results and that the bulk of the samples (including all of the Uncover samples) were already polished, 

the remaining samples were also measured on the polished surface for consistency across the database so that all measurements 

(TIMA, pXRF, ASD) were representative of the same surface. The exception is for samples which were set using resin prior 

to polishing due to poor rock quality/friability (e.g., some SWAN samples). As with the pXRF data, the backside of the resined 

samples was measured to avoid interferences from the resin. 725 
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Processing and Data Outputs 

Spectral mineralogy outputs were generated in the TSG (The Spectral Geologist) software using a series of CSIRO-developed 

Batch Scalars (system, user published, and file) as well as the inbuilt TSA (The Spectral Assistant) function of TSG. These 

standard outputs were included for each deposit dataset regardless of their efficacy for a given deposit or mineral system. This 

so that every deposit has consistent outputs for use in advanced data analytics and relies on the user for evaluation of which 730 

outputs to use in making interpretations. All the spectral outputs have been created using TSG Version 8.0.7.4 and TSA Version 

7 (released May 2020). 

TSA is an algorithm for automated spectral unmixing which uses its training library to match the spectrum against a single 

mineral or model a simulated mixture of 2-4 minerals that most closely resembles that of the input spectrum (Berman et al., 

2011) (Figure 24). TSA mineralogy outputs are one of the most common outputs derived from hyperspectral data using TSG 735 

and should be used with caution as they are only a best approximation of the top three contributing minerals to a given SWIR, 

VNIR, or TIR spectrum, and represent relative abundances. The quantification of any spectral parameters requires the 

concurrent collection of validation data for calibration of the spectral data, e.g., quantitative XRD (Haest et al., 2012; Laukamp 

et al., 2017) or EPMA (Lypaczewski and Rivard, 2018). Regardless, TSA unmixing results are commonly used by geologists 

as the data are exported as relative weights of a given mineral (Figure 24), however, these results and their reliability are highly 740 

dependent on the reference library used, as well as the mineral assemblage present (Laukamp et al., 2017). It should also be 

noted that the mineral assemblages present in the Cloncurry METAL and Uncover samples are dominated by SWIR-inactive 

minerals, including oxides and sulphides, where the SWIR-active mineral assemblages relevant for vectoring towards 

mineralisation are typically dominated by chlorite, biotite, and calcite mineral species (e.g., Ernest Henry) which are 

challenging to distinguish between in the SWIR due to their overlapping spectral absorption features in the SWIR, namely the 745 

~2250 nm “Mg-OH” and the ~2340 nm carbonate feature (Laukamp et al., 2017; Lypaczewski and Rivard, 2018) (Figure 24). 

TSA results have been exported into the Cloncurry METAL database (Austin et al., 2024) at both at the Mineral Group (QW 

to RJ) and Mineral scale (RK to TE) to allow for application at different scales of detail. However, the Mineral Group results 

are more robust, and the mineral scale of TSA outputs should be approached with caution (e.g., Laukamp et al., 2017). 

Parameters related to the quality of the fit have also been included to assist the user in evaluating the quality of the results (QS 750 

to QV) (Figure 24). The minerals included in the TSA library for a given deposit are informed by the TIMA automated 

mineralogy results with domain expert input to evaluate the rate of false positives and misclassifications. Given the limited 

number of SWIR active minerals in the samples, the libraries used for the TSA unmixing do not change significantly between 

deposits. For all samples, the Albedo threshold in the TSA setting was changed from its standard setting of 0.04 to 0.01 to 

accommodate the darkness of the rocks, and the lower albedo of the polished samples with respect to unpolished or powdered 755 

samples. This also reduced the number of NULL TSA results.  

As discussed above, for the purpose of the database outputs and their application in advanced data analytics, the TSA libraries 

have been minimally changed between deposits, and the TSA settings have been kept consistent. However, the TSA outputs 
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for a given deposit may be improved (NULL results reduced) for certain mineral phases with the addition of deposit specific 

custom external reference libraries and further tweaking of the TSA settings. The changing of TSA settings is something which 760 

is generally not recommended and was tested for Ernest Henry with well constrained TIMA mineralogy and domain knowledge 

input. While the number of null results were reduced, the results were often unreliable as would be expected when removing 

constraints from unmixing model, and in general resulted in an overrepresentation of chlorite across the dataset (e.g., EHM025 

in Figure 24), and so the results are not included in the database. Another approach to improving unmixing results is to expand 

the mineral library using external reference libraries which include spectra of minerals known to be in the dataset. This 765 

approach was tested with the Ernest Henry dataset using a custom external library which included a larger number of biotite 

spectra, as biotite and chlorite are difficult to unmix, as well as scapolite which is known to occur in the samples (from the 

TIMA data). The application of this library did not result in a significant improvement in the unmixing results (e.g., no scapolite 

identification) and in many cases resulted in more misclassifications, and so the results are not included in the database. The 

presence of known phases (from previous GSQ work and CSIRO TIMA datasets) such as scapolite and piemontite were also 770 

probed using a spectral matching method (aux-match in TSG). This method outputs the results of curve matching between 

spectra in the project dataset and spectra in an Aux (Custom Library) dataset and yielded no significant matches despite the 

presence of scapolite in abundances of up to ~50 wt% in some samples.  

This highlights the inherent difficulties mineral identification in mixed samples from SWIR spectra using endmember library 

spectra. Another limitation of conventional unmixing methods (like TSA) is that it uses only the SWIR region of the spectra 775 

(1400-2500 nm) and does not consider the entire spectral range of the instrument (350 – 2500 nm) (Figure 24). This is important 

when considering that the assemblages present in the Cloncurry samples are dominated by “SWIR-inactive” minerals and that 

the mineralised assemblages are iron-oxide rich (Figure 24). While SWIR inactive mineral such as feldspars do not have 

distinctive spectral features in the SWIR they contribute to the spectral background, and the VNIR region of the spectrum is 

sensitive to the presence of iron oxides and transition metals. It is for this reason; that the entire raw spectrum is included in 780 

the database.  

Given the inherent complications with spectral unmixing results, many spectral geologists (e.g., Laukamp et al., 2021) prefer 

to probe individual spectral features in a dataset by looking at for example, the depth, wavelength or shape of a well understood 

spectral absorption feature such as the 2200 nm “Al-OH” feature (e.g., Haest et al., 2012) or the 2250 nm “Mg-OH” feature 

(e.g, Sonntag et al., 2012) (Figure 24). Figure 24 provides a good example of how the 2250D (batch system) scalar, which 785 

provides a measure of the depth of the 2250 nm feature, relates to abundance of chlorite in three samples and is an improvement 

on the TSA outputs. Scalar is the term used by TSG to refer to any set of calculated values related to loaded spectral data. The 

outputs included in the database are what are referred to as batch scalars. These are pre-written, well-established, and in most 

cases published scripts for spectral parameters which probe the position or depth of a given spectral absorption feature (See 

Laukamp et al., 2021 for an overview). The outputs in the database are split into three categories, TSG Batch System Scalars 790 

(scalar name_SS), TSG Batch User Scalars (scalar name_US), and Batch File Scalar (scalar name_FS  ). Batch system scalars 

commonly use a 3-band polynomial fit, while the User Scalars employ a Multiple Feature Extraction Methods for their outputs 
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so are much more restrictive (Figure 25). Details of the scalars name, application, as well as references are included the 

database explanatory notes and are also described in Laukamp et al. (2021). Not all of the scalars in the database will relevant 

or even trustworthy for every deposit but have been included so that each dataset in the final database (Austin et al., 2024) has 795 

the same outputs for use in advanced data analytics. It is also important to note that the System Scalars (_SS) do not have any 

masking applied to them, and that the user should consider this in their application (Figure 25). 

5.3 Dataset collation and integration 

For ease of use, our dataset is provided as a single excel spreadsheet or as separate spreadsheets for individual deposits. It 

comprises numerous outputs from a variety of different sensors, which are processed in numerous software platforms, and 800 

required additional pre-processing, integration, and assimilation steps for some of the methods.  

The format was modified from the previous version (Uncover Cloncurry: Patterson et al, 2016), which had three to four lines 

per sample each corresponding to a different sub-sample (specimen). This format was difficult to use because most data was 

missing from most lines. In the updated version, all data from each sample (up to three specimen) are included in one row, and 

extra calculations have been added to better summarise the data. In general, these are simple averages. However, in the case 805 

of vector quantities (e.g., AMS and remanent magnetisation) the average direction of three vectors coupled with the average 

intensity of the vector can provide a poor summary of the data and the associated errors. Calculating vector means (i.e., adding 

the three vectors together trigonometrically) is a far more accurate summary of the data and the associated mean length metric 

provides an excellent measure of the consistency of the three vectors used in the calculation. 

 810 

To make the Cloncurry METAL data (Austin et al., 2024) easy to use a range of metadata (descriptions of which are outlined 

on Tab 2 of the database) are provided, including:  

1. Information on the structural context and system zonation have been included. Structural context is ascertained by 

examination of the position of the samples relative to mineralisation (determined from Leapfrog interpolation) and relative 

to the established structural framework of deposits (if they exist). Where possible previous work, including 3-D geophysical 815 

and geochemical models and cross-section in a 3-D GIS (e.g., Discover 3DTM, Geoscience AnalystTM, or LeapfrogTM) was 

assembled. System zonation was determined by examination of the alteration assemblages present in TIMA imagery and 

is also determined relative to previous work. An example of how this contextual metadata is used is provided in relation to 

structure, geophysics and geochemistry in some of the major outputs of this study (e.g., Schlegel at al., 2021; Austin et al., 

2021 b, c; McFarlane et al., 2021, Stromberg et al., 2021).   820 

2. Accurate three-dimensional location data (X, Y  in metres relative to GDA zone 54 map grid) and collar altitude (Z relative 

to sea level) for each sample is also provided. XYZ data were calculated from collar location and survey information from 

confidential company drilling data and downhole depth information collected during sampling and computed using the 

“Drillholes” function of MapInfo DiscoverTM. 
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3. General geological descriptions based on company logs (where available), from sampling notes (where available) and/or 825 

from TIMA imagery are also included. It should be noted that these data are highly qualitative, especially the former two. 

Whilst the TIMA images are quantitative, consistent representations of the lithology of the rock, the interpretations of the 

rock type, alteration and texture are still qualitative. Until complex variables such as protolith, textural fabrics and relative 

proportions of alteration products can be determined autonomously from TIMA imagery using data analytics, these 

descriptions will have to suffice. However, they should be used with caution, and users of the database are encouraged to 830 

review the TIMA imagery themselves and revise the structural and alteration framework to suit their specific needs, or 

better still, devise an automated method. 

5.4 QA/QC 

Each of the input datasets for this project were produced using proprietary instrumentation and software, and as such much of 

the quality assurance and checking was undertaken using these software packages prior to export. Some of the main problems 835 

identified at this stage of the process included:   

1. False parallelism of NRM directions due to the sample rotator not working correctly on the JR-6 magnetometer. 

2. Subdued magnetic susceptibility readings in magnetite-rich samples due to self-demagnetisation effects. 

3. Large percentages of “unknown” minerals in TIMA due to TIMA mineral library limitations.  

These issues and others of a similar nature were easily addressed by minor changes to the set-up of various instruments, 840 

modifying instrument settings and/or improving reference spectra, as required. 

The processing and assimilation of these individual data streams, however, present far more opportunities to introduce errors 

via mistranslation of proprietary data formats into text, misplacement of data, or misapplication of functions (e.g., using the 

wrong columns to calculate averages and ratios). By and large these kinds of errors presented as obvious bipolar contrasts in 

resultant outputs, typically with orders of magnitude variance. These were (hopefully) all fixed prior to publication.  845 

In some cases, the data passed QA/QC but still had a major flaw that made it difficult to integrate effectively. These were 

encountered in a subsequent data analytics project (Williams et al., 2022) in which the entire dataset produced a suspicious bi-

modal clustering on one axis of several non-linear data reduction projections.  After individually assessing each of the various 

components which correlate with a key axis of the dimension reduction projection, two major problems were identified. Both 

were related to underlying collection and processing issues out of our control. 850 

1.  An approximately 10% difference in the radiometric dose, mainly correlated with a consistent difference of ~25% between 

the Potassium% of two groups of samples. Those with lower dose rate were all measured at our North Ryde laboratory 

around November 2018, whereas the samples with the higher dose rate were all measured at our relocated Lindfield 

laboratory around April 2020. Williams et al., (2022) found that all samples measured at each site shared the same flaw 

and inferred that the contrast in mean radiation level was due to the background radiation of the different laboratory 855 

environments. This calibration error was amended by normalising each channel of radiometric data relative to the mean 

measurements from each site. 
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2. Williams et al., 2022 also found instances in which similar rocks with similar mineralogy plotted at opposite ends of a 

dimensionally reduced projection. In this case it was found that the main difference between the two clusters was related 

to the methodology used to generate the TIMA mineralogy maps. One of these clusters was comprised of earlier Uncover 860 

Cloncurry Samples (Patterson et al., 2016) which were measured using a previous version of the TIMA software and 

processed with a slightly different TIMA library. The previous TIMA library did not include phases such as fayalite, 

almandine, epidote, fluorite, scapolite, and others. Thus, during processing of the data, one mineral could easily be 

incorrectly classified as another, e.g., andesine in the earlier data was instead classified as scapolite in the later. In some 

instances, the same mineral was also mapped using different names, e.g., potassic feldspar was mapped as microcline in 865 

the Uncover Cloncurry mineral library, but as K-feldspar in the Cloncurry METAL library (Williams et al., 2021). This 

major oversight has been amended in the updated version of the data. In general, however, the use of a different TIMA 

library may dramatically affect several mineral phases and in this case variances in the volume of actinolite, scapolite and 

k-feldspar, all affected the projection dramatically. Because of the updated software it was not feasible to individually 

reprocess all results and so legacy samples were only reprocessed for deposits studied in the Cloncurry METAL project 870 

(i.e., Cannington, Ernest Henry, SWAN, Starra-276, Osborne, and Eloise).  

The use of different mineral libraries meant some of the more uncommon assemblages from the earlier study could not be 

easily integrated with data from the latter, highlighting that the processes by which data are collected, reduced and represented 

have profound impacts on any big data approaches to geoscience. This is a particular issue for categorical data (e.g., 

mineralogy) which may not be precisely identified or may correspond to mixtures of multiple endmembers. But it is a common 875 

problem across all spectral/elemental imaging and scanning analyses where data needs to be ‘unmixed’. To best address such 

issues across different rock suites using quantitative mineralogy approaches (e.g., SEM-TIMA) it is critical to 1. have access 

to raw data, 2. customised data reduction approaches, and 3.  Smarter and/or more flexible approaches to 

classification/estimation of mineral phase proportions.  

 Data collection issues almost certainly have a greater impact on outputs than data analytics methodologies. The issues 880 

identified here are detectable, resolvable, and have relatively small impacts due to the scale integrated nature of the data, the 

high quality of the data and consistency of the sampling and analytical tools used. However, the use of datasets assimilated 

from different scales, resolutions, precisions, and tools, more generally would almost certainly lead to far more serious issues, 

which could be substantially less detectable, and which no amount of buffering, filtering, recalibration, or conversion can 

adequately supress. The consistency and quality of inputs is paramount. 885 

6. Applications 

The data collected by this study span a range of geoscience applications, including understanding deposit paragenesis 

(Schlegel, 2021, Schlegel et al. 2021, 2022), integrated insights into the geochemical, mineralogical, and petrophysical 

footprints of mineral deposits (e.g., Austin et al., 2021 b), quantifying the structural controls (Austin et al., 2021 c; McFarlane 
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and Austin, 2021) and geophysical expression (Austin, 2021 a, b) of mineral systems. The resulting knowledge can be applied 890 

to three broad functions, Mineral Exploration Techniques, Minerals System science and characterisation, and novel approaches 

to each using data analytics. 

6.1 Mineral Exploration and Minerals System Characterisation 

The data produced has applications across a range of green and brownfields exploration toolkits as visualised by the Venn 

diagram in Figure 26. At the core of this capability is the SEM-TIMA quantitative mineralogy technology. SEM-TIMA 895 

provides quantitative information about mineralogy, lithology, rock texture, metamorphic grade and alteration paragenesis, 

much of which is only collected qualitatively and very subjectively in mineral exploration. Furthermore, SEM-TIMA provides 

contextual information that can be used to constrain our understanding of the other techniques (i.e., surrounding TIMA in the 

Venn Diagram (Figure 26)) producing camp-scale exploration targeting criteria which can be exploited using conventional 

core-shed tools (e.g., Figure 27). The resultant data also provide quantitative constraints across a range of geoscience 900 

disciplines, which address the five questions of mineral systems science (Walshe et al., 2005), including: (1) What is the role 

of Geodynamics? (2) What is the role of Architecture of the system? (3) What are the roles of fluids, their sources and 

reservoirs? (4) What are the fluid flow drivers and pathways? (5) What are the metal transport and deposition processes?  The 

applications of these data are discussed citing examples within this framework below. 

6.1.1 Geodynamics 905 

Insights into the geodynamics of the minerals system can be gained via interrogation of the mineralogical and textural 

information derived from the SEM-TIMA imagery. The mineralogy data provides information about the relative abundance 

of metamorphic indicator minerals (e.g., sillimanite, andalusite, kyanite pseudomorphs) as well as information about the 

temporal juxtaposition of metamorphic and metasomatic reaction assemblages. Textural information from SEM-TIMA also 

provides insights into tectono-metamorphic evolution by differentiating primary sedimentary and igneous textures from 910 

metamorphic, metasomatic, and tectonic textures. This mineralogical and textural quantification of rocks provides valuable 

information for the reconstruction of sedimentary, magmatic, metamorphic, tectonic, and metasomatic history, i.e., the 

geodynamic evolution, of a terrane. In general, for the Cloncurry terrane, mineralisation typically post-dates the major 

metamorphic and tectonic episodes, coinciding instead with late magmatic hydrothermal activity and strike-slip tectonics. 

However, there are examples in which our data provide critical insights into the earlier metamorphic history of the Cloncurry 915 

district. For example, the work by Pearce et al. (2021) integrating metamorphic petrology and REE-geochemistry data from 

the Cannington deposit identifies a complex history pervasive Fe- and Ca-Fe alteration, that was subsequently exposed to high-

grade (>upper amphibolite facies) metamorphism and later hydrated to form the complex assemblages observed. The TIMA 

imagery on their own provide future studies with an ideal launching platform, allowing researchers to readily locate minerals 

of interest for interpreting broad crustal processes (e.g., REE profiles), thermobarometry (e.g., garnet, pyroxenes, amphiboles, 920 

sillimanite) and geochronology (e.g., monazite, zircon).  
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6.2.2 Architecture 

The mineralogical and textural quantification of rocks provided by SEM-TIMA can be integrated with quantitative information 

on rock fabrics provided by anisotropy of magnetic susceptibility (AMS) data to provide valuable information about the 

architecture of the system. The AMS technique allows us to differentiate isotropic vs anisotropic rocks, thereby assisting 925 

differentiation of rock types and providing insights into their role in the development of regional to deposit scale architecture. 

For example, Austin and McFarlane (2021) found that dioritic intrusions in the distal foot and hanging wall of Ernest Henry 

had isotropic (i.e., undeformed) fabrics, consistent with them acting as rigid buttresses that focussed strain during deformation. 

AMS provided information on the nature of fabrics within different rock types, and in particular whether fabrics are lineation 

or foliation dominant and the strength of those fabrics. Such information allows us to differentiate primary sedimentary and 930 

magmatic fabrics from tectonic fabrics and furthermore quantify the bulk rotations in those fabrics related to folding (e.g., 

McFarlane et al., 2021) and/or rotation of rigid blocks within an incompetent substrate (e.g., Austin and Patterson, 2020). The 

technique furthermore allows us to contrast lineation and foliation fabrics within a cluster of samples to produce information 

of the kinematics of a deposit. Such insights can be integrated with convention structural geology, lineament interpretation 

based on geophysical filter products and 3-D geophysical models to characterise regional architecture and paleo-kinematics.  935 

6.2.3 Fluids (metasomatism) 

Fluid composition (including contained elements such as gold, copper, iron, sulphur and carbonate carbon) and fluid properties 

(including oxygen fugacity/redox) and acidity (pH)) are important factors that control mineralisation. Whilst technically not 

directly characterised by the data obtained in this study, valuable insights into fluid composition, redox and acidity of the fluids 

involved in mineralisation can still be obtained via understanding of alteration paragenesis and deposit zonation. The main 940 

tools for understanding these properties include SEM-TIMA mineralogy and SWIR hyperspectral data. 

The Cloncurry METAL datasets identified several mineral zoning patterns and compositional trends related to the Cloncurry 

District IOCG systems, many of which are non-unique, and have applications to district scale exploration. These include: 

1. Feldspar mineral zonation at Ernest Henry (e.g., Schlegel et al., 2021) and Eloise (e.g., Birchall et al., 2021) 

2. Zonation in white mica and carbonate abundance and chemistry at Starra-276 (McFarlane et al., 2021a) 945 

3. Chlorite and biotite distribution and/or chemistry at Eloise (Birchall et al., 2021), and Osborne (McFarlane et al., 2021b) 

4. Chlorite-biotite-white mica zonation at Ernest Henry (Schlegel et al., 2021) and Mt Elliot (Stromberg et al., 2021a) 

5. Apatite haloes around the mineralised zones at SWAN (Stromberg et al., 2021a), Ernest Henry (Schlegel et al., 2021) and 

Eloise (Birchall et al., 2021) 

Hyperspectral data are sensitive to most mineral species (apart from sulphides), and different spectral ranges are sensitive to 950 

different mineral species (Laukamp et al., 2021). While hyperspectral mineralogy is a surface technique, it can be used to map 

alteration from the sub-sample to regional scales, and thus can be easily integrated with other geoscience datasets such as 

radiometrics and magnetics to inform our understanding of alteration footprints and fluid pathways (e.g., section 5.2.4).  
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Stromberg et al (2021) provides an excellent example, combining high-resolution SEM-based mineral mapping from four drill 

holes at SWAN-Mt Elliot with continuous downhole hyperspectral HyLogger3TM datasets to present an updated alteration 955 

paragenesis of the system. Their work describes the role of successive fluids in localising mineralisation and developing the 

associated alteration footprint.  

The role of fluids in localising mineralisation can also be examined at much finer scales using the SEM-TIMA coupled with 

geochemistry data. Schlegel et al. (2021) and McFarlane et al. (2021) highlighted the role of acid-base reactions in controlling 

mineralisation at Ernest Henry and Starra-276. Schlegel (2021, 2022) furthermore highlighted how SEM-TIMA mineral 960 

mapping approach can be used to understand the role of fluids in generating porosity in hydrothermal systems. They suggested 

that mineral zonation resulting from of sodic alteration, potassic, and iron metasomatism, shearing, and brecciation, followed 

by regressive hydrolytic alteration and carbonatization. Hydrolytic alteration, resulted in variable replacement of magnetite by 

hematite, also resulted in volume reduction/porosity creation (evident now as late carbonate infill and veining) which made 

way for the late, high grade copper mineralisation. 965 

6.2.4 Pathways 

Insights from convention structural geology, geophysics-based lineament interpretation and 3-D geophysical modelling 

provide rigid constraints on the architecture of the system to and its paleo-kinematics. Structures are commonly assumed to be 

fluid pathways. In reality, however, all structures have unique histories, have different kinematics, and are active at different 

times. Whilst the interaction of structure and alteration can be constrained at the sample to deposit scale using METAL data, 970 

it is more difficult to differentiate the role of regional structures in localising mineralising fluids based purely on convention 

structural geology and lineament interpretation. To differentiate fluid pathways from other structures new methods are required 

that can highlight fluid rock interactions within those structures, not only at the sample scale to core scale, but also at the 

district scale.  

Research on IOCG deposits (Austin et al., 2016 b, i; Austin and McFarlane, 2021; Austin, 2021 b; Austin et al, 2021 c) has 975 

identified associations between mineral deposition and redox reactions, reflected in transitions between magnetite and 

pyrrhotite, or hematite bearing lithologies. That work illustrated that transitions between these key deposit forming minerals 

coincide with elevated uranium on the more oxidised side of the gradient (i.e., magnetite in a reduced system, or hematite in 

an oxidised system). This association is mappable at the sample scale using METAL approach, at the drill core/ deposit scale 

using a handheld susceptibility meter and gamma-ray spectrometer. At a regional scale the association of Fe-oxide and uranium 980 

(i.e., the redox gradient) can be mapped using a combination airborne magnetic and radiometric data (e.g., Austin, 2021 b). 

This technique allows the differentiation of fluid pathways from un-involved structures at several IOCG deposits across the 

Cloncurry district including SWAN, Starra-276, Monakoff, Cormorant and Canteen (Austin, 2021b, Austin et al., 2024). The 

recognition of such processes provide and ideal proxy for oxidised fluid pathways within IOCG mineral systems because they 

allow use to convert chemical reactions into physical properties that can be recognised in geophysical data. In contrast to 985 



32 

 

mineralogical or chemical properties, these physical properties be readily scaled from sample to drill-core, to deposit to district, 

allowing us to trace fluid pathways from the deposit into the district. 

6.2.5 Mineral Deposition 

Mineral deposition in hydrothermal systems it typically a function of several processes, usually the chemical reactivity 

potential of the host and fluid, coupled with the available porosity (e.g., section 5.2.3) and structural controls. The Cloncurry 990 

METAL database (Austin et al., 2024) provides insights into each. Information on structural fabrics within a mineralised 

system is derived primarily from AMS data (discussed in 5.2.2), which is upscaled using geophysical modelling and lineament 

interpretation and integrated with insights from radiometrics to constrain fluid pathways (discussed in 5.2.4). This knowledge 

of the structural controls is coupled with insights into different fluid-rock reactions and alteration paragenesis from SEM-

TIMA (discussed in 5.2.3) to characterise mineral deposition. In essence, the processes involved in mineral deposition are 995 

interdependent, that is fluid pressure impacts structural rheology, which impact porosity generation, which impacts chemical 

reactivity. These processes are all linked, and the great advantage of the METAL methodology for data integration is that our 

data are integrated-by-design and therefore describes these processes holistically.  

Austin and McFarlane (2021) provide an example of how insights into structural controls can be integrated with an 

understanding of the metallogenic history to understand mineral deposition. Their work demonstrated that the juxtaposition of 1000 

tectonic lineations and foliations at Ernest Henry suggested anticlockwise rotation of the strain direction causing a transition 

from pure reverse movement to sinistral strike slip from ca 1550-1500 Ma. They interpreted that as the system evolved into 

strike-slip dominant tectonism, in which N-S oriented near surface structures linked with reactivated sub-parallel basement 

structures facilitating fluid flow between the lower and upper crust. The AMS technique has furthermore identified that the 

majority of structurally controlled hydrothermal deposits plunge parallel to the measured K1 (lineation) vector (e.g., Austin et 1005 

al, 2016 d,e,f; Austin and McFarlane, 2021, McFarlane et al, 2021, Birchall et al, 2021). This allows us to predict the plunge 

of most mineral deposits in the Cloncurry District, demonstrating its value as an exploration tool, if utilised early in a 

greenfields drilling campaign to accurately plan follow up drilling (McFarlane and Austin, 2021). 

6.3 Machine Learning  

Williams et al. (2022) developed targeted workflows to make use of the range of geoscience data within the reference database 1010 

and investigated options for pre-processing, transformation, and the construction of unsupervised and supervised predictive 

models. These workflows were implemented in Python and were presented as a package of configurable scripts, which can be 

readily integrated and extended with widely used open-source machine learning packages. A range of software tools and 

algorithms have been used, adapted and created to make use of specific types of geoscience data in machine learning workflows 

and for configuration of model generation and interrogation. 1015 

The multi-property nature and dimensionality of the dataset presented a challenge for use in machine learning workflows, 

targeted dimensionally reduced projections were found to be useful for unravelling complex geology than bivariate, ternary or 
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three-dimensional diagrams. Williams et al (2022) identified the prominent features and signatures which define the larger 

scale structure of these projections providing a geological framework for the clustering models developed. Dissection of 

dimensionally reduced projections also assisted in identifying a series of QA/QC issues related to the reference dataset itself, 1020 

which otherwise may have been more difficult to identify or diagnose. 

The models developed can efficiently represent complex geology as described by geologists and suggest that some degree of 

predictive analytics for exploration is feasible. The project provided a reference framework (Figure 28), allowing explorers to 

contextualise future exploration results relative to known mineral system signatures in the region, and in so doing further 

building the reference framework. 1025 

 

Data Availability 

Data described in this manuscript can be accessed from the AuScope Data Repository: https://doi.org/10.60623/82trleue 

(Austin et al., 2024) 

Conclusions 1030 

Cloncurry METAL set out to push the boundaries of “Big Data”, by critically examining the role of the data, in particular the 

pitfalls of incompleteness, inhomogeneities of scale and specific scale dependencies of different data types (e.g., contrasting 

depth of resolution of magnetic vs gravity inversions). We recognised that one way to bridge the gap between large-scale, low-

resolution datasets and the fractal (i.e., multi-scale) nature of geological systems, was to develop a scale consistent (sample-

based) methodology for data collection, and translate the knowledge into physical parameters, which are readily scalable. The 1035 

outcome of which is led to the world’s first, fully integrated, petrophysical-mineralogical-geochemical-structural-metasomatic 

characterisation dataset, across over twenty deposits from the most geologically complex mineral systems on Earth.  

This study presents data, from this innovative district-wide, scale-integrated, geoscience data project, which analysed 1,590 

samples from 23 mineral deposits and prospects across the Cloncurry District, Queensland. Ten different analytical techniques, 

including density, magnetic susceptibility, remanent magnetisation, anisotropy of magnetic susceptibility, radiometrics, 1040 

conductivity, modal mineralogy from SEM-TIMA, geochemistry, and short-wave infrared (SWIR) hyperspectral data resulted 

in 561 columns of scale-integrated data (+2151 columns of SWIR). All data were collected on 2x2.5 cm sized sample cylinders, 

a scale at which the spatial coupling of the techniques is assured. These data are integrated by design, eliminating the need to 

downscale coarser measurements using assumptions, inferences, inversions, and interpolations. This scale consistent approach 

is critical to quantitative characterisation of mineral systems and has numerous applications to mineral exploration, such as 1045 

linking alteration paragenesis with structural controls and petrophysical zonation.  

Whilst the database is not 100% complete (i.e., it is missing data for some samples), it is, to our knowledge, the most complete 

dataset of its kind. It is a unique dataset which paves the way for a completely different approach to mineral exploration, to 

understanding mineral systems and to advancing the use of data analytics in the geosciences. Our team has extracted significant 

https://doi.org/10.60623/82trleue
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value out of this new integrated data as demonstrated by the examples contained herein. But we have only scratched the surface 1050 

on the potential applications of this approach, and there is much to be revealed by the wider geoscience community.  This data, 

associated imagery, modelling, and insights provide an optimal platform for further studies by providing comprehensive 

characterisation of the deposits, their footprints and host rocks. It describes a mineral system at the sample scale.  

This project highlights the need to think carefully about how geoscience data is collected, and how collection and processing 

impact upon automated interpretation. The consistency of the scale, resolution and depth of investigation of input data are 1055 

paramount and should be carefully considered in order to best capture geoscience data that is meaningful to data analytics.  It 

is crucial to recognise that very few of the datasets utilised in geoscience (especially mineral exploration) are truly spatially 

coincident, truly quantitative (at all scales) or compatible (in terms of describing identical volumes). To make big data work 

in geosciences, changing how we approach the data will lead to improved outputs from data analytics, rather than the analytics 

themselves. Data must first be integrable to be integrated.  1060 

Ultimately, the most important aspects of data integration will always be tied to people. The integration of ideas and the linking 

of domain expertise is critical to align the mineral vectors provided by different techniques (Figure 29). Getting domain experts 

together in the field, core shed, laboratory and conference room is critical to developing improved methodologies for unlocking 

mineral potential and maximising the utility of data analytics. We hope this publication provides a platform for innovative 

research into this unique and complex mineral system and is a catalyst for adoption of this approach across mineral districts 1065 

globally.  
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Figures 1365 

 

 

 

Figure 1: Google ScholarTM search results for a range of common data integration phrases used in geology and mineral exploration. 

Data for each point on the graph comprises all result for the 2 years prior to that year. Each dataset is normalised to 2016 to provide 1370 
a meaningful comparison of recent trends in the use of different techniques. Based on Austin et al., 2021a. 
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Figure 2: Illustration of some of the different scales of data in mineral exploration and some common linkages between scale. A. The 

Terrane / Regional scale is dominated by geophysical and remote sensing; (B) The Camp to Deposit scale is dominated by drilling 

and geophysics, is multidimensional, mixed resolution and may involve several feedback loops with sub-deposit scale; C. The sub-1375 
deposit scale acquires material from the deposit scale and feeds back constraining information (e.g., petrophysics, fabrics). 
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Figure 3: Schematic illustrating different types of data used across regional exploration (left), resources definition (centre) and 

deposit characterisation, linkages between datasets at different scales and some methods of scaling data sets. Left panel lists 1380 
techniques by relative depth effectiveness. Lower panel provides a summary of data integrability. Dashed lines indicate data may be 

collected as a series of points (cf. continuous measurements). 
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Figure 4: Schematic illustrating different scales of investigation used in mineral exploration. A. Illustrates the relationships 

between scale and cost effectiveness, and the switch from prediction to detection at the camp scale (after McCuaig et al., 2010). B. 

Extends the insights of McCuaig et al (2010) to the deposit characterisation scale and illustrates the quantum leap in data scale 

required to define a mineral resource. C. Illustrated the relative volumes utilised across the three main scales and across a range of 1390 
measurement techniques used in mineral exploration and deposit characterisation. 
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Figure 5: Geological map of the Cloncurry District, featuring deposits from which samples in the database were taken. Modified 

from Austin and Blenkinsop, 2008. Additional geochronological information based on Foster and Austin, 2008. 1395 
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Figure 6: Condensed and simplified tectonic, metasomatic, depositional, magmatic and metallogenic history of the Cloncurry District 

mineral system (upper 5 panels), and the processes observed at each of the deposits and prospects discussed in the study (modified 

from Austin et al., 2016g). 
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Figure 7: Simplified 3-D structural model of Ernest Henry based on measured AMS fabrics. All drill holes sampled are presented 

along with the respective sample numbers. The zonation of the system as it related to the samples is approximated by titles along the 

top of the figure. Model is viewed from the west and looking down at ~45˚. Scale varies in this perspective view.  

 1405 
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Figure 8: A. Sampling of Osborne combined diamond drill hole samples from two holes, one in the open pit and another to the east, 

as well as: B. substantial sampling within the open pit. A series of ENE dipping mineralised ironstone (shown in purple) pass from 

the south-western pit wall, toward the centre of the pit and continue east into the underground mine. 
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Figure 9: A. 3D view of GoogleEarthTM imagery draped on a DEM over an ironstone ridge cropping out between Starra-257 and 

Starra-276. The majority of surface samples were silicified hematite-dominant ironstones used to examine the relationships between 

redox and mineral zonation along strike.  B. Underground 3D view of Starra-276, and the location of samples. The turquoise body 

is a 0.75% equivalent copper grade shell. Underground sampling provides excellent east to west and surface to depth coverage across 1415 
the Starra system and can be used to understand the relationships between redox and mineralisation across strike and to depth.   



54 

 

 

 

 

 1420 

Figure 5: 3D Model of the Cannington ore body, with samples covering the northern and southern mineralised zones, all seven ore 

types, alteration zone adjacent to the ore body and all host lithologies (including: psammite, schist, gneiss and amphibolite). 
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Figure 6: A) Diagram of palaeomagnetic sample orientation mark-up procedure for oriented diamond core; B) Fully prepared 

palaeomagnetic sample including AMS mark-up. 
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Figure 12: Schematic illustrating the concept of integration-by-design, the range of techniques used and data outputs. 1430 
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Figure 7: Mettler Toledo MS204TS Analytical Balance with hanging basket suspended in distilled water. 

 1435 
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Figure 8: Plots of density vs magnetic susceptibility data are a common method for differentiating the abundances of major ore 

forming minerals, e.g., hematite, magnetite and pyrrhotite, providing knowledge that can be used to constrain geophysical 

inversions, but also insights into the chemical factors controlling mineralisation, such as redox (Austin, 2021 b,c). The first three 

letter of the labels correspond to deposit codes, and the remainder is a lithological description. Modified from Austin, 2021a. 1440 
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Figure 15: Plot of Magnetic Susceptibility vs density for a selection of host rocks and distal alteration assemblages from the 

Cloncurry district, shading indicates appropriate ranges for some common lithological classes. The first three letter of the labels 

correspond to deposit codes, and the remainder is a lithological description. Modified from Austin, 2021a. 
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Figure 9: Koenigsberger ratio plotted relative to density is one tool Petrophysicists use to characterise the dominant magnetic 

minerals within deposits and their footprints. Fe oxides and sulphides such as hematite, magnetite and monoclinic pyrrhotite all 

have characteristic petrophysical properties which provide information about the chemical conditions leading to mineralisation (e.g, 

redox and or pH). The first three letter of the labels correspond to deposit codes, and the remainder is a lithological description. 1450 
Modified from Austin, 2021a. 
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Figure 10: A plot of U2/K sorted from high –to- low suggests that U anomalism is associated with characteristic mineralogical  

properties.  
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Figure 11: (A) Anisotropy of magnetic susceptibility at the grain scale corresponds to the preferred crystallographic axes of a 

magnetic grain referred to as K1 which represents the long axis of the grain, and the vector of maximum susceptibility), K2 (the 

intermediate), and K3 (the short axis). (B)  Within a rock the alignment of grains determines whether that rock is isotropic or 

anisotropic. Isotropic rocks generally have randomly oriented grain, which collectively have no preferred alignment, whereas in 

anisotropic rocks the grains are preferentially aligned. (C) Grain alignment, which corresponds to the measured AMS fabric can be 1460 
mapped in using micro-computed tomography (from Austin et al., 2016a). 
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Figure 12. AMS data for samples from the Hanging Wall Shear Zone, Ernest Henry deposit. A) Stereonet in which the three AMS 

tensors are plotted for each specimen; B) Summary of the structural information derived from the AMS data.; C) Plot of P 

(anisotropy factor (K1/K3) vs magnetic susceptibility; D) Plot of L (lineation) vs F (foliation). From Austin et al., 2021b. 1465 
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Figure 20: One of the more interesting TIMA images, sample CAN003 is a micro-breccia from Canteen prospect, with sodic altered 

clasts in a matrix of monoclinic (magnetic) pyrrhotite and calcite. The matrix displays classic Durchbewegung textures, which result 

from ductile flow in pyrrhotite which mills and rotates the breccia clasts. 
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Figure 21: Mineral phase panorama from sample EHM006, Field D06, highlighting the mineral classification library at the pixel-

scale and a) X-ray spectra from albite in the sample and b) X-ray spectra from K-feldspar in the sample. These minerals are 

constrained not only by their key elemental expression but elements that set them apart from similar phases, i.e. albite will not only 

be constrained by O, Na, Al and Si, but by Ca and K, to differentiate from more calcic feldspars and from K-feldspar along with 

other elements where overlaps may occur. 1475 



66 

 

 

Figure 22: Mineral phase panorama from sample EHM248, Field I03 (1) and P05 (2), highlighting spectra from potentially 

competing mineral phases such as scapolite and andesine and alteration mineral muscovite. While the X-ray spectra from scapolite 

in 1a) is similar to the andesine spectra in 2a) it is able to be distinguished by adding a strict Cl constraint into both mineral 

classifications. 1b) The endmember composition of muscovite does not contain any Fe or Mg; however, it is a common impurity in 1480 
white micas, therefore the muscovite classification has been edited to allow a small amount of Fe and Mg. After a specified limit, 

increases in Mg or Fe (and a decrease in Al and increase in Si) would see the phase classified as phengitic muscovite. 
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Figure 13: ASD spectra of sample EHM047B before and after polishing; note the decrease in overall reflectance (VS albedo) in the 

polished sample from a max reflectance of 0.3 to 0.132 as well as the negligible change in the qualitative TSA mineralogy outputs 
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Figure 14: ASD spectra (left) and corresponding user TSA outputs and TSA modelled spectra (colored) overlain on the sample 

spectrum (black) for the SWIR spectral region (right) for three samples (EHM022, EHM026, EHM025). The TSA modelled spectra 

are coloured by error with the top sample (EHM022) having the lowest error. TIMA mineralogy results are provided for comparison 

as well as the output of the 2250D base scalars which approximates the abundance of chlorite (and biotite) and provides an improved 

proxy for chlorite abundance than the TSA results.  1495 
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Figure 25: Schematics for derivation of the batch system 2200D scalar and the batch user White_Mica_Smectite_Abundance scalar, 

both of which probe the 2200 nm Al-OH spectral absorption feature.  
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Figure 15: Venn diagram illustrating how different techniques integrate to produce scale consistent mineral systems exploration and 

targeting tools. Mineralogy, at the centre is the key link to all other techniques and tools and linking with the major geoscience fields. 1505 
The inner areas or overlap are tools and observations we use to link mineralogy to other areas of geoscience. The outer areas of 

overlap are primarily where different areas of geoscience can be integrated to provide insights into the key mineral systems 

characteristics e.g., the five questions (Walshe, et al., 2005). 
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Figure 16: Examples of Core-shed tools that can be used for mineral system characterisation and targeting: a portable X-ray 

fluorescence analyser (pXRF), portable reflectance spectrometers (ASD), magnetic susceptibility and conductivity meter and 

gamma-ray spectrometer. 
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Figure 17: UMAP projection of all samples from all deposits (using only the petrophysical, mineralogical and hyperspectral 

properties), highlighting three main endmembers, and major intermediate host lithologies. Note that as the projection is developed 

from a network representation of similarities between samples, samples plotting intermediate between other identifiable groups do 1520 
not necessarily exhibit precisely intermediate character (as could be concluded if plotting the original features), and rather they have 

similarities to both groups. However, in some cases the projection has indeed highlighted some key geological features which can be 

related to the projection axes (x, y, z). Figure from Williams, et al., 2022. 
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Figure 29: The integration of domain expertise is critical to understanding how different vectors to mineralisation integrate in 1525 
practise. This geological understanding is critical to underpin sensible utilisation of advanced data analytics. 

 


