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Abstract: Forest fires, while destructive and dangerous, are important to the functioning and renewal of ecosystems.  9 

Over the past two decades, large-scale, severe forest fires have become more frequent globally, and the risk is expected 10 

to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of 11 

forest fire damage, we have developed a Global Forest Burn Severity (GFBS) database of information on the amounts 12 

of biomass that were consumed by fire between 2003 and 2016. To build it, we used the Fire Atlas product to determine 13 

when and where forest fires occurred during that period and then overlaid the available Landsat surface reflectance 14 

products to obtain pre-fire and post-fire normalized burn ratios (NBRs) for each burned pixel, designating the 15 

difference between them as dNBR and the relative difference as RdNBR. Using the CONUS-wide Composite Burn 16 

Index (CBI) as a ground truth, we evaluated the performance of GFBS relative to the performance of the existing 17 

MODIS-based global burn severity dataset (MOSEV). The results showed that dNBR of GFBS was more strongly 18 

correlated with CBI (R2 = 0.4) than dNBR of MOSEV (R2 = 0.08). RdNBR of GFBS also exhibited better agreement 19 

with CBI (R2 = 0.31) than RdNBR of MOSEV (R2 = 0.04). At global scale, while the dNBR and RdNBR spatial 20 

patterns extracted by GFBS were similar to those of MOSEV, MOSEV tended to provide higher burn severity levels 21 

than GFBS. We attribute this difference to variations in reflectance values and the different spatial resolutions of the 22 

two satellites. 23 

 24 

1. Introduction 25 

In recent years, many regions around the world have experienced an increase in the frequency, intensity, and extent 26 

of wildfires (Doerr and Santín, 2016; Shukla et al., 2019; Dupuy et al., 2020). Wildfires are now among the most 27 

popular research topics as a result of this rising global concern, which is further heightened by changes expected in 28 

fire regimes as a consequence of changes in climate and land use (Moreira et al., 2020). While most wildfires occur 29 

in grasslands and savannas (Scholes and Archer, 1997; Abreu et al., 2017), forest fires are more dangerous and 30 

destructive and perhaps of greater interest because of their importance to the functioning and renewal of ecosystems 31 

(Flannigan et al., 2000; Nasi et al., 2002; Flannigan et al., 2006). Changes brought by the warming climate, which has 32 
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dried fuels and lengthened fire seasons across the globe (Jolly et al., 2015), are also particularly significant to forested 33 

ecosystems with abundant fuels (Kasischke and Turetsky, 2006; Aragão et al., 2018). 34 

With the rapid development of remote sensing techniques, more frequent observations from satellites 35 

facilitate the monitoring of global fire activities. The valuable information they provide at fine spatial and temporal 36 

resolutions can be used to study the number and size distributions of individual fires (Archibald and Roy, 2009; 37 

Hantson et al., 2015; Oom et al., 2016), fire shapes (Nogueira et al., 2016; Laurent et al., 2018), and locations of 38 

ignition points (Benali et al., 2016; Fusco et al., 2016). Among the most widely accepted techniques are those based 39 

on the Moderate Resolution Imaging Spectrometer (MODIS) (Chuvieco et al., 2016), which retrieves information on 40 

the entire Earth in 36 spectral bands every one to two days. The MODIS-derived burn area (BA) products are essential 41 

for ascertaining the patterns of fire occurrence, extent, propagation (Rodrigues and Febrer, 2018), and frequency 42 

(Andela et al., 2019). Based on these products, an essential indicator called “burn severity” has been derived for 43 

determining the degree of biomass consumption and the overall impact of fire on ecosystems (Keeley, 2009). 44 

Traditionally, burn severity could be quantified from satellite sensors through spectrum information. The 45 

changes caused by fire to near-infrared (NIR) and shortwave infrared (SWIR) reflectance are highly sensitive to, 46 

respectively, canopy density and moisture content (Chuvieco, 2010). Several burn severity datasets based on this 47 

method have been generated and released. Regionally, the Monitoring Trends in Burn Severity (MTBS) dataset, which 48 

includes burn severity assessments for the contiguous United States (CONUS) and provides information on fire 49 

perimeters and severity classes, uses satellite data—specifically, Landsat imagery (Eidenshink et al., 2007). Similarly, 50 

the Canadian Landsat Burn Severity (CanLaBS) product uses Landsat imagery to assess, and map burn severity at a 51 

national scale (Guindon et al., 2021). Globally, MOdis burn SEVerity (MOSEV) has provided monthly burn severity 52 

data with global coverage at 500m spatial resolution, based on MODIS Terra and Aqua satellites (Alonso-González 53 

and Fernández-García, 2021). Despite the satellite those datasets used and the target those datasets for, products for 54 

assessing and mapping global forest burn severity based on Landsat (30m resolution) are not yet available. Such 55 

products would support advances in fire management strategies and ecosystem conservation efforts, leading to more 56 

resilient and sustainable landscapes. 57 

In this paper we describe a new global dataset comprising information on burn severity derived at high spatial 58 

resolution from Landsat imagery from the period 2003–2016. This dataset represents a step forward in quantifying 59 

and analyzing wildfire impact on forest ecosystems worldwide. We begin with a section detailing the input data and 60 

the algorithm we used to process the dataset, as well as the analytical techniques employed. The next section presents 61 

the characteristics of the dataset and its performance in representing the distribution of forest fires. In the results 62 

section, we analyze the advantages and disadvantages of the dataset and set forth its main contributions to forest fire 63 

management strategies worldwide. The last section summarizes the primary findings and suggests possible 64 

implications of the dataset. 65 

2. Data and Method 66 
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Below we delineate the specifics of data input and pre-processing and the analytical techniques we employed to create 67 

the dataset. The Global Fire Atlas was the main source of global fire records, which we overlaid with annual land 68 

cover types from MCD12Q1 to determine when and where forest fires occurred. We then utilized the reflectance 69 

information from Landsat’s satellite archives to calculate burn severity indices for the burned forest areas. Finally, we 70 

used the CONUS-wide Composite Burn Index (CBI) as a ground truth to evaluate the performance of GFBS relative 71 

to that of the existing MODIS-based global burn severity dataset (MOSEV).  72 

2.1. Input data 73 

The input data we used to build the GFBS dataset comprised the fire records available in the Global Fire Atlas for the 74 

years 2003–2016 and all Landsat images for the same period.  75 

The Global Fire Atlas tracks the daily dynamics of individual fires globally to determine the time and location 76 

of ignition, area burned, and duration, as well as daily expansion, fireline length, velocity, and direction of spread. A 77 

detailed description of its underlying methodology is provided by Andela et al. (2019). 78 

The Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type 79 

(MCD12Q1) Version 6.1 data product provides global land cover types at yearly intervals (USGS, 2022). With its 80 

global coverage and the insights, it offers into the planet’s diversity of land cover types, the MCD12Q1 dataset is 81 

pivotal to various ecological and environmental studies. 82 

Landsat 5,7,8 scene is a 16-day composite image with 7, 8, 11 surface reflectance bands. With its 30m 83 

resolution and global coverage, it provides a high-quality, atmospherically corrected snapshot of the Earth’s surface. 84 

Use of the best available observations gathered over the 16-day period ensures the image is as clear and accurate as 85 

possible, minimizing issues, such as cloud cover, that can obscure the satellite’s view. 86 

(https://developers.google.com/earth-engine/datasets/catalog/landsat ). 87 

2.2. Pre-processing 88 

To pre-process the data, we first imported individual fire polygons from the Global Fire Atlas into the Google Earth 89 

Engine (GEE) and then collected the most recent Landsat images based on the tags demarcating the start and end times 90 

of each individual fire. We applied a cloud- and snow-masking algorithm to remove any snow, clouds, and their 91 

shadows from all imagery based on each sensor’s pixel quality assessment band. By mosaicing the masked images, 92 

we created a composite with the smallest possible cloud and shadow extent (Google Earth Engine Developers, 2022). 93 

(https://developers.google.com/earth-engine/guides/landsat ).  94 

2.3. Algorithm overview 95 

We estimated the burn severity indices in two steps, as shown in Figure 1: first, we calculated the normalized burn 96 

ratios (NBRs) from the mosaiced Landsat composites, and second, we selected the pre- and post-fire NBRs for each 97 

burned pixel to create burn severity indices—dNBR and RdNBR—based on the differences between the NBRs.  98 
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In the first step, we determined the forest fire polygons using the Global Fire Atlas data associated with the 99 

MCD12Q1 land cover data and then utilized reflectance information from Landsat’s satellite archives to obtain the 100 

forest fire NBRs from the Landsat composites.  101 

In the second step, we used the pre- and post-fire dates by the Global Fire Atlas data to obtain the 102 

corresponding pre- and post-fire NBRs, which allowed us to create the burn severity indices—that is, dNBR and 103 

RdNBR—based on the respective differences between them.  104 

We took additional steps to validate the performance of the dataset by comparing the CBIs over CONUS 105 

with those based on the MOSEV dataset. These steps are detailed in Sections 2.3.1, 2.3.2, and 2.3.3. 106 

 
Figure 1. Methodology for building the GFBS database (2003–2016) and validation and comparison with the 

MOSEV benchmark. 

2.3.1. Identification of global forest fires 107 

To identify global forest fires, we first overlaid the fire polygons from the Global Fire Atlas with MCD12Q1 data 108 

from the corresponding year. Based on Annual International Geosphere-Biosphere Programme (IGBP) classifications 109 

of land cover, we identified a forest fire polygon within each area where we found forest to be the dominant land cover 110 

type within the fire extent—that is, wherever the proportion of burned pixels representing forest, including evergreen 111 

needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, and mixed 112 

forests, was largest relative to the proportion of burned pixels for other land cover types, such as shrublands and 113 

grasslands.  114 
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2.3.2. Estimation of the normalized burn ratio (NBR) 115 

We calculated the normalized burn ratio (NBR) spectral index for each Landsat composite. according to the formula 116 

in Equation 1: 117 

NBR = (NIR – SWIR) / (NIR + SWIR),                                                                                                                     (1) 118 

In Landsat series 4 through 7, we collected NIR information from Band 4 and SWIR information from Band 7. In 119 

Landsat 8, we collected NIR information from Band 5 and SWIR information from Band 7.  120 

2.3.3. Estimation of dNBR and RdNBR 121 

Having obtained burn area locations and burn dates from the Fire Atlas product, we selected from the Landsat 16-day 122 

time series valid pre-fire and post-fire NBR pixels that were, respectively, from the date most closely preceding the 123 

start date and the date most closely following the end date of each burned polygon within a three-month time window.  124 

The dNBR index, calculated according to Key and Benson (2006) as shown in equation (2), is the reference 125 

burn severity spectral index used by the European Forest Fire Information System (https://effis.jrc.ec.europa.eu/about-126 

effis) and by the United States’ Monitoring Trends in Burn Severity program (https://www.mtbs.gov). Larger dNBR 127 

values indicate higher burn severity: 128 

dNBR = preNBR – postNBR                                                                                                                                       (2) 129 

RdNBR is another burn severity spectral index that is widely used, including by the United States’ Monitoring 130 

Trends in Burn Severity program (https://www.mtbs.gov/,  last access:1 May 2021). As formulated in equation (3) 131 

(Miller and Thode, 2007), higher RdNBR values indicate higher burn severity: 132 

RdNBR = dNBR/ඥ|𝑝𝑟𝑒𝑁𝐵𝑅|                                                                                                                                      (3) 133 

2.4. Validation 134 

To validate the GFBS database developed in this study, we used the ground-measured CONUS-wide Composite Burn 135 

Index from 2003 to 2016. CBI was developed by Key and Benson (2006) to assess the aboveground effects of fire on 136 

vegetation and soil land use types (i.e., burn severity). The index ranges continuously from 0.0 (unburned) to 3.0 (high 137 

severity). These values can be compared to satellite-derived burn severity data to develop regression equations 138 

(https://burnseverity.cr.usgs.gov/products/cbi). In this study, we used all available CBI values over CONUS to 139 

establish the regression relationship between CBI and the dNBR and RdNBR values of the GFBS database. We applied 140 

the coefficient of determination to evaluate the performance of GFBS relative to the corresponding performance of 141 

the MOSEV database, which is currently used to evaluate global burn severity. 142 
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3. Results 143 

3.1. Landsat mosaiced composites 144 

Figure 2 (a) shows the number of forest fire polygons globally between 2003 and 2016, representing individual fire 145 

events, from the Global Fire Atlas dataset. Approximately 80,000 forest fire events occur in the world each year on 146 

average, with more than 90,000 happening in 2004 and more than 100,000 in 2003 and 2015, respectively. Figure 2 147 

(a) also displays the availability of Landsat imagery covering the burn area where individual forest fires happened 148 

worldwide. From 2003 to 2012, Landsat 5 could provide images covering only 35% to 68% of the recorded forest fire 149 

events in the Global Fire Atlas, while Landsat 7 images could cover 83% to 93%. From 2013 to 2016, Landsat 7 150 

images covered about 90% to 98% of the fire events, while Landsat 8 images covered more than 97%. The Landsat 151 

composites combining all available Landsat 5 and Landsat 7 images from 2003 to 2012 and Landsat 7 and Landsat 8 152 

images from 2013 to 2016 significantly increased the number of forest fires shown by Landsat images, with coverage 153 

of the fire events ranging from 88% to 99%. Figure 2 (b) shows the distribution of the spatial coverage of cloud-free 154 

Landsat composites for individual fires from the Fire Atlas. We used a cloud and shadow removal algorithm to 155 

eliminate invalid poor-quality pixels from recorded forest fires, resulting in a line chart showing the distribution of 156 

the percentages of valid pixels to the total burn pixels in each year. Overall, the spatial coverage was above 72%, and 157 

the coverage has been above 85% since 2013, when Landsat 8 was launched. 158 

  

(a) (b) 

Figure 2. (a) Numbers of individual fires from the Fire Atlas and available Landsat imagery; (b) Spatial coverage of 

cloud-free Landsat composites for individual fires from the Fire Atlas. 

 159 

3.2. Validation against CBI 160 

Figure 3 shows the spatial locations of available CBIs over CONUS from 2003 to 2016. Of the 1,315 ground-surveyed 161 

CBI reports for forest fires during that time, most came from western states, such as Arizona, Colorado, and Oregon, 162 

where forest fires are more frequent and severe. Fewer CBI records are available in eastern states, such as Florida and 163 

Georgia.  164 
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Figure 3. Spatial locations of forest fire CBIs over CONUS. 

 165 

Figure 4 (a), (b), (c) and (d) shows the spatial patterns of dNBR over CONUS for the forest fires with the 166 

largest burn areas (referred to as annual maximum forest fire hereafter) in 2004, 2006, 2007, and 2013 respectively 167 

for which CBI records are available. The figures present the associated probability density functions (PDFs) of dNBR 168 

values from GFBS and MOSEV, along with spatial distribution maps of dNBR. The similarity in spatial patterns 169 

between GFBS burn severity and MOSEV burn severity is obvious. Significant differences occur, however, between 170 

GFBS dNBR and MOSEV dNBR. We found that, when we relied on MODIS products, MOSEV dNBR tended to 171 

underestimate the high severity and overestimate the low severity of the annual maximum forest fire in 2004, 172 

compared with GFBS dNBR. This could also be inferred from the PDFs, where MOSEV dNBR distributed more on 173 

the mean value of dNBR around 300, while GFBS dNBR distributed more on the extreme low and high values. For 174 

the annual maximum forest fire in 2007, especially, MOSEV dNBR greatly overestimated the severity levels compared 175 

to GFBS dNBR, a difference that was also reflected in the large deviation of mean dNBR values in the PDFs of dNBR 176 

for the GFBS and MOSEV datasets.  177 

The density plot of dNBR in Figure 4 also clearly shows two peaks for GFBS dNBR, at around 100 (low 178 

severity) and 700 (high severity), for the annual maximum forest fire in 2006. MOSEV dNBR shows a single peak at 179 

around 500, indicating that MOSEV dNBR underestimated high severity while overestimating low severity, compared 180 

with GFBS dNBR. For the annual maximum forest fire in 2013, although the density plot presents two peaks for both 181 

GFBS and MOSEV dNBR, the corresponding dNBR values where the peaks are located differ. For GFBS dNBR, the 182 

two peaks are around 0 and 900, representing the low and high severity, respectively, while for MOSEV dNBR they 183 

are around 400 and 600. 184 
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(b) 

 

(c) 
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(d) 

Figure 4. Spatial patterns of dNBRs for annual maximum fires over CONUS with distribution of probability 

density functions in (a) 2004, (b) 2006, (c) 2007, and (d) 2013, derived from the GFBS and MOSEV datasets. 

 185 

Figure 5, panels (a), (b), (c), and (d), present the scatterplots of CBI against GFBS dNBR and MOSEV dNBR for the 186 

annual maximum forest fires in 2004, 2006, 2007, and 2013, respectively. For the annual maximum forest fire in 2004, 187 

the figure clearly shows a positive correlation with CBI (R2 = 0.21) for GFBS dNBR, while we found no correlation 188 

for MOSEV dNBR. For the annual maximum forest fire in 2006, we found good agreement with the CBI for GFBS 189 

dNBR, with an R2 value of 0.72, while the R2 value was only 0.08 for MOSEV dNBR. Although correlation with CBI 190 

was poor for both GFBS and MOSEV dNBR for the annual maximum forest fire in 2007, the former still showed a 191 

positive trend to CBI, while the relationship for the latter was negative. For the annual maximum forest fire in 2013, 192 

GFBS dNBR (R2 = 0.52) was more strongly correlated with CBI than MOSEV dNBR (R2 = 0.13). 193 

  

(a) (b) 

9

https://doi.org/10.5194/essd-2023-446
Preprint. Discussion started: 20 December 2023
c© Author(s) 2023. CC BY 4.0 License.



  

(c) (d) 

Figure 5. Scatterplots of CBI against dNBR of GFBS and MOSEV for annual maximum fires in (a) 2004, (b) 194 

2006, (c) 2007, and (d) 2013.  195 

 196 

Figure 6 (a), (b), (c) and (d) shows the spatial patterns of RdNBR for the forest fires over CONUS with the largest 197 

burn areas (referred to as annual maximum forest fire hereafter) in 2004, 2006, 2007, and 2013 respectively for which 198 

recorded CBIs are available. Like Figure 4, Figure 6 displays the spatial distribution maps of RdNBR from GFBS and 199 

MOSEV, along with the associated probability density functions (PDFs) of RdNBR values. The figure exhibits similar 200 

spatial patterns for GFBS and MOSEV dataset, but the burn severity level in terms of RdNBR differed. RdNBR for 201 

MOSEV data tended to be higher than for GFBS dNBR, which can be clearly seen in the density plots of GFBS and 202 

MOSEV RdNBRs that the mean RdNBR in the distribution of MOSEV is obviously larger than the mean RdNBR in 203 

the distribution of GFBS, for the annual maximum forest fires in 2003, 2006 and 2007. The density plots of GFBS 204 

and MOSEV RdNBR for the annual maximum forest fire in 2013 are largely overlapped, but MOSEV RdNBR 205 

distributes more on the mean values around 800 than GFBS RdNBR, while GFBS RdNBR distributes more on the 206 

extreme low and high values. These findings demonstrate that MOSEV RdNBR represents higher burn severity levels 207 

than GFBS RdNBR. 208 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 6. Spatial patterns of RdNBRs for annual maximum fires over CONUS with distribution of 

probability density functions in (a) 2004, (b) 2006, (c) 2007, and (d) 2013, derived from the GFBS and 

MOSEV datasets. 

 209 

Figure 7, panels (a), (b), (c), and (d), present the scatterplots of CBI against GFBS RdNBR and MOSEV 210 

RdNBR for the annual maximum forest fires in 2004, 2006, 2007, and 2013, respectively. For the annual maximum 211 
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forest fire in 2004, the figure shows a positive correlation with CBI (R2 = 0.33) for GFBS dNBR, while we found no 212 

correlation for MOSEV dNBR. For the annual maximum forest fire in 2006, we found good agreement with the CBI 213 

for GFBS dNBR with an R2 value of 0.72, while the R2 value was only 0.03 for MOSEV dNBR. Although correlation 214 

with CBI was poor for both GFBS and MOSEV dNBR for the annual maximum forest fire in 2007, the former still 215 

showed a positive trend to CBI, while the relationship for the latter was negative. For the annual maximum forest fire 216 

in 2013, GFBS dNBR (R2 = 0.55) was more strongly correlated with CBI than MOSEV dNBR (R2 = 0.16). 217 

 218 

  

(a) (b) 

  

(c) (d) 

Figure 7. Scatterplots of CBI against RdNBR of GFBS and MOSEV for annual maximum fires in (a) 2004, (b) 219 

2006, (c) 2007, and (d) 2013.  220 

 221 

Figure 8 (a) and (b) shows the scatterplots of CBI against GFBS dNBR and MOSEV dNBR, respectively, 222 

for all forest fires from 2003 to 2016 over CONUS. Considering all forest fires, we found GFBS dNBR more strongly 223 

correlated with CBI (R2 = 0.4) than MOSEV dNBR (R2 = 0.08). As for RdNBR, Figure 8 (c) and (d) show the 224 
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scatterplots of CBI against GFBS RdNBR and MOSEV RdNBR, respectively, GFBS still performed better than 225 

MOSEV when regressed with CBI with an R2 of 0.31, which was larger than that of MOSEV RdNBR (0.04). 226 

 227 

  

(a) (b) 

  

(c) (d) 

Figure 8. Scatterplots of CBI against (a) dNBR of GFBS, (b) dNBR of MOSEV, (c) RdNBR of GFBS, and (d) RdNBR 

of MOSEV for all forest fires from 2003 to 2016 over CONUS. 

 228 

3.3. Comparison of GFBS and MOSEV globally 229 

Figure 9 (a) displays the global spatial distributions of the areas of overlap between the density plots of GFBS dNBR 230 

and MOSEV dNBR, which is defined as the area intersected by two probability density functions presented in Figure 231 

4 and Figure 6. The overlapping areas in density plots typically represent the percentage of common values between 232 

the distributions of two datasets, which ranges from 0 to 1 with the larger value indicating the two distributions are 233 

more likely come from the same distribution. As the figure shows, we found the overlap over most of the world to be 234 

above 0.4, indicating a close similarity of 40% between the burn severity information provided, respectively, by GFBS 235 
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and MOSEV in these regions. For some regions, like South America, Western Europe, and southeast Australia, the 236 

overlap was above 0.6.  237 

In Figure 9 (b), which shows the global distribution of the mean dNBR for each burn pixel derived from 238 

GFBS, it is obvious that we found the global spatial heterogeneity of burn severity to be small, with dNBR values 239 

around 100 and 200. The exception was Western Europe, where dNBR was above 300. The global distribution of the 240 

mean dNBR for each burn pixel derived from MOSEV, as shown in Figure 9 (c), however, indicated a large spatial 241 

variability in burn severity. The MOSEV dataset, for example, indicated that the forest fires in north CONUS and 242 

Canada should have the average dNBR value above 300, while in the GFBS dataset the average dNBR value was 243 

around 100 to 200. The MOSEV dataset also indicated the average dNBR values for forest fires in South Africa and 244 

China should be close to or below 0, while in the GFBS dataset they were around 100 to 200.  245 

Figure 9 (d) presents a more detailed comparison between the GFBS dNBR and MOSEV dNBR globally, 246 

showing the difference in the mean dNBR for each burn pixel, as calculated by MOSEV dNBR minus GFBS dNBR. 247 

Globally, MOSEV data indicated higher forest burn severity over CONUS and Canada as well as southeast Australia 248 

than shown by GFBS data. MOSEV data presented lower forest burn severity over Mexico, South Africa, Europe, 249 

China, and Southeast Asia. These findings revealed that the forest burn severity information provided by GFBS might 250 

be less under- or overestimated than that provided by MOSEV for some fire-prone areas, such as CONUS, as validated 251 

in this study. The finding could also be applicable to other regions, including Canada, South Africa, and Australia. 252 

This improved accuracy over MOSEV data would support advances in decision making in fire management strategies 253 

and ecosystem conservation efforts. 254 

 

(a) 
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(b) 

 

(c) 

(d) 
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Figure 9. Global spatial distributions of (a) overlapping areas between the density plots of GFBS dNBR and 

MOSEV dNBR, (b) the mean dNBR per burn pixel from GFBS, (c) the mean dNBR per burn pixel from MOSEV, 

and (d) the differences in the mean dNBR per burn pixel between MOSEV and GFBS (MOSEV – GFBS). 

 255 

4. Discussion 256 

Our GFBS dataset is the first to provide fine spatial resolution (30m) burn severity information for global forest fires 257 

from 2003 to 2016. As suggested by the validation against the CBI ground reference, GFBS can capture more spatial 258 

variability and provide higher performance than the MOSEV dataset. In addition, GFBS is shown to have less over- 259 

or underestimation than MOSEV for some fire-prone areas, like CONUS, Canada, South Africa, and Australia, which 260 

could support advances in decision making in fire management strategies and ecosystem conservation efforts.  261 

The difference in the performance of GFBS and MOSEV with respect to burn severity can be attributed to 262 

two sources. The first is the spatial resolution. We based GFBS on Landsat (5, 7, and 8) images with a resolution of 263 

30 meters, while MOSEV is based on MODIS Terra MOD09A1 and Aqua MYD09A1 images with a resolution of 264 

500 meters. GFBS dNBR varies from 210 to 310, showing a better correlation with CBI than MOSEV. The coarse 265 

resolution of MOSEV could also make it more difficult to capture extreme values, as we found to be the case for the 266 

annual maximum forest fires in 2006 over CONUS. GFBS dNBR clearly showed two peaks in the density plot of 267 

dNBR at around 100 and 700, representing the low and high severity, respectively. MOSEV dNBR, however, showed 268 

only a single peak at around 500, indicating that the extreme low/high values in the 30m grid were averaged in the 269 

500m grid.  270 

The difference in the performances of the two data sets was related to spectrum reflectance information. The 271 

NBR is commonly calculated using near-infrared (NIR) and shortwave infrared (SWIR) bands. In MOSEV, the bands 272 

used to calculate NBR are NIR: Band 2 (Range: 0.841–0.876 µm) and SWIR: Band 7 (Range: 2.105–2.155 µm). In 273 

GFBS, they are Landsat 5 Band 4 (Range: 0.76–0.90 µm) and SWIR: Band 7 (Range: 2.08–2.35 µm); Landsat 7 Band 274 

4 (Range: 0.77–0.90 µm) and SWIR: Band 7 (Range: 2.09-2.35 µm); and Landsat 8 Band 5 (Range: 0.85–0.88 µm) 275 

and SWIR: Band 7 (Range: 2.11–2.29 µm). While MODIS and Landsat 8 are close in NIR and SWIR band 276 

information, Landsat 5 and 7 both have wider spectrums in NIR and SWIR than MODIS.  277 

One limitation of the GFBS database is related to the relatively long revisit period of Landsat satellites (16 278 

days). This low temporal resolution may impede us from obtaining the dense cloud-free NBR time series that can be 279 

indispensable to calculating burn severity indices in regions of persistent cloud cover. This study has shown, however, 280 

that using and combining all available Landsat images, including those from Landsat 5, 7, and 8, could significantly 281 

improve the probability of obtaining dense cloud-free NBR time series. With the launch of Landsat 9 in September 282 

2021 and other satellites like Sentinel-2 (in June 2015, with a five-day revisit period), it is highly possible that we 283 

could build a denser cloud-free NBR time series to calculate burn severity. 284 
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A second limitation of GFBS is that it uses different band information varies in spectrum range from Landsat 285 

5, 7, and 8, which might cause data quality to differ across years, while MOSEV uses the same bands in all years, 286 

showing better data consistency. 287 

5. Conclusion 288 

We have introduced a newly developed GFBS database, which provides forest burn severity information with global 289 

coverage for the period 2003–2016. We identified global forest fires by overlaying the Global Fire Atlas data with the 290 

annual land cover data, MCD12Q1, and proposed an automated algorithm for calculating the severity of these fires. 291 

The algorithm used the band information from Landsat 5, 7, and 8 surface reflectance imagery to compute the most 292 

used burn severity spectral indices (dNBR and RdNBR) with a 30m spatial resolution and provide the output as the 293 

GFBS dataset. The validation results over CONUS showed dNBR of GFBS more strongly correlated with CBI (R2 = 294 

0.4) than dNBR of MOSEV (R2 = 0.08). RdNBR of GFSS also showed better agreement with CBI (R2 = 0.31) than 295 

RdNBR of MOSEV (R2 = 0.04). Thus, this database could be more reliable than prior sources of information for future 296 

studies of forest burn severity at the global scale in a computationally cost-effective way, as well as for studies to 297 

which forest burn severity could be relevant, such as in forest management and CO2 emissions research.  298 

One future direction for this study will be to extend the GFBS dataset to the present based on updated Global 299 

Fire Atlas data or other datasets providing similar burn area and burn date information. A second is to show the similar 300 

spatial patterns in presenting burn severity from GFBS and MOSEV dataset, the less over/underestimated GFBS data 301 

could serve as an optional input for adjusting the bias in MOSEV data and take the advantage of high spatial resolution 302 

of GFBS data, the spatial downscaling of MOSEV data is applicable in regions where GFBS and MOSEV show high 303 

consistency. 304 
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