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Abstract 11 

Long-term and high spatial resolution aerosol optical depth (AOD) data are essential for climate 12 

change detection and attribution. Global ground-based AOD observations are sparsely distributed, 13 

and satellite AOD retrievals have a low temporal frequency, as well low accuracy before 2000 over 14 

land. In this study, AOD at 550nm is derived from hourly visibility observations collected at more 15 

than 5000 meteorological stations over global land from 1980 1959 to 2021. The AOD retrievals 16 

(550nm) of the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua Earth 17 

observation satellite are used to train the machine learning model, and the ERA5 reanalysis 18 

boundary layer height is used to convert the surface visibility to AOD. Comparisons with 19 

independent datasets (AERONET ground-based observations) shows that the predicted AOD has a 20 

correlation coefficients of 0.55 with AERONET ground observations at daily time scale. The 21 

correlation coefficients are higher at monthly and annual scales, which are 0.61 for the monthly and 22 

0.65 for the annual, respectively. The evaluation result shows consistent predictive ability prior to 23 

2000, with a correlation coefficient of 0.54, 0.66 and 0.66 at daily, monthly, and annual scales, 24 

respectively. Due to a small number and sparse visibility stations prior to 1980, the global/regional 25 

analysis in this study is from 1980 to 2021. From 1980 to 2021, tThe visibility-derived AOD at 26 

station scale is gridded into a 0.5° grid by ordinary kriging interpolation. The mean visibility-27 

derived AOD over the global land (-60°N-85°N), the Northern Hemisphere, and the Southern 28 

Hemisphere are 0.17761, 0.1758, and 0.1753, with a trend of -0.00296/10a, -0.00180030/10a, and -29 

0.00590021/10a from 1980 to 2021. For theThe regional scale, the mean (trends) of AOD are 0.145 30 

181 (-0.009641/10a), 0.139 163 (-0.00261/10a), 0.131 146 (-0.001709/10a), 0.153 165 (-31 

0.00271/10a), 0.1982 (-0.01000075/10a), 0.275 281 (-0.00080062/10a), 0.177 182 (-0.00196/10a), 32 

0.13327 (-0.00810028/10a), 0.177 222 (-0.00073/10a), 0.222 244 (--0.00090/10a), 0.232 241 33 

(0.01300. 0071/10a), and 0.255 254 (0.00960119/10a) in Eastern Europe, Western Europe, Western 34 

North America, Eastern North America, Central South America, Western Africa, Southern Africa, 35 

Australia, Southeast Asia, Northeast Asia, Eastern China, and India, respectively. However, the 36 

trends are decreasing significantly in Eastern China (-0.0572/10a) and Northeast Asia (-0.0213/10a) 37 
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after 2014 and the lager increasing trend is found after 2005 in India (0.0446/10a). The visibility-38 

derived daily AOD dataset at 5032 stations and grid scales over global land from 1980 1959 to 2021 39 

are available at National Tibetan Plateau / Third Pole Environment Data Center 40 

(https://doi.org/10.11888/Atmos.tpdc.300822) (Hao et al., 2023). 41 

How to cite. Hao, H., Wang, K., C. Zhao, Wu, G., J. Li (2023). Visibility-derived aerosol optical 42 

depth over global land (19801959-2021). National Tibetan Plateau / Third Pole Environment Data 43 

Center. https://doi.org/10.11888/Atmos.tpdc.300822. 44 

1 Introduction 45 

Atmospheric aerosols are composed of solid and liquid particles suspended in the atmosphere. 46 

Aerosol particles are directly emitted into the atmosphere or formed through gas-particle 47 

transformation (Calvo et al., 2013), with diverse shapes and sizes (Fan et al., 2021), optical 48 

properties, and components (Liao et al., 2015; Zhang et al., 2020; Li et al., 2022). Most atmospheric 49 

aerosols are concentrated in the troposphere, especially in the boundary layer (Liu et al., 2022), with 50 

a high concentration near emission sources (Kulmala et al., 2004) , and a small portion are 51 

distributed in the stratosphere. Atmospheric aerosols severely impact the atmospheric environment 52 

and human health. They deteriorate air quality, reduce visibility, and cause other environmental 53 

issues (Wang et al., 2012; Boers et al., 2015). They impair human health or other organisms’ 54 

conditions by increasing cardiovascular and respiratory disease incidence and mortality rates (Chafe 55 

et al., 2014; Yang et al., 2022). The Global Burden of Disease shows that global exposure to ambient 56 

PM2.5 (particulate matter suspended in air with an aerodynamic diameter of less than 2.5 57 

micrometers) resulted in 0.37 million deaths and 9.9 million disability-adjusted life years (Chafe et 58 

al., 2014).  59 

Aerosols are inextricably linked to climate change. Atmospheric aerosols alter the Earth’s energy 60 

budget and then affect the climate (Li et al., 2022). They cool the surface and heat the atmosphere 61 

by scattering and absorbing solar radiation (Forster et al., 2007; Chen et al., 2022). Aerosols, such 62 

as black carbon and brown carbon, also absorb solar radiation (Bergstrom et al., 2007), heat the 63 

local atmosphere and suppress or invigorate convective activities (Ramanathan et al., 2001; Sun and 64 

Zhao, 2020). Aerosols also alter the optical properties and life span of clouds (Albrecht, 1989). 65 

Atmospheric aerosols strongly affect regional and global short-term and long-term climates through 66 

direct and indirect effects (Mcneill, 2017). 67 

Tropospheric aerosols are considered as the second largest forcing factor for global climate change 68 

(Li et al., 2022), and they reduce the warming due to greenhouse gases by -0.5°C (IpccIPCC, 2021). 69 

However, aerosols are also regarded as the largest contributor to quantifying the uncertainty of 70 

present-day climate change (IpccIPCC, 2021). The uncertainties are caused by the deficiencies of 71 

the global descriptions of aerosol optical properties (such as scattering and absorption) and 72 

microphysical properties (such as size and component), and the impact on cloud and precipitation, 73 

further affecting the estimation of aerosol radiative forcing (Lee et al., 2016; Ipcc, 2021). Therefore, 74 

sufficient aerosol observations are crucial. In aerosol measurements, aerosol optical depth (AOD) 75 

is often used to describe its column properties, which represents the vertical integration of aerosol 76 

extinction coefficients. AOD is an important physical quantity for estimating the content, 77 

atmospheric pollution and climatology of aerosols (Zhang et al., 2020).  78 

https://doi.org/10.11888/Atmos.tpdc.300822
https://doi.org/10.11888/Atmos.tpdc.300822
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AOD data usually from ground-based and satellite-borne remote sensing observations. They have 79 

both advantages and disadvantages. Ground-based lidar observation is an active remote sensing 80 

technology. Lidar generally emits laser and receives backscattered signals to invert the extinction 81 

coefficient of aerosols at different heights (Klett, 1985). By using the depolarization ratio, the type 82 

of aerosol, such as fine particles or dust, can be distinguished (Bescond et al., 2013). The AOD 83 

within a certain height can be calculated by integrating the extinction coefficients; however, 84 

scattering signals are usually not received near the ground, leading to blind spots (Singh et al., 2019). 85 

At present, there are many ground-based lidar worldwide and regional networks, which provides 86 

important support of vertical changes in aerosols, such as the NASA Micro-Pulse Lidar Network 87 

(MPLNET) in the early 1990s (Welton et al., 2002), the European Aerosol Research Lidar Network 88 

(EARLINET) since 2000 (Bösenberg and Matthias, 2003), the Latin American Lidar Network 89 

(LALINET) since 2013 (Guerrero-Rascado et al., 2016).  90 

Ground-based remote sensing observations supply aerosol loading data (such as AOD), by 91 

measuring the attenuation of radiation from the top of the atmosphere to the surface (Holben et al., 92 

1998). This type of observation mainly uses weather-resistant automatic sun and sky scanning 93 

spectral radiometers to retrieve optical and microphysical aerosol properties (Che et al., 2014). The 94 

Aerosol Robotic Network (AERONET) is a popular global network composed of NASA and 95 

multiple international partners that provides high-quality and high-frequency aerosol optical and 96 

microphysical properties under various geographical and environmental conditions (Holben et al., 97 

1998; Dubovik et al., 2000). The AERONET observations are extensively used to validate satellite 98 

remote sensing observations and model simulations, as well as climatology study (Dubovik et al., 99 

2002b). There are many regional networks of sun photometers, such as the Maritime Aerosol 100 

Network (MAN), which use a handheld sun photometer to collect data over the ocean and is merged 101 

into AERONET (Smirnov et al., 2009), the China Aerosol Robot Sun Photometer Network 102 

(CARSNET) (Che et al., 2009), the Canadian sub-network of AERONET (AEROCAN) (Bokoye et 103 

al., 2001), Aerosol characterization via Sun photometry: Australian Network (AeroSpan) 104 

(Mukkavilli et al., 2019), and the sky radiometer network (SKYNET) in Asia and Europe (Kim et 105 

al., 2004; Nakajima et al., 2020). Another very valuable global network is the NOAA/ESRL 106 

Federated Aerosol Network (FAN), which uses integrated nephelometers distinct from sun 107 

photometers, mainly located in remote areas, providing background aerosol properties over 30 sites 108 

(Andrews et al., 2019).  109 

Satellite remote-sensing is a space-based method that can provide aerosol properties worldwide. 110 

With the development of satellite remote sensing technology since 1970s, aerosol distributions can 111 

be extracted with the advantage of sufficient real-time and global coverage from multiple satellite 112 

sensors (Kaufman and Boucher, 2002; Anderson et al., 2005). The Advanced Very High Resolution 113 

Radiometer (AVHRR) is the earliest sensor used for retrieving AOD over ocean (Nagaraja Rao et 114 

al., 1989). The Moderate Resolution Imaging Spectroradiometer (MODIS), on board the Terra 115 

(launched in 1999) and Aqua (launched in 2002) satellites is a popular sensor with 36 channels, 116 

which have been used for AOD retrieval over both ocean and land based on the Dark Target and the 117 

Deep Blue algorithms (Remer et al., 2005; Levy et al., 2013). The latest MODIS AOD data version 118 

is the Collection 6.1, which provides global AOD over 20 years (Wei et al., 2019). There are also 119 

many other satellite sensors that can be used to retrieve AOD, such as the Polarization and 120 

Directionality of the Earth’s Reflectances (POLDER) during 1996-1997, 2003 and 2004-2013 121 
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(Deuzé et al., 2000), Sea-viewing Wide Field-of-view Sensor (SeaWIFS) during 1997-2007 122 

(O'reilly et al., 1998), the Multi-angle Imaging Spectroradiometer (MISR) on Terra since 1999 123 

(Diner et al., 1998). The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) has also 124 

derived aerosols in the vertical direction since 2006 (Winker et al., 2009).  125 

These measurements provide important data for studying the global and regional spatiotemporal 126 

variabilities and climate effect of aerosols. However, ground-based remote sensing observations 127 

only provide aerosol properties with low spatial coverage. There were only about 150 ground 128 

stations worldwide in 2002 and even fewer sites were available for climate analysis (Holben et al., 129 

1998; Chu et al., 2002), which limited aerosol climate research by spatial coverage (Bright and 130 

Gueymard, 2019). Satellite remote sensing overcomes the limitations of spatial coverage. The 131 

AVHRR has been used to retrieve AOD since 1980, but it is limited by a few channel number, low 132 

spatial resolution, and insufficient validation through ground-based observations before 2000 (Hsu 133 

et al., 2017). Many studies have only investigated the trends and distributions of aerosols after 2000 134 

(Bösenberg and Matthias, 2003; Winker et al., 2013; Xia et al., 2016; Tian et al., 2023), because of 135 

the lack of long-term and global cover AOD products, which is the bottleneck for aerosol climate 136 

change detection and attributions. 137 

To overcome these limitations and enrich aerosol data, alternative observation data could be utilized 138 

to derive AOD. Atmospheric horizontal visibility is a suitable alternative (Wang et al., 2009; Zhang 139 

et al., 2020), because it has the advantages of the long-term records with a large number of stations 140 

worldwide.  141 

Atmospheric visibility is a physical quantity that describes the transparency of the atmosphere 142 

through manual and automatic observations, and the automatic observations of visibility usually 143 

measure atmospheric extinction (scattering coefficient and transmissivity). Koschmieder (1924) 144 

first proposed the relationship between the meteorological optical range and the total optical depth. 145 

Elterman (1970) futher established a formula between AOD and visibility by assuming an 146 

exponential decrease in aerosol concentration with altitude, considering the extinction of molecules 147 

and ozone to analyze air pollution, which called the Elterman model. Qiu and Lin (2001) corrected 148 

the Elterman model by considering the influence of water vapor and used two water vapor pressure 149 

correction coefficients to retrieve AOD of 16 stations in China in 1990. Wang et al. (2009) analyzed 150 

the trend of AOD using visibility-based retrivals from 1973 to 2007 over land. Lin et al. (2014) 151 

retrieved the AOD in eastern China in 2006 using visibility and aerosol vertical profiles provided 152 

by GEOS-Chem. Wu et al. (2014) and Zhang et al. (2017) parameterized the constants in the 153 

Elterman model and use satellite retrieved AOD to solve the parameters in the models at different 154 

stations, to retrive the long-term AOD in China.  155 

Zhang et al. (2020) reviewed the methods of visibility retrieval of AOD, indicating that visibility-156 

based retrieval of AOD can compensate for the shortcomings of long-term aerosol observation data. 157 

Simultaneously, various parameters, such as station altitude, consistency of visibility data, water 158 

vapor and aerosol vertical profiles (scale height), were discussed with modified suggestions 159 

proposed. These studies have enriched AOD data regionally. These studies have enriched aerosol 160 

data insome extent. At present, there are very few studies on global visibility-retrieved AOD and to 161 

analyze climatology of aerosols. 162 

The two physical quantities of visibility and AOD have both connections and differences, making it 163 
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challenging to retrieve AOD from visibility. Visibility represents the maximum horizontal visible 164 

distance near the surface, while AOD represents the total vertical attenuation of solar radiation by 165 

aerosols. The visibility of automatic observation is dependent on the local horizontal atmosphereic 166 

extinction (Noaa et al., 1998). Visibility has not a simple linear relationship with meteorological 167 

factors. The vertical structure of aerosols is the greatest challenge to obtain, as it is not a simple 168 

hypothetical curve in complex terrain and circulation conditions (Zhang et al., 2020). These 169 

limitations make it more complex to derive AOD. Machine learning methods can effectively address 170 

complex nonlinear relationships between variables and have been widely applied in remote sensing 171 

and climate research fields. Li et al. (2021) used the random forest method to predict PM2.5 in Iraq 172 

and Kuwait based on satellite AOD during 2001-2018. Kang et al. (2022) applied LightGBM and 173 

random forest to estimate AOD over East Asia, and the results showed a consistency with 174 

AERONET. Dong et al. (2023) derived aerosol single scattering albedo from visibility and satellite 175 

AOD over 1000 global stations. Hu et al. (2019) used a deep learning method to retrieve horizontal 176 

visibility from MODIS AOD. These studies have confirmed the ability of machine learning to 177 

effectively solve complex relationships among variables. And pPrevious studies are mostly 178 

conducted at the regional or national scale, and few studies at the global scale. Thus, it is feasible to 179 

derive AOD from atmospheric visibility over global land by using the machine learning method. 180 

In this study, we propose a machine learning method to derive AOD, where satellite AOD is the 181 

target value, and visibility and other related meteorological variables are the predictors. We explain 182 

the model’s robustness of the model, and evaluate the model’s predictive ability, and validate the 183 

model’s predictions using independent ground-based AOD, satellite retrievals and reanalysis AOD, 184 

and analyze the mean and trend of AOD across land and regions. Two A station-scale datasets of 185 

long-term high-resolution AOD are is generated. The Section 2 introduces the data and method. The 186 

Section 3 is the evaluation and validation of the visibility-derived AOD, and the distribution and 187 

trends are discussed at global and regional scales. The Section 5 presents the conclusions. This study 188 

is dedicated to supporting the research of aerosols in climate change detection and attribution. 189 

2 Data and method 190 

2.1 Study area 191 

The study area is global land. A total of 5032 meteorological stations and 395 AERONET sites are 192 

selected in this study, shown in Figure 1. Twelve regions are selected for special analysis, including 193 

Eastern Europe, Western Europe, Western North America, Eastern North America, Central South 194 

America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, 195 

and India and the station number is 187, 494, 390, 1759, 132, 72, 78, 86, 76, 140, 26, and 51, 196 

respectively. The meteorological observations data including visibility are available since 1959. The 197 

time range of global and regional average analysisthe study is from 1980 to 2021, during which the 198 

visibility observations records of meteorological stations are sufficient with a uniform spatial 199 

distribution. As shown in Figure 1, the daily visibility records have exceeded 11500 stations, and 200 

monthly and annual records have exceeded 2000 during 1980-1990. After 2000, monthly records 201 

have reached 3000, which is the foundation of gridding AOD. 202 
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 203 

Figure 1: Study area (a) and the meteorological station number (b) with at daily, monthly, and 204 

annual recordsscale. The number of meteorological stations (filled circles) is 5032. The number of 205 

AERONET sites (empty circles) is 395. The box regions of labelled with number 1-12 are Eastern 206 

Europe, Western Europe, Western North America, Eastern North America, Central South America, 207 

Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, and India. 208 

2.2 Meteorological data 209 

The ground hourly ground-based meteorological data from 1980 1959 to 2021 is collected from 210 

5032 automated meteorological stations of airports over land, which can be downloaded at 211 

https://mesonet.agron.iastate.edu/ASOS. Over 1000 stations belong to the Automated Surface 212 

Observing System (ASOS), and others are sourced from airport reports around the world. The 213 

visibility measurements can be divided into automatic observation and manual observation. 214 

Automatic Automated surface visibility observations reduce errors associated with human 215 

involvement in data collection, processing, and transmission. The data can be downloaded at 216 

https://mesonet.agron.iastate.edu/ASOS. The visibility and other meteorological data is are 217 

extracted from the Meteorological Terminal Aviation Routine Weather Report (METAR). The World 218 

Meteorological Organization (WMO) sets guidelines for METAR reports, including report format, 219 

encoding, observation instruments and methods used, data accuracy, and consistency. These 220 

requirements, which ensures the consistency and comparability of METAR reports globally. Some 221 

Iinternational regulations can be referenced at https://community.wmo.int/en/implementation-areas-222 

aeronautical-meteorology-programme.. Among them, over 1,000 stations belong to the Automated 223 

Surface Observing System (ASOS), and others are sourced from airport reports around the world. 224 

The daily average visibility is calculated using harmonic mean in equation (1). The reciprocal of 225 

visibility is proportional to the extinction coefficient (Wang et al., 2009). Experiments have found 226 

that harmonic average visibility can better detect the weather phenomena than arithmetic average 227 

visibility, when visibility decline quickly (Noaa et al., 1998). The visibility is calculated using the 228 

extinction coefficient, which is directly proportional to the reciprocal of visibility (Wang et al., 2009). 229 

Harmonious average visibility can capture the process of visibility decline more quickly. Therefore, 230 

daily visibility will have greater representativeness.: 231 

https://community.wmo.int/en/implementation-areas-aeronautical-meteorology-programme
https://community.wmo.int/en/implementation-areas-aeronautical-meteorology-programme
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𝑽𝒏
),              (1) 232 

where V is the harmonic mean visibility, n = 24 for the daily visibility, and 𝑉1, 𝑉2,... 𝑉𝑛 are the 233 

individual hourly visibility. 234 

In addition to hourly visibility (VIS), other variables closely related to aerosol properties are selected, 235 

including relative humidity (RH), dew point temperature (DT), temperature (TMP), wind speed 236 

(WS) and sea-level pressure (SLP). Because air tTemperature affects atmospheric stability and the 237 

rate of secondary particle formation, and humidity influences the size and hygroscopic growth, and 238 

wind speed and pressure significantly impact the transport and deposition. Sky conditions (cloud 239 

amount) and hourly precipitation are also selected to remove the records of extensive cloud cover 240 

and precipitation.  241 

We processed the meteorological data as follows. The records with high missing value ratio are 242 

eliminated (Husar et al., 2000). When over 80% overcast or fog, the records of sky conditions are 243 

eliminated, though such situations occur less than 1% of the time over land (Remer et al., 2008). 244 

The records with 1-hour precipitation greater than 0.1 mm are eliminated. We calculate the 245 

temperature dew point difference (dT). The low visibility records under “blowing snow” weather 246 

are eliminated at high latitude region (> 65°N), when wind speed is great than 4.5m/s (Husar et al., 247 

2000). When the RH is greater than 90%, it is impossible to distinguish whether it is fog or haze, or 248 

both, and even precipitation. Therefore, tThe records with RH greater than or equal to 90% are 249 

eliminated. When the RH is less than 30%, the hygroscopic dilution effect of aerosols is very low 250 

or even negligible. When RH is between 30% and 90%, the hygroscopic effect of aerosols is high, 251 

and visibility is converted to dry visibility (Yang et al., 2021c), as shown in equation (2).: At least 3 252 

hourly records of meteorological variables are required when calculating the daily average (n>=3). 253 

𝑽 = 𝒏/(
𝟏

𝑽𝟏
+

𝟏

𝑽𝟐
+ ⋯ +

𝟏

𝑽𝒏
),              (1) 254 

where V is the harmonic mean visibility, n is the daily record number, and 𝑉1, 𝑉2,... 𝑉𝑛 are the 255 

individual hourly visibility. 256 

𝑽𝑰𝑺𝑫 = 𝑽𝑰𝑺/(𝟎. 𝟐𝟔 + 𝟎. 𝟒𝟐𝟖𝟓 ∗ 𝒍𝒐𝒈(𝟏𝟎𝟎 − 𝑹𝑯)),         (2) 257 

where VISD is the dry visibility. 258 

Daily average of variables is calculated by at least 3 hourly records. 259 

2.3 Boundary layer height  260 

The hourly boundary layer height (BLH) data from 1980 to 2021 is are available from the Fifth 261 

Generation reanalysis of the European Medium-Range Weather Forecast Center (ERA5) with a 262 

resolution of 0.25° x 0.25° (https://cds.climate.copernicus.eu), which is the successor of ERA-263 

Interim and has undergone various improvements (Hersbach et al., 2020). The atmospheric 264 

boundary layer is the layer closest to the Earth’s surface and exhibits complex turbulence activities, 265 

and its height undergoes significant diurnal variation. The effects of the boundary layer play a 266 

crucial role in regulating and adjusting the distribution of atmospheric aerosols, such as on aerosols 267 

are mainly manifested in vertical distribution, concentration changes, transport, and deposition 268 
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(Ackerman et al., 1995). The characteristics and variations in the boundary layer play a crucial role 269 

in regulating and adjusting the distribution of atmospheric aerosols. The boundary layer height 270 

serves as an approximate measure of the scale height for aerosols (Zhang et al., 2020).  271 

Compared to to observations of 300 stations over world from 2012 to 2019, the ERA5 BLH of 272 

ERA5 was is underestimated by 131.96m., and Compared with the underestimated MERRA-2 273 

(166.35m), JRA-55 (351.49m), and NECP-2 (420.86m), the BLHit of ERA5 wasis closest to the 274 

observations compared to JRA-55, and NECP-2 BLH (Guo et al., 2021). The hourly BLH hourly 275 

data is temporally and spatially matched with visibility and theother meteorological data before 276 

calculating the daily average. 277 

Because the reciprocal inverse of visibility is proportional to the extinction coefficient and positively 278 

related to AOD (Wang et al., 2009), we calculated the reciprocal of visibility (VISI) and the 279 

reciprocal of dry visibility (VISDI). Due to the influence of boundary layer height on the vertical 280 

distribution of particles (Zhang et al., 2020), we calculated the product (VISDIB) of the reciprocal 281 

of dry visibilityVISDI and BLH. Therefore, the Predictor (Figure 2) is composed of 11 variables 282 

(TMP, Td, dT, RH, SLP, WS, VIS, BLH, VISI, VISDI, and VISDIB). 283 

2.4 MODIS AOD products 284 

Satellite daily AOD is available from the Moderate Resolution Imaging Spectroradiometer (MODIS) 285 

Level 3 Collection 6.1 AOD products of the Aqua (MYD09CMA) satellite from 2002 to 2021 and 286 

Terra (MOD09CMA) satellite from 2000 to 2021 with a spatial resolution of 0.05° x 0.05° at a 287 

wavelength of 550 nm (https://ladsweb.modaps.eosdis.nasa.gov). MOD/MYD09 has a higher 288 

spatial resolution than MOD/MYD08 (1° x 1°), which may result in a greater difference in AOD 289 

values and reduce the proximity ratio to match the visibility-derived AOD at station scale. Terra 290 

(passing approximately 10:30 am at local time) and Aqua (passing approximately 1:30 pm at local 291 

time) were are successfully launched in December 1999 and May 2002, respectively.  292 

MODIS, carried on the Terra and Aqua satellites is a crucial instrument in the NASA Earth 293 

Observing System program, which is designed to observe global biophysical processes 294 

(Salomonson et al., 1987). The 2,330 km-wide swath of the orbit scan can cover the entire globe 295 

every one to two days. MODIS has 36 channels and more spectral channels than previous satellite 296 

sensors (such as AVHRR). The spectrumspectral  ranges from 0.41 to 15μm representing three 297 

spatial resolutions: 250 m (2 channels), 500 m (5 channels), and 1 km (29 channels). The aerosol 298 

retrievals algorithms use seven of these channels (0.47–2.13μm) to retrieve aerosol characteristics 299 

and uses additional wavelengths in other parts of the spectrum to identify clouds and river sediments. 300 

Therefore, it has the ability to characterize the spatial and temporal characteristics of the global 301 

aerosol field. 302 

The MODIS aerosol product actually takes uses of different algorithms for to deriving retrieve 303 

aerosols over land and ocean. The Dark Target (DT) algorithm is applied to densely vegetated areas 304 

because the surface reflectance over dark-target areas was is lower in the visible channels and had 305 

has nearly fixed ratios with the surface reflectance in the shortwave and infrared channels (Levy et 306 

al., 2007; Levy et al., 2013). The Deep Blue (DB) algorithm was is originally applied to bright land 307 

surfaces (such as deserts), and later extended to cover all cloud-free and snow-free land surfaces 308 

(Hsu et al., 2006; Hsu et al., 2013). MODIS Collection 6.1 aerosol product was is released in 2017, 309 

incorporating significant improvements in radiometric calibration and aerosol retrieval algorithms. 310 

The aerosol retrievals usually are evaluated by Tthe expected error. For the DT algorithm, the 311 
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expected error is s are ± (0.05 ± 15%AODAERONET). The coverage of retrieval products varies by 312 

season based onfor the DT algorithm retrievals over land. Higher spatial coverage is observed in 313 

August and September, reaching 86-88%. During December and January, due to the presence of 314 

permanent ice and snow cover in high-latitude regions of the Northern Hemisphere, the spatial 315 

coverage is 78-80%. Thus, challenges remain in retrieving AOD values in high-latitude regions (Wei 316 

et al., 2019). However, visibility observations are available in high-latitude regions, thereby partially 317 

addressing the lack in these regions. In this study, the Terra and Aqua MODIS AOD are temporally 318 

and spatially matched with the meteorological stations. Aqua MODIS AOD is used as the Target, 319 

when training the model, and Terra MODIS AOD is used in the evaluation and validation of the 320 

model results, as shown in the flowchart (Figure 2). 321 

2.5 Ground-based AOD 322 

Ground-based 15-minute AOD data observations are available from the Aerosol Robotic Network 323 

(AERONET) Version 3.0 Level 2.0 product at 395 sites (Figure 1), which can be downloaded from 324 

https://aeronet.gsfc.nasa.gov. The AERONET program is a federation of ground-based remote 325 

sensing aerosol networks established by NASA and PHOTONS, including many subnetworks (such 326 

as AeroSpan, AEROCAN, NEON, and CARSNET). The sun photometer (CE-318) measures 327 

spectral sun and sky irradiance in the 340-1020 nm spectral range. When the aerosol loading is low, 328 

the error is significant. AERONET has three levels of AOD products: Level 1.0 (unscreened), Level 329 

1.5 (cloud screened), and Level 2.0 (cloud screened and quality assured). Compared to Version 2, 330 

the Version 3 Level 2.0 database has undergone further cloud screening and quality assurance, which 331 

is generated based on Level 1.5 data with pre- and post-calibration and temperature adjustment and 332 

is recommended for formal scientific research (Giles et al., 2019). AERONET provides AOD 333 

products at wavelengths of 440, 675, 870, and 1020 nm. When the aerosol loading is low, the error 334 

is significant. When the AOD at 440 nm wavelength is less than 0.2, the error is 0.01, which is 335 

equivalent to the error of the absorption band in the total optical depth (Dubovik et al., 2002a). The 336 

total uncertainty in AOD under cloud-free conditions is less than ±0.01, for when the wavelength is 337 

more than 440 nm, and ±0.02 for when the wavelength is less than 440 nm (Holben et al., 1998). 338 

AERONET AOD is usually considered as the ‘true’ value. The AOD at 440nm and the Ångström 339 

index at 440-675nm are used for to calculate AOD at 550 nm (not provided by AERONET), as 340 

shown in equationEq. (3)..  341 

𝝉𝟓𝟓𝟎 = 𝝉𝟒𝟒𝟎(
𝟓𝟓𝟎

𝟒𝟒𝟎
)−𝜶,               (3) 342 

where 𝜏440 and 𝜏550 are the AOD at a wavelength of 440nm and 550 nm, and α is the Ångström 343 

index. 344 

AERONET AOD, as the ‘true’ value, is Tthe daily average AOD requires at least two observationsof 345 

at least two times within 1 hour (± 30 minutes) of Aqua/Terra transit time (Wei et al., 2019). :The 346 

matching conditions between AERONET sites and meteorological stations are (1) a distance of less 347 

than 0.5 °, and  (2) at least three years of observations. Finally, a total of 395 pairs sites were are 348 

selectedmatched. 349 

2.6 AOD reanalysis dataset 350 

The monthly AOD (550nm) dataset of Modern-Era Retrospective Analysis for Research and 351 
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Applications version 2 (MERRA-2) from 1980 to 2021 is a NASA reanalysis of the modern satellite 352 

era produced by NASA’s Global Modeling and Assimilation Office with a spatial resolution of 353 

0.5×0.625° (Gelaro et al., 2017), available at https://disc.gsfc.nasa.gov. MERRA-2 AOD uses an 354 

analysis splitting technique to assimilate AOD data at 550 nm. The assimilated AOD observations 355 

are including (1)     AOD retrievals from AVHRR (1979-2002) over global ocean, (2) AOD 356 

retrievals from MODIS on Terra (2000–present) and Aqua (2002–present) over global land and 357 

ocean, (3) AOD retrievals from MISR (2000–2014) over bright and desert surfaces, and (4) direct 358 

AOD measurements from the ground-based AERONET (1999–2014) (Gelaro et al., 2017). The 359 

monthly MERRA-2 AOD is used to evaluate the model’s predictive ability before 2000 and after 360 

2000. 361 

2.7 Decision tree regression  362 

2.7.1 Feature selection 363 

Although a multidimensional dataset can provide as much potential information as possible for 364 

AOD, irrelevant and redundant variables can also introduce significant noise in the model and 365 

reduce the model’s accuracy and stability (Kang et al., 2021; Dong et al., 2023). Therefore, the F-366 

test is used to search for the optimal feature subset in the Predictor, aiming to eliminate irrelevant 367 

or redundant features and select truly relevant features, which helps to simplify the model’s input 368 

and improve the model’s prediction ability (Dhanya et al., 2020). The F-test is a statistical test that 369 

gives an f-score (=-log(p), p represents the degree to which the null hypothesis is not rejected) by 370 

calculating the ratio of variances. In this study, we calculate the ratio of variance between the 371 

Predictors and Target, and the features are ranked based on higher values of the f-score values. A 372 

greater larger value of f-score means that the distances between Predictors and Target are less and the 373 

relationship is closer, thus, the feature is more important. We set p=0.05. When the score is less than 374 

-log (0.05), the variable in the Predictors is not considered. 375 

2.7.2 Data balance 376 

When the weatherit is clear, the AOD value is small (AOD<0.5), and the variability of AOD is small 377 

(AOD<0.5), and the data is concentrated near the mean value. When heavy pollution, the AOD value is 378 

large (AOD>0.5). Compared to clear sky, the AOD sequence will show "abnormal" large values with 379 

low frequency, which is a phenomenon of the imbalance of AOD data. When dealing with imbalanced 380 

datasets, because of the tendency of machine learning algorithms to perform better on the majority class 381 

and overlook the minority class, the model can may be underfit (Chuang and Huang, 2023). Data 382 

augmentation techniques are commonly employed to address the issue in imbalance data, which applies 383 

a series of transformations or expansions to generate new training data, thereby increasing the diversity 384 

and quantity of the training data of the minority class.  385 

The Adaptive Synthetic Sampling (ADASYN) is a data augmentation technique specifically designed to 386 

address data imbalance problem (He et al., 2008; Mitra et al., 2023). It is an extension of the Synthetic 387 

Minority Over-sampling Technique (SMOTE) algorithm (Fernández et al., 2018). The goal of ADASYN 388 

is to generate synthetic sample data for the minority class to increase its representation in the dataset. 389 

ADASYN, which adaptively adjusts the generation ratio of synthetic samples based on the density 390 

distribution of sample data, improves the dataset balance and enhances the performance of machine 391 

learning models in dealing with imbalanced data. 392 

https://disc.gsfc.nasa.gov/
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The processing of imbalanced data includes (1) AOD sequences are classified into three types based on 393 

percentile (0-1%, 2% -98%, 99%), (2) When the mean of the third type of AOD is greater than 5 times 394 

the standard bias of the second type, it is considered an imbalanced sequence. These data, with a total 395 

amount less than 5% of the sample, are imbalanced data, and (3) Then synthetic samples are generated 396 

with the a 10% upper limit 10% of the original samples. 397 

2.7.3 Decision tree regression model 398 

The decision tree is a machine learning algorithm based on a tree-like structure used to solve 399 

classification and regression problems. We use regression tree adopt the CART algorithm to construct a 400 

regression tree model by analyzing the mapping relationship between object attributes (Predictors) and 401 

object values (Target). The internal nodes have binary tree structures with feature values of "yes" and 402 

"no". In addition, each leaf node represents a specific output for a feature space. The advantages of the 403 

regression tree include the ability to handle continuous features and the ease of understanding the 404 

generated tree structure (Teixeira, 2004; Berk, 2008). Before training the tree model, the variables (Input) 405 

are normalized to improve model performance, and after prediction, the results are obtained by 406 

denormalization. The 10-fold cross-validation method is employed to improve the generalization ability 407 

of the model (Browne, 2000).  408 

The core problems of the regression tree need to be solved are to find the optimal split variable and 409 

optimal split point. The optimal split point of Predictors is determined by the minimum MSE, which in 410 

turn determines the optimal tree structure. We set Y = [𝑦1, 𝑦2, … , 𝑦𝑁]  as the Target. We set X =411 

[𝑥1, 𝑥2, … , 𝑥𝑁] as the Predictors, 𝑥𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, … 𝑥𝑖
𝑛), i = 1,2,3 … , N, where n is the feature number, and 412 

N is the length of sample. We set a training dataset as D = [(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)].  413 

A regression tree corresponds to a split in the feature space and the output values on the split domains. 414 

Assuming that the input space has been divided into M domains [𝑅1, 𝑅2, … , 𝑅𝑀] and there is a fixed 415 

output value on each 𝑅𝑀 domain, the regression tree model can be represented as follows: 416 

𝒇(𝒙) =  ∑ 𝒄𝒎𝑰(𝒙 ∈ 𝑹𝑴)𝑴
𝒎=𝟏 , 𝒎 = 𝟏, 𝟐, … , 𝑴,          (4) 417 

where I is the indicator function, equationEq. (5): 418 

𝑰 =  {
𝟏, 𝒙 ∈ 𝑹𝒎  
𝟎, 𝒙 ∉ 𝑹𝒎

,                (5) 419 

When the partition of the input space is determined, the square error can be used to represent the 420 

prediction error of the regression tree for the training data, and the minimizing square error is used to 421 

solve the optimal output value on each domain. The optimal value (𝑐�̂�) on a domain is the mean of the 422 

outputs corresponding to all input, namely: 423 

𝒄�̂� = 𝒂𝒗𝒆(𝒚𝒊|𝒙𝒊 ∈ 𝑹𝒎),              (6) 424 

A heuristic method is used to split the feature space in CART. After each split, all values of all features 425 

in the current set are examined individually, and the optimal one is selected as the split point based on 426 

the principle of minimum sum of the square errors. The specific step is described as follows: for the 427 

training dataset D, we recursively divide each region into two sub domains and calculate the output 428 

values of each sub domain; then, construct a binary decision tree. For example, split variable is 𝑥𝑗 and 429 

split point is s. Then, in the domain 𝑅1(𝑗, 𝑠) = [𝑥|𝑥𝑗 ≤ 𝑠] and domain 𝑅2(𝑗, 𝑠) = [𝑥|𝑥𝑗 > 𝑠], we can 430 



12 

 

solve the loss function 𝐿(𝑗, 𝑠) to find the optimal 𝑗 𝑎𝑛𝑑 𝑠. 431 

𝑳(𝒋, 𝒔) =  ∑ (𝒚𝒊 − 𝒄𝟏)𝟐 + ∑ (𝒚𝒊 − 𝒄𝟐)𝟐
𝒙𝒊∈𝑹𝟐(𝒋,𝒔)𝒙𝒊∈𝑹𝟏(𝒋,𝒔) ,         (7) 432 

When 𝐿(𝑗, 𝑠) is the smallest, 𝑥𝑗 is the optimal split variable and 𝑠 is the optimal split point for the 433 

𝑥𝑗. 434 

𝒎𝒊𝒏⏟
𝒋,𝒔

[𝒎𝒊𝒏⏟
𝒄𝟏

∑ (𝒚𝒊 − 𝒄𝟏)𝟐 + 𝒎𝒊𝒏⏟
𝒄𝟐

∑ (𝒚𝒊 − 𝒄𝟐)𝟐
𝒙𝒊∈𝑹𝟐(𝒋,𝒔)𝒙𝒊∈𝑹𝟏(𝒋,𝒔) ],       (8) 435 

We use the optimal split variable 𝑥𝑗 and the optimal split point 𝑠 to split the feature space and calculate 436 

the corresponding output value. 437 

𝒄�̂� = 𝒂𝒗𝒆(𝒚𝒊|𝒙𝒊 ∈ 𝑹𝟏(𝒋, 𝒔)), 𝒄�̂� = 𝒂𝒗𝒆(𝒚𝒊|𝒙𝒊 ∈ 𝑹𝟐(𝒋, 𝒔)),        (9) 438 

We traverse all input variables to find the optimal split variable 𝑥𝑗, forming a pair (𝑗, 𝑠). Divide the 439 

input space into two regions accordingly. Next, repeat the above process for each region until the stop 440 

condition is met. The regression tree is generated.  441 

Therefore, the regression tree model 𝑓(𝑥) can be represented as follows: 442 

𝒇(𝒙) =  ∑ 𝒄�̂�𝑰(𝒙 ∈ 𝑹𝑴)𝑴
𝒎=𝟏 , 𝒎 = 𝟏, 𝟐, … , 𝑴,          (10) 443 

2.8 Gridding method 444 

Kriging is a regression algorithm to model and predict (interpolate) random processes/fields based on the 445 

covariance function, which is widely used in geo-statistics (Pebesma, 2004). Ordinary Kriging is the 446 

earliest and most extensively studied form of Kriging. It is a linear estimation system applicable to any 447 

intrinsic stationary random field that satisfies the assumption of isotropy. The two key parameters of 448 

Ordinary Kriging are the semi-variogram function and the weight factors (Goovaerts, 2000). It has been 449 

widely applied in fields, such as climatology, environmental science, and agriculture (Lapen and Hayhoe, 450 

2003; Chen et al., 2010), due to high accuracy, stability, and insensitivity to data shape and distribution. 451 

This study utilizes area-weighted ordinary kriging algorithm to estimate the unknown values of AOD at 452 

specific locations to generate gridded AOD. The longitude range is between -179.5° E and 180 °E, the 453 

latitude range is between -60 °N and 85 °N, and the spatial resolution is 0.5 °*0.5 °. 454 

Kriging variance represents the spatial correlation between different points, which is calculated by the 455 

semi variogram function (Goovaerts, 2000). Kriging variance is used to assess the spatial uncertainty of 456 

interpolation results, indicating the difference between predicted and true values. A higher kriging 457 

variance indicates fewer neighboring points and greater uncertainty, while a lower variance implies less 458 

uncertainty. To quantify the uncertainty of interpolation results, we provide the width of the confidence 459 

interval under the 95% confidence level based on kriging variance (Van Der Veer et al., 2009). 460 

2.89 Evaluation metrics 461 

Evaluation metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and 462 

Pearson Correlation Coefficient (R), are used to measure the performance and accuracy of the model and 463 

gridded results. 464 
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𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝒚𝒊 − �̂�𝒊)𝟐𝒏

𝒊=𝟏 ,              (11) 465 

𝑴𝑨𝑬 =
𝟏

𝒏
∑ |𝒚𝒊 − �̂�𝒊|

𝒏
𝒊=𝟏 ,               (12) 466 

𝑹 =
∑ (𝒚𝒊−�̅�)(�̂�𝒊−�̅̂�)𝒏

𝒊=𝟏

𝒔𝒒𝒓𝒕(∑ (𝒚𝒊−�̅�)𝒏
𝒊=𝟏

𝟐
∑ (�̂�𝒊−�̅̂�)𝒏

𝒊=𝟏
𝟐

)
,              (13) 467 

where 𝑦𝑖 and �̅� are the predicted value and the average of the predicted values. �̂�𝑖 and �̅̂� are 468 

the target and the average of the target. 𝑖 =  1,2, . . . , 𝑛. 𝑛 is the length of sample. 469 

The expected error (EE) is used to evaluate the AOD derived from visibility. 470 

𝑬𝑬 =  ±(𝟎. 𝟎𝟓 + 𝟎. 𝟏𝟓 ∗ 𝝉𝒕𝒓𝒖𝒆),             (14) 471 

where 𝜏𝑡𝑟𝑢𝑒 is the AOD at 550 nm from AERONET, satellite and reanalysis datasets. 472 

The width of 95% confidence interval (CI) is calculated from the kriging variance (s2) (Van Der Veer et 473 

al., 2009) : 474 

𝟗𝟓% 𝐂𝐈 =  𝟏. 𝟗𝟔 ∗ √𝒔𝟐,                (15) 475 
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 477 

Figure 2: Flowchart for deriving aerosol optical depth (AOD). 478 

2.910 Workflow 479 

Figure 2 summarizes the flowchart and provides an overview of the structure of this study, which 480 

involves four main parts: (1) data preprocessing, (2) model training, and (3) validation and 481 

prediction, and (4) data gridding.  482 

3 Results and discussion 483 

3.1 Dependence of model performance on training data length 484 

 485 
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 486 

Figure 3: Boxplots of root mean squared error (RMSE) (a), mean absolute error (MAE) (b), and 487 

correlation coefficient (R) (c) between predicted values and target using different lengths of sample 488 

data (5% interval) as the training dataset, and the correlation coefficient curve (d) of the station 489 

number in the differentand lengths of sample data. 490 

We build the models using different lengths of sample data (5% to 100%, with a 5% interval) by random 491 

allocation without overlap and evaluate the predictive performance of each model. Figure 3 (a-c) depicts 492 

RMSE(a), MAE(b), and R (c) between the predicted values and target based on the training data of 5% 493 

to 100% sample data at a station. As the volume of the training data increases, the RMSE and MAE 494 

values decrease, and the R values correlation coefficient increases. Compared to 5% of the sample data, 495 

the result of 100% sample data shows a decrease in RMSE by 41.1%, a decrease in MAE by 50.1%, and 496 

an increase in R by 162.3%. The relationship between the length of sample data and the model’s 497 

performance is positive for each station. Figure 3 (d) shows that R of approximately 70% stations is 498 

greater than 0.5 at 50% of the sample data, while at 75%, the R of approximately 80% of stations is 499 

greater than 0.6. When 100% of the sample data is used as sample data, the R of approximately 80% of 500 

stations is greater than 0.75, and the R of about 97% is greater than 0.7. This finding indicates that the 501 

predictive capability and robustness of the model increase as the amount of training data increases. It 502 

may be attributed to the model’s ability to capture more complex patterns and relationships among the 503 

input by multi-year data. 504 

3.2 Evaluation of model training performance 505 

Figure 4 shows the spatial distribution (a-c) and frequency and cumulative frequency (d-e) of RMSE, 506 

MAE, and R of all stations. The mean values of RMSE, MAE, and R are 0.078, 0.044, and 0.750, 507 

respectively. The RMSE of 93% stations is less than 0.11, the MAE of 91% is less than 0.06, and the R 508 

of 88% is greater than 0.7. The R values in Africa, Asia, Europe, North America, Oceania, and South 509 

America are 0.763, 0.758, 0.736, 0.750, 0.759, and 0.738, respectively. Although the RMSE and MAE 510 
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of a few stations are high in America and Asia, the R is still high (>0.6). Therefore, the results of the 511 

model’s errors demonstrate that the model performs well on almost all stations. 512 

 513 

Figure 4: Spatial distribution (a-c) of root mean squared error (RMSE), mean absolute error (MAE), 514 

and correlation coefficient(R) between the model’s result and target with 100% sample data. Station 515 

number (bar) and cumulative frequency (curve) (d-e) of RMSE, MAE, and R. 516 

3.3 Validation and comparison with MODIS and AERONET AOD 517 

3.3.1 Validation over global land 518 

To validate the model’s predictive ability, the visibility-derived AOD (for short, VIS_AOD) is compared 519 

with Aqua, Terra, MERRA-2 and AERONET AOD at 550nm for the global scale. Among them, Aqua 520 

AOD has been used as training data, which is not independent. Terra AOD and AERONET AOD have 521 

not been used as training data and can be regarded as independent data.  522 

First, the relationship among daily MODIS and AERONET AOD is evaluated, as shown in. Figure 5 523 

shows the scatter density plots between AERONET AOD and Aqua AOD (a-b, d-e, g-h) and Terra AOD 524 

(b, e, h). The R values with Aqua AOD and Terra AOD are 0.643 and 0.637 on the daily scale, and 0.668 525 

and 0.658 on the monthly scale, 0.658 and 0.665 on the yearly scale. The RMSE with Aqua AOD and 526 

Terra AOD are 0.158 and 0.163 on the daily scale, and 0.122 and 0.127 on the monthly scale, 0.101 and 527 

0.103 on the yearly scale. The MAE values with Aqua AOD and Terra AOD are 0.084 and 0.088 on the 528 

daily scale, and 0.071 and 0.072 on the monthly scale, 0.061 and 0.062 on the yearly scale. The 529 

percentages of sample point falling within the EE envelopes are 64.66% and 62.54% on the daily scale, 530 

and 69.36% and 69.08% on the monthly scale, 74.80% and 75.89% on the yearly scale. 531 



18 

 

 532 

Figure 5: Scatter density plots between AERONET AOD (550nm) and Aqua MODIS AOD, Terra 533 

MODIS AOD and VIS_AOD on the daily (a-c), monthly (d-f) and yearly (g-i) scale. The solid black line 534 

represents the 1:1 line and the dashed lines represents expected error (EE) envelopes. The sample size 535 

(N), correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE) are 536 

given. ‘= EE’, ‘> EE’, and ‘< EE’ represent the percentages (%) of retrievals falling within, above, and 537 

below the EE, respectively. The matching time for Aqua AOD and VIS_AOD with AERONET AOD is 538 

13.30 (± 30 minutes) at local time, and the matching time between Terra AOD and AERONET AOD is 539 

10.30 (± 30 minutes) at local time. 540 

Figure 6 shows the scatter density plots and the EEs between VIS_AOD and Aqua AOD, Terra AOD, 541 

and AERONET AOD. Aqua AOD is not an independent validation, and Terra and AERONET AOD are 542 

independent validation. For the daily scale, the R, RMSE and MAE of between VIS_AOD and Aqua 543 

AOD (15,962,757 pairs data) is 0.799, 0.079 and 0.044, respectively. The percentage of sample point 544 

falling within the EE envelopes is 84.12% on the global scale (Figure 6 a). The R between VIS_AOD 545 

and Terra AOD (17,145,578 pairs data) is 0.542, with a RMSE of 0.125 and MAE of 0.078. The 546 

percentage falling within the EE envelopes is 64.76% (Figure 6 b). The R between VIS_AOD and 547 

AERONET AOD (270,240 pairs data) at 395 sites is 0.546, with a RMSE of 0.186 and MAE of 0.099. 548 

The percentage falling within the EE envelopes is 57.87% (Figure 6 c). 549 

For the monthly and annual scales, RMSE and MAE show a significant decrease between VIS_AOD and 550 

Aqua, Terra, and AERONET AOD, and R and percentages falling within EE show a significant increase 551 
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in Figure 6 (e-g, i-k). The monthly RMSEs are 0.029, 0.051, and 0.135, the monthly MAEs are 0.018, 552 

0.031, and 0.077, and the monthly R values are 0.936, 0.808, and 0.613, respectively. The percentages 553 

falling within the EE envelopes are 98.34%, 93.25%, and 65.77%. The RMSEs at on the annual yearly 554 

scale are 0.013, 0.024, and 0.116, the MAEs are 0.008, 0.015, and 0.066, and the R values are 0.976, 555 

0.906, and 0.652, respectively. The percentages falling within the EE envelopes are 99.82%, 99.20%, 556 

and 73.79%. The percentage falling within the EE envelopes against AERONET is smaller than that 557 

against Terra, which may be related to the elevation of AERONET sites, the distance between AERONET 558 

and meteorological stations, and observed time. The results highlighted above demonstrate a clear 559 

improvement in performance on the monthly and annual yearly scales compared to the daily scale. 560 

(Schutgens et al., 2017), which provided a foundation for the gridded dataset. 561 

To further examine the predictive capability of historical data, we compare the VIS_AOD with 562 

AERONET AOD before 2000, as shown in Figure 6 (d, h, l). We match 43 AERONET sites, with a total 563 

of 5166 daily records. The result indicates that the daily-scale R is close to that after 2000 (Figure 6 c), 564 

with the percentages approaching 50% falling within the EE envelopes. The monthly and annual 565 

correlation coefficients are even higher, with a percentage of 55% falling within the EE envelopes. 566 

Although the sample size is small, it still demonstrates the excellent predictive ability of the model. 567 

Compared with AERONET (an independent validation dataset), the performance of VIS_AOD is almost 568 

unchanged before and after 2000. 569 

We also compare the VIS_AOD with the MERRA-2 reanalysis AOD on the monthly scales, as shown in 570 

Figure 7. The correlation coefficient between MERRA-2 and AERONET is 0.655 before 2000, slightly 571 

lower than the correlation coefficient (0.657) between VIS_AOD and AERONET. The correlation 572 

coefficient between MERRA-2 and AERONET is 0.829 after 2000, significantly higher than that before 573 

2000, while the correlation coefficient between VIS_AOD and AERONET is 0.613. It suggests that 574 

VIS_AOD and MERRA-2 AOD have similar accuracy before 2000. The correlation of MERRA-2 after 575 

2000 is higher and even performs better than MODIS retrievals (as shown in Figure 5) when evaluated 576 

at AERONET sites. However, before 2000, the correlation coefficient of MERRA-2 and AERONET, 577 

RMSE, and MAE all show significant changes and differences in consistency. The higher correlation 578 

between MERRA-2 and AERONET AOD is partly because MERRA-2 has assimilated AERONET AOD 579 

observations (Gelaro et al., 2017). Compared to AERONET, VIS_AOD and Aqua/Terra MODIS have a 580 

similar correlation coefficient. The correlation coefficient of VIS_AOD before 2000 is even higher than 581 

after 2000, and the changes in RMSE and MAE are not significant. It indicates good consistency of 582 

VIS_AOD. In conclusion, the predicted results have good consistency with AEONET AOD and Terra 583 

AOD on the daily scale. The monthly and annual results have a significant improvement. The model 584 

shows good predictive capabilities before/after 2000, highlighting the stable accuracy of VIS_AOD. 585 
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 586 

Figure 6: Scatter density plots between predicted AOD (VIS_AOD) and Aqua MODIS AOD, Terra 587 

MODIS AOD, AERONET AOD and AERONET AOD before 2000 on the daily (a-d), monthly (e-h) and 588 

yearly (g-i) scale. The solid black line represents the 1:1 line and the dashed lines represents expected 589 

error (EE) envelopes. The sample size (N), correlation coefficient (R), mean absolute error (MAE), and 590 

root mean square error (RMSE) are given. ‘= EE’, ‘> EE’, and ‘< EE’ represent the percentages (%) of 591 

retrievals falling within, above, and below the EE, respectively. Note Aqua AOD is not an independent 592 

validation dataset for predicted results, while Terra and AERONET AOD are independent validation 593 

datasets. 594 
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 595 

Figure 7: Scatter density plots between AERONET AOD and the predicted AOD (VIS_AOD) and 596 

MERRA-2 AOD before/after 2000 on the monthly scale. The solid black line represents the 1:1 line and 597 

the dashed lines represents expected error (EE) envelopes. The sample size (N), correlation coefficient 598 

(R), mean absolute error (MAE), and root mean square error (RMSE) are given. ‘= EE’, ‘> EE’, and ‘< 599 

EE’ represent the percentages (%) of retrievals falling within, above, and below the EE, respectively.  600 

3.3.2 Validation over regions 601 

Aerosol loading exhibits spatial variability. Evaluation metrics for the relationships between 602 

visibility-derived AOD and AERONET AOD and Terra AOD for each region are listed in Table 1. 603 

Over In Europe and North America, the results are similar to those of Terra and AERONET, with a 604 

large number of data pairs, greater than 105 (AERONET) and greater than 107 except for Eastern 605 

Europe (Terra) on the daily scale. Approximately 63% -70% data pairs fall within the EE envelopes. 606 

The RMSE is approximately 0.1100, except for western North America (~0.15), and the MAE is 607 

approximately 0.0700, with and the a correlation coefficient is between 0.44 and 0.54. 608 

Over In Central South America, South Africa, and Australia, data pairs are about 103-4 (AERONET) 609 

and 106 (Terra) on the daily scale. 52-60% fall within the EE envelopes compared to AERONET, 610 

and 58-67% compared to Terra. The RMSE is 0.03-0.05 compared to Terra, and 0.11-0.17 compared 611 

to AERONET. The correlation coefficient ranges from 0.40 to 0.74, with the highest correlation 612 

coefficient in South America at 0.740. 613 

In Asia, India, and West Africa, the data pairs are only approximately 104 (AERONET). 32% to 50% 614 
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fall within the EE envelopes compared to AERONET, the RMSE value ranges from 0.20 to 0.50, 615 

and the MAE ranges from 0.11 to 0.36. Compared to Terra AOD, 51 to 58% of data pairs, compared 616 

to Terra, fall within the EE envelopes, the RMSE is around 0.16, and the MAE is around 0.11. 617 

Compared to AERONET, in these high aerosol loading regions, RMSE and MAE increase, and the 618 

percentages falling within the EE envelopes decrease, but the correlation coefficients do not 619 

significantly decrease. 620 

Compared to Terra AOD, 55% -67% of data falls within the EE envelopes on the daily scale, 87% -621 

96% on the monthly scale, and over 97% on the yearly scale. Compared to AERONET AOD, 32-622 

68% of data falls within the EE envelopes, 24% -84% on the monthly scale, and 15% -97% on the 623 

yearly scale. On both monthly and yearly scales, all metrics have shown a significant increase in 624 

performance when compared to Terra. However, compared to AERONET, not all metrics increase 625 

in some regions due to limited data pairs, such as West Africa, Northeast Asia, and India, which may 626 

be due to the spatial differences between AERONET sites and meteorological stations. 627 

3.3.3 Validation at a site scale 628 

Sites, especially AERONET, are not completely uniform across the world or in any region, and 629 

different stations have different sample sizes, which may lead to a certain uncertainty. Therefore, 630 

further analysis was is conducted on the spatial distribution of different evaluation metrics. Figure 8 631 

shows the validation and comparison of daily VIS_AOD against Terra and AERONET AOD at a 632 

site scale. 633 

Compared to Terra daily AOD, the R of 67% stations is greater than 0.40, the mean bias of 83% is 634 
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Table 1: Evaluation metrics for the relationships between visibility-derived AOD and AERONET AOD and Terra AOD for each region. 635 

Region 
 

  N R RMSE MAE Within EE (%) 

daily monthly yearly daily monthly yearly daily monthly yearly daily monthly yearly daily monthly yearly 

Eastern Europe AERONET 21724 2317 271 0.463  0.493  0.653  0.1069 0.0647 0.0326 0.0714 0.0442 0.0263 65.69 83.77 97.42 

TERRA 661630 36435 3278 0.464  0.665  0.790  0.1095 0.0471 0.0214 0.0726 0.0286 0.0122 66.07 94.71 99.18 

Western Europe AERONET 53043 6033 697 0.445  0.487  0.344  0.1089 0.0716 0.0513 0.0711 0.0474 0.0347 64.40 79.21 89.10 

TERRA 1778013 104620 9166 0.467  0.763  0.811  0.1096 0.0391 0.0210 0.0712 0.0268 0.0124 66.99 95.42 99.40 

Western North America AERONET 33859 2948 334 0.503  0.484  0.509  0.1465 0.0949 0.0566 0.0747 0.0597 0.0419 63.58 67.37 81.14 

TERRA 1725226 82734 7201 0.542  0.765  0.906  0.1144 0.0465 0.0180 0.0671 0.0267 0.0125 69.48 94.42 99.61 

Eastern North America AERONET 47407 5359 608 0.527  0.526  0.559  0.1135 0.0824 0.0436 0.0657 0.0472 0.0331 67.52 77.78 87.50 

TERRA 6280277 359520 31343 0.515  0.799  0.847  0.1159 0.0435 0.0165 0.0726 0.0275 0.0111 66.70 94.94 99.80 

Central South America AERONET 10911 1176 149 0.740  0.811  0.866  0.1735 0.1272 0.1060 0.1021 0.0904 0.0688 52.40 47.96 67.79 

TERRA 444780 26362 2410 0.545  0.820  0.776  0.1447 0.0591 0.0369 0.0909 0.0396 0.0219 58.48 89.29 97.39 

Southern Africa AERONET 4255 309 38 0.423  0.480  0.630  0.1553 0.1128 0.0705 0.1033 0.0805 0.0525 52.08 59.55 78.95 

TERRA 216239 11304 1118 0.518  0.821  0.870  0.1258 0.0511 0.0296 0.0836 0.0340 0.0191 60.64 91.70 98.21 

Australia AERONET 6426 516 63 0.488  0.654  0.363  0.1094 0.0827 0.0725 0.0711 0.0620 0.0563 59.96 59.88 71.43 

TERRA 284693 14588 1286 0.398  0.784  0.831  0.1091 0.0363 0.0188 0.0666 0.0261 0.0143 67.01 94.65 99.38 

Western Africa AERONET 2205 205 34 0.553  0.594  0.762  0.3180 0.2873 0.3357 0.2082 0.2029 0.2587 37.96 40.00 23.53 

TERRA 156392 10468 1028 0.501  0.769  0.849  0.1769 0.0706 0.0412 0.1198 0.0482 0.0242 51.83 88.01 97.57 

Southeast Asia AERONET 4134 504 74 0.405  0.542  0.488  0.2037 0.1447 0.1198 0.1274 0.0988 0.0821 50.17 56.15 60.81 

TERRA 402465 27058 2500 0.470  0.753  0.872  0.1730 0.0729 0.0342 0.109 0.0455 0.0198 57.25 87.01 97.96 

Eastern China AERONET 7396 927 118 0.513  0.551  0.356  0.3571 0.2355 0.1933 0.2038 0.1392 0.1382 40.10 49.84 50.00 

TERRA 241185 17324 1518 0.523  0.811  0.895  0.1646 0.0638 0.0302 0.1073 0.0435 0.0225 55.77 88.07 98.88 

Northeast Asia AERONET 9979 1178 142 0.569  0.593  0.367  0.4941 0.3249 0.2604 0.2924 0.2425 0.2202 35.17 29.54 21.13 

TERRA 78823 5485 467 0.553  0.872  0.965  0.1973 0.0636 0.0263 0.1201 0.0440 0.0198 56.48 87.77 98.29 
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India AERONET 2208 203 32 0.521  0.462  0.534  0.2957 0.3015 0.3588 0.2049 0.2283 0.2862 32.11 24.63 15.63 

TERRA 179928 9564 862 0.526  0.815  0.915  0.1564 0.0599 0.0352 0.1089 0.042 0.0238 55.16 90.43 98.14 

 636 
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less than 0.01, the RMSE of 85% is less than 0.15, and the percentage falling within the EE of 67% 637 

is greater than 60%. More than 85% of stations fall within the EE is greater than 60% in Europe, 638 

North America, and Oceania, while 40-60% in South America, Africa, and Asia. The percentage of 639 

expected error is low in South and East Asia, and Central Africa, with some underestimation. Above 640 

60% in Africa, Asia, North America, and Europe have a correlation coefficient greater than 0.40. 641 

The regions with lower correlation are the coastal regions of South America, eastern Africa, western 642 

Australia, northeastern North America, and northern Europe. Above 90% of the RMSE in Europe, 643 

North America, and Oceania have a correlation coefficient smaller than 0.15. High RMSE regions 644 

are in western North America, Asia, central South America, and central Africa. 645 

Compared to AERONET daily AOD, the R of 74% stations is greater than 0.40, and the spatial 646 

distribution is similar to Terra's. The mean bias of 44% is less than 0.01, the RMSE of 68% is less 647 

than 0.15, and the percentage falling within the EE of 53% is greater than 60%. More than 70% of 648 

sites have a correlation coefficient greater than 0.40 in Africa, Asia, Europe, and North America. 649 

More than 57% of sites have an expected error percentage of over 60% in Europe, North America, 650 

and Oceania, except for Asia. Over 72% of sites have a RMSE less than 0.15. Except for Oceania 651 

and South America, over 71% of sites in other regions have MAE less than 0.01. Almost all sites in 652 

Asia show a negative bias, significantly underestimating. However, there is a significant 653 

overestimation in western North America and western Australia. Most sites in Asia falling within 654 

the expected error are less than 50%. High RMSE are in high emission and dust areas, such as Asia, 655 

India, and Africa. 656 

The validation and comparison on the site scale show a limitation similar to the MODIS DT 657 

algorithm. In areas with high vegetation coverage, the AOD from visibility are better than those in 658 

bright areas. Although the correlation coefficients are high in high aerosol loading areas (Central 659 

South America, West Africa, India, Eastern China, Northeast Asia), there are significant differences 660 

in these areas with high RMSE values. As shown in Figure 6, some stations located in dusty and 661 

urban areas are overestimated or underestimated. Studies have shown that there is a significant 662 

uncertainty in the MODIS retrievals in these regions, and the challenges of inversion algorithms are 663 

significant in bright surfaces (desert and snow covered areas) and urban surface of densely 664 

populated complex structures (Chu et al., 2002; Remer et al., 2005; Levy et al., 2010; Wei et al., 665 

2019; Wei et al., 2020). In India, the elevation difference between AERONET site and 666 

meteorological station reached 0.7km may be a factor affecting the validation effect, as aerosol 667 

varies greatly with altitude. In eastern China, the complex urban surface, emission sources, and 668 

observations in different locations (AERONET site and meteorological station) may be the reasons 669 

for underestimation. At the same time, visibility stations in desert areas are sparse, and the spatial 670 

variability of dust aerosols is large, which also increases the difficulty to estimate VIS_AOD.671 
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 672 
Figure 8: Validation of VIS_AOD against Terra and AERONET AODs at each site: (a–b) 673 

correlation (R), (c-d) mean bias (MB), (e-f) root mean square error (RMSE), (g-h) percentage (%) 674 

of VIS_AOD within the expected error envelopes. 675 

3.3.4 Discussion and uncertainty analysis 676 

The atmospheric visibility is a horizontal physical quantity, while AOD is a column-integrated 677 

physical quantity. We have linked the two variables together using machine a learning method, 678 

which partially compensates for the scarcity of AOD data. However, we have to face some 679 

limitations. Although the boundary layer height is considered, it is not sufficient. Pollutants such as 680 

smoke from biomass burning, dust, volcanic ash, and gas-aerosol conversion of sulfur dioxide to 681 

sulfate aerosols in the upper and lower troposphere can undergo long-range aerosol transport under 682 

the influence of circulation. The pollution transport and aerosol conversion processes above the 683 

boundary layer are still significant and cannot be ignored (Eck et al., 2023). Compared to surface 684 

visibility, bias occurs when the aerosol layer rises and affects AERONET measurements and 685 

MODIS retrievals. Therefore, it should be considered when using this data. If there were sufficient 686 

historical vertical aerosol measurements with high temporal and spatial resolution, the results of this 687 

data would be greatly improved. Although some studies use aerosol profiles from pollution transport 688 

models or assumed profiles as substitutes for observed profiles (Li et al., 2020; Zhang et al., 2020), 689 

the biases introduced by these non-observed profiles are still significant. 690 

In machine learning, we use MODIS Aqua AOD as the target value for the model because the 691 

validation results for MODIS C6.1 product have a correlation coefficient of 0.9 or higher with 692 

AERONET AOD on the daily scale (Wei et al., 2019; Wei et al., 2020). Compared to AERONET, 693 

MODIS AOD provides more sample data with a high global coverage. However, apart from 694 
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modeling errors, the systematic biases and uncertainties of MODIS Aqua AOD cannot be ignored 695 

(Levy et al., 2013; Levy et al., 2018; Wei et al., 2019). Averaging over time scale can reduce 696 

representation errors effectively, and emission sources and orography can increase representation 697 

errors (Schutgens et al., 2017). Therefore, the strong correlation at monthly and annual scales 698 

indicates a substantial reduction in errors. This is also one of the reasons why this dataset shows 699 

stronger correlation with Terra AOD and weaker correlation with AERONET in validation. 700 

The spatial matching between meteorological stations and AERONET sites may cause some biases. 701 

AERONET sites are usually not co-located with meteorological stations in terms of elevation and 702 

horizontal distance, this is another reason for the weak correlation between VIS_AOD and 703 

AERONET AOD. The meteorological stations are located at the airport. Different horizontal 704 

distances may result in meteorological stations and AERONET sites being located on different 705 

surfaces (such as urban, forest, mountainous). Differences in site elevation significantly impact the 706 

relationship between AOD and measured visibility. When the AERONET site is at a higher elevation 707 

than the meteorological station, there may be fewer measurements of aerosols over the sea at the 708 

AERONET site. 709 

Different pollution levels and station elevation affect the AOD derived from visibility. The elevation 710 

difference and distance between meteorological stations and AERONET sites also have an impact 711 

on the validation results. Therefore, the error and performance of different AERONET AOD values, 712 

station elevation, and distance are analyzed. 713 

As the AOD increases, the variability of bias also increases in Figure 9 (a). Almost all mean bias 714 

values are within the envelope of EE, except for 1.1-1.2 and 1.5-1.6. The average bias is 0.015 715 

(AOD <0.1), with 83% of data within the EE envelopes. The mean bias is -0.0011 (AOD,0.1-0.2), 716 

with 54% within the EE envelopes. The mean bias is negative (AOD, 0.3-1.0), with 20%-40% 717 

falling within the EE envelopes. There is a positive bias (AOD, 1.1, 1.4 and >1.6), and there is a 718 

negative bias at 1.2-1.3 and 1.5-1.6. The results indicate that as pollution level increases, the 719 

negative mean bias becomes significant and the underestimation increases. 720 

The contribution of particulate matter near the ground to the column aerosol loading is significant. 721 

The elevation of the site affects the measurement of column aerosol loading in Figure 9 (b). There 722 

is a negative bias in the low elevation (<=0.5km) with a percentage of 60%-64% falling within the 723 

EE envelopes and a positive bias in high elevation (0.5-1.2km) with a percentage of 50%-65% 724 

falling within the EE envelopes. The percentage significantly decreases (>1.2km), and the average 725 

bias increases. Therefore, the elevation of AERONET’s site will cause bias in validation, and. the 726 

uncertainty greatly increases in high elevation.  727 

Due to the elevation difference between the meteorological station and AERONET site in the 728 

vertical direction, the uncertainty caused by elevation differences of site was analyzed in Figure 9 729 

(c). When the elevation difference is negative (the elevation of the meteorological station is lower 730 

than that of the AERONET station), there is a significant positive bias. When the difference is 731 

positive, the mean bias approaches 0 or is positive. The percentage is greater than 60% (-0.5 km-732 

0.5km). The positive mean bias is greater than the negative mean bias, and the uncertainty greatly 733 

increases when the elevation of meteorological stations is lower than that of AERONET sites. It 734 

indicates that the contribution of the near surface aerosol to the column aerosol loading is significant 735 

and cannot be ignored. 736 

The spatial variability of aerosols is significant. Meteorological stations and AERONET sites are 737 

not collocated, resulting in a certain distance in spatial matching. In this study, the upper limit of 738 
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distance is 0.5 degree. Figure 9 (d) shows the error of the distance between stations, where the 739 

degree is converted to the distance at WGS84 coordinates. The bias does not change significantly 740 

with increasing distance. The average bias is around 0, with the maximum positive mean bias 741 

(0.0322) at a distance of 2km and the maximum negative mean deviation (-0.0323) at 6km. The 742 

median is almost positive, except at 5km and 6km. The percentage falling within the EE envelopes 743 

is over 50%, with the maximum percentage (66%) at 3km and the minimum (62%) at 2km. 744 

 745 

Figure 9: Box plots of AOD bias and the percentage falling within the EE envelopes (curves): (a) 746 

AERONET AOD levels, (b) elevation of AERONET sites, (c) elevation difference between 747 

meteorological stations and AERONET sites, (d) distance (km) between meteorological stations and 748 

AERONET sites. The black horizontal line represents the zero bias. For each box, the upper, lower, 749 

and middle horizontal lines, and whiskers represent the AOD bias 75th and 25th percentiles, median, 750 

and 1.5 times the interquartile difference, respectively. The black solid lines represent the EE 751 

envelopes (±(0.05+0.15*AODAERONET)). No site with a difference of +0.3km (x-axis label without 752 

0.3) in (c). 753 

3.4 Gridded visibility-derived AOD 754 

3.4.1 Uncertainty of gridded AOD 755 

We calculate the width of the 95% CI for gridded AOD. Figure 10 (a-b) shows the spatial distribution 756 

and frequency of the 95% CI from 1980 to 2021. In areas with dense visibility stations, the kriging 757 

variance is low, the width of 95% CI is small, and the uncertainty of the gridded AOD is low. In 758 

areas with sparse visibility stations, the width is large, and the uncertainty is high. The uncertainty 759 

of approximately 43% of the grids is less than 0.03, and nearly 80% has an uncertainty less than 760 

0.06. Approximately 7% of the grids have an uncertainty larger than 0.1. Regions with low 761 

uncertainty are mainly located in North America (<60°N), Europe, Western and Southern Asia, 762 

Eastern China, and South America. Regions with high uncertainty are found in high-latitude areas 763 

(e.g., Siberia), high-altitude regions (e.g., Tibetan Plateau), and desert areas (such as the Sahara 764 
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Desert, Taklamakan Desert, and Australian deserts). 765 

Uncertainty also exhibits seasonal variations, as shown in Figures (c-f). The percentage of grid cells 766 

with uncertainty less than 0.06 is 63%, 84%, 77%, and 86% in DJF, MAM, JJA, and SON, 767 

respectively. Compared to other seasons, uncertainty increases significantly in high-latitude regions, 768 

Africa, northern Asia, Oceania, and eastern South America during DJF. In JJA, the distribution of 769 

uncertainty is similar to DJF, but the uncertainty decreases. In MAM and JJA, there is higher 770 

confidence, with a small number of grid cells having large uncertainty (>0.1), primarily concentrated 771 

in high-latitude regions. 772 

 773 

Figure 10: The spatial distribution (a) and frequency (b) of the 95% confidence interval (CI) from 774 

1980 to 2021 The spatial distribution of the width of the 95% CI for each season (c-f). Bins of 95% 775 

CI are from 0 to 0.15 with an interval of 0.01. DJF represents December and next January and 776 

February. MAM represents March, April, and May. JJA represents June, July, and August. SON 777 

represents September, October, and November. 778 

3.4.2 Comparison with Aqua/Terra MODIS AOD 779 

Figure 11 shows the gridded AOD based on ordinary kriging interpolation with the area-weighted 780 

method and compares the multi-year spatial, zonal, and meridional distributions of AOD with Aqua 781 

and Terra AOD over land from 2003 to 2021. The VIS_AOD is 0.157±0.073 over land, which is 782 

almost equal to the Aqua (0.152±0.084) and Terra (0.154±0.088) AOD values with relative biases 783 

of 3.3%, and 1.9%, respectively. In order to compare the spatial correlation, Aqua and Terra MODIS 784 

AOD are averaged to the 0.5-degree resolution. In the heatmap (Figure 12), the R of VIS_AOD and 785 

Aqua AOD is 0.798, the RMSE is 0.049 with a bias of 32% compared to the mean, and the MAE is 786 

0.008, with a bias of 5% compared to the mean. Compared to Terra AOD, the R is 0.787, and the 787 

RMSE is 0.051, with a bias of 33% compared to the mean, and the MAE is 0.005, with a bias of 3% 788 

compared to the mean. The R between Aqua and Terra AOD is 0.980. The R values between 789 
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VIS_AOD and Aqua and Terra AOD are 0.995 and 0.990 for the zonal distribution and 0.986 and 790 

0.897 for the meridional distribution, respectively. In the low aerosol loading region, VIS_AOD 791 

exhibits a little overestimation. Whether in meridional or zonal distribution, the peak and valley 792 

regions are basically consistent (Tian et al., 2023). Due to the limitations of satellite inversion 793 

algorithms, a bias appears on the bright surface, especially in northern North America with extensive 794 

snow cover (Levy et al., 2013). All above results suggest that the gridded AOD is consistent with 795 

satellite retrievals in spatial distribution. 796 

 797 

 798 

Figure 11: The spatial, zonal and meridional distributions of the multi-year mean VIS_AOD, Aqua 799 

AOD, and Terra AOD over land from 2003 to 2021.  800 

 801 

 802 

Figure 12: Heatmap of multi-year mean gridded VIS_AOD and Aqua AOD and Terra AOD during 803 

2003-2021. Terra and Aqua AOD are averaged onto a grid of 0. 5°. 804 
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3.45 Interannual variability and trend of visibility-derived AOD over global land 805 

The spatial distribution of multi-year average AOD from 1980 to 2021 over land is 0.177, as shown 806 

in Figure 103 (a). The mean AODaverage is 0.178 in of land (-60-85°N), Northern Hemisphere (NH, 807 

0-85°N4532 stations), and 0.174 in the Southern Hemispheres (SH, -60-0°N500 stations). is 0.161 808 

± 0.074, 0.158 ± 0.076, and 0.173 ± 0.059, respectively. The AOD values of Africa, Asia, Europe, 809 

North America, Oceania, and South America are 0.241, 0.222, 0.110, 0.111, 0.129 and 0.117, 810 

respectively.   811 

Due to the influence of geography, atmospheric circulation, population, and emissions, the AOD 812 

varies in different latitudes. Figure 114 illustrates the multi-year average AOD in different latitude 813 

ranges for land, the NH, and the SH from 1980 to 2021. The AOD value in the NH is higher than 814 

that over land, then higher than that in the SH. Within [-20, 20°N], the global average AOD reaches 815 

its maximum (0.222534), and the maximum AOD in the NH is 0.23956 in [0, 20°N]. The highest 816 

AOD in SHin the SH is 0.20317 in in [-15, 0°N]. The average AOD in SH rapidly decreases from -817 

15°N to -35°N in the SH and from 20°N to 50°N in the NH. In NH, AOD is generally greater than 818 

in SH from 5°N to 65°N. When, the latitude is greater than 70°N, the NH’s AOD is smaller than the 819 

SH’s. 820 

There are many regions of high AOD values occur in the NH, with the distribution of high 821 

population density. Approximately 7/8 of the global population resides in the NH, with 50% 822 

concentrated at 20°N-40°N (Kummu et al., 2016), indicating a significant impact of human activities 823 

on aerosols. The highest AOD values are observed near 17°N, including the Sahara Desert, Arabian 824 

Peninsula, and southeastern India, suggesting that in addition to anthropogenic sources, deserts also 825 

play a crucial role in aerosol emissions. Lower AOD regions of the SH are from 25°S to 60°S, 826 

encompassing Australia, southern Africa, and southern South America, indicating lower aerosol 827 

burdens in these areas. Additionally, North America also exhibits low aerosol loading. Chin et al. 828 

(2014) analyzed the AOD over land from 1980 to 2009 with the Goddard Chemistry Aerosol 829 

Radiation and Transport model, which is similar to the visibility-derived AOD. The spatial 830 

distribution is consistent with the satellite results (Remer et al., 2008; Hsu et al., 2012; Hsu et al., 831 

2017; Tian et al., 2023). The AOD and extinction coefficient retrieved from visibility show a similar 832 

distribution at global scale, with a correlation coefficient of nearly 0.6 (Mahowald et al., 2007). 833 

Similar global (Husar et al., 2000; Wang et al., 2009) and regional (Koelemeijer et al., 2006; Wu et 834 

al., 2014; Boers et al., 2015; Zhang et al., 2017; Zhang et al., 2020) spatial distributions have been 835 

reported. 836 

AOD loadings exhibit significant seasonal variations worldwide, particularly over land. In this study, 837 

a year is divided into four parts: December-January-February (DJF), March-April-May (MAM), 838 

June-July-August (JJA), and September-October-November (SON), corresponding to winter 839 

(summer), spring (autumn), summer (winter), and autumn (spring) in the NH (SH), respectively. 840 

Figure 103 (b-e) also depicts the spatial distribution of seasonal average AOD over land from 1980 841 

to 2021. The global AOD in DJF, MAM, JJA, and SON is 0.158±0.06262, 0.162±0.08175, 842 

0.175±0.093205, and 0.153± 0.070166, respectively. The standard bias of AOD in JJA and MAM 843 

DJF are greater than those in DJF and SON. AOD exhibits seasonal changes, with the highest in 844 

JJA, followed by MAM, DJF, and SON. From 1980 to 2021, the seasonal AOD in NH is 845 

0.152±0.064 (DJF), 0.161±0.088 (MAM), 0.176±0.090 (JJA), and 0.144±0.060 (SON), and in SH 846 
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is 0.184±0.041 (DJF), 0.166±0.044 (MAM), 0.169±0.072 (JJA), and 0.19±0.060 (SON).  847 

In the NH, the AOD ranking from high to low in season is summer (0.210)> spring (0.176) > autumn 848 

(0.163)> winter (0.160)> autumn. In SHIn the SH, the AOD ranking from high to low in season is 849 

spring (0.188) > summer (0.184) > autumn (0.164) > winter (0.152) > autumn. The highest AOD is 850 

observed during JJA in the NH, while in SHin the SH, the peak occurs during SON. The occurrence 851 

of high AOD values is highly associated with the growth of hygroscopic particle and the 852 

photochemical reaction of aerosol precursors under higher relative humidity in Asia (JJA) (Remer 853 

et al., 2008) and Europe such as Russia (JJA), and biomass burning in South America (SON), 854 

Southern Africa (SON), and Indonesia (SON) (Ivanova et al., 2010; Krylov et al., 2014). On the 855 

other hand, the lowest global AOD values are observed during autumnwinter, which may be 856 

attributed to the atmospheric circulationweakening of monsoon systems (Li et al., 2016; Zhao et al., 857 

2019). 858 

In addition to the spatial characteristics of AOD, tThe temporal variations in AOD have also been 859 

of great interest due to the significant relationship between aerosols and climate change. Figure 103 860 

(f) shows the temporal trends of annual average AOD (** represents passing the significance test, 861 

p<0.01) over the global land, the SH and the NH during 1980-2021. The global land, NH, and SH 862 

trends demonstrate decreasing trends of AOD with values of -0.00296/10a, -0.00180030/10a, and -863 

0.00590021/10a, respectively, with all passing the significance test with a confidence level of 95%. 864 

Notably, tThe declining trend is much greater in the NSH than in the SNH.  865 

It may be related to the decrease in the frequency of sandstorms and wildfires and the increase in 866 

precipitation, such as in Australia. Two AOD peaks in 1983 and 1994 and two AOD valleys in 1980 867 

and 1990 are observed before 2000. The two AOD peaks may be attributed to large volcanic 868 

eruptions, which has been confirmed by previous studies. The volcanic eruptions and their 869 

associated fires of the El Chichón volcano in Mexico in 1982 (Hirono and Shibata, 1983) and Mount 870 

Pinatubo in the Philippines in 1991(Tupper et al., 2005) resulted in elevating global AOD levels in 871 

the following years. The AOD recovery to the previous low levels after volcanic eruptions takes 872 

approximately 10 years . This further indicates the efficiency of our data capturing the volcanic 873 

eruption emission features. 874 

Due to the influence of geography, atmospheric circulation, population, and emissions, the trend of 875 

global aerosols varies in different latitude Figure 14 illustrates the multi-year average AOD in 876 

different latitude ranges for land, the NH, and the SH from 1980 to 2021. Within [-20, 20°N], the 877 

global average AOD reaches its maximum (0.234), and the maximum AOD NH is 0.256 in [0, 20°N]. 878 

The highest AOD in SH is 0.217 in in [-15, 0°N]. The average AOD in SH rapidly decreases from -879 

15°N to -35°N. In NH, AOD is generally greater than in SH from 5°N to 65°N. When, the latitude 880 

is greater than 70°N, the NH’s AOD is smaller than the SH’s, which may be related to low emission 881 

intensity and low population density in high latitude areas. 882 

The seasonal trends of AOD during 1980-2021 at the global and hemispheric scales are shown in 883 

Figure 103 (g-j). The trend over land global AOD shows a is decreasing in DJF, JJA and SON, and 884 

increasing in MAM.trend in all seasons (-0.002~-0.003/10a). The largest declining trends are is 885 

observed in JJA and SON, with decreasing trend values of ( -0.00553/10a). and -0.0029/10a, 886 

respectively. DJF and MAM follow with decreasing trend values of -0.0026/10a and -0.0022/10a, 887 

respectively, all passing the significance test (p<0.01). For In the NH, the AOD trends in different 888 



33 

 

seasons are -0.004430/10a (DJF), -0.00060016/10a (MAM), -0.002405/10a (JJA), and -0.00634/10a 889 

(SON). DJF and SON pass the significance test (p<0.01), while MAM and JJA do not. In the SH, 890 

the trends are as follows: -0.002211/10a (DJF), -0.00850044/10a (MAM), -0.013100064/10a (JJA), 891 

and -0.00090.0033/10a (SON). Interestingly, in contrast to the NH, MAM and JJA pass the 892 

significance test, while DJF and SON do not. The largest declining season trend in the NH is 893 

winterautumn in the NH and JJA in the SH., while in the SH, it is summer. However, the trends are 894 

positive in MAM of the NH and DJF and SON of the SH.  895 

The decreasing trend in the SH is more than four times greater than that in the NH, particularly 896 

before the year 2000. While both the global and SH AOD exhibit a decreasing trend since 2005, the 897 

NH has shown a significant increase in winter AOD, leading to an overall increasing trend. 898 

Moreover, the NH shows an increasing trend of 0.004/10a from 2005 to 2021.  899 

Annual SO2 emissions increased from 9.4 to 15.3 TgS from 2000 to 2005, which ultimately ended 900 

up as sulfate aerosols, leading to a significant increase in sulfate aerosols (Hofmann et al., 2009). 901 

More relevantly, the frequent volcanic eruptions in tropical regions from 2002 to 2006, combined 902 

with seasonal circulation patterns during winter, led to the transport of aerosol particles to higher 903 

latitudes (Hofmann et al., 2009; Vernier et al., 2011; Sawamura et al., 2012; Andersson et al., 2015).  904 

  905 

 906 

Figure 13: The multi-year averages of VIS_AOD from 1980 to 2021. Global land (circle), 907 

northern hemisphere (NH,0-85°N) (triangle) and southern hemisphere (SH,0-60°S) (square) 908 
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annual and seasonal AOD. The symbol, **, represents that the test passed at a significance 909 

level of 0.01. DJF represents December and next January and February. MAM represents 910 

March, April, and May. JJA represents June, July, and August. SON represents September, 911 

October, and November. 912 

 913 

Figure 10: The multi-year and average seasonal AOD and from 1980 to 2021. Global land (circle), 914 

northern hemisphere (NH) (triangle) and southern hemisphere (SH) (square) annual and seasonal 915 

AOD. The symbol, **, represents that the test passed at a significance level of 0.01. The symbol, *, 916 

represents that the test passed at a significance level of 0.05. DJF represents December and next 917 

January and February. MAM represents March, April, and May. JJA represents June, July, and 918 

August. SON represents September, October, and November. 919 

 920 
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921 

 922 

Figure 114: The global land (blue), northern hemisphere’s (red) and southern hemisphere’s (yellow) 923 

multi-year average VIS_AOD from 1980 to 2021 in different latitude zones. The latitude range is 924 

from -650 to 85°N, with a bin of 5°. 925 

3.56 Interannual variability and trend of visibility-derived AOD over regions 926 

The distribution of AOD over global land exhibits significant spatial heterogeneity. Large variations 927 

in aerosol concentrations exist among different regions, leading to a non-uniform spatial distribution 928 

of AOD globally. Accurately assessing the long-term trends of aerosol loading is a key for 929 

quantifying aerosol climate change, and it is crucial for evaluating the effectiveness of 930 

measurementss implemented to improve regional air quality and reduce anthropogenic aerosol 931 

emissions. Therefore,  932 

To analyze the spatiotemporal characteristics and trends of AOD in different regions, wwe selected 933 

12 representative regions to analyze the variability and trend of AOD, w that hich are influenced by 934 

various aerosol sources (Wang et al., 2009; Hsu et al., 2012; Chin et al., 2014), such as desert, 935 

industry, anthropogenic emissions, and biomass burning emissions, which nearly cover the most 936 

land and are densely populated regions (Kummu et al., 2016). These representative regions are 937 



36 

 

Eastern Europe, Western Europe, Western North America, Eastern North America, Central South 938 

America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, 939 

and India, as shown in Figure 1.  940 

The multi-year average and seasonal average AOD (Figure 12), the trends of the annual average of 941 

monthly anomalies (Figure 13), and the seasonal trends (Figure 14) are analyzed in 12 regions from 942 

1980 to 2021. 943 

We use multi-year average and seasonal average AOD to evaluate aerosol loadings (Figure 15), the 944 

annual average of monthly anomalies to analyze interannual trends (Figure 16), and the seasonal 945 

average to analyze seasonal trends (Figure 17) in 12 regions from 1980 to 2021. 946 

We can see some differences between VIS_AOD and MODIS AOD. In addition to model errors, 947 

the spatial matching between meteorological stations and MODIS, terrain, surface coverage, and 948 

station altitude will also bring errors. When particle transport and photochemical reactions occur 949 

above the boundary layer, visibility cannot capture the feature, which will also increase the 950 

uncertainty. However, bias is inevitable and can only be kept as small as possible. From the trend, 951 

they have similar changing characteristics, especially on monthly and yearly scales. 952 

Figure 15 shows the regions with The regions with a high AOD aerosol level from 1980 to 2021 953 

(multi-year average AOD > 0.2) are in West Africa, Southeast and Northeast Asia, Eastern China, 954 

and India. The AOD values range from 0.15 to 0.2 in Eastern Europe, Western Europe, Eastern 955 

North America, Central South America, and South Africa, and Southeast Asia range from 0.15 to 956 

0.2. The AOD values are less than 0.15 in Eastern Europe, Western Europe, Western North America, 957 

and Australia are less than 0.15. 958 

Europe is an industrial region with a low aerosol loading region, and the multi-year average AOD 959 

in Eastern Europe (0.144±0.00781) is higher than that in Western Europe (0.139±0.003163) during 960 

1980-2021. Eastern Europe shows a greater downward trend in AOD (-0.00410067/10a) compared 961 

to Western Europe (-0.00210026/10a). The highest AOD is observed in JJA, the dry period when 962 

solar irradiation and boundary layer height increase, with Eastern Europe at 0.161 201 and Western 963 

Europe at 0.162, which could be due to increases in secondary aerosols, biomass burning, and dust 964 

transport from the Sahara (Mehta et al., 2016). However, there are seasonal variations. In Eastern 965 

Europe, the seasonal AOD ranking from high to low is JJA (0.161201) > DJF (0.147181) > MAM 966 

(0.17538) > SON (0.16131), while in Western Europe, it is JJA (0.19362) > MAM (0.16240) > SON 967 

(0.16036) > DJF (0.13817). The differences among seasons are larger in Western Europe. AOD in 968 

Eastern Europe shows declining trends (p<0.01) in all seasons, while it does not pass the 969 

significance test in MAM. Among four seasons, and SON has the largest declininge trend is in DJF 970 

of AOD (-0.009658/10a). In Western Europe, the trend in DJF, JJA, and SON exhibit declining 971 

trends, while the trend in MAM of AOD that pass the significance test, while the MAM shows a 972 

significant increase trend of AOD (0.001922/10a), which may be due to eruptions of the 973 

Eyjafjallajökull volcano in Iceland in spring 2010 (Karbowska and Zembrzuski, 2016). The trends 974 

in bBoth Western and Eastern Europe experienced are increasing trends in MAM in AOD during 975 

from 1995 to 2005the period of 1995-2005, with Western Europe showing a greater increase. 976 

However, after 20050, the decline rates accelerated in both regionseach season. Studies have shown 977 

Tthe downward trend in Europe is attributed to the reduction of biomass burning, anthropogenic 978 
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aerosols, and aerosol precursors (such as sulfur dioxide)(Wang et al., 2009; Chin et al., 2014; 979 

Mortier et al., 2020). 980 

North America is also an industrial region with a low aerosol loading. The average AOD values for 981 

in Eastern and Western North America during 1980-2021 are 0.153±0.00465 and 0.131±0.00546, 982 

respectively, with the Eastern region being higher than the Western region by 0.01922. From 1980 983 

to 2021, both Eastern (-0.00271/10a) and Western North America (-0.001709/10a) show a 984 

downward trend; however, the decline in the Western region is not statistically significant. And the 985 

trend is -0.0172/10a from 1995 to 2005 and 0.0096/10a from 2005 to 2021.The average AOD values 986 

in DJF, MAM, JJA, and SON in Western North America are 0.141367, 0.1286148, 0.1457163, and 987 

0.114130, respectively, compared to 0.1387, 0.15645, 0.1913216, and 0.138 149 in Eastern North 988 

America. The lowest AOD values of 12 regions during DJF and SON are observed in Western North 989 

America (Remer et al., 2008). Specifically, the trends in of the Western and Eastern region are , 990 

there is a consistent increasing trend during MAM (0.004/10a) from 1980 to 2021and decreasing 991 

during other seasons, while JJA and SON also show an increase after 2000, except for DJF (-992 

0.0032/10a). In contrast, the AOD trends in the Eastern region remain unchanged during the period 993 

1980-2021, except for MAM, which shows a stable increasing trend (0.0033/10a), while DJF, JJA, 994 

and SON exhibit decreasing trends (-0.0023/10a, -0.0040/10a, -0.0053/10a, respectively).. In the 995 

Western region, the annual mean AOD started totrend is increasinge after 2005, while in the Eastern 996 

region, there is no the increasinge trend was not significant. The upward increasing trend may be 997 

due to low rainfall and increased wildfire activities (Yoon et al., 2014). The decrease in AOD in 998 

Eastern North America is related to the reduction of sulfate and organic aerosols, as well as the 999 

decrease in anthropogenic emissions caused by environmental regulations (Mehta et al., 2016). 1000 

Central South America is a relatively high aerosol loading region, sourced from biomass burning, 1001 

especially in SON (Remer et al., 2008; Mehta et al., 2016), with a multi-year average AOD of 1002 

0.192±0.0178. There is a clear downward trend (-0.01000075/10a) from 1980 to 2021., which The 1003 

trend is slightly greater lower than the trend (-0.0090/10a) from 1998 to 2010 (Hsu et al., 2012) and 1004 

AOD the trend is decreasinged from 1980 to 2006 (Streets et al., 2009) and from 2001 to 2014 1005 

(Mehta et al., 2016). Although The AOD values in DJF (0.199207) and SON (0.2286) have are 1006 

higher values compared to the values in MAM (0.1850) and JJA (0.17163), and the larger declining 1007 

trends are observed in MAM (-0.010026/10a) and JJA (-0.015067/10a). It The result indicates that 1008 

although AOD has decreased overall, the aerosol loading is still high, which is caused by seasonal 1009 

deforestation and biomass combustion burning is still large(Mehta et al., 2016). 1010 

Africa is also one of the regions with a high aerosol loading region worldwide. In West Africa, the 1011 

multi-year average AOD is 0.275±0.01281 during 1980-2021, and the trend is decreasing annual 1012 

AOD shows a downward trend (-0.00080062/10a, p>0.05). The world’s largest desert (Sahara 1013 

Desert) is in West Africa, with much dust aerosol discharged. The AOD values in JJA (0.296), MAM 1014 

(0.292), DJF (0.276) and SON (0.261) all seasons are above 0.265, with JJA (0.301) and MAM 1015 

(0.300) reaching 0.3, and DJF and SON being 0.252 and 0.250, respectively. The trends AOD in 1016 

DJF (-0.01435/10a, p<0.01), MAM (-0.0015/10a), JJA (-0.0019/10a) and SON (-0.00260078/10, 1017 

p>0.05) exhibit are decreasing. trends, while JJA (0.0088/10a, p<0.01) and MAM (0.0037/10a, 1018 

p>0.05) show an opposite trend. For South Africa, tThe multi-year average AOD in South Africa is 1019 

0.18277±0.020, lower than that of West Africa. The trend isannual mean AOD in South Africa shows 1020 

a significant  decreasinge (-0.00960016/10a). The results of AERONET observations and 1021 
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simulation results also show a decreasing trend of AOD (Chin et al., 2014). The AOD values range 1022 

from 0.12 to 0.20 during 2000-2009, dominated by fine particle matter from industrial pollution 1023 

from biomass and fossil fuel combustion (Hersey et al., 2015). The average AOD values in DJF, 1024 

MAM, JJA, and SON are 0.189207, 0.162173, 0.147135, and 0.210, with trends of 0.0044/10a, -1025 

0.0089/10a, -0.0089/10a and 0.0063/10a, respectively. JJA (-0.0268/10a, p<0.01), MAM (-1026 

0.0126/10a, p<0.01) and SON (-0.0001/10a, p>0.05) exhibit a downward AOD trend, while DJF 1027 

(0.0006/10a, p>0.05) shows an upward trend. AERONET and simulation results also show a 1028 

decreasing trend of AOD (Chin et al., 2014). 1029 

Australia is a region with a low aerosol loading. The multi-year mean average AOD is 1030 

0.127±0.01433 during 1980-2021. The AOD ranges from 0.05 to 0.15 from AERONET during 1031 

2000-2021, and dust and biomass burning are important contributors to the aerosol loading (Yang 1032 

et al., 2021a). There is a downward trend of AOD (-0.00810028/10a, p<0.01), which may be related 1033 

to a decrease in dust and biomass burning (Yoon et al., 2016; Yang et al., 2021a). In addition, a 1034 

research has shown that the forest area in Australia has increased sharply since 2000 (Giglio et al., 1035 

2013), surpassing the forest fire area of the past 14 years. The seasonal average of AOD in MAM, 1036 

JJA, SON, and DJF are 0.122130, 0.1078, 0.125132, and 0.151161. The AOD in JJA is the lowest 1037 

among in all seasons and in all regions. The trends in DJF and SON are increasing, and the trends 1038 

in MAM and JJA are decreasinghighest AOD is in DJF with an increasing trend (0.0056/10a, 1039 

p<0.01), while the trends during MAM, JJA and SON are -0.0096/10a (p<0.01), -0.0231/10a 1040 

(p<0.01) and -0.0042/10a (p<0.01), respectively. Ground-based observations and satellite retrievals 1041 

indicate that wildfires, biomass burning and sandstorms lead to high AOD in DJF and SON. The 1042 

low AOD of MAM and JJA is due to a decrease in the frequency of sandstorms and wildfires and 1043 

an increase in precipitation (Gras et al., 1999; Yang et al., 2021a; Yang et al., 2021b). 1044 

Asia is also a high aerosol loading area with various sources. In Southeast Asia, the multi-year 1045 

average AOD is 0.177 222 during 1980-2021 with a downward trend of AOD (-0.00073/10a, 1046 

p>0.05). It is also a biomass-burning area. The seasonal average AOD ranking from high to low is 1047 

JJA MAM (0.251207) > MAM DJF (0.183216) > DJF SON (0.169212) > SON JJA (0.149209). The 1048 

trends in DJF (-0.001835/10a, p<0.05) is decreasing and the tends in , MAM (0.033/10a), JJA (-1049 

0.00087/10a, p>0.05) and SON (-0.00210006/10a, p>0.05) are opposite increasing. However, the 1050 

trends are not significant. to MAM (0.0050/10a, p<0.01). Southeast Asia has no clear long-term 1051 

trend in estimated AOD or ground-based observationsobserved surface solar radiation (Streets et al., 1052 

2009). In Northeast Asia, the multi-year average AOD is 0. 222 244 during 1980-2021, with a trend 1053 

of -0.0009/10a), with no significant temporal trend. The trend is increasing (0.0018/10a) during 1054 

1980-2014 and decreasing (-0.0213/10a) during 2014-2021. The seasonal AOD values are 0.196 in 1055 

DJF, 0.252 260 in MAM, 0.215 in DJF, 0.212 287 in SON JJA and 0.209 236 in JJASON. The high 1056 

aerosol level is AOD in MAM is significantly higher than other seasons, which may be related to 1057 

sandstorms dust aerosol and aerosol transportation in East Asia, and the reason for the high AOD in 1058 

winter may be related to the transportation. The trends of AOD in DJF (-0.00250.0016/10a, p>0.05), 1059 

MAM (0.00310062/10a, p>0.05) are increasing, and the trends in JJA (-0.0043/10a0) and SON (-1060 

0.007006/10a, p>0.05) are not significant decreasing. In Eastern China, the multi-year average AOD 1061 

is 0.233241, with an increasing trend (0.00710130/10a, p<0.01). The trend is 0.01510196/10a from 1062 

1980 to 2006 2014 and -0.04690572/10a from 2006 2014 to 2021.The seasonal average AOD 1063 

ranking from high to low is JJA (0.2874), MAM (0.232494), SON (0.230236) and DJF (0.183216). 1064 
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The AOD trends in DJF (0.00930133/10a, p<0.01), MAM (0.00920179/10a, p<0.01), JJA 1065 

(0.00380107/10a, p>0.05) and SON (0.00650105/10a, p<0.05) are all positive but the trend in JJA 1066 

does not pass the significance test. We can see that there are three stages of changes in AODThe 1067 

trend can be divided into three stages: 1980-2005, 2006-2013 and 2014-2021. In the first stage, 1068 

AOD values are increased increasing steadily. In the second stage, AOD values maintained a high 1069 

level larger positive anomaly accompanied by oscillations. In tThe third stage, the AOD values 1070 

experienced a rapid decline, reaching the level of in the 1980s by 2021. The increasing trend of 1071 

AOD before 2006 may be due to the significant increase in industrial activity, and after 2013, the 1072 

significant decrease is closely related to the implementation of air quality-related laws and 1073 

regulations, along with adjustments in the energy structure (Hu et al., 2018; Cherian and Quaas, 1074 

2020).  1075 

India is a high aerosol loading area. The multi-year average AOD is 0.2545, with an a upward 1076 

decreasing trend (0.00960119/10a, p<0.01) from 1980 to 2021. Dust and biomass burning has an 1077 

influence on AOD level. There are three stages: 1980-1997 (0.00320050/10a, p<0.01), 1997-2005 1078 

(-0.04200393/10a, p<0.01), 2005-2021 (0.04810446/10a, p<0.01). Although the trend is downward 1079 

in the second stage, the lager positive trend is in the third stage. The seasonal average AOD values 1080 

are 0.237 238 in DJF, 0.258 251 in MAM, 0.269 271 in JJA, and 0.256 257 in SON. The largest 1081 

AOD is in JJA. In winter and autumn, it the aerosol level is affected by biomass burning, and in 1082 

spring and summer, it is also affected by dust, transported from the Sahara under during the monsoon 1083 

period (Remer et al., 2008). The trends in DJF (0.01520186/10a, p<0.01), MAM (0.00910143/10a, 1084 

p<0.01), JJA (0.00250012/10a, p>0.05), and SON (0.01070129/10a, p<0.05) are positive. There 1085 

largest trend is in winter.  1086 

The above results have supplemented the long-term AOD variability and trend over land. To 1087 

summarize, The AOD level at regional scale there are is significant differences in the spatial 1088 

distribution, annual trends, and seasonal trends of AOD across different regions from 1980 to 2021, 1089 

which is significantly related to the aerosol emission source type, transportation and the 1090 

implementation of laws and regulations about pollution control.. The high aerosol loadings from 1091 

1980 to 2021 are in West Africa, India and Asia, and low aerosol loading regions are in Europe, 1092 

Western North America, and Australia. Eastern China and India show an increasing trend, Southeast 1093 

Asia and Northeast Asia show no significant trend, and the other regions show downward trends. 1094 

However, not all regional seasonal trends are consistent with their annual trends. The results in this 1095 

study have supplemented the long-term trend and distribution of AOD over land. 1096 

 1097 
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 1098 

Figure 125: Annual and seasonal averages of AOD in 12 regions (Eastern Europe, Western Europe, 1099 

Western North America, Eastern North America, Central South America, Western Africa, Southern 1100 

Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, and India) during 1980-2021. 1101 

  1102 

 1103 
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 1104 

Figure 136: Annual averages of monthly VIS_AOD anomaly gridded VIS_AOD from 1980 to 2021 1105 

(pink line), Aqua (green line), and Terra (blue line) MODIS AOD in 12 regions (Eastern Europe, 1106 

Western Europe, Western North America, Eastern North America, Central South America, Western 1107 

Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, and India). The 1108 

dotted line is the trend line.  1109 

  1110 
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 1111 

 1112 

Figure 147: Seasonal average VIS_AOD s of gridded VIS_AOD during from 1980 to 2021 in 12 1113 

regions (Eastern Europe, Western Europe, Western North America, Eastern North America, Central 1114 

South America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern 1115 

China, and India). The dotted line is the trend line. 1116 

4 Data availability 1117 
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We provide Tthe daily visibility-derived AOD  data at 5032 stations from 1959 to 2021 and grid 1118 

scales  over global land, which is are available at National Tibetan Plateau / Third Pole 1119 

Environment Data Center,  https://doi.org/10.11888/Atmos.tpdc.300822 (Hao et al., 2023).  1120 

We provide the station-scale AOD from 1959 to 2021. Due to a small number and sparse 1121 

meteorological visibility stations prior to 1980, we only provide the gridded AOD from 1980 to 1122 

2021. In order to keep consistency in time scale, the global/regional analysis the time range we 1123 

describe in this study is from 1980 to 2021. The following is a description to the station and gridded 1124 

VIS_AOD dataset. 1125 

The station-scale AOD files are in ‘Station_Daily_AOD_1959_2021.zip’. The station-scale AOD 1126 

files can be directly opened by a text program (such as Notepad). The details station information is 1127 

in the file of ‘0A0A-Station_ In Information.txt’. There are eight columns in each text file, separated 1128 

by commas and the column names are Datetime, TEMP (℃), DEW (℃), RH (%), WS (m/s), SLP 1129 

(hPa), DRYVIS (km), and VIS_AOD (550nm). The first column name is the date. The column name, 1130 

‘VIS_AOD (550nm)’, is the AOD at 550nm. The 2-7th column names are temperature (unit: ℃), 1131 

dew temperature (unit: ℃), relative humility (unit: %), wind speed (unit: m/s), sea level pressure 1132 

(unit: hPa), and dry visibility (unit: km).  1133 

The gridded AOD is in the file of ‘Gridded_Monthly_AOD_1980_2021.nc’ with a NETCDF4 1134 

format. There are three variables: ‘VIS_AOD’ (AOD derived from visibility), ‘W95CI’ (the width 1135 

of the 95% confidence interval), and ‘QA_FLAG’ (quality flag for VIS_AOD). We classify the 1136 

quality of VIS_AOD into three levels based on ‘W95CI’: (1) High quality (QA_FLAG=1): 1137 

W95CI<=0.03; (2) Medium quality (QA_FLAG=2), 0.03<W95CI<=0.06; and Low quality 1138 

(QA_FLAG=3), W95CI>0.06. The more details are in ‘0A0B-ReadMe.txt’. 1139 

5 Conclusions 1140 

In this study, we employ a machine learning technique method to derive daily AOD at 550nm from 1141 

1959 to 2021 for at 5032 over 5000 land stations worldwide, based on satellite data, visibility, 1142 

satellite retrieval,  and related meteorological variables. In the model, The target is Aqua MODIS 1143 

AOD (550nm) is set as the target and visibility and related meteorological variables are set as the 1144 

predictor. Monthly AOD is interpolated into a 0.5° grid using ordinary kriging with area weighting. 1145 

The accuracy and performance and predictive ability of the derived AODmodel are assessed 1146 

evaluated and validated against Terra MODIS AOD as well as AERONET ground-based 1147 

observations, Terra MODIS AOD and MRRRA-2 AOD. The gridded AOD is evaluated by Aqua 1148 

and Terra MODIS AOD and a 95% confidence interval is calculated. We obtain provide a daily 1149 

long-term daily AOD (550nm) dataset at 5032 global land stations from 1980 1959 to 2021., as well 1150 

as monthly gridded AOD. The twoThe datasets has complemented the shortcomings of AOD data 1151 

in terms of time scale and spatial coverage over land. Finally, the variability and trend 1152 

spatiotemporal variation inof AOD is are analyzed for at global land, the Southern Hemisphere, the 1153 

Northern Hemisphere, and 12 and regional scaless in the past 42 years. Several key findings have 1154 

been given in this study as follows. 1155 

1. Modeling and gridding evaluation. For all stations, tThe mean RMSE, MAE, and R of all 1156 

stationsthe model are 0.078, 0.044, and 0.750, respectively. The RMSE of 93% stations is less than 1157 

https://doi.org/10.11888/Atmos.tpdc.300822
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0.110, the MAE of 91% is less than 0.060, and the R of 88% is greater than 0.70, respectively. 1158 

Compared to Aqua and Terra, the average biases of gridded AOD are 3.3% and 1.9%, and the spatial 1159 

correlation coefficients are 0.80 and 0.79, with the zonal correlation coefficients of 0.99 and 0.99 1160 

and the meridional correlation coefficients of 0.99 and 0.90. 1161 

2. Model validation. For the daily scale, the R, RMSE and MAE of between VIS_AOD and Aqua 1162 

AOD is 0.799, 0.079 and 0.044, respectively. The percentage of sample point falling within the EE 1163 

envelopes is 84.12%. The R between VIS_AOD and Terra AOD is 0.542, with a RMSE of 0.125 1164 

and MAE of 0.078. The percentage falling within the EE envelopes is 64.76%. The R between 1165 

VIS_AOD and AERONET AOD is 0.546, with a RMSE of 0.186 and MAE of 0.099. The percentage 1166 

falling within the EE envelopes is 57.87%. For the monthly and annual scales, RMSE and MAE 1167 

show a significant decrease between VIS_AOD and Aqua, Terra, and AERONET AOD, and R and 1168 

percentages falling within EE show a significant increase. Compared to AERONET AOD and 1169 

MERRA-2 AOD prior to 2000, the model has consistent predictive ability. 1170 

3. Error analysis. As the AOD value increases, the average bias increases. When the pollution level 1171 

is low (AOD <0.1), tThe average bias is 0.015 (AOD <0.1), with 83% of data within the EE 1172 

envelopes. As pollution level increases, the negative mean average bias becomes significant and the 1173 

underestimation increases. The elevation of AERONET’s site also causesd a bias. In low elevation 1174 

(<=0.5km), in high elevation.Tthere is a negative bias, in the low elevation (<=0.5km) with a 1175 

percentage of 60%-64% falling within the EE envelopes. and a positive bias iIn high elevation (0.5-1176 

1.2km), there is a positive bias, with a percentage of 50%-65% falling within the EE envelopes. The 1177 

elevation of AERONET’s site caused a bias in high elevation. When the elevation difference is 1178 

negative (the elevation of the meteorological station is lower than that of the AERONET site), there 1179 

is a significant positive bias. When the difference is positive, the mean bias approaches 0 or is 1180 

positive. The influence of distance between the meteorological station and AERONET site he on 1181 

bias does not changeis not significantly with increasing distance between the meteorological station 1182 

and AERONET site.  1183 

4. Global land AOD. The global, NH, and SH AOD values from 1980 to 2021 are 0.161 ± 0.074177 1184 

over land, 0.178 in the NH and 0.174 in the SH, 0.158 ± 0.076, and 0.173 ± 0.059, with a trend of -1185 

0.0029/10a, 0.0030/10a and -0.0021/10a, respectively. Trends in AOD for the global, NH, and SH 1186 

demonstrate a decreasing trend of -0.0026/10a, -0.0018/10a, and -0.0059/10a, respectively (p<0.01). 1187 

The seasonal AOD rankings from high to low is are JJA (0.204)> MAM (0.176)> DJFSON (0.164)> 1188 

SONDJF (0.161) over global the global land, and JJA (0.210) > MAM (0.176) > SON (0.163) > 1189 

DJF (0.160) in the NH, while in the SH,SON (0.188) > DJF (0.184) > MAM (0.14) > JJA (0.152) 1190 

in the SH. it is DJF>JJA>MAM>SON. The largest declining decreasing trends are in SON of the 1191 

NH (-0.0064/10a) and in JJA of the SH (-0.0064/10a).observed in NH summer and SH winter. The 1192 

increasing trends are in MAM of the NH and in SJF and SON of the SH. 1193 

5. Regional AOD. From 1980 to 2021, regions withThe high aerosol loadings (AOD > 0.2) regions 1194 

are were found in West Africa, Southeast and Northeast Asia, Eastern China, and India, with a trend 1195 

of -0.0062/10a, 0.0007/10a, -0.0009/10a, 0.0133/10a, and 0.0119/10a, respectively. However, the 1196 

trends are decreasing in Eastern China (-0.0572/10a) and Northeast Asia (-0.0213/10a) after 2014 1197 

and the lager increasing trend is found after 2005 in India (0.0446/10a). The  Regions with 1198 

moderate aerosol loadings (AOD between 0.15 and 0.2) regions are Eastern Europe, Western Europe, 1199 
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Eastern North America, Central South America, and South Africa, and Southeast Asia, with a trend 1200 

of -0.0067/10a, -0.0026/10a, -0.0027/10a, -0.0062/10a, and -0.0016/10a, respectively. The low 1201 

aerosol loading (AOD <0.15) regions are Eastern Europe, Western Europe, Western North America, 1202 

and Australia, with a trend of -0.0017/10a and -0.0028/10a. However, the trends in Southern Africa, 1203 

Southeast Asia and Northeast Asia are not significant. are regions with low aerosol loadings (AOD 1204 

< 0.15). The trends are -0.0041/10a, -0.0021/10a, -0.0009/10a, -0.0021/10a, -0.0100/10a, -1205 

0.0008/10a, -0.0096/10a), -0.0081/10a, -0.0003/10a, -0.0000/10a, 0.0071/10a, and 0.0096/10a in 1206 

Eastern Europe, Western Europe, Western North America, Eastern North America, Central South 1207 

America, Western Africa, Southern Africa, Australia, Southeast Asia, Northeast Asia, Eastern China, 1208 

and India, respectively. 1209 
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