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Abstract: Forest fires, while destructive and dangerous, are important to the functioning and renewal of ecosystems.  9 

Over the past two decades, large-scale, severe forest fires have become more frequent globally, and the risk is expected 10 

to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of 11 

forest fire damage, we have developed a 30-meter resolution Global Forest Burn Severity (GFBS) dataset of the degree 12 

of biomass consumed by fires from 2003 to 2016. To develop this dataset, we used the Global Fire Atlas product to 13 

determine when and where forest fires occurred during that period and then we overlaid the available Landsat surface 14 

reflectance products to obtain pre-fire and post-fire normalized burn ratios (NBRs) for each burned pixel, designating 15 

the difference between them as dNBR and the relative difference as RdNBR. We compared the GFBS dataset against 16 

the Canada Landsat Burned Severity (CanLaBS) product, showing better agreement than the existing MODIS-based 17 

global burn severity dataset (MOSEV) in representing the distribution of forest burn severity over Canada. Using the 18 

in situ burn severity category data available for the 2013 wildfires in southeastern Australia, we demonstrated that 19 

GFBS could provide burn severity estimation with clearer differentiation between the high-severity and moderate/low 20 

severity classes, while such differentiation among the in situ burn severity classes are not captured in the MOSEV 21 

product. Using the CONUS-wide Composite Burn Index (CBI) as a ground truth, we showed that dNBR from GFBS 22 

was more strongly correlated with CBI (r = 0.63) than dNBR from MOSEV (r = 0.28). RdNBR from GFBS also 23 

exhibited better agreement with CBI (r = 0.56) than RdNBR from MOSEV (r = 0.20). On a global scale, while the 24 

dNBR and RdNBR spatial patterns extracted by GFBS are similar to those of MOSEV, MOSEV tends to provide 25 

higher burn severity levels than GFBS. We attribute this difference to variations in reflectance values and the different 26 

spatial resolutions of the two satellites. The GFBS dataset provides a more precise and reliable assessment of burn 27 

severity than existing available datasets. These enhancements are crucial for understanding the ecological impacts of 28 

forest fires and for informing management and recovery efforts in affected regions worldwide. 29 

 30 



1. Introduction 31 

In recent years, many regions around the world have experienced an increase in the frequency, intensity, and extent 32 

of wildfires (Doerr and Santín, 2016; Shukla et al., 2019; Dupuy et al., 2020). Wildfires are now among the most 33 

popular research topics as a result of this rising global concern, which is further heightened by changes expected in 34 

fire regimes as a consequence of changes in climate and land use (Moreira et al., 2020). While most wildfires occur 35 

in grasslands and savannas (Scholes and Archer, 1997; Abreu et al., 2017), forest fires are more dangerous and 36 

destructive and perhaps of greater interest because of their importance to the functioning and renewal of ecosystems 37 

(Flannigan et al., 2000; Nasi et al., 2002; Flannigan et al., 2006). Changes brought by the warming climate, which has 38 

dried fuels and lengthened fire seasons across the globe (Jolly et al., 2015), are also particularly significant to forested 39 

ecosystems with abundant fuels (Kasischke and Turetsky, 2006; Aragão et al., 2018). 40 

With the rapid development of remote sensing techniques, more frequent observations from satellites 41 

facilitate the monitoring of global fire activities. The valuable information they provide at fine spatial and temporal 42 

resolutions can be used to study the number and size distributions of individual fires (Archibald and Roy, 2009; 43 

Hantson et al., 2015; Oom et al., 2016), fire shapes (Nogueira et al., 2016; Laurent et al., 2018), and locations of 44 

ignition points (Benali et al., 2016; Fusco et al., 2016). Among the most widely accepted techniques are those based 45 

on the Moderate Resolution Imaging Spectrometer (MODIS) (Chuvieco et al., 2016), which retrieves information on 46 

the entire Earth in 36 spectral bands every one to two days. The MODIS-derived burn area (BA) products are essential 47 

for ascertaining the patterns of fire occurrence, extent, propagation (Rodrigues and Febrer, 2018), and frequency 48 

(Andela et al., 2019). Based on these products, an essential indicator called “burn severity” has been derived for 49 

determining the degree of biomass consumption and the overall impact of fire on ecosystems (Keeley, 2009). 50 

Traditionally, burn severity could be quantified from satellite sensors through spectrum information. The 51 

changes caused by fire to near-infrared (NIR) and shortwave infrared (SWIR) reflectance are highly sensitive to, 52 

respectively, canopy density and moisture content (Chuvieco, 2010). Several burn severity datasets have been 53 

generated and released based on this method. Regionally, the Monitoring Trends in Burn Severity (MTBS) dataset, 54 

which includes burn severity assessments for the contiguous United States (CONUS) and provides information on fire 55 

perimeters and severity classes, uses satellite data—specifically, Landsat imagery (Eidenshink et al., 2007). Similarly, 56 

the Canadian Landsat Burn Severity (CanLaBS) product uses Landsat imagery to assess, and map burn severity at a 57 

national scale (Guindon et al., 2021). Globally, MOdis burn SEVerity (MOSEV) has provided monthly burn severity 58 

data with global coverage at 500m spatial resolution, based on MODIS Terra and Aqua satellites (Alonso-González 59 

and Fernández-García, 2021). However, a dataset for assessing and mapping global forest burn severity based on 60 

Landsat at high spatial resolution (30m resolution) is not yet available. Such a product would support advances in fire 61 

management strategies and ecosystem conservation efforts, leading to more resilient and sustainable landscapes. 62 

In this paper we describe a new global dataset comprising information on burn severity derived at high spatial 63 

resolution (30 meter) from Landsat imagery from the period 2003–2016. This dataset represents a step forward in 64 

quantifying and analyzing wildfire impact on forest ecosystems worldwide. We begin with a section detailing the 65 

input data and the algorithm used to process the dataset, as well as the analytical techniques employed. Section 3 66 



presents the characteristics of the dataset and its performance in representing the distribution of forest fires. In the 67 

results section, we analyze the advantages and disadvantages of the dataset and set forth its main contributions to 68 

forest fire management strategies worldwide. The last section summarizes the primary findings and suggests possible 69 

implications of the dataset. 70 

2. Data and Method 71 

Below we delineate the specifics of data input and pre-processing and the analytical techniques we employed to create 72 

the dataset. The Global Fire Atlas was the main source of global fire records, which was overlaid with annual land 73 

cover types from MCD12Q1 to determine when and where forest fires occurred. We then utilized the reflectance 74 

information from Landsat’s satellite archives to calculate burn severity indices for the burned forest areas. Finally, we 75 

compared GFBS with the CanLaBS dataset available over Canada, and used the field assessed burn severity category 76 

data in southeastern Australia and the CONUS-wide Composite Burn Index (CBI) as the ground truth to evaluate the 77 

performances of GFBS relative to that of the existing MODIS-based global burn severity dataset (MOSEV).  78 

2.1. Input data 79 

The input data we used to build the GFBS dataset comprised the fire records available in the Global Fire Atlas for the 80 

years 2003–2016 and all Landsat images for the same period.  81 

The Global Fire Atlas tracks the daily dynamics of individual fires globally to determine the time and location 82 

of ignition, area burned, and duration, as well as daily expansion, fireline length, velocity, and direction of spread. A 83 

detailed description of its underlying methodology is provided by Andela et al. (2019). 84 

The Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type 85 

(MCD12Q1) Version 6.1 data product provides global land cover types at yearly intervals (Friedl and Sulla-Menashe, 86 

2022). With its global coverage and the insights, it offers into the planet’s diversity of land cover types, the MCD12Q1 87 

dataset is pivotal to various ecological and environmental studies. 88 

Landsat 5,7,8 scene is a 16-day composite image with 7, 8, 11 surface reflectance bands. With its 30 meter 89 

resolution and global coverage, it provides a high-quality, atmospherically corrected snapshot of the Earth’s surface. 90 

Use of the best available observations gathered over the 16-day period ensures the image is as clear and accurate as 91 

possible, minimizing issues, such as cloud cover, that can obscure the satellite’s view. 92 

(https://developers.google.com/earth-engine/datasets/catalog/landsat ). 93 

2.2. Pre-processing 94 

To pre-process the data, we first imported individual fire polygons from the Global Fire Atlas into the Google Earth 95 

Engine (GEE) and then collected the most recent Landsat images based on the tags demarcating the start and end times 96 

of each individual fire. We applied a cloud- and snow-masking algorithm to remove any snow, clouds, and their 97 

shadows from all imagery based on each sensor’s pixel quality assessment band. By mosaicing the masked images, 98 

we created a composite with the smallest possible cloud and shadow extent (https://developers.google.com/earth-99 

engine/guides/landsat ).  100 



2.3. Algorithm overview 101 

In the first step, we determined the forest fire polygons using the Global Fire Atlas data associated with the 102 

MCD12Q1 land cover data and then utilized reflectance information from Landsat’s satellite archives to obtain the 103 

forest fire NBRs from the Landsat composites. Healthy plants absorb most of the visible light (for photosynthesis) 104 

while reflecting a large portion of the near-infrared (NIR) light. In contrast, areas that have been burned exhibit low 105 

NIR reflectance and high shortwave-infrared (SWIR) reflectance [Key and Benson, 2003; Montero et al., 2023]. This 106 

change in spectral properties is due to the loss of vegetation and the exposure of the underlying soil and charred 107 

material, which have different reflective characteristics. By computing this ratio for images taken before and after a 108 

fire, it's possible to determine the extent and severity of the burn [Cocke et al., 2005; Alcaras et al., 2022]. 109 

In the second step, we used the pre- and post-fire dates by the Global Fire Atlas data to obtain the 110 

corresponding pre- and post-fire NBRs, which allowed us to create the burn severity indices—that is, dNBR and 111 

RdNBR—based on the respective differences between them.  112 

We took additional steps to validate the performance of the dataset by comparing the burn severity category 113 

data over southeastern Australia and CBIs over CONUS with those based on the MOSEV dataset. These steps are 114 

detailed in Sections 2.3.1, 2.3.2, and 2.3.3. 115 

 

 
Figure 1. Methodology for building the GFBS database (2003–2016) and validation and comparison with the 

MOSEV benchmark. 



2.3.1. Identification of global forest fires 116 

To identify global forest fires, we first overlaid the fire polygons from the Global Fire Atlas with MCD12Q1 data 117 

from the corresponding year. Based on annual International Geosphere-Biosphere Programme (IGBP) classifications 118 

of land cover, we identified a forest fire polygon within each area where we found forest to be the dominant land cover 119 

type within the fire extent—that is, wherever the proportion of burned pixels representing forest, including evergreen 120 

needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, and mixed 121 

forests, was largest relative to the proportion of burned pixels for other land cover types, such as shrublands and 122 

grasslands.  123 

2.3.2. Estimation of the normalized burn ratio (NBR) 124 

We calculated the normalized burn ratio (NBR) spectral index for each Landsat composite. according to the formula 125 

in Equation 1 (https://www.usgs.gov/landsat-missions/landsat-normalized-burn-ratio): 126 

NBR = (NIR – SWIR) / (NIR + SWIR)                                                  (1) 127 

In Landsat series 4 through 7, we collected NIR information from Band 4 and SWIR information from Band 128 

7. In Landsat 8, we collected NIR information from Band 5 and SWIR information from Band 7.  129 

2.3.3. Estimation of dNBR and RdNBR 130 

Having obtained burn area locations and burn dates from the Fire Atlas product, we selected from the Landsat 16-day 131 

time series valid pre-fire and post-fire NBR pixels that were, respectively, from the date most closely preceding the 132 

start date and the date most closely following the end date of each burned polygon within a three-month time window.  133 

The dNBR index, calculated according to Key and Benson (2006) as shown in equation (2), is the reference 134 

burn severity spectral index used by the European Forest Fire Information System (https://effis.jrc.ec.europa.eu/about-135 

effis) and by the United States’ Monitoring Trends in Burn Severity program (https://www.mtbs.gov). Larger dNBR 136 

values indicate higher burn severity: 137 

dNBR = preNBR – postNBR                                                                  (2) 138 

RdNBR is another burn severity spectral index that is widely used, including by the United States’ Monitoring 139 

Trends in Burn Severity program (https://www.mtbs.gov/,  last access:1 May 2021). The RdNBR normalizes the 140 

dNBR to the square root of pre-fire NBR value, which helps in reducing the variability caused by pre-fire vegetation 141 

conditions and enhances the accuracy in assessing burn severity [Miller et al., 2009]. As formulated in equation (3) 142 

(Miller and Thode, 2007), higher RdNBR values indicate higher burn severity: 143 

RdNBR = dNBR/ඥ|𝑝𝑟𝑒𝑁𝐵𝑅|                                                                 (3)                             144 



2.4. Validation 145 

To validate the GFBS database, we used the 112 ground-verified burn severity category data following the Fire Extent 146 

and Severity Mapping (FESM) scheme for the 2013 wildfires over southeastern Australia. The FESM severity classes 147 

include unburnt, low severity (burnt understory, unburnt canopy), moderate severity (partial canopy scorch), high 148 

severity (complete canopy scorch, partial canopy consumption), and extreme severity (full canopy consumption).  149 

Besides FESM, we used the ground-measured CONUS-wide Composite Burn Index (CBI) from 2003 to 2016. CBI 150 

was developed by Key and Benson (2006) to assess the aboveground effects of fire on vegetation and soil land use 151 

types (i.e., burn severity). It is determined through direct field observations after a fire when assessors visited various 152 

sites within the burned area to evaluate the effects of the fire on different components of the ecosystem, such as the 153 

degree of charring, percentage of foliage consumed, changes in ground cover, and mortality of plants. The CBI score 154 

for each site was calculated by averaging the scores of the different components. This overall score represents the burn 155 

severity at a specific site. The index ranges continuously from 0 (unburned) to 3 (high severity). These values have 156 

been related to satellite-derived burn severity values through regression equations 157 

(https://burnseverity.cr.usgs.gov/products/cbi). In this study, we used all available CBI values over CONUS to 158 

establish relationships between CBI and the dNBR and RdNBR values of the GFBS and MOSEV datasets. We used 159 

the Pearson correlation coefficient and bias as metrics to evaluate the performance of the two datasets. Figure 2 (a) 160 

shows the locations of the 112 ground-verified burn severity sites for the 2013 wildfires over southeastern Australia. 161 

Figure 2 (b) shows the locations of CBI observations over CONUS for the period from 2003 to 2016. Of the 1,315 162 

ground-surveyed CBI reports for forest fires during that time, most came from western states, such as Arizona, 163 

Colorado, and Oregon, where forest fires are more frequent and severe. Fewer CBI records are available in eastern 164 

states, such as Florida and Georgia. 165 

 166 

  

(a) (b) 

Figure 2. Locations of (a) ground verification burn severity sites over southeastern Australia and (b) forest 

fire CBIs over CONUS. 

 167 



In addition to validation against in-situ data., we also compared the fire severity magnitudes of GFBS with 168 

the CanLaBS dataset available over Canada. CanLaBS provides burn severity information for burned areas identified 169 

from the Canada Landsat Disturbance product at the level of individual 30m resolution pixels. The dataset was derived 170 

from Landsat imagery and uses values of pre-fire to post-fire differences in dNBRs for nearly 60 million hectares of 171 

burned areas across Canada's forests from 1985 to 2015. [Guindon et al., 2017; Guindon et al., 2018]. 172 

3. Results 173 

3.1. Forest fire coverage of Landsat composites. 174 

Figure 3 (a) shows the number of forest fire polygons globally between 2003 and 2016, representing individual fire 175 

events, from the Global Fire Atlas dataset. Approximately 80,000 forest fire events occur in the world each year on 176 

average, where more than 90,000 happened in 2004 and more than 100,000 in 2003 and 2015, respectively. Figure 3 177 

(a) displays the availability of Landsat imagery covering the burn area where individual forest fires happened 178 

worldwide. From 2003 to 2012, Landsat 5 could provide images covering between 35% and 68% of the recorded 179 

forest fire events in the Global Fire Atlas, while Landsat 7 images covered 83% to 93% of the Global Fire Atlas events. 180 

From 2013 to 2016, Landsat 7 images covered between 90% and 98% of the fire events, while Landsat 8 images 181 

covered more than 97%. The Landsat composites combining all available Landsat 5 and Landsat 7 images from 2003 182 

to 2012 and Landsat 7 and Landsat 8 images from 2013 to 2016 significantly increased the number of forest fires 183 

shown by Landsat images, with coverage of the fire events ranging from 88% to 99%. Figure 3 (b) shows the 184 

distribution of the spatial coverage of cloud-free Landsat composites for individual fires from the Fire Atlas. We used 185 

a cloud and shadow removal algorithm to eliminate invalid poor-quality pixels from recorded forest fires, resulting in 186 

a line chart showing the distribution of the percentages of valid pixels to the total burn pixels in each year. Overall, 187 

the spatial coverage was above 72%, and the coverage has been above 85% since 2013, when Landsat 8 was launched. 188 

  

(a) (b) 

Figure 3. (a) Numbers of individual fires from the Fire Atlas and available Landsat imagery; (b) Spatial coverage of 

cloud-free Landsat composites for individual fires reported in the Fire Atlas. 

 189 



Figure 4 shows the data process for a single post-NBR Landsat composite for the fire event that ended on 17 190 

September 2015 in north Washington. The first prior image for NBR calculation was on 20 September 2015 from 191 

Landsat 8 (as image 1). The cloud and shadows are removed in image 1 after applying the cloud/shadow mask. The 192 

next available image on 21 September 2015 from Landsat 7 (as image 2) was then used to fill those gaps in image 1 193 

and obtain a new Landsat composite (phase 1).  The third available image on 29 September 2015 from Landsat 8 (as 194 

image 3), image on 15 October 2015 if needed, was adopted sequentially to fill the un-scanned gap pixels in phase 1 195 

and generate the final post NBR image for this event. The process for pre-NBR image calculation is the same but in a 196 

reversed time-order from the start time of the fire event. 197 

Figure 4. NBR image process for Landsat composite, for the fire event ended on 17 September 2015 in north 

Washington. 

 198 

The scatterplot in Figure 5 (a) shows the NBR values of the overlapping pixels in image 1 and image 2, with 199 

the associated distributions of NBR for the fire event. It is noted that NBR values in images 1 and 2 show high 200 

correlation (r = 0.96), relatively low bias (-23.81%) and similar probability densities, even though they are derived 201 

from two different Landsat images (Landsat 8 and Landsat 7). The scatterplot in Figure 5 (b) shows the NBR values 202 

of overlapping pixels in image 1 and image 3, with the associated distribution of NBR for the fire event. Similarly, 203 

NBR values in image 1 and image 3 have high correlation (r = 0.96) and low bias (12.30 %) and similar probability 204 

densities, even though they are derived from different times (9 days apart). The results indicate that the cloud-free 205 



NBR composite mosaicking of all available Landsat images has reasonable accuracy with high spatial and temporal 206 

consistency. 207 

  

(a) (b) 

Figure 5. Scatterplots of overlapped pixel values in (a) image 1 and image 2; (b) image 1 and image 3.  

 208 

3.2 Comparison between GFBS and CanLaBS over Canada 209 

In this section we describe the comparison of the fire severity maps of GFBS and MOSEV datasets to the ones from 210 

the CanLaBS dataset over Canada for an overlapped period from 2003 to 2015. Figure 6 shows the number and the 211 

trend of forest fires over Canada from 2003 to 2015, by CanLaBS data and GFBS products, while the vertical bar 212 

represents the number of forest fires recorded by both CanLaBS and GFBS each year. Due to the different sources 213 

and algorithms to map the burn area, the number of forest fires depicted by CanLaBS is larger than those by GFBS 214 

each year. Nevertheless, it is noted that GFBS agrees with CanLaBS in terms of the variations of forest fire activities, 215 

such as the intense forest fires in 2004 and 2015 and the relatively low number of forest fires in 2007 and 2008. 216 

 



Figure 6. Number of forest fires by CanLaBS and GFBS dataset. Vertical bars show the number of 

overlapping forest fires. 

Figure 7 illustrate the scatterplots of dNBR of forest fires from CanLaBS against those from GFBS (panel a) 217 

and MOSEV (panel b), for the period 2003 to 2015. Consistent to the results shown in Figure 6, dNBR from GFBS 218 

shows strong correlation with the dNBR from CanLaBS with r being 0.77 and a slightly underestimation of the overall 219 

dNBR for forest fires (bias = -12.42%). On the other hand, dNBR from MOSEV exhibited low correlation with the 220 

dNBR from CanLaBS  (r = 0.42) and slight overestimation (bias = 11.84 %). Figure 7 (c) displays the probability 221 

density function (PDF) plots of CanLaBS dNBR, GFBS dNBR and MOSEV dNBR. It is noted the close PDFs of 222 

GFBS dNBR and CanLaBS dNBR, though the mode of GFBS distribution is at slightly lower dNBR value relative to 223 

the CanLaBS distribution. On the other hand, the distribution of MOSEV dNBR significantly deviates from CanLaBS 224 

dNBR, having a lower peak and larger tails. 225 

  

(a) (b) 

  

 

 

(c)  

Figure 7. Scatterplots of dNBR from CanLaBS against those from (a) GFBS and (b) MOSEV; (c) density 

plot of dNBR from CanLaBS, GFBS and MOSEV, for forest fires from 2003 to 2015 over Canada. 

 226 

Figure 8 presents the boxplots of distributions of dNBR from CanLaBS, GFBS and MOSEV separate by 227 

year. Consistent to the previous results, GFBS compares well with CanLaBS in terms of the dNBR distribution of 228 

annual forest fires and as well as the variations of dNBR over time, even though it provides slightly lower dNBR 229 



values compared to CanLaBS. On the other hand, MOSEV compared poorly with CanLaBS annual dNBR 230 

distributions, exhibiting overall larger dNBR values and larger anomalies over time. 231 

Figure 8. Boxplots of annual distributions of dNBR values from CanLaBS, GFBS and MOSEV for forest 

fires over Canada from 2003 to 2015. 

3.3. Validation against in situ fire severity category over southeastern Australia 232 

Using as the ground truth the in-situ burn severity categorizations from the 2013 wildfires over southeastern Australia, 233 

we evaluate the performance of GFBS and MOSEV datasets. Figure 9 (a), (b) and (c) display the spatial patterns of 234 

GFBS dNBR and MOSEV dNBR for wildfires that happened on October 15 2023, October 17 2023 and October 21 235 

2023, respectively, in southeastern Australia, where relatively dense in situ burn severity categorization data are 236 

available. It is noted that GFBS dNBR shows similar spatial patterns to the MOSEV dNBR in the events on October 237 

15 2023 and October 17 2023, both showing significant fire centers where high dNBR are found. For the October 21 238 

2023 event, however, the dNBR map from MOSEV shows a larger high burn severity area than GFBS. 239 



(a) 

(b) 

(c) 

Figure 9. Spatial patterns of dNBR for wildfires on (a) October 15 2023, (b) October 17 2023 and (c) October 

21 2023, in southeastern Australia, derived from the GFBS and MOSEV datasets. 

 240 

The boxplots in Figure 10 (a), (b) and (c) display the corresponding distributions of dNBR from GFBS and 241 

MOSEV at different observed severity classes in the events on October 15 2023, October 17 2023 and October 21 242 

2023, respectively. The severity classes, e.g. low, moderate and high, are categorized from the field assessed sites in 243 

the corresponding fire events. For the event on October 15 2023, dNBR from GFBS shows significant difference 244 

between the moderate/high and low severity class, and no difference between high and moderate severity class. The 245 

dNBR from MOSEV, however, presents lower dNBR at high severity class than those at moderate and low severity 246 

class. For the event on October 17 2023, both GFBS and MOSEV show significant discrepancies on dNBR between 247 

high and moderate/low severity class. For the event on October 21 2023, GFBS could clearly differentiate among 248 

high, moderate and low severity classes in terms of dNBR values, while MOSEV presents the lowest dNBR values at 249 

the moderate severity class, while exhibits small differences in dNBR values between the low and high severity 250 

classes. Figure 10 (d) shows the overall performances of dNBR from GFBS and MOSEV for the different severity 251 



classes, combining all 112 ground verification sites. More significant differences are shown in the GFBS dNBR 252 

boxplots between high, moderate and low severity classes than those from MOSEV, indicating a better skill of GFBS 253 

to distinguish between forest fires of different severity levels. 254 

  

(a) (b) 

  

(c) (d) 

Figure 10. Boxplots of distributions of dNBR at different burn severity classes from the in situ data for (a) event on October 

15 2023; (b) event on October 17 2023; (c) event on October 21 2023; and (d) combining all events with in situ data. 

 255 

As mentioned above, MOSEV gave relatively small dNBR values in the event on October 15 2023, where 256 

burn severity is classified from in situ measurement as high. Figure 11 (a) displays the location of the ground 257 

verification sites with the corresponding burn severity class and associated dNBR values from MOSEV and GFBS. It 258 

is noted that within one MOSEV grid cell (500 meter) four ground verification sites are located. The dNBR value 259 

from MOSEV is 295 for all four sites, while three of the sites are classified as low and only one site is classified as 260 

high severity. On the other hand, at GFBS resolution (30 meter), we can note significant spatial variation in dNBR, 261 

with GFBS dNBR being 239 for the site classified as high and 9, 16 and 68 for the sites classified as low severity. In 262 

a surrounding MOSEV pixel we note a site classified as high severity, but dNBR from MOSEV is 188 while dNBR 263 

from GFBS is 397. In the event on October 21 2023, we found that MOSEV gave relatively high dNBR values at 264 

ground verification sites that are classified as low severity. Figure 11 (b) shows the locations of ground verification 265 



sites with corresponding classified burn severity and associated dNBR values from MOSEV and GFBS. In the two 266 

adjacent MOSEV grids, the dNBR values from MOSEV are 287 and 327 respectively where both sites are classified 267 

as low severity. At GFBS resolution more significant changes between high and low dNBR are found within the same 268 

MOSEV grid, resulting in dNBR values of 30 and 32 for the ground verification sites classified as low severity. The 269 

results demonstrate the significance of GFBS high resolution data in representing the small-scale variations of dNBR 270 

and providing more granular and reliable dNBR estimations. 271 

 

(a) 

 

(b) 



Figure 11. The location of ground verification sites with burn severity classes overlaid by 

dNBR values from GFBS and MOSEV for the fire event of (a) October 15 2023 and (b) 

October 21 2023. 

3.4. Validation against CBI over CONUS 272 

Figure 12 (a), (b), (c) and (d) shows the spatial patterns of dNBR derived from GFBS and MOSEV over CONUS for 273 

the forest fires with the largest burn areas (referred to as annual maximum forest fire hereafter) in 2004, 2006, 2007, 274 

and 2013 respectively for which CBI records are available. The figures present the PDFs of dNBR values from GFBS 275 

and MOSEV, along with spatial distribution maps of dNBR. The similarity in spatial patterns between GFBS burn 276 

severity and MOSEV burn severity is noted in these plots. Significant differences occur, however, between dNBR 277 

from GFBS and MOSEV. Specifically, MOSEV tends to provide overall larger dNBR values, but where dNBR from 278 

GFBS is relatively high MOSEV dNBR values are relatively lower. This difference could also be inferred from the 279 

PDFs of dNBR from GFBS and MOSEV where dNBR from MOSEV distributed more on the mean dNBR of around 280 

300, while dNBR from GFBS is bimodal with peaks on both low and high values. For the annual maximum forest fire 281 

in 2007, especially, MOSEV showed more extensive areas with high dNBR values compared to GFBS, a difference 282 

that was also revealed in the large deviation of mean dNBR values in the PDFs of dNBR from the GFBS (mean dNBR 283 

around 100) and MOSEV (mean dNBR around 500) datasets.  284 

The density plot of dNBR in Figure 12 also shows the bi-modal distribution for dNBR from GFBS, at around 285 

100 (associated with low severity) and 700 (associated with high severity), for the annual maximum forest fire in 286 

2006. dNBR from MOSEV on the other hand shows a single peak distribution at around 500, indicating that dNBR 287 

from MOSEV underestimated the high severity occurrences, and overestimated the low severity ones, depicted in the 288 

GFBS dataset. For the annual maximum forest fire in 2013, though the density plot presents two different peaks in the 289 

distributions of GFBS and MOSEV, indicating a significant difference in the burn severity depicted in the two datasets. 290 

 

(a) 



 

(b) 

 

(c) 

 

(d) 

Figure 12. Spatial patterns of dNBRs for annual maximum fires over CONUS with distribution of 

probability density functions in (a) 2004, (b) 2006, (c) 2007, and (d) 2013, derived from the GFBS and 

MOSEV datasets. 

Figure 13, panels (a), (b), (c), and (d), present the scatterplots of CBI against dNBR from GFBS and dNBR 291 

from MOSEV for the annual maximum forest fires in 2004, 2006, 2007, and 2013, respectively. For the annual 292 

maximum forest fire in 2004, Figure 13 (a) shows a positive correlation between CBI (r = 0.45) and dNBR from 293 



GFBS, while we found no correlation between CBI and dNBR from MOSEV. For the annual maximum forest fire in 294 

2006, we found good agreement between the CBI and dNBR from GFBS, with a r value of 0.85, while the r value was 295 

only 0.28 for dNBR from MOSEV. Though correlations between CBI and dNBR from GFBS and MOSEV were poor, 296 

dNBR from GFBS showed a positive trend to CBI, while the relationship between CBI and dNBR from MOSEV was 297 

negative, for the annual maximum forest fire in 2007. For the annual maximum forest fire in 2013, dNBR from GFBS 298 

(r = 0.72) was more strongly correlated with CBI than dNBR from MOSEV (r = 0.36). 299 
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Figure 13. Scatterplots of CBI against dNBR from GFBS and MOSEV for annual maximum fires in (a) 2004, 300 

(b) 2006, (c) 2007, and (d) 2013.  301 

Figure 14 (a), (b), (c) and (d) shows the spatial patterns of RdNBR from GFBS and MOSEV along with the 302 

associated PDFs of RdNBR, for the forest fires over CONUS with the largest burn areas (referred to as annual 303 

maximum forest fire hereafter) in 2004, 2006, 2007, and 2013 respectively. RdNBR from GFBS and MOSEV exhibit 304 

similar spatial patterns yet provide different ranges of RdNBR values over burn area. RdNBR from MOSEV tended 305 

to be higher than RdNBR from GFBS, which is consistent to the density plots of RdNBR from GFBS. The mean value 306 

in the distribution of RdNBRs from MOSEV is larger than the mean value in the distribution of RdNBRs from GFBS, 307 

for the annual maximum forest fires in 2003, 2006 and 2007. The density plots of RdNBR from GFBS and MOSEV 308 



are largely overlapped for the annual maximum forest fire in 2013, but RdNBR from MOSEV distributed more on the 309 

mean values around 800 than RdNBR from GFBS, while RdNBR from GFBS distributed more on the extreme low 310 

values above 0 and high values above 1500. These findings demonstrate that RdNBR from MOSEV represents overall 311 

larger burn severity estimations than RdNBR from GFBS. 312 
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Figure 14. Spatial patterns of RdNBRs for annual maximum fires over CONUS with distribution of 

probability density functions in (a) 2004, (b) 2006, (c) 2007, and (d) 2013, derived from the GFBS and 

MOSEV datasets. 

Figure 15, panels (a), (b), (c), and (d), present the scatterplots of CBI against RdNBR from GFBS and 313 

MOSEV, for the annual maximum forest fires in 2004, 2006, 2007, and 2013, respectively. For the annual maximum 314 

forest fire in 2004, RdNBR from GFBS shows a positive correlation with CBI (r = 0.57), while no correlation was 315 

found between CBI and RdNBR from MOSEV. For the annual maximum forest fire in 2006, RdNBR from GFBS 316 

correlated well with the CBI for showing a r value of 0.85, while the r value was only 0.18 between CBI and RdNBR 317 

from MOSEV. The correlations between CBI and RdNBR from GFBS and MOSEV are bad for the annual maximum 318 

forest fire in 2007, the RdNBR from GFBS showed a positive trend to CBI with r = 0.15, while the RdNBR from 319 

MOSEV showed a negative trend to CBI with r = -0.28. For the annual maximum forest fire in 2013, RdNBR from 320 

GFBS (r = 0.74) was more strongly correlated with CBI than RdNBR from MOSEV (r = 0.40). 321 

 322 
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(c) (d) 

Figure 15. Scatterplots of CBI against RdNBR from GFBS and MOSEV for annual maximum fires in (a) 2004, 323 

(b) 2006, (c) 2007, and (d) 2013.  324 

Figure 16 (a) and (b) shows the scatterplots of CBI against dNBR from GFBS and MOSEV, respectively, for 325 

all forest fires from 2003 to 2016 over CONUS. Involving all ground validations, we found GFBS dNBR shows a 326 

stronger correlation with CBI (r = 0.63) than MOSEV dNBR (r = 0.28). Using RdNBR as the burn severity, Figure 327 

16 (c) and (d) show that GFBS RdNBR (r=0.56) outperformed MOSEV RdNBR (r=0.20). 328 

 329 
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(c) (d) 

Figure 16. Scatterplots of CBI against (a) dNBR from GFBS, (b) dNBR from MOSEV, (c) RdNBR from GFBS, and (d) 

RdNBR from MOSEV for forest fires from 2003 to 2016 over CONUS. 

3.5. Comparison of GFBS and MOSEV globally 330 

Figure 17 (a) displays the global spatial distributions of the overlapping area between the density plots of dNBR from 331 

GFBS and MOSEV, which is defined as the area intersected by two probability density functions presented in Figure 332 

12 and Figure 14. The overlapping areas in density plots typically represent the percentage of common values between 333 

the distributions of two datasets, which ranges from 0 to 1 with the larger value indicating the two distributions are 334 

more likely come from the same distribution. As Figure 17 (a) shows, we found the overlapping area over most of the 335 

world to be above 0.4, indicating a similarity of 40% between the burn severity information provided by GFBS and 336 

MOSEV in these regions. For some regions, like South America, Western Europe, and southeast Australia, the overlap 337 

was above 0.6.  338 

From Figure 17 (b), which shows the global distribution of the mean dNBR for each burn pixel derived from 339 

GFBS, we found the global spatial heterogeneity of burn severity to be small, with dNBR values from GFBS around 340 

100 and 200. The exception was in Western Europe, where dNBR was above 300. The global distribution of the mean 341 

dNBR for each burn pixel derived from MOSEV, as shown in Figure 17 (c), however, indicated a large spatial 342 

variability in burn severity globally. The MOSEV dataset, for example, indicated that the forest fires in north CONUS 343 

and Canada should have an average dNBR above 300, while in the GFBS dataset the average dNBR value was around 344 

100 to 200. The MOSEV dataset also indicated the average dNBR values for forest fires in South Africa and China 345 

should be close to or below 0, while in the GFBS dataset they were around 100 to 200, respectively.  346 

Figure 17 (d) presents a more detailed comparison between the dNBR from GFBS and MOSEV globally, 347 

showing the difference in the mean dNBR for each burn pixel, as calculated by dNBR from MOSEV minus dNBR 348 

from GFBS. Globally, MOSEV data indicated higher forest burn severity than GFBS over Canada and CONUS, also 349 

found in the results presented in section 3.2 and 3.4, as well as southeast Australia (also found in the results presented 350 

in section 3.3). MOSEV data presented lower forest burn severity over Mexico, South Africa, Europe, China, and 351 



Southeast Asia. These findings revealed that the forest burn severity information provided by GFBS might be more 352 

reliable and reasonable than that provided by MOSEV for some fire-prone areas, such as CONUS, as validated in this 353 

study. This improved accuracy over MOSEV data would support advances in decision making in fire management 354 

strategies and ecosystem conservation efforts. 355 
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Figure 17. Global spatial distributions of (a) overlapping areas between the density plots of dNBR from GFBS 

and MOSEV, (b) the mean dNBR per burn pixel from GFBS, (c) the mean dNBR per burn pixel from MOSEV, 

and (d) the differences in the mean dNBR per burn pixel between MOSEV and GFBS (MOSEV – GFBS). 

4. Discussion 356 

The GFBS dataset presented in this paper is the first to provide fine spatial resolution (30m) burn severity information 357 

for global forest fires from 2003 to 2016. Compared with the existing Landsat based CanLaBS dataset, GFBS shows 358 

closer agreement to CanLaBS in describing the distribution of annual forest fire burn severity than the MODIS based 359 

MOSEV data. As suggested by the validation against the ground reference, GFBS can better represent the spatial 360 

variability and provide higher performance than the MOSEV dataset. In addition, GFBS is shown to have more reliable 361 

burn severity estimations than MOSEV for some fire-prone areas, like CONUS, Canada, and Australia, which could 362 

support advances in decision making in fire management strategies and ecosystem conservation efforts.  363 



The difference in the performance of GFBS and MOSEV with respect to burn severity can be attributed to 364 

two sources. The first is spatial resolution. GFBS, based on Landsat (5, 7, and 8) images, is at a resolution of 30 365 

meters, while MOSEV is based on MODIS Terra MOD09A1 and Aqua MYD09A1 images with a resolution of 500 366 

meters. As shown in Figure 11 (a), stemming from the coarse spatial resolution, MOSEV provides dNBR value of 367 

295 for the site classified as high severity as well as for those classified as low severity, leading to an overestimation 368 

for low severity sites. With the improved spatial resolution, GFBS is able to capture more detailed localized variability 369 

of dNBR, providing more reasonable dNBR estimation for low severity sites (dNBR equal to 9, 16, 68). Similarly, in 370 

the event shown in Figure 11 (b), MOSEV provides dNBR estimations of 287 and 327 for the low severity sites, which 371 

is relatively too large. In GFBS, the relative lower dNBR of 30 and 32 is provided at the corresponding low severity 372 

sites. The coarse resolution of MOSEV could also make it more difficult to capture the extreme values, as we found 373 

to be the case for the annual maximum forest fires in 2006 over CONUS. dNBR from GFBS clearly showed two peaks 374 

in the density plot of dNBR at around 100 and 700, representing the low and high severity, respectively. dNBR from 375 

MOSEV, however, showed only a single peak at around 500, indicating that the extreme low/high values in the 30m 376 

grid were averaged in the 500m grid. These findings reveal that burn severity from MOSEV has higher uncertainty 377 

for wildfires with larger spatial variabilities. 378 

Another reason leading to the difference in the performances of the two data sets was related to sensors 379 

onboard Landsat and MODIS. MODIS has a wider spectral range and more spectral bands (36) than Landsat 7/8 (7 380 

spectral bands/ 11 spectral bands, respectively), which resulted in different sensitivity to surface reflectance. For 381 

example, the NBR is commonly calculated using near-infrared (NIR) and shortwave infrared (SWIR) bands. In 382 

MOSEV, the bands used to calculate NBR are NIR: Band 2 (Range: 0.841–0.876 µm) and SWIR: Band 7 (Range: 383 

2.105–2.155 µm). In GFBS, they are Landsat 5 Band 4 (Range: 0.76–0.90 µm) and SWIR: Band 7 (Range: 2.08–2.35 384 

µm); Landsat 7 Band 4 (Range: 0.77–0.90 µm) and SWIR: Band 7 (Range: 2.09-2.35 µm); and Landsat 8 Band 5 385 

(Range: 0.85–0.88 µm) and SWIR: Band 7 (Range: 2.11–2.29 µm). While MODIS and Landsat 8 are close in NIR 386 

and SWIR band information, Landsat 5 and 7 both have wider spectrums in NIR and SWIR than MODIS.  387 

This study has shown that combining all available Landsat images, including those from Landsat 5, 7, and 8, 388 

could significantly improve the probability of obtaining dense cloud-free NBR time series. The NBR composite shows 389 

high spatial and temporal consistency with the NBR images closest to the start and end time of the fire event, despite 390 

different band settings used from Landsat 5, 7 and 8. Studies by Koutsias and Pleniou (2015) and Chen et al. (2020) 391 

also have shown that differences are small when using reflectance values from sensors aboard the Landsat 5, 7, and 8 392 

satellites to calculate burn severity over burned area. While studies (Mallinis et al., 2018; Howe et al. 2022) have 393 

demonstrated that Sentinel-2 generally performed as well as Landsat 8 in burn severity mapping, the further extension 394 

of this study will also incorporate images from Sentinel-2 to obtain dNBR composite, especially on extending the 395 

GFBS data set to the present. With the finer spatial resolution (10 meter) and more frequent revisit period (5 days), 396 

GFBS could provide improved burn severity information when incorporating Sentinel-2 images. The National 397 

Aeronautics and Space Administration (NASA) has lounched the Harmonized Landsat and Sentinel-2 (HLS) project 398 

aiming to produce a seamless surface reflectance record from the Operational Land Imager (OLI) and Multi-Spectral 399 



Instrument (MSI) aboard Landsat-8/9 and Sentinel-2A/B remote sensing satellites, respectively, which is an 400 

alternative source for extending the GFBS dataset (https://hls.gsfc.nasa.gov/) 401 

With the development of radar-based techniques, Synthetic Aperture Radar (SAR) polarimetric images have 402 

been proven to be effective in burn severity mapping, owing to the strong correlation between SAR backscatter and 403 

burn severity [Czuchlewski and Weissel, 2005; Tanase et al., 2010; Tanase et al., 2011; Addisonand Oommen, 2018]. 404 

With the unique properties of L-band SAR, it is suitable for assessing and monitoring post-fire effects and burn 405 

severity [Tanase e al., 2010; Peacock et al., 2023]. For example, the frequency of L-band (1.26 GHz) allows it to 406 

penetrate through smoke, ash, and, to some extent, vegetation canopy. This capability makes L-band SAR particularly 407 

useful for assessing areas immediately after a fire, even in the presence of smoke or cloud cover that would obstruct 408 

optical sensors. The incorporation of L-band Synthetic Aperture Radar (SAR) data, such as the ALOS-2 PALSAR-2 409 

ScanSAR Level 2.2 data (https://www.eorc.jaxa.jp/ALOS/en/alos-2/a2_about_e.htm) and and the incoming NASA-410 

ISRO Synthetic Aperture Radar (NISAR,https://nisar.jpl.nasa.gov/), can also facilitate the retrieval of burn severity. 411 

By comparing GFBS with CanLaBS, we found that the number of forest fires in CanLaBS dataset is larger 412 

than those in GFBS. This is because CanLaBS is based on the burn area map from Canada Landsat Disturbance 413 

product at 30 meter resolution, while GFBS is based on the burn area map from Global Fire Atlas which is derived 414 

from MODIS burn area product at 500 meter resolution. This difference in the spatial resolution of the burn area 415 

causes some small forest fires to be ignored in the GFBS dataset. Therefore, finer spatial resolution burn area product 416 

(10/30 meter) is promoted regionally and globally to better reveal the forest fire behavior, e.g. fire number, size and 417 

severity (Roy et al., 2019; Bar et al., 2020). Despite the differences in number of forest fires, GFBS agreed well to 418 

CanLaBS in terms of the annual forest burn severity. While the method to generate GFBS remains consistent, with 419 

the small difference to be ignored in banding settings from Landsat 5,7 and 8, GFBS provides comprehensive temporal 420 

coverage spanning from 2003 to 2016 for forest burn severity, indicating the potential application of GFBS in long 421 

term analysis of burn severity for forest fires beyond Canada, i.e. regions over the globe, e.g. CONUS, Australia, 422 

where GFBS has been demonstrated to perform well against ground truth. Moreover, integrating the 30 meter GFBS 423 

into the regional forest planning can enhance fire resilience in vulnerable areas, shaping policies that prioritize the 424 

forest environment [Bradley et al., 2016]. As climate change exacerbates the frequency, intensity, and unpredictability 425 

of wildfires globally, the analysis on GFBS data can help to assess the impact of these fires on carbon emissions [Xu 426 

et al., 2020], forest recovery [Meng et al., 2018], and biodiversity [Huerta et al., 2022], which would in turn inform 427 

predictive models that project future fire behavior under various climate scenarios. 428 

5. Conclusion 429 

We have introduced a newly developed dataset, named GFBS, which provides forest burn severity information with 430 

global coverage for the period 2003–2016. We identified global forest fires by overlaying the Global Fire Atlas data 431 

with the annual land cover data, MCD12Q1, and proposed an automated algorithm for calculating the severity of these 432 

fires. The algorithm used the band information from Landsat 5, 7, and 8 surface reflectance imagery to compute the 433 

most used burn severity spectral indices (dNBR and RdNBR) with a 30m spatial resolution and provide the output 434 

depicted in the GFBS dataset. Comparison between CanLaBS and GFBS showed good agreement in representing the 435 



distribution of forest burn severity over Canada. The validation against field assessed burn severity category data in 436 

southeastern Australia showed that GFBS could provide burn severity estimation with clear differentiation between 437 

the high-severity class and moderate/low severity class of the in situ data, while such differences among burn severity 438 

class were not obvious in the MOSEV dataset. The validation results over CONUS showed dNBR values from GFBS 439 

to be more strongly correlated with CBI (r = 0.63) than dNBR from MOSEV (r = 0.28). RdNBR from GFBS also 440 

showed better agreement with CBI (r = 0.56) than RdNBR from MOSEV (r = 0.20). Thus, this database could be more 441 

reliable than prior sources of information for future studies of forest burn severity at global scale, as well as for studies 442 

to which forest burn severity could be relevant, such as in forest management and CO2 emissions research.  443 

A future direction for this study would be to extend the GFBS dataset to the present based on updated Global 444 

Fire Atlas data or other datasets providing global burn area and burn date information. Another direction is to involve 445 

more ground validations from the fire prone areas like south Africa and south Mexico to further evaluate and improve 446 

the performances of GFBS data globally. 447 
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