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Abstract 11 

Long-term and high spatial resolution aerosol optical depth (AOD) data are essential for climate 12 

change detection and attribution. Global ground-based AOD observation stations are sparsely 13 

distributed, and satellite AOD observations have a low temporal frequency, as well low accuracy 14 

before 2000 over land. In this study, AOD is derived from hourly visibility observations collected 15 

at more than 5000 meteorological stations over global land from 1980 to 2021. The AOD retrievals 16 

of the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua Earth 17 

observation satellite are used to train the machine learning model, and the ERA5 reanalysis 18 

boundary layer height is used to convert the surface visibility to AOD. Comparisons with 19 

independent dataset show that the predicted AOD has correlation coefficients of 0.54 and 0.55 with 20 

Terra MODIS satellite retrievals and AERONET ground observations at daily time scale. The 21 

correlation coefficients are higher at monthly and annual scales, which are 0.81 and 0.61 for the 22 

monthly and 0.91 and 0.65 for the annual, compared with Terra MODIS and AERONET AOD, 23 

respectively. The visibility-derived AOD at station scale is gridded into a 0.5° grid by ordinary 24 

kriging interpolation. The mean visibility-derived AOD over the global land (-60°N-85°N), the 25 

Northern Hemisphere, and the Southern Hemisphere are 0.161, 0.158, and 0.173, with a trend of -26 

0.0026/10a, -0.0018/10a, and -0.0059/10a from 1980 to 2021. For the regional scale, the mean (trend) 27 

of AOD are 0.145 (-0.0041/10a), 0.139 (-0.0021/10a), 0.131 (-0.0009/10a), 0.153 (-0.0021/10a), 28 

0.192 (-0.0100/10a), 0.275 (-0.0008/10a), 0.177 (-0.0096/10a), 0.127 (-0.0081/10a), 0.177 (-29 

0.0003/10a), 0.222 (-0.0000/10a), 0.232 (0.0071/10a), and 0.255 (0.0096/10a) in Eastern Europe, 30 

Western Europe, Western North America, Eastern North America, Central South America, Western 31 

Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, and India. The 32 

visibility-derived AOD at station and grid scales over global land from 1980 to 2021 are available 33 

at National Tibetan Plateau / Third Pole Environment Data Center 34 

( https://doi.org/10.11888/Atmos.tpdc.300822) (Hao et al., 2023). 35 
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Center. https://doi.org/10.11888/Atmos.tpdc.300822. 38 

1 Introduction 39 

Atmospheric aerosols are composed of solid and liquid particles suspended in the atmosphere. 40 

Aerosol particles are directly emitted into the atmosphere or formed through gas-particle 41 

transformation (Calvo et al., 2013), with diverse shapes and sizes (Fan et al., 2021), optical 42 

properties, and various components (Liao et al., 2015; Zhang et al., 2020; Li et al., 2022). Most 43 

atmospheric aerosols are concentrated in the troposphere, especially in the boundary layer (Liu et 44 

al., 2022), with a high concentration near emission sources (Kulmala et al., 2004) , and a small 45 

portion are distributed in the stratosphere. Atmospheric aerosols severely impact the atmospheric 46 

environment and human health. They deteriorate air quality, reduce visibility, and cause other 47 

environmental issues (Wang et al., 2012; Boers et al., 2015). They impair human health or other 48 

organisms' conditions by increasing cardiovascular and respiratory disease incidence and mortality 49 

rates (Chafe et al., 2014; Yang et al., 2022). The Global Burden of Disease shows that global 50 

exposure to ambient PM2.5 resulted in 0.37 million deaths and 9.9 million disability-adjusted life 51 

years (Chafe et al., 2014).  52 

Aerosols are inextricably linked to climate change. Atmospheric aerosols alter the Earth's energy 53 

budget and then affect the climate (Li et al., 2022). They cool the surface and heat the atmosphere 54 

by scattering and absorbing solar radiation (Forster et al., 2007; Chen et al., 2022). Aerosols, such 55 

as black carbon and brown carbon, also absorb solar radiation (Bergstrom et al., 2007), heat the 56 

local atmosphere and suppress or invigorate convective activities (Ramanathan et al., 2001; Sun and 57 

Zhao, 2020). Aerosols also alter the optical properties and life span of clouds (Albrecht, 1989). 58 

Atmospheric aerosols strongly affect regional and global short-term and long-term climates through 59 

direct and indirect effects (McNeill, 2017). 60 

Tropospheric aerosols are considered as the second largest forcing factor for global climate change 61 

(Li et al., 2022), and they reduce the warming due to greenhouse gases by -0.5°C (IPCC, 2021). 62 

However, aerosols are also regarded as the largest contributor to quantifying the uncertainty of 63 

present-day climate change (IPCC, 2021). The uncertainties are caused by the deficiencies of the 64 

global descriptions of aerosol optical properties (such as scattering and absorption) and 65 

microphysical properties (such as size and component), and the impact on cloud and precipitation, 66 

further affecting the estimation of aerosol radiative forcing (Lee et al., 2016; IPCC, 2021). Therefore, 67 

sufficient aerosol observations are crucial. In aerosol measurements, aerosol optical depth (AOD) 68 

is often used to describe its column properties, which represents the vertical integration of aerosol 69 

extinction coefficients. AOD is an important physical quantity for estimating the content, 70 

atmospheric pollution and climatology of aerosols (Zhang et al., 2020).  71 

AOD data usually from ground-based and satellite-borne remote sensing observation. They have 72 

both advantages and disadvantages. Ground-based lidar observation is an active remote sensing 73 

technology. Lidar generally emits laser and receives backscattered signals to invert the extinction 74 

coefficient of aerosols at different heights (Klett, 1985). By using the depolarization ratio, the type 75 

of aerosol, such as fine particles or dust, can be distinguished (Bescond et al., 2013). The AOD 76 

within a certain height can be calculated by integrating the extinction coefficients; however, 77 

scattering signals are usually not received near the ground, leading to blind spots (Singh et al., 2019). 78 
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At present, there are many ground-based lidar worldwide and regional networks, which provides 79 

important support of vertical changes in aerosols, such as the NASA Micro-Pulse Lidar Network 80 

(MPLNET) in the early 1990s (Welton et al., 2002), the European Aerosol Research Lidar Network 81 

(EARLINET) since 2000 (Bösenberg and Matthias, 2003), the Latin American Lidar Network 82 

(LALINET) since 2013 (Guerrero-Rascado et al., 2016).  83 

Ground-based remote sensing observations supply aerosol loading data (such as AOD), by 84 

measuring the attenuation of radiation from the top of the atmosphere to the surface (Holben et al., 85 

1998). This type of observations mainly uses weather-resistant automatic sun and sky scanning 86 

spectral radiometers to retrieve optical and microphysical aerosol properties (Che et al., 2014). The 87 

Aerosol Robotic Network (AERONET) is a popular global network composed of NASA and 88 

multiple international partners that provides high-quality and high-frequency aerosol optical and 89 

microphysical properties under various geographical and environmental conditions (Holben et al., 90 

1998; Dubovik et al., 2000). The AERONET observations are extensively used to validate satellite 91 

remote sensing observations and model simulations, as well as climatology study (Dubovik et al., 92 

2002b). There are many regional networks of sun photometers, such as the Maritime Aerosol 93 

Network (MAN), which use a handheld sun photometer to collect data over the ocean and is merged 94 

into AERONET (Smirnov et al., 2009), the China Aerosol Robot Sun Photometer Network 95 

(CARSNET) (Che et al., 2009), the Canadian sub-network of AERONET (AEROCAN) (Bokoye et 96 

al., 2001), Aerosol characterization via Sun photometry: Australian Network (AeroSpan) 97 

(Mukkavilli et al., 2019), and the sky radiometer network (SKYNET) in Asia and Europe (Kim et 98 

al., 2004; Nakajima et al., 2020). Another very valuable global network is the NOAA/ESRL 99 

Federated Aerosol Network (FAN), which uses integrated nephelometers distinct from sun 100 

photometers, mainly located in remote areas, providing background aerosol properties over 30 sites 101 

(Andrews et al., 2019).  102 

Satellite remote-sensing is a space-based method that can provide aerosol properties worldwide. 103 

With the development of satellite remote sensing technology since 1970s, aerosol distributions can 104 

be extracted with the advantage of sufficient real-time and global coverage from multiple satellite 105 

sensors (Kaufman and Boucher, 2002; Anderson et al., 2005). The Advanced Very High Resolution 106 

Radiometer (AVHRR) is the earliest sensor used for retrieving AOD over ocean (Nagaraja Rao et 107 

al., 1989). The Moderate Resolution Imaging Spectroradiometer (MODIS), on board the Terra 108 

(launched in 1999) and Aqua (launched in 2002) satellites is a popular sensor with 36 channels, 109 

which have been used for AOD retrieval over both ocean and land based on the Dark Target and the 110 

Deep Blue algorithms (Remer et al., 2005; Levy et al., 2013). The latest MODIS AOD data version 111 

is the Collection 6.1, which provides global AOD over 20 years (Wei et al., 2019). There are also 112 

many other satellite sensors that can be used to retrieve AOD, such as the Polarization and 113 

Directionality of the Earth's Reflectances (POLDER) during 1996-1997, 2003 and 2004-2013 114 

(Deuzé et al., 2000), Sea-viewing Wide Field-of-view Sensor (SeaWIFS) during 1997-2007 115 

(O'Reilly et al., 1998), the Multi-angle Imaging Spectroradiometer (MISR) on Terra since 1999 116 

(Diner et al., 1998). The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) has also 117 

derived aerosols in the vertical direction since 2006 (Winker et al., 2009).  118 

These measurements provide important data for studying the global and regional spatiotemporal 119 

variabilities and climate effect of aerosols. However, ground-based remote sensing observations 120 

only provide aerosol properties with low spatial coverage. There were only 1126 ground stations 121 
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worldwide in 2002 and even fewer sites were available for climate analysis (Holben et al., 1998; 122 

Chu et al., 2002), which limited aerosol climate research by spatial coverage (Bright and Gueymard, 123 

2019). Satellite remote sensing overcomes the limitations of spatial coverage. The AVHRR has been 124 

used to retrieve AOD since 1980, but it is limited by a few channel number, low spatial resolution, 125 

and insufficient validation through ground-based observations before 2000 (Hsu et al., 2017). Many 126 

studies have only investigated the trends and distributions of aerosols after 2000 (Bösenberg and 127 

Matthias, 2003; Winker et al., 2013; Xia et al., 2016; Tian et al., 2023), because of the lack of long-128 

term and global cover AOD products, which is the bottleneck for aerosol climate change detection 129 

and attributions. 130 

To overcome these limitations and enrich aerosol data, alternative observation data could be utilized 131 

to derive AOD. Atmospheric horizontal visibility is a suitable alternative (Wang et al., 2009; Zhang 132 

et al., 2020), because it has the advantages of the long-term records with a large number of stations 133 

worldwide.  134 

Atmospheric visibility is a physical quantity that describes the transparency of the atmosphere 135 

through manual and automatic observations, and the automatic observations of visibility usually 136 

measure atmospheric extinction (scattering coefficient and transmissivity). Koschmieder (1924) 137 

first proposed the relationship between the meteorological optical range and the total optical depth. 138 

Elterman (1970) futher established a formula between AOD and visibility by assuming an 139 

exponential decrease in aerosol concentration with altitude, considering the extinction of molecules 140 

and ozone to analyze air pollution, which called the Elterman model. Qiu and Lin (2001) corrected 141 

the Elterman model by considering the influence of water vapor and used two water vapor pressure 142 

correction coefficients to retrieve AOD of 16 stations in China in 1990. Wang et al. (2009) analyzed 143 

the trend of AOD using visibility-based retrivals from 1973 to 2007 over land. Lin et al. (2014) 144 

retrieved the AOD in eastern China in 2006 using visibility and aerosol vertical profiles provided 145 

by GEOS-Chem. Wu et al. (2014) and Zhang et al. (2017) parameterized the constants in the 146 

Elterman model and use satellite retrieved AOD to solve the parameters in the models at different 147 

stations, to retrive the long-term AOD in China.  148 

Zhang et al. (2020) reviewed the methods of visibility retrieval of AOD, indicating that visibility-149 

based retrieval of AOD can compensate for the shortcomings of long-term aerosol observation data. 150 

Simultaneously, various parameters, such as station altitude, consistency of visibility data, water 151 

vapor and aerosol vertical profiles (scale height), were discussed with modified suggestions 152 

proposed. These studies have enriched AOD data regionally. These studies have enriched aerosol 153 

data insome extent. At present, there are very few studies on global visibility-retrieved AOD and to 154 

analyze climatology of aerosols. 155 

The two physical quantities of visibility and AOD have both connections and differences, making it 156 

challenging to retrieve AOD from visibility. Visibility represents the maximum horizontal visible 157 

distance near the surface, while AOD represents the total vertical attenuation of solar radiation by 158 

aerosols. The visibility of automatic observation is dependent on the local horizontal atmosphereic 159 

extinction (NOAA et al., 1998). Visibility has not a simple linear relationship with meteorological 160 

factors. The vertical structure of aerosols is the greatest challenge to obtain, as it is not a simple 161 

hypothetical curve in complex terrain and circulation conditions (Zhang et al., 2020). These 162 

limitations make it more complex to derive AOD. Machine learning methods can effectively address 163 
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complex nonlinear relationships between variables and have been widely applied in remote sensing 164 

and climate research fields. Li et al. (2021) used the random forest method to predict PM2.5 in Iraq 165 

and Kuwait based on satellite AOD during 2001-2018. Kang et al. (2022) applied LightGBM and 166 

random forest to estimate AOD over East Asia, and the results showed a consistency with 167 

AERONET. Dong et al. (2023) derived aerosol single scattering albedo from visibility and satellite 168 

AOD over 1000 global stations. Hu et al. (2019) used a deep learning method to retrieve horizontal 169 

visibility from MODIS AOD. These studies have confirmed the ability of machine learning to 170 

effectively solve complex relationships among variables. And previous studies are mostly 171 

conducted at the regional or national scale, and few studies at the global scale. Thus, it is feasible to 172 

derive AOD from atmospheric visibility over global land by using the machine learning method. 173 

In this study, we propose a machine learning method to derive AOD, where satellite AOD is the 174 

target value, and visibility and other related meteorological variables are the predictors. We explain 175 

the robustness of the model, validate the model's predictions using ground-based AOD and 176 

independent satellite retrievals, and analyze the mean and trend of AOD across land and regions. 177 

Two datasets of long-term high-resolution AOD are generated. The Section 2 introduces the data 178 

and method. The Section 3 is the evaluation and validation of the visibility-derived AOD, and the 179 

distribution and trends are discussed at global and regional scales. The Section 4 presents the 180 

conclusions. This study is dedicated to supporting the research of aerosols in climate change 181 

detection and attribution. 182 

2 Data and method 183 

2.1 Study area 184 

The study area is global land. A total of 5032 meteorological stations and 395 AERONET sites are 185 

selected in this study, shown in Figure 1. Twelve regions are selected for special analysis, including 186 

Eastern Europe, Western Europe, Western North America, Eastern North America, Central South 187 

America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, 188 

and India. The time range of the study is from 1980 to 2021, during which the records of 189 

meteorological stations are sufficient with a uniform spatial distribution. As shown in Figure 1, the 190 

daily records have exceeded 1500 stations, and monthly and annual records have exceeded 2000 191 

during 1980-1990. After 2000, monthly records have reached 3000, which is the foundation of 192 

gridding AOD. 193 
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 194 

Figure 1 Study area (a) and the meteorological station number (b) with daily, monthly, and annual 195 

records. The number of meteorological stations (filled circles) is 5032. The number of AERONET 196 

sites (empty circles) is 395. The box regions of labelled with number 1-12 are Eastern Europe, 197 

Western Europe, Western North America, Eastern North America, Central South America, Western 198 

Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, and India. 199 

2.2 Meteorological data 200 

The ground hourly data from 1980 to 2021 is collected from 5032 automated meteorological stations 201 

of airports over land. Automated surface observations reduce errors associated with human 202 

involvement in data collection, processing, and transmission. The data can be downloaded at 203 

https://mesonet.agron.iastate.edu/ASOS. The data is extracted from the Meteorological Terminal 204 

Aviation Routine Weather Report (METAR). The World Meteorological Organization (WMO) sets 205 

guidelines for METAR reports, including report format, encoding, observation instruments and 206 

methods used, data accuracy, and consistency. These requirements ensure consistency and 207 

comparability of METAR reports globally. International regulations can be referenced at 208 

https://community.wmo.int/en/implementation-areas-aeronautical-meteorology-209 

programme. Among them, over 1,000 stations belong to the Automated Surface Observing System 210 

(ASOS), and others are sourced from airport reports around the world. 211 

The daily average visibility is calculated using harmonic mean. Experiments have found that 212 

harmonic average visibility can better detect the weather phenomena than arithmetic average 213 

visibility (NOAA et al., 1998). The visibility is calculated using the extinction coefficient, which is 214 

directly proportional to the reciprocal of visibility (Wang et al., 2009). Harmonious average 215 

visibility can capture the process of visibility decline more quickly. Therefore, daily visibility will 216 

have greater representativeness: 217 

𝑽 = 𝒏/(
𝟏

𝑽𝟏
+

𝟏

𝑽𝟐
+ ⋯ +

𝟏

𝑽𝒏
)  Eq. 1 218 

where V is the harmonic mean visibility, n = 24 for the daily visibility, and 𝑉1, 𝑉2,... 𝑉𝑛 are the 219 

individual hourly visibility. 220 

In addition to hourly visibility (VIS), other variables closely related to aerosol properties are selected, 221 



7 

 

including relative humidity (RH), dew point temperature (DT), temperature (TMP), wind speed 222 

(WS) and sea-level pressure (SLP). Temperature affects atmospheric stability and the rate of 223 

secondary particle formation, and humidity influences the size and hygroscopic growth, and wind 224 

speed and pressure significantly impact the transport and deposition. Sky conditions (cloud amount) 225 

and hourly precipitation are also selected to remove the records of extensive cloud cover and 226 

precipitation.  227 

We processed the data as follows. The records with missing values are eliminated (Husar et al., 228 

2000). When over 80% overcast or fog, the records of sky conditions are eliminated, though such 229 

situations occur less than 1% of the time over land (Remer et al., 2008). The records with 1-hour 230 

precipitation greater than 0.1 mm are eliminated. We calculate the temperature dew point difference 231 

(dT). When the RH is greater than 90%, it is impossible to distinguish whether it is fog or haze, or 232 

both, and even precipitation. The records with RH greater than or equal to 90% are eliminated. 233 

When the RH is less than 30%, the dilution effect of aerosols is very low or even negligible. When 234 

RH is between 30% and 90%, visibility is converted to dry visibility (Yang et al., 2021c): 235 

𝑽𝑰𝑺𝑫 = 𝑽𝑰𝑺/(𝟎. 𝟐𝟔 + 𝟎. 𝟒𝟐𝟖𝟓 ∗ 𝒍𝒐𝒈(𝟏𝟎𝟎 − 𝑹𝑯))  Eq. 2 236 

where VISD is the dry visibility. 237 

Daily averages of variables are calculated by at least 3 hourly records. 238 

2.3 Boundary layer height  239 

The hourly boundary layer height (BLH) from 1980 to 2021 is available from the Fifth Generation 240 

reanalysis of the European Medium-Range Weather Forecast Center (ERA5) with a resolution of 241 

0.25° x 0.25° (https://cds.climate.copernicus.eu), which is the successor of ERA-Interim and has 242 

undergone various improvements (Hersbach et al., 2020). The atmospheric boundary layer is the 243 

layer closest to the Earth's surface and exhibits complex turbulence activities, and its height 244 

undergoes significant diurnal variation. The effects of the boundary layer on aerosols are mainly 245 

manifested in vertical distribution, concentration changes, transport, and deposition (Ackerman et 246 

al., 1995). The characteristics and variations in the boundary layer play a crucial role in regulating 247 

and adjusting the distribution of atmospheric aerosols. The boundary layer height serves as an 248 

approximate measure of the scale height for aerosols (Zhang et al., 2020).  249 

Compared to observations of 300 stations over world from 2012 to 2019, the BLH of ERA5 was 250 

underestimated by 131.96m. Compared with the underestimated MERRA-2 (166.35m), JRA-55 251 

(351.49m), and NECP-2 (420.86m), the BLH of ERA5 was closest to the observations (Guo et al., 252 

2021). The BLH hourly data is temporally and spatially matched with the meteorological data before 253 

calculating the daily average. 254 

Because the inverse of visibility is proportional to the extinction coefficient and positively related 255 

to AOD (Wang et al., 2009), we calculated the reciprocal of visibility (VISI) and the reciprocal of 256 

dry visibility (VISDI). Due to the influence of boundary layer height on the vertical distribution of 257 

particles (Zhang et al., 2020), we calculated the product (VISDIB) of the reciprocal of dry visibility 258 

and BLH. Therefore, the Predictor (Figure 2) is composed of 11 variables (TMP, Td, dT, RH, SLP, 259 

WS, VIS, BLH, VISI, VISDI, and VISDIB). 260 

2.4 MODIS AOD Products 261 
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Satellite daily AOD is available from the Moderate Resolution Imaging Spectroradiometer (MODIS) 262 

Level 3 Collection 6.1 AOD products of the Aqua (MYD09CMA) satellite from 2002 to 2021 and 263 

Terra (MOD09CMA) satellite from 2000 to 2021 with a spatial resolution of 0.05° x 0.05° at a 264 

wavelength of 550 nm (https://ladsweb.modaps.eosdis.nasa.gov). MOD/MYD09 has a higher 265 

spatial resolution than MOD/MYD08 (1° x 1°), which may result in a greater difference in AOD 266 

values and reduce the proximity ratio to match the visibility-derived AOD at station scale. Terra 267 

(passing approximately 10:30 am local time) and Aqua (passing approximately 1:30 pm local time) 268 

were successfully launched in December 1999 and May 2002, respectively.  269 

MODIS, carried on the Terra and Aqua satellites is a crucial instrument in the NASA Earth 270 

Observing System program, which is designed to observe global biophysical processes 271 

(Salomonson et al., 1987). The 2,330 km-wide swath of the orbit scan can cover the entire globe 272 

every one to two days. MODIS has 36 channels and more spectral channels than previous satellite 273 

sensors (such as AVHRR). The spectral range from 0.41 to 15μm representing three spatial 274 

resolutions: 250 m (2 channels), 500 m (5 channels), and 1 km (29 channels). The aerosol retrieval 275 

algorithms use seven of these channels (0.47–2.13μm) to retrieve aerosol characteristics and uses 276 

additional wavelengths in other parts of the spectrum to identify clouds and river sediments. 277 

Therefore, it has the ability to characterize the spatial and temporal characteristics of the global 278 

aerosol field.  279 

The MODIS aerosol product actually takes use of different algorithms for deriving aerosols over 280 

land and ocean. The Dark Target (DT) algorithm is applied to densely vegetated areas because the 281 

surface reflectance over dark-target areas was lower in the visible channels and had nearly fixed 282 

ratios with the surface reflectance in the shortwave and infrared channels (Levy et al., 2007; Levy 283 

et al., 2013). The Deep Blue (DB) algorithm was originally applied to bright land surfaces (such as 284 

deserts), and later extended to cover all cloud-free and snow-free land surfaces (Hsu et al., 2006; 285 

Hsu et al., 2013). MODIS Collection 6.1 aerosol product was released in 2017, incorporating 286 

significant improvements in radiometric calibration and aerosol retrieval algorithms.  287 

The expected errors are ± (0.05 ± 15%) for the DT retrievals over land. Higher spatial coverage is 288 

observed in August and September, reaching 86-88%. During December and January, due to the 289 

presence of permanent ice and snow cover in high-latitude regions of the Northern Hemisphere, the 290 

spatial coverage is 78-80%. Thus, challenges remain in retrieving AOD values in high-latitude 291 

regions (Wei et al., 2019). However, visibility observations are available in high-latitude regions, 292 

thereby partially addressing the lack in these regions.  293 

In this study, the Terra and Aqua MODIS AOD are temporally and spatially matched with the 294 

meteorological stations. Aqua MODIS AOD is used as the Target, when training the model, and 295 

Terra MODIS AOD is used in the evaluation and validation of the model results, as shown in the 296 

flowchart (Figure 2). 297 

2.5 Ground-based AOD 298 

Ground-based 15-minute AOD data are available from the Aerosol Robotic Network (AERONET) 299 

Version 3.0 Level 2.0 product at 395 stations (Figure 1), which can be downloaded from 300 

https://aeronet.gsfc.nasa.gov. The AERONET program is a federation of ground-based remote 301 

sensing aerosol networks established by NASA and PHOTONS, including many subnetworks (such 302 

as AeroSpan, AEROCAN, NEON, and CARSNET). The sun photometer (CE-318) measures 303 

spectral sun and sky irradiance in the 340-1020 nm spectral range. When the aerosol loading is low, 304 



9 

 

the error is significant. When the AOD at 440 nm wavelength is less than 0.2, the error is 0.01, 305 

which is equivalent to the error of the absorption band in the total optical depth (Dubovik et al., 306 

2002a). The total uncertainty in AOD under cloud-free conditions is less than ±0.01 for wavelength 307 

more than 440 nm, and ±0.02 for wavelength less than 440 nm (Holben et al., 1998). AERONET 308 

has three levels of AOD products: Level 1.0 (unscreened), Level 1.5 (cloud screened), and Level 309 

2.0 (cloud screened and quality assured). Compared to Version 2, the Version 3 Level 2.0 database 310 

has undergone further cloud screening and quality assurance, which is generated based on Level 1.5 311 

data with pre- and post-calibration and temperature adjustment and is recommended for formal 312 

scientific research (Giles et al., 2019). AERONET provides AOD products at wavelengths of 440, 313 

675, 870, and 1020 nm. The AOD at 440nm and the Ångström index at 440-675nm are used for 314 

AOD at 550 nm not provided by AERONET, as shown in Eq. 3. AERONET AOD, as the ‘true’ 315 

value, is the average of at least two times within 1 hour (± 30 minutes) of Aqua transit time (Wei et 316 

al., 2019).  317 

𝝉𝟓𝟓𝟎 = 𝝉𝟒𝟒𝟎(
𝟓𝟓𝟎

𝟒𝟒𝟎
)−𝜶   Eq. 3 318 

where 𝝉𝟒𝟒𝟎 and 𝝉𝟓𝟓𝟎 are the AOD at a wavelength of 440nm and 550 nm, and α is the Ångström 319 

index. 320 

The matching conditions between AERONET sites and meteorological stations are (1) a distance of 321 

less than 0.5 ° (2) at least three years of observation. Finally, a total of 395 pairs were matched. 322 

2.6 Decision Tree Regression  323 

2.6.1 Feature selection 324 

Although a multidimensional dataset can provide as much potential information as possible for 325 

AOD, irrelevant and redundant variables can also introduce significant noise in the model and 326 

reduce the model’s accuracy and stability (Kang et al., 2021; Dong et al., 2023). Therefore, the F-327 

test is used to search for the optimal feature subset in the Predictor, aiming to eliminate irrelevant 328 

or redundant features and select truly relevant features, which helps to simplify the model’s input 329 

and improve the model’s prediction ability (Dhanya et al., 2020). The F-test is a statistical test that 330 

gives an f-score(=-log(p), p represents the degree to which the null hypothesis is not rejected) by 331 

calculating the ratio of variances. In this study, we calculate the ratio of variance between the 332 

Predictors and Target, and the features are ranked based on higher values of the f-score. A greater 333 

value of f-score means that the distances between Predictors and Target are less and the relationship 334 

is closer, thus, the feature is more important. We set p=0.05. When the score is less than -log (0.05), 335 

the variable in the Predictors is not considered.  336 

2.6.2 Data balance 337 

When it is clear, the AOD value is small, the variability of AOD is small (AOD<0.5), and the data is 338 

concentrated near the mean value. When heavy pollution, the AOD value is large (AOD>0.5). Compared 339 

to clear sky, the AOD sequence will show "abnormal" large values with low frequency, which is the 340 

imbalance of AOD data. When dealing with imbalanced datasets, because of the tendency of machine 341 

learning algorithms to perform better on the majority class and overlook the minority class, the model 342 

can be underfit (Chuang and Huang, 2023). Data augmentation techniques are commonly employed to 343 
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address the issue in imbalance data, which applies a series of transformations or expansions to generate 344 

new training data, thereby increasing the diversity and quantity of the training data.  345 

The Adaptive Synthetic Sampling (ADASYN) is a data augmentation technique specifically designed to 346 

address data imbalance problem (He et al., 2008; Mitra et al., 2023). It is an extension of the Synthetic 347 

Minority Over-sampling Technique (SMOTE) algorithm (Fernández et al., 2018). The goal of ADASYN 348 

is to generate synthetic sample data for the minority class to increase its representation in the dataset. 349 

ADASYN, which adaptively adjusts the generation ratio of synthetic samples based on the density 350 

distribution of sample data, improves the dataset balance and enhances the performance of machine 351 

learning models in dealing with imbalanced data. 352 

The processing of imbalanced data includes (1) AOD sequences are classified into three types based on 353 

percentile (0-1%, 2% -98%, 99%), (2) When the mean of the third type of AOD is greater than 5 times 354 

the standard bias of the second type, it is considered an imbalanced sequence. These data, with a total 355 

amount less than 5% of the sample, are imbalanced data, and (3) Then synthetic samples are generated 356 

with the upper limit 10% of the samples. 357 

2.6.3 Decision Tree Regression Model 358 

The decision tree is a machine learning algorithm based on a tree-like structure used to solve 359 

classification and regression problems. We adopt the CART algorithm to construct a regression tree by 360 

analyzing the mapping relationship between object attributes (Predictors) and object values (Target). The 361 

internal nodes have binary tree structures with feature values of "yes" and "no". In addition, each leaf 362 

node represents a specific output for a feature space. The advantages of the regression tree include the 363 

ability to handle continuous features and the ease of understanding the generated tree structure (Teixeira, 364 

2004; Steinberg and Colla, 2009). Before training the tree model, the variables (Input) are normalized to 365 

improve model performance, and after prediction, the results are obtained by denormalization. The 10-366 

fold cross-validation method is employed to improve the generalization ability of the model (Browne, 367 

2000).  368 

The core problems of the regression tree need to be solved are to find the optimal split variable and 369 

optimal split point. The optimal split point of Predictors is determined by the minimum MSE, which in 370 

turn determines the optimal tree structure. We set Y = [𝑦1, 𝑦2, … , 𝑦𝑁]  as the Target. We set X =371 

[𝑥1, 𝑥2, … , 𝑥𝑁] as the Predictors, 𝑥𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, … 𝑥𝑖
𝑛), i = 1,2,3 … , N, where n is the feature number, and 372 

N is the length of sample. We set a training dataset as D = [(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)].  373 

A regression tree corresponds to a split in the feature space and the output values on the split domains. 374 

Assuming that the input space has been divided into M domains [𝑅1, 𝑅2, … , 𝑅𝑀] and there is a fixed 375 

output value on each 𝑅𝑀 domain, the regression tree model can be represented as follows: 376 

𝒇(𝒙) =  ∑ 𝒄𝒎𝑰(𝒙 ∈ 𝑹𝑴)𝑴
𝒎=𝟏 , 𝒎 = 𝟏, 𝟐, … , 𝑴  Eq. 4 377 

where I is the indicator function (Eq. 5): 378 

𝑰 =  {
𝟏, 𝒙 ∈ 𝑹𝒎  
𝟎, 𝒙 ∉ 𝑹𝒎

  Eq. 5 379 

When the partition of the input space is determined, the square error can be used to represent the 380 

prediction error of the regression tree for the training data, and the minimizing square error is used to 381 
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solve the optimal output value on each domain. The optimal value (𝑐�̂�) on a domain is the mean of the 382 

outputs corresponding to all input, namely: 383 

𝒄�̂� = 𝒂𝒗𝒆(𝒚𝒊|𝒙𝒊 ∈ 𝑹𝒎)   Eq. 6 384 

A heuristic method is used to split the feature space in CART. After each split, all values of all features 385 

in the current set are examined individually, and the optimal one is selected as the split point based on 386 

the principle of minimum sum of the square errors. The specific step is described as follows: for the 387 

training dataset D, we recursively divide each region into two sub domains and calculate the output 388 

values of each sub domain; then, construct a binary decision tree. For example, split variable is 𝑥𝑗 and 389 

split point is s. Then, in the domain 𝑅1(𝑗, 𝑠) = [𝑥|𝑥𝑗 ≤ 𝑠] and domain 𝑅2(𝑗, 𝑠) = [𝑥|𝑥𝑗 > 𝑠], we can 390 

solve the loss function 𝐿(𝑗, 𝑠) to find the optimal 𝑗 𝑎𝑛𝑑 𝑠. 391 

𝑳(𝒋, 𝒔) =  ∑ (𝒚𝒊 − 𝒄𝟏)𝟐 + ∑ (𝒚𝒊 − 𝒄𝟐)𝟐
𝒙𝒊∈𝑹𝟐(𝒋,𝒔)𝒙𝒊∈𝑹𝟏(𝒋,𝒔)    Eq. 7 392 

When 𝐿(𝑗, 𝑠) is the smallest, 𝑥𝑗 is the optimal split variable and 𝑠 is the optimal split point for the 393 

𝑥𝑗. 394 

𝒎𝒊𝒏⏟
𝒋,𝒔

[𝒎𝒊𝒏⏟
𝒄𝟏

∑ (𝒚𝒊 − 𝒄𝟏)𝟐 + 𝒎𝒊𝒏⏟
𝒄𝟐

∑ (𝒚𝒊 − 𝒄𝟐)𝟐
𝒙𝒊∈𝑹𝟐(𝒋,𝒔)𝒙𝒊∈𝑹𝟏(𝒋,𝒔) ]  Eq. 8 395 

We use the optimal split variable 𝑥𝑗 and the optimal split point 𝑠 to split the feature space and calculate 396 

the corresponding output value. 397 

𝒄�̂� = 𝒂𝒗𝒆(𝒚𝒊|𝒙𝒊 ∈ 𝑹𝟏(𝒋, 𝒔)), 𝒄�̂� = 𝒂𝒗𝒆(𝒚𝒊|𝒙𝒊 ∈ 𝑹𝟐(𝒋, 𝒔))  Eq. 9 398 

We traverse all input variables to find the optimal split variable 𝑥𝑗, forming a pair (𝑗, 𝑠). Divide the 399 

input space into two regions accordingly. Next, repeat the above process for each region until the stop 400 

condition is met. The regression tree is generated.  401 

Therefore, the regression tree model 𝑓(𝑥) can be represented as follows: 402 

𝒇(𝒙) =  ∑ 𝒄�̂�𝑰(𝒙 ∈ 𝑹𝑴)𝑴
𝒎=𝟏 , 𝒎 = 𝟏, 𝟐, … , 𝑴  Eq. 10 403 

2.7 Gridding method 404 

Kriging is a regression algorithm to model and predict (interpolate) random processes/fields based on the 405 

covariance function, which is widely used in geo-statistics (Pebesma, 2004). Ordinary Kriging is the 406 

earliest and most extensively studied form of Kriging. It is a linear estimation system applicable to any 407 

intrinsic stationary random field that satisfies the assumption of isotropy. The two key parameters of 408 

Ordinary Kriging are the semi-variogram function and the weight factors (Goovaerts, 2000). It has been 409 

widely applied in fields, such as climatology, environmental science, and agriculture (Lapen and Hayhoe, 410 

2003; Chen et al., 2010), due to high accuracy, stability, and insensitivity to data shape and distribution. 411 

This study utilizes area-weighted ordinary kriging algorithm to estimate the unknown values of AOD at 412 

specific locations to generate gridded AOD. The longitude range is between -179.5° E and 180 °E, the 413 

latitude range is between -60 °N and 85 °N, and the spatial resolution is 0.5 °*0.5 °. 414 

2.8 Evaluation metrics 415 

Evaluation metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and 416 
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Pearson Correlation Coefficient (R), are used to measure the performance and accuracy of the model and 417 

gridded results. 418 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝒚𝒊 − �̂�𝒊)𝟐𝒏

𝒊=𝟏   Eq. 11 419 

𝑴𝑨𝑬 =
𝟏

𝒏
∑ |𝒚𝒊 − �̂�𝒊|

𝒏
𝒊=𝟏  Eq. 12 420 

𝑹 =
∑ (𝒚𝒊−�̅�)(�̂�𝒊−�̅̂�)𝒏

𝒊=𝟏

𝒔𝒒𝒓𝒕(∑ (𝒚𝒊−�̅�)𝒏
𝒊=𝟏

𝟐
∑ (�̂�𝒊−�̅̂�)𝒏

𝒊=𝟏
𝟐

)
 Eq. 13 421 

where 𝑦𝑖 and �̅� are the predicted value and the average of the predicted values. �̂�𝑖 and �̅̂� are 422 

the target and the average of the target. 𝑖 =  1,2, . . . , 𝑛. 𝑛 is the length of sample. 423 

The expected error (EE) is used to evaluate the AOD derived from visibility. 424 

𝑬𝑬 =  ±(𝟎. 𝟎𝟓 + 𝟎. 𝟏𝟓 ∗ 𝝉𝒕𝒂𝒓𝒈𝒆𝒕)  Eq. 14 425 

where 𝜏𝑡𝑎𝑟𝑔𝑒𝑡 is AERONET AOD or Terra MODIS AOD at 550nm. 426 

 427 
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 428 

Figure 2 Flowchart for deriving aerosol optical depth (AOD). 429 

2.9 Workflow 430 

Figure 2 is the summarized flowchart and provides an overview of the structure of this study, which 431 

involves four main parts: (1) data preprocessing, (2) model training, (3) validation and prediction, 432 

and (4) data gridding.  433 

3 Results and discussion 434 

3.1 Dependence of model performance on training data length 435 
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 436 

Figure 3 Boxplots of root mean squared error (RMSE) (a), mean absolute error (MAE) (b), and 437 

correlation coefficient (R) (c) between predicted values and target using different lengths of sample 438 

data (5% interval) as the training dataset, and the correlation coefficient curve (d) of the station 439 

number in the different lengths of sample data. 440 

We build the models using different lengths of sample data (5% to 100%, with a 5% interval) by random 441 

allocation without overlap and evaluate the predictive performance of each model. Figure 3 depicts 442 

RMSE(a), MAE(b), and R (c) between the predicted values and target based on the training data of 5% 443 

to 100% sample data at a station. As the volume of the training data increases, the RMSE and MAE 444 

decrease, and the correlation coefficient increases. Compared to 5% of the sample data, the result of 100% 445 

sample data shows a decrease in RMSE by 41.1%, a decrease in MAE by 50.1%, and an increase in R 446 

by 162.3%. The relationship between the length of sample data and the model's performance is positive 447 

for each station. Figure 3 (d) shows that R of approximately 70% stations is greater than 0.5 at 50% of 448 

the sample data, while at 75%, the R of approximately 80% of stations is greater than 0.6. When 100% 449 

of the sample data is used as sample data, the R of approximately 80% of stations is greater than 0.75, 450 

and the R of about 97% is greater than 0.7. This finding indicates that the predictive capability and 451 

robustness of the model increase as the amount of training data increases. It may be attributed to the 452 

model's ability to capture more complex patterns and relationships among the input by multi-year data. 453 

3.2 Evaluation of model training 454 

Figure 4 shows the spatial distribution (a-c) and frequency and cumulative frequency (d-e) of RMSE, 455 

MAE, and R of all stations. The mean values of RMSE, MAE, and R are 0.078, 0.044, and 0.750, 456 

respectively. The RMSE of 93% stations is less than 0.11, the MAE of 91% is less than 0.06, and the R 457 

of 88% is greater than 0.7. The R values in Africa, Asia, Europe, North America, Oceania, and South 458 

America are 0.763, 0.758, 0.736, 0.750, 0.759, and 0.738, respectively. Although the RMSE and MAE 459 
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of a few stations are high in America and Asia, the R is still high (>0.6). Therefore, the results of the 460 

model’s errors demonstrate that the model performs well on almost all stations. 461 

 462 

Figure 4 Spatial distribution (a-c) of root mean squared error (RMSE), mean absolute error (MAE), 463 

and correlation coefficient(R) between the model’s result and target with 100% sample data. Station 464 

number (bar) and cumulative frequency (curve) (d-e) of RMSE, MAE, and R. 465 

3.3 Validation and comparison with MODIS and AERONET AOD 466 

3.3.1 Validation over global land 467 

To validate the model’s predictive ability, the visibility-derived AOD (for short, VIS_AOD) is compared 468 

with Aqua, Terra and AERONET AOD at 550nm for the global scale. Among them, Aqua AOD has been 469 

used as training data, which is not independent. Terra AOD and AERONET AOD have not been used as 470 

training data and can be regarded as independent data.  471 

First, the relationship among daily MODIS and AERONET AOD is evaluated. Figure 5 shows the scatter 472 

density plots between AERONET AOD and Aqua AOD (a, d, g) and Terra AOD (b, e, h). The R values 473 

with Aqua AOD and Terra AOD are 0.643 and 0.637 on the daily scale, and 0.668 and 0.658 on the 474 

monthly scale, 0.658 and 0.665 on the yearly scale. The RMSE with Aqua AOD and Terra AOD are 0.158 475 

and 0.163 on the daily scale, and 0.122 and 0.127 on the monthly scale, 0.101 and 0.103 on the yearly 476 

scale. The MAE values with Aqua AOD and Terra AOD are 0.084 and 0.088 on the daily scale, and 0.071 477 

and 0.072 on the monthly scale, 0.061 and 0.062 on the yearly scale. The percentages of sample point 478 

falling within the EE envelopes are 64.66% and 62.54% on the daily scale, and 69.36% and 69.08% on 479 

the monthly scale, 74.80% and 75.89% on the yearly scale. 480 
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 481 

Figure 5 Scatter density plots between AERONET AOD (550nm) and Aqua MODIS AOD, Terra MODIS 482 

AOD and VIS_AOD at the daily (a-c), monthly (d-f) and yearly (g-i) scale. The solid black line represents 483 

the 1:1 line and the dashed lines represents expected error (EE) envelopes. The sample size (N), 484 

correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE) are given. 485 

‘=EE’, ‘>EE’, and ‘< EE’ represent the percentages (%) of retrievals falling within, above, and below 486 

the EE, respectively. The matching time for Aqua AOD and VIS_AOD with AERONET AOD is 13.30 487 

(± 30 minutes) at local time, and the matching time between Terra AOD and AERONET AOD is 10.30 488 

(± 30 minutes) at local time. 489 

Figure 6 shows the scatter density plots and the EEs between VIS_AOD and Aqua AOD, Terra AOD, 490 

and AERONET AOD. Aqua AOD is not an independent validation, and Terra and AERONET AOD are 491 

independent validation. For the daily scale, the R, RMSE and MAE of between VIS_AOD and Aqua 492 

AOD (15,962,757 pairs data) is 0.799, 0.079 and 0.044, respectively. The percentage of sample point 493 

falling within the EE envelopes is 84.12% on the global scale (Figure 6 a). The R between VIS_AOD 494 

and Terra AOD (17,145,578 pairs data) is 0.542, with a RMSE of 0.125 and MAE of 0.078. The 495 

percentage falling within the EE envelopes is 64.76% (Figure 6 b). The R between VIS_AOD and 496 

AERONET AOD (270,240 pairs data) at 397 sites is 0.546, with a RMSE of 0.186 and MAE of 0.099. 497 

The percentage falling within the EE envelopes is 57.87% (Figure 6 c).  498 

For the monthly and annual scales, RMSE and MAE show a significant decrease between VIS_AOD and 499 

Aqua, Terra, and AERONET AOD, and R and percentages falling within EE show a significant increase 500 
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in Figure 6 (d-i)错误!未找到引用源。. The monthly RMSEs are 0.029, 0.051, and 0.135, the monthly 501 

MAEs are 0.018, 0.031, and 0.077, and the R values are 0.936, 0.808, and 0.613, respectively. The 502 

percentages falling within the EE envelopes are 98.34%, 93.25%, and 65.77%. The RMSEs at the annual 503 

scale are 0.013, 0.024, and 0.116, the MAEs are 0.008, 0.015, and 0.066, and the R values are 0.976, 504 

0.906, and 0.652, respectively. The percentages falling within the EE envelopes are 99.82%, 99.20%, 505 

and 73.79%. The percentage falling within the EE envelopes against AERONET is smaller than that 506 

against Terra, which may be related to the elevation of AERONET sites, the distance between AERONET 507 

and meteorological stations, and observed time. The results highlighted above demonstrate a clear 508 

improvement in performance on the monthly and annual scales compared to the daily scale (Schutgens 509 

et al., 2017), which provided a foundation for the gridded dataset. 510 

On the daily, monthly, and annual scales, compared with AERONET AOD, the correlation coefficients, 511 

RMSE, MAE, and percentages falling within the expected error of VIS_AOD and MODIS AOD are very 512 

close. Since the time of AERONET AOD and VIS_AOD overlaps before 2000, it indicates that 513 

VIS_AOD also has the same accuracy. 514 

 515 

Figure 6 Scatter density plots between predicted AOD (VIS_AOD) and Aqua MODIS AOD, Terra 516 

MODIS AOD and AERONET AOD at the daily (a-c), monthly (d-f) and yearly (g-i) scale. The solid 517 

black line represents the 1:1 line and the dashed lines represents expected error (EE) envelopes. The 518 

sample size (N), correlation coefficient (R), mean absolute error (MAE), and root mean square error 519 

(RMSE) are given. ‘=EE’, ‘>EE’, and ‘< EE’ represent the percentages (%) of retrievals falling within, 520 

above, and below the EE, respectively. Note Aqua AOD is not an independent validation for predicted 521 
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results, while Terra and AERONET are independent validation. 522 

3.3.2 Validation over regions 523 

Aerosol loading exhibits spatial variability. Evaluation metrics for the relationships between 524 

visibility-derived AOD and AERONET AOD and Terra AOD for each region are listed in Table 1. 525 

Over Europe and North America, the results are similar to those of Terra and AERONET, with a 526 

large number of data pairs, greater than 105 (AERONET) and greater than 107 except for Eastern 527 

Europe (Terra) on the daily scale. Approximately 63% -70% fall within the EE envelopes. The 528 

RMSE is approximately 0.1100, except for western North America, the MAE is approximately 529 

0.0700, with a correlation coefficient between 0.44 and 0.54. 530 

Over Central South America, South Africa, and Australia, data pairs are about 103-4 (AERONET) 531 

and 106 (Terra) on the daily scale. 52-60% fall within the EE envelopes compared to AERONET, 532 

and 58-67% compared to Terra. The RMSE is 0.03-0.05 compared to Terra, and 0.11-0.17 compared 533 

to AERONET. The correlation coefficient ranges from 0.4 to 0.74, with the highest correlation 534 

coefficient in South America at 0.740. 535 

In Asia, India, and West Africa, the data pairs are only approximately 104 (AERONET). 32% to 50% 536 

fall within the EE envelopes compared to AERONET, the RMSE ranges from 0.2 to 0.5, and the 537 

MAE ranges from 0.11 to 0.36. 51 to 58%, compared to Terra, fall within the EE envelopes, the 538 

RMSE is around 0.16, and the MAE is around 0.11. Compared to AERONET, in these high aerosol 539 

loading regions, RMSE and MAE increase, and the percentages falling within the EE envelopes 540 

decrease, but the correlation coefficients do not significantly decrease. 541 

Compared to Terra AOD, 55% -67% of data falls within the EE envelopes on the daily scale, 87% -542 

96% on the monthly scale, and over 97% on the yearly scale. Compared to AERONET AOD, 32-543 

68% of data falls within the EE envelopes, 24% -84% on the monthly scale, and 15% -97% on the 544 

yearly scale. On both monthly and yearly scales, all metrics have shown a significant increase in 545 

performance when compared to Terra. However, compared to AERONET, not all metrics increase 546 

in some regions due to limited data pairs, such as West Africa, Northeast Asia, and India, which may 547 

be due to the spatial differences between AERONET sites and meteorological stations. 548 

Overall, the AOD from visibility is more effective in regions such as Europe and North America, 549 

which may also be related to the better performance of the MODIS DT algorithm in vegetation-550 

covered regions. In high aerosol load areas affected by deserts, such as Africa and Asia, the AOD of 551 

visibility inversion needs to be improved. 552 

3.3.3 Validation at a site scale 553 

Sites, especially AERONET, are not completely uniform across the word or in any region, and 554 

different stations have different sample sizes, which may lead to a certain uncertainty. Therefore, 555 

further analysis was conducted on the spatial distribution of different evaluation metrics. Figure 7 556 

shows the validation and comparison of daily VIS_AOD against Terra and AERONET AOD at a 557 

site scale. 558 

Compared to Terra daily AOD, the R of 67% stations is greater than 0.4, the mean bias of 83% is 559 
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Table 1 Evaluation metrics for the relationships between visibility-derived AOD and AERONET AOD and Terra AOD for each region. 560 

Region 
 

  N R RMSE MAE Within EE (%) 

daily monthly yearly daily monthly yearly daily monthly yearly daily monthly yearly daily monthly yearly 

Eastern Europe AERONET 21724 2317 271 0.463  0.493  0.653  0.1069 0.0647 0.0326 0.0714 0.0442 0.0263 65.69 83.77 97.42 

TERRA 661630 36435 3278 0.464  0.665  0.790  0.1095 0.0471 0.0214 0.0726 0.0286 0.0122 66.07 94.71 99.18 

Western Europe AERONET 53043 6033 697 0.445  0.487  0.344  0.1089 0.0716 0.0513 0.0711 0.0474 0.0347 64.40 79.21 89.10 

TERRA 1778013 104620 9166 0.467  0.763  0.811  0.1096 0.0391 0.0210 0.0712 0.0268 0.0124 66.99 95.42 99.40 

Western North America AERONET 33859 2948 334 0.503  0.484  0.509  0.1465 0.0949 0.0566 0.0747 0.0597 0.0419 63.58 67.37 81.14 

TERRA 1725226 82734 7201 0.542  0.765  0.906  0.1144 0.0465 0.0180 0.0671 0.0267 0.0125 69.48 94.42 99.61 

Eastern North America AERONET 47407 5359 608 0.527  0.526  0.559  0.1135 0.0824 0.0436 0.0657 0.0472 0.0331 67.52 77.78 87.50 

TERRA 6280277 359520 31343 0.515  0.799  0.847  0.1159 0.0435 0.0165 0.0726 0.0275 0.0111 66.70 94.94 99.80 

Central South America AERONET 10911 1176 149 0.740  0.811  0.866  0.1735 0.1272 0.1060 0.1021 0.0904 0.0688 52.40 47.96 67.79 

TERRA 444780 26362 2410 0.545  0.820  0.776  0.1447 0.0591 0.0369 0.0909 0.0396 0.0219 58.48 89.29 97.39 

Southern Africa AERONET 4255 309 38 0.423  0.480  0.630  0.1553 0.1128 0.0705 0.1033 0.0805 0.0525 52.08 59.55 78.95 

TERRA 216239 11304 1118 0.518  0.821  0.870  0.1258 0.0511 0.0296 0.0836 0.0340 0.0191 60.64 91.70 98.21 

Australia AERONET 6426 516 63 0.488  0.654  0.363  0.1094 0.0827 0.0725 0.0711 0.0620 0.0563 59.96 59.88 71.43 

TERRA 284693 14588 1286 0.398  0.784  0.831  0.1091 0.0363 0.0188 0.0666 0.0261 0.0143 67.01 94.65 99.38 

Western Africa AERONET 2205 205 34 0.553  0.594  0.762  0.3180 0.2873 0.3357 0.2082 0.2029 0.2587 37.96 40.00 23.53 

TERRA 156392 10468 1028 0.501  0.769  0.849  0.1769 0.0706 0.0412 0.1198 0.0482 0.0242 51.83 88.01 97.57 

Southeast Asia AERONET 4134 504 74 0.405  0.542  0.488  0.2037 0.1447 0.1198 0.1274 0.0988 0.0821 50.17 56.15 60.81 

TERRA 402465 27058 2500 0.470  0.753  0.872  0.1730 0.0729 0.0342 0.109 0.0455 0.0198 57.25 87.01 97.96 

Eastern China AERONET 7396 927 118 0.513  0.551  0.356  0.3571 0.2355 0.1933 0.2038 0.1392 0.1382 40.10 49.84 50.00 

TERRA 241185 17324 1518 0.523  0.811  0.895  0.1646 0.0638 0.0302 0.1073 0.0435 0.0225 55.77 88.07 98.88 

Northeast Asia AERONET 9979 1178 142 0.569  0.593  0.367  0.4941 0.3249 0.2604 0.2924 0.2425 0.2202 35.17 29.54 21.13 

TERRA 78823 5485 467 0.553  0.872  0.965  0.1973 0.0636 0.0263 0.1201 0.0440 0.0198 56.48 87.77 98.29 
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India AERONET 2208 203 32 0.521  0.462  0.534  0.2957 0.3015 0.3588 0.2049 0.2283 0.2862 32.11 24.63 15.63 

TERRA 179928 9564 862 0.526  0.815  0.915  0.1564 0.0599 0.0352 0.1089 0.042 0.0238 55.16 90.43 98.14 

 561 
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less than 0.01, the RMSE of 85% is less than 0.15, and the percentage falling within the EE of 67% 562 

is greater than 60%. More than 85% of stations fall within the EE is greater than 60% in Europe, 563 

North America, and Oceania, while 40-60% in South America, Africa, and Asia. The percentage of 564 

expected error is low in South and East Asia, and Central Africa, with some underestimation. Above 565 

60% in Africa, Asia, North America, and Europe have a correlation coefficient greater than 0.4. The 566 

regions with lower correlation are the coastal regions of South America, eastern Africa, western 567 

Australia, northeastern North America, and northern Europe. Above 90% of the RMSE in Europe, 568 

North America, and Oceania have a correlation coefficient smaller than 0.15. High RMSE regions 569 

are in western North America, Asia, central South America, and central Africa. 570 

Compared to AERONT daily AOD, the R of 74% stations is greater than 0.4, and the spatial 571 

distribution is similar to Terra's. The mean bias of 44% is less than 0.01, the RMSE of 68% is less 572 

than 0.15, and the percentage falling within the EE of 53% is greater than 60%. More than 70% of 573 

sites have a correlation coefficient greater than 0.4 in Africa, Asia, Europe, and North America. 574 

More than 57% of sites have an expected error percentage of over 60% in Europe, North America, 575 

and Oceania. Except for Asia. Over 72% of sites have a RMSE less than 0.15. Except for Oceania 576 

and South America, over 71% of sites in other regions have MAE less than 0.01. Almost all sites in 577 

Asia show a negative bias, significantly underestimating. However, there is a significant 578 

overestimation in western North America and western Australia. Most sites in Asia falling within 579 

the expected error are less than 50%. High RMSE region are in Asia, India, and central Africa. 580 

The validation and comparison on the site scale show a limitation similar to the MODIS DT 581 

algorithm. In areas with high vegetation coverage, the AOD from visibility are better than those in 582 

bright areas such as deserts. 583 

 584 
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Figure 7 Validation of VIS_AOD against Terra and AERONET AODs at each site: (a–b) correlation 585 

(R), (c-d) mean bias (MB), (e-f) root mean square error (RMSE), (g-h) percentage (%) of VIS_AOD 586 

within the expected error envelopes. 587 

3.3.4 Discussion and uncertainty analysis 588 

The atmospheric visibility is a horizontal physical quantity, while AOD is a column-integrated 589 

physical quantity. We have linked the two variables together using machine learning methods, which 590 

partially compensates for the scarcity of AOD data. However, we have to face some limitations. 591 

Although the boundary layer height is considered, it is not sufficient. Pollutants such as smoke from 592 

biomass burning, dust, volcanic ash, and gas-aerosol conversion of sulfur dioxide to sulfate aerosols 593 

in the upper and lower troposphere can undergo long-range aerosol transport under the influence of 594 

circulation. The pollution transport and aerosol conversion processes above the boundary layer are 595 

still significant and cannot be ignored (Eck et al., 2023). Compared to surface visibility, bias occurs 596 

when the aerosol layer rises and affects AERONET measurements and MODIS retrievals. Therefore, 597 

it should be considered when using this data. If there were sufficient historical vertical aerosol 598 

measurements with high temporal and spatial resolution, the results of this data would be greatly 599 

improved. Although some studies use aerosol profiles from pollution transport models or assumed 600 

profiles as substitutes for observed profiles (Li et al., 2020; Zhang et al., 2020), the biases introduced 601 

by these non-observed profiles are still significant. 602 

In machine learning, we used MODIS Aqua AOD as the target value for the model because the 603 

validation results for MODIS C6.1 products have a correlation coefficient of 0.9 or higher with 604 

AERONET AOD at the daily scale (Wei et al., 2019; Wei et al., 2020). Compared to AERONET, 605 

MODIS AOD provides more sample data with a high global coverage. However, apart from 606 

modeling errors, the systematic biases and uncertainties of MODIS Aqua AOD cannot be ignored 607 

(Levy et al., 2013; Levy et al., 2018; Wei et al., 2019). Averaging over time scale significantly 608 

reduces systematic errors but cannot diminish errors caused by emission sources and terrain. 609 

Therefore, the strong correlation at monthly and annual scales indicates a substantial reduction in 610 

errors (Schutgens et al., 2017). This is also one of the reasons why this dataset shows stronger 611 

correlation with Terra AOD and weaker correlation with AERONET in validation. 612 

The spatial matching between meteorological stations and AERONET sites may cause some biases. 613 

AERONET sites are usually not co-located with meteorological stations in terms of elevation and 614 

horizontal distance, this is another reason for the weak correlation between VIS_AOD and 615 

AERONET AOD. The meteorological stations are located at the airport. Different horizontal 616 

distances may result in meteorological stations and AERONET sites being located on different 617 

surfaces (such as urban, forest, mountainous). Differences in site elevation significantly impact the 618 

relationship between AOD and measured visibility. When the AERONET site is at a higher elevation 619 

than the meteorological station, there may be fewer measurements of aerosols over the sea at the 620 

AERONET site. 621 

Different pollution levels and station elevation affect the AOD derived from visibility. The elevation 622 

difference and distance between meteorological stations and AERONET sites also have an impact 623 

on the validation results. Therefore, the error and performance of different AERONET AOD values, 624 

station elevation, and distance were analyzed. 625 

3.3.4.1 Uncertainty with pollution level 626 
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As the AOD increases, the variability of bias also increases in Figure 8 (a). Almost all mean bias 627 

values are within the envelope of EE, except for 1.1-1.2 and 1.5-1.6. The average bias is 0.015 628 

(AOD <0.1), with 83% of data within the EE envelopes. The mean bias is -0.0011 (AOD,0.1-0.2), 629 

with 54% within the EE envelopes. The mean bias is negative (AOD, 0.3-1.0), with 20%-40% 630 

falling within the EE envelopes. There is a positive bias (AOD, 1.1, 1.4 and >1.6), and there is a 631 

negative bias at 1.2-1.3 and 1.5-1.6. The results indicate that as pollution level increases, the 632 

negative mean bias becomes significant and the underestimation increases. 633 

3.3.4.2 Uncertainty with elevation of AERONET site 634 

The contribution of particulate matter near the ground to the column aerosol loading is significant. 635 

The elevation of the site affects the measurement of column aerosol loading in Figure 8 (b). There 636 

is a negative bias in the low elevation (<=0.5km) with a percentage of 60%-64% falling within the 637 

EE envelopes and a positive bias in high elevation (0.5-1.2km) with a percentage of 50%-65% 638 

falling within the EE envelopes. The percentage significantly decreases (>1.2km), and the average 639 

bias increases. Therefore, the elevation of AERONET's site will cause bias in validation, and. the 640 

uncertainty greatly increases in high elevation. 641 

3.3.4.3 Uncertainty with elevation of meteorological station 642 

Due to the elevation difference between the meteorological station and AERONET site in the 643 

vertical direction, the uncertainty caused by elevation differences of site was analyzed in Figure 8 644 

(c). When the elevation difference is negative (the elevation of the meteorological station is lower 645 

than that of the AERONET station), there is a significant positive bias. When the difference is 646 

positive, the mean bias approaches 0 or is positive. The percentage is greater than 60% (-0.5 km-647 

0.5km). The positive mean bias is greater than the negative mean bias, and the uncertainty greatly 648 

increases when the elevation of meteorological stations is lower than that of AERONET sites. It 649 

indicates that the contribution of the near surface aerosol to the column aerosol loading is significant 650 

and cannot be ignored. 651 

3.3.4.4 Uncertainty with distance between meteorological station and AERONET site 652 

The spatial variability of aerosols is significant. Meteorological stations and AERONET sites are 653 

not collocated, resulting in a certain distance in spatial matching. In this study, the upper limit of 654 

distance is 0.5 degree. Figure 8 (d) shows the error of the distance between stations, where the 655 

degree is converted to the distance at WGS84 coordinates. The bias does not change significantly 656 

with increasing distance. The average bias is around 0, with the maximum positive mean bias 657 

(0.0322) at a distance of 2km and the maximum negative mean deviation (-0.0323) at 6km. The 658 

median is almost positive, except at 5km and 6km. The percentage falling within the EE envelopes 659 

is over 50%, with the maximum percentage (66%) at 3km and the minimum (62%) at 2km. 660 
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 661 

Figure 8 Box plots of AOD bias and the percentage falling within the EE envelopes (curves): (a) 662 

AERONET AOD levels, (b) elevation of AERONET sites, (c) elevation difference between 663 

meteorological stations and AERONET sites, (d) distance (km) between meteorological stations and 664 

AERONET sites. The black horizontal line represents the zero bias. For each box, the upper, lower, 665 

and middle horizontal lines, and whiskers represent the AOD bias 75th and 25th percentiles, median, 666 

and 1.5 times the interquartile difference, respectively. The black solid lines represent the EE 667 

envelopes (±(0.05+0.15*AODAERONET)). No site with a difference of +0.3km (x-axis label without 668 

0.3) in (c). 669 

3.4 Gridded visibility-derived AOD 670 

Figure 9 shows the gridded AOD based on ordinary kriging interpolation with the area-weighted 671 

method and compares the multi-year spatial, zonal, and meridional distributions of AOD with Aqua 672 

and Terra AOD over land from 2003 to 2021. The VIS_AOD is 0.157±0.073 over land, which is 673 

almost equal to the Aqua (0.152±0.084) and Terra (0.154±0.088) AOD values with relative biases 674 

of 3.3%, and 1.9%, respectively. In order to compare the spatial correlation, Aqua and Terra MODIS 675 

AOD are averaged to the 0.5-degree resolution. In the heatmap (Figure 10), the R of VIS_AOD and 676 

Aqua AOD is 0.798, the RMSE is 0.049 with a bias of 32% compared to the mean, and the MAE is 677 

0.008, with a bias of 5% compared to the mean. Compared to Terra AOD, the R is 0.787, and the 678 

RMSE is 0.051, with a bias of 33% compared to the mean, and the MAE is 0.005, with a bias of 3% 679 

compared to the mean. The R between Aqua and Terra AOD is 0.980. The R values between 680 

VIS_AOD and Aqua and Terra AOD are 0.995 and 0.990 for the zonal distribution and 0.986 and 681 

0.897 for the meridional distribution, respectively. In the low aerosol loading region, VIS_AOD 682 

exhibits a little overestimation. Whether in meridional or zonal distribution, the peak and valley 683 

regions are basically consistent (Tian et al., 2023). Due to the limitations of satellite inversion 684 

algorithms, a bias appears on the bright surface, especially in northern North America with extensive 685 

snow cover (Levy et al., 2013). All above results suggest that the gridded AOD is consistent with 686 

satellite observations in spatial distribution. 687 
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 688 

 689 

Figure 9 The spatial, zonal and meridional distributions of the multi-year mean VIS_AOD, Aqua 690 

AOD, and Terra AOD over land from 2003 to 2021.  691 

 692 

 693 

Figure 10 Heatmap of multi-year mean gridded VIS_AOD and Aqua AOD and Terra AOD during 694 

2003-2021. Terra and Aqua AOD are averaged onto a grid of 0. 5°. 695 

3.5 Interannual variability and trend of visibility-derived AOD over global land 696 

The spatial distribution of multi-year average AOD from 1980 to 2021 over land is shown in Figure 697 

11 (a). The mean AOD of land (-60-85°N), Northern Hemisphere (NH, 0-85°N), and the Southern 698 

Hemispheres (SH, -60-0°N) is 0.161 ± 0.074, 0.158 ± 0.076, and 0.173 ± 0.059, respectively. The 699 

AOD values of Africa, Asia, Europe, North America, Oceania, and South America are 0.241, 0.222, 700 

0.110, 0.111, 0.129 and 0.117, respectively.  701 
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Due to the influence of geography, atmospheric circulation, population, and emissions, the AOD 702 

varies in different latitudes. Figure 12 illustrates the multi-year average AOD in different latitude 703 

ranges for land, the NH, and the SH from 1980 to 2021. Within [-20, 20°N], the global average AOD 704 

reaches its maximum (0.234), and the maximum AOD NH is 0.256 in [0, 20°N]. The highest AOD 705 

in SH is 0.217 in in [-15, 0°N]. The average AOD in SH rapidly decreases from -15°N to -35°N. In 706 

NH, AOD is generally greater than in SH from 5°N to 65°N. When, the latitude is greater than 70°N, 707 

the NH's AOD is smaller than the SH's. 708 

There are many regions of high AOD values occur in NH, with the distribution of population density. 709 

Approximately 7/8 of the global population resides in the NH, with 50% concentrated at 20°N-40°N 710 

(Kummu et al., 2016), indicating a significant impact of human activities on aerosols. The highest 711 

AOD values are observed near 17°N, including the Sahara Desert, Arabian Peninsula, and 712 

southeastern India, suggesting that in addition to anthropogenic sources, deserts also play a crucial 713 

role in aerosol emissions. Lower AOD regions of the SH are from 25°S to 60°S, encompassing 714 

Australia, southern Africa, and southern South America, indicating lower aerosol burdens in these 715 

areas. Additionally, North America also exhibits low aerosol loading. Chin et al. (2014) analyzed 716 

the AOD over land from 1980 to 2009 with the Goddard Chemistry Aerosol Radiation and Transport 717 

model, which is similar to the visibility-derived AOD. The spatial distribution is consistent with the 718 

satellite results (Remer et al., 2008; Hsu et al., 2012; Hsu et al., 2017; Tian et al., 2023). The AOD 719 

and extinction coefficient retrieved from visibility show a similar distribution at global scale, with 720 

a correlation coefficient of nearly 0.6 (Mahowald et al., 2007). Similar global (Husar et al., 2000; 721 

Wang et al., 2009) and regional (Koelemeijer et al., 2006; Wu et al., 2014; Boers et al., 2015; Zhang 722 

et al., 2017; Zhang et al., 2020) spatial distributions have been reported. 723 

AOD loadings exhibit significant seasonal variations worldwide, particularly over land. In this study, 724 

a year is divided into four parts: December-January-February (DJF), March-April-May (MAM), 725 

June-July-August (JJA), and September-October-November (SON), corresponding to winter 726 

(summer), spring (autumn), summer (winter), and autumn (spring) in NH (SH), respectively. Figure 727 

11 (b-e) also depicts the spatial distribution of seasonal average AOD over land from 1980 to 2021. 728 

The global AOD in DJF, MAM, JJA, and SON is 0.158±0.062, 0.162±0.081, 0.175±0.093, and 729 

0.153± 0.070, respectively. The standard bias of AOD in JJA and MAM are greater than those in 730 

DJF and SON. AOD exhibits seasonal changes, with the highest in JJA, followed by MAM, DJF, 731 

and SON. From 1980 to 2021, the seasonal AOD in NH is 0.152±0.064 (DJF), 0.161±0.088 (MAM), 732 

0.176±0.090 (JJA), and 0.144±0.060 (SON), and in SH is 0.184±0.041 (DJF), 0.166±0.044 (MAM), 733 

0.169±0.072 (JJA), and 0.19±0.060 (SON).  734 

In NH, the AOD ranking from high to low in season is summer > spring > winter > autumn. In SH, 735 

the AOD ranking from high to low in season is spring > summer > winter > autumn. The highest 736 

AOD is observed during JJA in NH, while in SH, the peak occurs during SON. The occurrence of 737 

high AOD values is highly associated with the growth of hygroscopic particle and the photochemical 738 

reaction of aerosol precursors under higher relative humidity in Asia (JJA) (Remer et al., 2008) and 739 

Europe such as Russia (JJA), and biomass burning in South America (SON), Southern Africa (SON), 740 

and Indonesia (SON) (Ivanova et al., 2010; Krylov et al., 2014). On the other hand, the lowest global 741 

AOD values are observed during autumn, which may be attributed to the weakening of monsoon 742 

systems (Li et al., 2016; Zhao et al., 2019). 743 
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In addition to the spatial characteristics of AOD, the temporal variations in AOD have also been of 744 

great interest due to the significant relationship between aerosols and climate change. Figure 11 (f) 745 

shows the temporal trends of annual average AOD (** represents passing the significance test, 746 

p<0.01) over the global land, the SH and the NH during 1980-2021. The global land, NH, and SH 747 

trends demonstrate decreasing trends of AOD with values of -0.0026/10a, -0.0018/10a, and -748 

0.0059/10a, respectively, with all passing the significance test with a confidence level of 95%. 749 

Notably, the declining trend is much greater in the SH than in the NH. It may be related to the 750 

decrease in the frequency of sandstorms and wildfires and the increase in precipitation, such as in 751 

Australia. Two AOD peaks in 1983 and 1994 and two AOD valleys in 1980 and 1990 are observed 752 

before 2000. The two AOD peaks may be attributed to large volcanic eruptions, which has been 753 

confirmed by previous studies. The volcanic eruptions and their associated fires of the El Chichón 754 

volcano in Mexico in 1982 (Hirono and Shibata, 1983) and Mount Pinatubo in the Philippines in 755 

1991(Tupper et al., 2005) resulted in elevating global AOD levels in the following years. The AOD 756 

recovery to the previous low levels after volcanic eruptions takes approximately 10 years (Chazette 757 

et al., 1995; Sun et al., 2019). This further indicates the efficiency of our data capturing the volcanic 758 

eruption emission features. 759 

Due to the influence of geography, atmospheric circulation, population, and emissions, the trend of 760 

global aerosols varies in different latitude Figure 12 illustrates the multi-year average AOD in 761 

different latitude ranges for land, the NH, and the SH from 1980 to 2021. Within [-20, 20°N], the 762 

global average AOD reaches its maximum (0.234), and the maximum AOD NH is 0.256 in [0, 20°N]. 763 

The highest AOD in SH is 0.217 in in [-15, 0°N]. The average AOD in SH rapidly decreases from -764 

15°N to -35°N. In NH, AOD is generally greater than in SH from 5°N to 65°N. When, the latitude 765 

is greater than 70°N, the NH's AOD is smaller than the SH's, which may be related to low emission 766 

intensity and low population density in high latitude areas. 767 

The seasonal trends of AOD during 1980-2021 at the global and hemispheric scales are shown in 768 

Figure 11 (g-j). The global AOD shows a decreasing trend in all seasons (-0.002~-0.003/10a). The 769 

large declining trends are observed in JJA and SON, with decreasing trend values of -0.003/10a and 770 

-0.0029/10a, respectively. DJF and MAM follow with decreasing trend values of -0.0026/10a and -771 

0.0022/10a, respectively, all passing the significance test (p<0.01). For the NH, the AOD trends in 772 

different seasons are -0.0030/10a (DJF), -0.0006/10a (MAM), -0.0005/10a (JJA), and -0.0034/10a 773 

(SON). DJF and SON pass the significance test (p<0.01), while MAM and JJA do not. In the SH, 774 

the trends are as follows: -0.0011/10a (DJF), -0.0085/10a (MAM), -0.0131/10a (JJA), and -775 

0.0009/10a (SON). Interestingly, in contrast to the NH, MAM and JJA pass the significance test, 776 

while DJF and SON do not. The largest declining season in the NH is winter, while in the SH, it is 777 

summer. The decreasing trend in the SH is more than four times greater than that in the NH, 778 

particularly before the year 2000. While both the global and SH AOD exhibit a decreasing trend 779 

since 2005, the NH has shown a significant increase in winter AOD, leading to an overall increasing 780 

trend. Moreover, the NH shows an increasing trend of 0.004/10a from 2005 to 2021.  781 

Annual SO2 emissions increased from 9.4 to 15.3 TgS from 2000 to 2005, which ultimately ended 782 

up as sulfate aerosols, leading to a significant increase in sulfate aerosols (Hofmann et al., 2009). 783 

More relevantly, the frequent volcanic eruptions in tropical regions from 2002 to 2006, combined 784 

with seasonal circulation patterns during winter, led to the transport of aerosol particles to higher 785 

latitudes (Hofmann et al., 2009; Vernier et al., 2011; Sawamura et al., 2012; Andersson et al., 2015).  786 



28 

 

 787 

 788 

Figure 11 The multi-year averages of VIS_AOD from 1980 to 2021. Global land (circle), northern 789 

hemisphere (NH,0-85°N) (triangle) and southern hemisphere (SH,0-60°S) (square) annual and 790 

seasonal AOD. The symbol, **, represents that the test passed at a significance level of 0.01. DJF 791 

represents December and next January and February. MAM represents March, April, and May. JJA 792 

represents June, July, and August. SON represents September, October, and November. 793 

 794 
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Figure 12 The global land (blue), northern hemisphere’s (red) and southern hemisphere’s (yellow) 795 

multi-year average VIS_AOD from 1980 to 2021 in different latitude zones. The latitude range is 796 

from -60 to 85°N, with a bin of 5°.  797 

3.6 Interannual variability and trend of visibility-derived AOD over regions 798 

The distribution of AOD over global land exhibits significant spatial heterogeneity. Large variations 799 

in aerosol concentrations exist among different regions, leading to a non-uniform spatial distribution 800 

of AOD globally. Accurately assessing the long-term trends of aerosol loading is a key for 801 

quantifying aerosol climate change, and it is crucial for evaluating the effectiveness of measures 802 

implemented to improve regional air quality and reduce anthropogenic aerosol emissions. 803 

To analyze the spatiotemporal characteristics and trends of AOD in different regions, we selected 804 

12 representative regions that are influenced by various aerosol sources(Wang et al., 2009; Hsu et 805 

al., 2012; Chin et al., 2014), such as desert, industry, anthropogenic emissions, and biomass burning 806 

emissions, which nearly cover the most land and are densely populated regions (Kummu et al., 807 

2016). These representative regions are Eastern Europe, Western Europe, Western North America, 808 

Eastern North America, Central South America, Western Africa, Southern Africa, Australia, 809 

Southeast Asia, Northeast Asia, Eastern China, and India, as shown in Figure 1. We use multi-year 810 

average and seasonal average AOD to evaluate aerosol loadings (Figure 13), the annual average of 811 

monthly anomalies to analyze interannual trends (Figure 14), and the seasonal average to analyze 812 

seasonal trends (Figure 15) in 12 regions from 1980 to 2021.  813 

We can see some differences between VIS_AOD and MODIS AOD. In addition to model errors, 814 

the spatial matching between meteorological stations and MODIS, terrain, surface coverage, and 815 

station altitude will also bring errors. When particle transport and photochemical reactions occur 816 

above the boundary layer, visibility cannot capture the feature, which will also increase the 817 

uncertainty. However, bias is inevitable and can only be kept as small as possible. From the trend, 818 

they have similar changing characteristics, especially on monthly and yearly scales.  819 

Figure 13 shows the regions with high AOD level from 1980 to 2021 (multi-year average AOD > 820 

0.2) are in West Africa, Northeast Asia, Eastern China, and India. The AOD values in Eastern North 821 

America, Central South America, South Africa, and Southeast Asia range from 0.15 to 0.2. The 822 

AOD values in Eastern Europe, Western Europe, Western North America, and Australia are less than 823 

0.15.  824 

Europe is an industrial region with a low aerosol loading region, and the multi-year average AOD 825 

in Eastern Europe (0.144±0.007) is higher than that in Western Europe (0.139±0.003) during 1980-826 

2021. Eastern Europe shows a greater downward trend in AOD (-0.0041/10a) compared to Western 827 

Europe (-0.0021/10a). The highest AOD is observed in JJA, the dry period when solar irradiation 828 

and boundary layer height increase, with Eastern Europe at 0.161 and Western Europe at 0.162, 829 

which could be due to increases in secondary aerosols, biomass burning, and dust transport from 830 

the Sahara (Mehta et al., 2016). However, there are seasonal variations. In Eastern Europe, the 831 

seasonal AOD ranking from high to low is JJA (0.161) > DJF (0.147) > MAM (0.138) > SON 832 

(0.131), while in Western Europe, it is JJA (0.162) > MAM (0.140) > SON (0.136) > DJF (0.117). 833 

The differences among seasons are larger in Western Europe. AOD in Eastern Europe shows 834 

declining trends in all seasons, while it does not pass the significance test in MAM. Among four 835 
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seasons, SON has the largest decline trend of AOD (-0.0058/10a). In Western Europe, DJF, JJA, and 836 

SON exhibit declining trends of AOD that pass the significance test, while the MAM shows a 837 

significant increase trend of AOD (0.0022/10a), which may be due to eruptions of the 838 

Eyjafjallajökull volcano in Iceland in spring 2010 (Karbowska and Zembrzuski, 2016). Both 839 

Western and Eastern Europe experienced increasing trends in AOD during the period of 1995-2005, 840 

with Western Europe showing a greater increase. However, after 2000, the decline rate accelerated 841 

in both regions. The downward trend in Europe is attributed to the reduction of biomass burning, 842 

anthropogenic aerosols, and aerosol precursors (such as sulfur dioxide)(Wang et al., 2009; Chin et 843 

al., 2014; Mortier et al., 2020). 844 

North America is also an industrial region with a low aerosol loading. The average AOD values for 845 

Eastern and Western North America during 1980-2021 are 0.153±0.004 and 0.131±0.005, 846 

respectively, with the Eastern region being higher than the Western region by 0.022. From 1980 to 847 

2021, both Eastern (-0.0021/10a) and Western North America (-0.0009/10a) show a downward trend; 848 

however, the decline in the Western region is not statistically significant. And the trend is -849 

0.0172/10a from 1995 to 2005 and 0.0096/10a from 2005 to 2021.The average AOD values in DJF, 850 

MAM, JJA, and SON in Western North America are 0.1367, 0.1286, 0.1457, and 0.114, respectively, 851 

compared to 0.137, 0.145, 0.1913, and 0.138 in Eastern North America. The lowest AOD values of 852 

12 regions during DJF and SON are observed in Western North America (Remer et al., 2008). 853 

Specifically, in the Western region, there is a consistent increasing trend during MAM (0.004/10a) 854 

from 1980 to 2021, while JJA and SON also show an increase after 2000, except for DJF (-855 

0.0032/10a). In contrast, the AOD trends in the Eastern region remain unchanged during the period 856 

1980-2021, except for MAM, which shows a stable increasing trend (0.0033/10a), while DJF, JJA, 857 

and SON exhibit decreasing trends (-0.0023/10a, -0.0040/10a, -0.0053/10a, respectively). In the 858 

Western region, the annual mean AOD started to increase after 2005, while in the Eastern region, 859 

the increase was not significant. The upward trend may be due to low rainfall and increased wildfire 860 

activities (Yoon et al., 2014). The decrease in AOD in Eastern North America is related to the 861 

reduction of sulfate and organic aerosols, as well as the decrease in anthropogenic emissions caused 862 

by environmental regulations (Mehta et al., 2016). 863 

Central South America is a relatively high aerosol loading region, sourced from biomass burning, 864 

especially in SON (Remer et al., 2008; Mehta et al., 2016), with a multi-year average AOD of 865 

0.192±0.017. There is a clear downward trend (-0.0100/10a) from 1980 to 2021, which is slightly 866 

greater than the trend (-0.0090/10a) from 1998 to 2010 (Hsu et al., 2012) and AOD decreased from 867 

1980 to 2006 (Streets et al., 2009) and from 2001 to 2014 (Mehta et al., 2016). Although DJF (0.199) 868 

and SON (0.226) have higher values compared to MAM (0.180) and JJA (0.163), the large declining 869 

trends are observed in MAM (-0.0126/10a) and JJA (-0.0167/10a). It indicates that although AOD 870 

has decreased overall, the aerosol loading caused by seasonal deforestation and biomass combustion 871 

is still large(Mehta et al., 2016). 872 

Africa is also one of the regions with a high aerosol loading worldwide. In West Africa, the average 873 

AOD is 0.275±0.012 during 1980-2021, and the annual AOD shows a downward trend (-0.0008/10a, 874 

p>0.05). The world's largest desert (Sahara Desert) is in West Africa, with much dust aerosol 875 

discharged. AOD values in all seasons are above 0.25, with JJA (0.301) and MAM (0.300) reaching 876 

0.3, and DJF and SON being 0.252 and 0.250, respectively. The AOD in DJF (-0.0135/10a, p<0.01) 877 

and SON (-0.0026/10, p>0.05) exhibit decreasing trends, while JJA (0.0088/10a, p<0.01) and MAM 878 
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(0.0037/10a, p>0.05) show an opposite trend. The multi-year average AOD in South Africa is 879 

0.177±0.020, lower than that of West Africa. The annual mean AOD in South Africa shows a 880 

significant decrease (-0.0096/10a). The AOD values range from 0.12 to 0.2 during 2000-2009, 881 

dominated by fine particle matter from industrial pollution from biomass and fossil fuel combustion 882 

(Hersey et al., 2015). The average AOD values in DJF, MAM, JJA, and SON are 0.189, 0.162, 0.147, 883 

and 0.210, respectively. JJA (-0.0268/10a, p<0.01), MAM (-0.0126/10a, p<0.01) and SON (-884 

0.0001/10a, p>0.05) exhibit a downward AOD trend, while DJF (0.0006/10a, p>0.05) shows an 885 

upward trend. AERONET and simulation results also show a decreasing trend of AOD (Chin et al., 886 

2014). 887 

Australia is a region with a low aerosol loading. The multi-year mean AOD is 0.127±0.014 during 888 

1980-2021. The AOD ranges from 0.05 to 0.15 from AERONET during 2000-2021, and dust and 889 

biomass burning are important contributors to the aerosol loading (Yang et al., 2021a). There is a 890 

downward trend of AOD (-0.0081/10a, p<0.01), which may be related to a decrease in dust and 891 

biomass burning (Yoon et al., 2016; Yang et al., 2021a). In addition, research has shown that the 892 

forest area in Australia has increased sharply since 2000 (Giglio et al., 2013), surpassing the forest 893 

fire area of the past 14 years. The seasonal average of AOD in MAM, JJA, SON, and DJF are 0.122, 894 

0.108, 0.125, and 0.151. The AOD in JJA is the lowest among all seasons and regions. The highest 895 

AOD is in DJF with an increasing trend (0.0056/10a, p<0.01), while the trends during MAM, JJA 896 

and SON are -0.0096/10a (p<0.01), -0.0231/10a (p<0.01) and -0.0042/10a (p<0.01), respectively. 897 

Ground-based and satellite observations indicate that wildfires, biomass burning and sandstorms 898 

lead to high AOD in DJF and SON. The low AOD of MAM and JJA is due to a decrease in the 899 

frequency of sandstorms and wildfires and an increase in precipitation (Gras et al., 1999; Yang et 900 

al., 2021a; Yang et al., 2021b). 901 

Asia is also a high aerosol loading area with various sources. In Southeast Asia, the multi-year 902 

average AOD is 0.177 during 1980-2021 with a downward trend of AOD (-0.0003/10a, p>0.05). It 903 

is also a biomass-burning area. The seasonal average AOD ranking from high to low is JJA (0.207) > 904 

MAM (0.183) > DJF (0.169) > SON (0.149). The trends in DJF (-0.0035/10a, p<0.05), JJA (-905 

0.0007/10a, p>0.05) and SON (-0.0021/10a, p>0.05) are opposite to MAM (0.0050/10a, p<0.01). 906 

Southeast Asia has no clear long-term trend in estimated AOD or observed surface solar radiation 907 

(Streets et al., 2009). In Northeast Asia, the multi-year average AOD is 0. 222 during 1980-2021, 908 

with no significant temporal trend. The seasonal AOD values are 0.252 in MAM, 0.215 in DJF, 909 

0.212 in SON and 0.209 in JJA. AOD in MAM is significantly higher than other seasons, which 910 

may be related to sandstorms in East Asia, and the reason for the high AOD in winter may be related 911 

to the transportation. The trends of AOD in DJF (-0.0025/10a, p>0.05), MAM (0.0031/10a, p>0.05), 912 

JJA (0) and SON (-0.0006/10a, p>0.05) are not significant. In Eastern China, the multi-year average 913 

AOD is 0.233, with an increasing trend (0.0071/10a, p<0.01). The trend is 0.0151/10a from 1980 to 914 

2006 and -0.0469/10a from 2006 to 2021.The seasonal average AOD ranking from high to low is 915 

JJA (0.284), MAM (0.234), SON (0.230) and DJF (0.183). The AOD trends in DJF (0.0093/10a, 916 

p<0.01), MAM (0.0092/10a, p<0.01), JJA (0.0038/10a, p>0.05) and SON (0.0065/10a, p<0.05) are 917 

all positive but the trend in JJA does not pass the significance test. We can see that there are three 918 

stages of changes in AOD: 1980-2005, 2006-2013 and 2014-2021. In the first stage, AOD increased 919 

steadily. In the second stage, AOD maintained a larger positive anomaly accompanied by 920 

oscillations. The third stage experienced a rapid decline, reaching the level of the 1980s by 2021. 921 
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The increasing trend of AOD before 2006 may be due to the significant increase in industrial activity, 922 

and after 2013, the significant decrease is closely related to the implementation of air quality-related 923 

laws and regulations, along with adjustments in the energy structure (Hu et al., 2018; Cherian and 924 

Quaas, 2020).  925 

India is a high aerosol loading area. The multi-year average AOD is 0.255, with an upward trend 926 

(0.0096/10a, p<0.01) from 1980 to 2021. Dust and biomass burning has an influence on AOD level. 927 

There are three stages: 1980-1997 (0.0032/10a, p<0.01), 1997-2005 (-0.0420/10a, p<0.01), 2005-928 

2021 (0.0481/10a, p<0.01). Although the trend is downward in the second stage, the lager positive 929 

trend is in the third stage. The seasonal average AOD values are 0.237 in DJF, 0.258 in MAM, 0.269 930 

in JJA, and 0.256 in SON. The largest AOD is in JJA. In winter and autumn, it affected by biomass 931 

burning, and in spring and summer, it is also affected by dust, transported from the Sahara under 932 

during the monsoon period (Remer et al., 2008). The trends in DJF (0.0152/10a, p<0.01), MAM 933 

(0.0091/10a, p<0.01), JJA (0.0025/10a, p>0.05), and SON (0.0107/10a, p<0.05) are positive. There 934 

largest trend is in winter.  935 

To summarize, there are significant differences in the spatial distribution, annual trends, and 936 

seasonal trends of AOD across different regions from 1980 to 2021. The high aerosol loadings from 937 

1980 to 2021 are in West Africa, India and Asia, and low aerosol loading regions are in Europe, 938 

Western North America, and Australia. Eastern China and India show an increasing trend, Southeast 939 

Asia and Northeast Asia show no significant trend, and the other regions show downward trends. 940 

However, not all regional seasonal trends are consistent with their annual trends. The results in this 941 

study have supplemented the long-term trend and distribution of AOD over land. 942 

 943 

Figure 13 Annual and seasonal averages of AOD in 12 regions during 1980-2021. 944 

  945 
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 946 

Figure 14 Annual averages of monthly anomaly gridded VIS_AOD (pink line), Aqua (green line), 947 

and Terra (blue line) MODIS AOD in 12 regions. The dotted line is the trend line.  948 

  949 

 950 

Figure 15 Seasonal averages of gridded VIS_AOD during 1980 to 2021 in 12 regions (Eastern 951 

Europe, Western Europe, Western North America, Eastern North America, Central South America, 952 

Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, and 953 
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India). The dotted line is the trend line. 954 

4 Data availability 955 

The visibility-derived AOD at station and grid scales over global land from 1980 to 2021 are 956 

available at National Tibetan Plateau / Third Pole Environment Data Center 957 

( https://doi.org/10.11888/Atmos.tpdc.300822) (Hao et al., 2023). 958 

5 Conclusions 959 

In this study, we employed a machine learning technique to derive AOD for over 5000 land stations 960 

worldwide, based on satellite data, visibility, and related parameters. Monthly AOD was interpolated 961 

onto a 0.5° grid using ordinary kriging with area weighting. The method was trained with Aqua 962 

MODIS AOD. The accuracy and performance of the derived AOD were assessed and validated 963 

against Terra MODIS AOD as well as AERONET ground-based observations of AOD for the 964 

corresponding stations. Evaluation of the gridded AOD was conducted using Aqua and Terra 965 

MODIS AOD. We obtained daily AOD for global land stations from 1980 to 2021, as well as 966 

monthly gridded AOD. The two datasets complement the shortcomings of AOD in terms of time 967 

scale and spatial coverage. Finally, the spatiotemporal variation in AOD was analyzed for global 968 

land, the Southern Hemisphere, the Northern Hemisphere, and 12 regions in the past 42 years. 969 

Several key findings have been obtained in this study as follows. 970 

1. Modeling and gridding evaluation. The mean RMSE, MAE, and R of all stations are 0.078, 971 

0.044, and 0.750, respectively. The RMSE of 93% stations is less than 0.11, the MAE of 91% is less 972 

than 0.06, and the R of 88% is greater than 0.7, respectively. Compared to Aqua and Terra, the 973 

average biases of gridded AOD are 3.3% and 1.9%, and the spatial correlation coefficients are 0.80 974 

and 0.79, with the zonal correlation coefficients of 0.99 and 0.99 and the meridional correlation 975 

coefficients of 0.99 and 0.90. 976 

2. Model validation. For the daily scale, the R, RMSE and MAE of between VIS_AOD and Aqua 977 

AOD is 0.799, 0.079 and 0.044, respectively. The percentage of sample point falling within the EE 978 

envelopes is 84.12%. The R between VIS_AOD and Terra AOD is 0.542, with a RMSE of 0.125 979 

and MAE of 0.078. The percentage falling within the EE envelopes is 64.76%. The R between 980 

VIS_AOD and AERONET AOD is 0.546, with a RMSE of 0.186 and MAE of 0.099. The percentage 981 

falling within the EE envelopes is 57.87%. For the monthly and annual scales, RMSE and MAE 982 

show a significant decrease between VIS_AOD and Aqua, Terra, and AERONET AOD, and R and 983 

percentages falling within EE show a significant increase 错误!未找到引用源。.  984 

3. Error analysis. The average bias is 0.015 (AOD <0.1), with 83% of data within the EE envelopes. 985 

As pollution level increases, the negative mean bias becomes significant and the underestimation 986 

increases. There is a negative bias in the low elevation (<=0.5km) with a percentage of 60%-64% 987 

falling within the EE envelopes and a positive bias in high elevation (0.5-1.2km) with a percentage 988 

of 50%-65% falling within the EE envelopes. The elevation of AERONET's site caused a bias in 989 

high elevation. When the elevation difference is negative (the elevation of the meteorological station 990 

is lower than that of the AERONET site), there is a significant positive bias. When the difference is 991 
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positive, the mean bias approaches 0 or is positive. The bias does not change significantly with 992 

increasing distance between the meteorological station and AERONET site.  993 

4. Global land AOD. The global, NH, and SH AOD values from 1980 to 2021 are 0.161 ± 0.074, 994 

0.158 ± 0.076, and 0.173 ± 0.059, respectively. Trends in AOD for the global, NH, and SH 995 

demonstrate a decreasing trend of -0.0026/10a, -0.0018/10a, and -0.0059/10a, respectively (p<0.01). 996 

The seasonal AOD ranking from high to low is JJA>MAM>DJF>SON over the global land and in 997 

the NH, while in the SH, it is DJF>JJA>MAM>SON. The largest declining trends are observed in 998 

NH summer and SH winter. 999 

4. Regional AOD. From 1980 to 2021, regions with high aerosol loadings (AOD > 0.2) were found 1000 

in West Africa, Northeast Asia, Eastern China, and India. Regions with moderate aerosol loadings 1001 

(AOD between 0.15 and 0.2) are Eastern North America, Central South America, South Africa, and 1002 

Southeast Asia. Eastern Europe, Western Europe, Western North America, and Australia are regions 1003 

with low aerosol loadings (AOD < 0.15). The trends are -0.0041/10a, -0.0021/10a, -0.0009/10a, -1004 

0.0021/10a, -0.0100/10a, -0.0008/10a, -0.0096/10a), -0.0081/10a, -0.0003/10a, -0.0000/10a, 1005 

0.0071/10a, and 0.0096/10a in Eastern Europe, Western Europe, Western North America, Eastern 1006 

North America, Central South America, Western Africa, Southern Africa, Australia, Southeast Asia, 1007 

Northeast Asia, Eastern China, and India, respectively. 1008 
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