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Abstract: Forest fires, while destructive and dangerous, are important to the functioning and renewal of ecosystems.
Over the past two decades, large-scale, severe forest fires have become more frequent globally, and the risk is expected
to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of
forest fire damage, we have developed a 30-meter resolution Global Forest Burn Severity (GFBS) dataset of the degree
of biomass consumed by fires from 2003 to 2016. To develop this dataset, we used the Global Fire Atlas product to
determine when and where forest fires occurred during that period and then we overlaid the available Landsat surface
reflectance products to obtain pre-fire and post-fire normalized burn ratios (NBRs) for each burned pixel, designating
the difference between them as dNBR and the relative difference as RANBR. We compared the GFBS dataset against
the Canada Landsat Burned Severity (CanLaBS) product, showing better agreement than the existing MODIS-based
global burn severity dataset (MOSEV) in representing the distribution of forest burn severity over Canada. Using the
in situ burn severity category data available for the 2013 wildfires in southeastern Australia, we demonstrated that
GFBS could provide burn severity estimation with clearer differentiation between the high-severity and moderate/low
severity classes, while such differentiation among the in situ burn severity classes are not captured in the MOSEV
product. Using the CONUS-wide Composite Burn Index (CBI) as a ground truth, we showed that ANBR from GFBS
was more strongly correlated with CBI (» = 0.63) than dNBR from MOSEV (» = 0.28). RANBR from GFBS also
exhibited better agreement with CBI (» = 0.56) than RANBR from MOSEV (» = 0.20). On a global scale, while the
dNBR and RANBR spatial patterns extracted by GFBS are similar to those of MOSEV, MOSEV tends to provide
higher burn severity levels than GFBS. We attribute this difference to variations in reflectance values and the different
spatial resolutions of the two satellites. The GFBS dataset provides a more precise and reliable assessment of burn
severity than existing available datasets. These enhancements are crucial for understanding the ecological impacts of

forest fires and for informing management and recovery efforts in affected regions worldwide.
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1. Introduction

In recent years, many regions around the world have experienced an increase in the frequency, intensity, and extent
of wildfires (Doerr and Santin, 2016; Shukla et al., 2019; Dupuy et al., 2020). Wildfires are now among the most
popular research topics as a result of this rising global concern, which is further heightened by changes expected in
fire regimes as a consequence of changes in climate and land use (Moreira et al., 2020). While most wildfires occur
in grasslands and savannas (Scholes and Archer, 1997; Abreu et al., 2017), forest fires are more dangerous and
destructive and perhaps of greater interest because of their importance to the functioning and renewal of ecosystems
(Flannigan et al., 2000; Nasi et al., 2002; Flannigan et al., 2006). Changes brought by the warming climate, which has
dried fuels and lengthened fire seasons across the globe (Jolly et al., 2015), are also particularly significant to forested

ecosystems with abundant fuels (Kasischke and Turetsky, 2006; Aragao et al., 2018).

With the rapid development of remote sensing techniques, more frequent observations from satellites
facilitate the monitoring of global fire activities. The valuable information they provide at fine spatial and temporal
resolutions can be used to study the number and size distributions of individual fires (Archibald and Roy, 2009;
Hantson et al., 2015; Oom et al., 2016), fire shapes (Nogueira et al., 2016; Laurent et al., 2018), and locations of
ignition points (Benali et al., 2016; Fusco et al., 2016). Among the most widely accepted techniques are those based
on the Moderate Resolution Imaging Spectrometer (MODIS) (Chuvieco et al., 2016), which retrieves information on
the entire Earth in 36 spectral bands every one to two days. The MODIS-derived burn area (BA) products are essential
for ascertaining the patterns of fire occurrence, extent, propagation (Rodrigues and Febrer, 2018), and frequency
(Andela et al., 2019). Based on these products, an essential indicator called “burn severity” has been derived for

determining the degree of biomass consumption and the overall impact of fire on ecosystems (Keeley, 2009).

Traditionally, burn severity could be quantified from satellite sensors through spectrum information. The
changes caused by fire to near-infrared (NIR) and shortwave infrared (SWIR) reflectance are highly sensitive to,
respectively, canopy density and moisture content (Chuvieco, 2010). Several burn severity datasets have been
generated and released based on this method. Regionally, the Monitoring Trends in Burn Severity (MTBS) dataset,
which includes burn severity assessments for the contiguous United States (CONUS) and provides information on fire
perimeters and severity classes, uses satellite data—specifically, Landsat imagery (Eidenshink et al., 2007). Similarly,
the Canadian Landsat Burn Severity (CanLaBS) product uses Landsat imagery to assess, and map burn severity at a
national scale (Guindon et al., 2021). Globally, MOdis burn SEVerity (MOSEV) has provided monthly burn severity
data with global coverage at 500m spatial resolution, based on MODIS Terra and Aqua satellites (Alonso-Gonzalez
and Fernandez-Garcia, 2021). However, a dataset for assessing and mapping global forest burn severity based on
Landsat at high spatial resolution (30m resolution) is not yet available. Such a product would support advances in fire

management strategies and ecosystem conservation efforts, leading to more resilient and sustainable landscapes.

In this paper we describe a new global dataset comprising information on burn severity derived at high spatial
resolution (30 meter) from Landsat imagery from the period 2003—2016. This dataset represents a step forward in
quantifying and analyzing wildfire impact on forest ecosystems worldwide. We begin with a section detailing the

input data and the algorithm used to process the dataset, as well as the analytical techniques employed. Section 3
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presents the characteristics of the dataset and its performance in representing the distribution of forest fires. In the
results section, we analyze the advantages and disadvantages of the dataset and set forth its main contributions to
forest fire management strategies worldwide. The last section summarizes the primary findings and suggests possible

implications of the dataset.
2. Data and Method

Below we delineate the specifics of data input and pre-processing and the analytical techniques we employed to create
the dataset. The Global Fire Atlas was the main source of global fire records, which was overlaid with annual land
cover types from MCD12Q1 to determine when and where forest fires occurred. We then utilized the reflectance
information from Landsat’s satellite archives to calculate burn severity indices for the burned forest areas. Finally, we
compared GFBS with the CanLaBS dataset available over Canada, and used the field assessed burn severity category
data in southeastern Australia and the CONUS-wide Composite Burn Index (CBI) as the ground truth to evaluate the
performances of GFBS relative to that of the existing MODIS-based global burn severity dataset (MOSEV).

2.1. Input data

The input data we used to build the GFBS dataset comprised the fire records available in the Global Fire Atlas for the

years 2003-2016 and all Landsat images for the same period.

The Global Fire Atlas tracks the daily dynamics of individual fires globally to determine the time and location
of ignition, area burned, and duration, as well as daily expansion, fireline length, velocity, and direction of spread. A
detailed description of its underlying methodology is provided by Andela et al. (2019).

The Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type
(MCD12Q1) Version 6.1 data product provides global land cover types at yearly intervals (Friedl and Sulla-Menashe,
2022). With its global coverage and the insights, it offers into the planet’s diversity of land cover types, the MCD12Q1
dataset is pivotal to various ecological and environmental studies.

Landsat 5,7,8 scene is a 16-day composite image with 7, 8, 11 surface reflectance bands. With its 30 meter
resolution and global coverage, it provides a high-quality, atmospherically corrected snapshot of the Earth’s surface.
Use of the best available observations gathered over the 16-day period ensures the image is as clear and accurate as
possible, minimizing issues, such as cloud cover, that can obscure the satellite’s view.

(https://developers.google.com/earth-engine/datasets/catalog/landsat ).

2.2. Pre-processing

To pre-process the data, we first imported individual fire polygons from the Global Fire Atlas into the Google Earth
Engine (GEE) and then collected the most recent Landsat images based on the tags demarcating the start and end times
of each individual fire. We applied a cloud- and snow-masking algorithm to remove any snow, clouds, and their
shadows from all imagery based on each sensor’s pixel quality assessment band. By mosaicing the masked images,

we created a composite with the smallest possible cloud and shadow extent (https://developers.google.com/earth-

engine/guides/landsat ).




101 2.3. Algorithm overview

102 In the first step, we determined the forest fire polygons using the Global Fire Atlas data associated with the
103 MCD12Q1 land cover data and then utilized reflectance information from Landsat’s satellite archives to obtain the
104 forest fire NBRs from the Landsat composites. Healthy plants absorb most of the visible light (for photosynthesis)
105  while reflecting a large portion of the near-infrared (NIR) light. In contrast, areas that have been burned exhibit low
106 NIR reflectance and high shortwave-infrared (SWIR) reflectance [Key and Benson, 2003; Montero et al., 2023]. This
107  change in spectral properties is due to the loss of vegetation and the exposure of the underlying soil and charred
108 material, which have different reflective characteristics. By computing this ratio for images taken before and after a

109 fire, it's possible to determine the extent and severity of the burn [Cocke et al., 2005; Alcaras et al., 2022].

110 In the second step, we used the pre- and post-fire dates by the Global Fire Atlas data to obtain the
111 corresponding pre- and post-fire NBRs, which allowed us to create the burn severity indices—that is, INBR and
112 RANBR—based on the respective differences between them.

113 We took additional steps to validate the performance of the dataset by comparing the burn severity category
114 data over southeastern Australia and CBIs over CONUS with those based on the MOSEV dataset. These steps are
115 detailed in Sections 2.3.1, 2.3.2, and 2.3.3.
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Figure 1. Methodology for building the GFBS database (2003-2016) and validation and comparison with the
MOSEY benchmark.
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2.3.1. Identification of global forest fires

To identify global forest fires, we first overlaid the fire polygons from the Global Fire Atlas with MCD12Q1 data
from the corresponding year. Based on annual International Geosphere-Biosphere Programme (IGBP) classifications
of land cover, we identified a forest fire polygon within each area where we found forest to be the dominant land cover
type within the fire extent—that is, wherever the proportion of burned pixels representing forest, including evergreen
needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, and mixed
forests, was largest relative to the proportion of burned pixels for other land cover types, such as shrublands and

grasslands.

2.3.2. Estimation of the normalized burn ratio (NBR)

We calculated the normalized burn ratio (NBR) spectral index for each Landsat composite. according to the formula

in Equation 1 (https://www.usgs.gov/landsat-missions/landsat-normalized-burn-ratio):
NBR = (NIR - SWIR) / (NIR + SWIR) (1)

In Landsat series 4 through 7, we collected NIR information from Band 4 and SWIR information from Band

7. In Landsat 8, we collected NIR information from Band 5 and SWIR information from Band 7.

2.3.3. Estimation of dNBR and RANBR

Having obtained burn area locations and burn dates from the Fire Atlas product, we selected from the Landsat 16-day
time series valid pre-fire and post-fire NBR pixels that were, respectively, from the date most closely preceding the

start date and the date most closely following the end date of each burned polygon within a three-month time window.

The dNBR index, calculated according to Key and Benson (2006) as shown in equation (2), is the reference

burn severity spectral index used by the European Forest Fire Information System (https://effis.jrc.ec.europa.eu/about-

effis) and by the United States’ Monitoring Trends in Burn Severity program (https://www.mtbs.gov). Larger AINBR

values indicate higher burn severity:
dNBR = preNBR — postNBR 2)

RdNBR is another burn severity spectral index that is widely used, including by the United States’ Monitoring
Trends in Burn Severity program (https://www.mtbs.gov/, last access:1 May 2021). The RANBR normalizes the

dNBR to the square root of pre-fire NBR value, which helps in reducing the variability caused by pre-fire vegetation
conditions and enhances the accuracy in assessing burn severity [Miller et al., 2009]. As formulated in equation (3)

(Miller and Thode, 2007), higher RANBR values indicate higher burn severity:

RdANBR = dNBR/4/ |preNBR| 3)
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2.4. Validation

To validate the GFBS database, we used the 112 ground-verified burn severity category data following the Fire Extent
and Severity Mapping (FESM) scheme for the 2013 wildfires over southeastern Australia. The FESM severity classes
include unburnt, low severity (burnt understory, unburnt canopy), moderate severity (partial canopy scorch), high
severity (complete canopy scorch, partial canopy consumption), and extreme severity (full canopy consumption).
Besides FESM, we used the ground-measured CONUS-wide Composite Burn Index (CBI) from 2003 to 2016. CBI
was developed by Key and Benson (2006) to assess the aboveground effects of fire on vegetation and soil land use
types (i.e., burn severity). It is determined through direct field observations after a fire when assessors visited various
sites within the burned area to evaluate the effects of the fire on different components of the ecosystem, such as the
degree of charring, percentage of foliage consumed, changes in ground cover, and mortality of plants. The CBI score
for each site was calculated by averaging the scores of the different components. This overall score represents the burn
severity at a specific site. The index ranges continuously from 0 (unburned) to 3 (high severity). These values have
been  related to satellite-derived ~ burn  severity = values  through  regression  equations
(https://burnseverity.cr.usgs.gov/products/cbi). In this study, we used all available CBI values over CONUS to

establish relationships between CBI and the INBR and RANBR values of the GFBS and MOSEYV datasets. We used

the Pearson correlation coefficient and bias as metrics to evaluate the performance of the two datasets. Figure 2 (a)
shows the locations of the 112 ground-verified burn severity sites for the 2013 wildfires over southeastern Australia.
Figure 2 (b) shows the locations of CBI observations over CONUS for the period from 2003 to 2016. Of the 1,315
ground-surveyed CBI reports for forest fires during that time, most came from western states, such as Arizona,
Colorado, and Oregon, where forest fires are more frequent and severe. Fewer CBI records are available in eastern

states, such as Florida and Georgia.
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Figure 2. Locations of (a) ground verification burn severity sites over southeastern Australia and (b) forest

fire CBIs over CONUS.



168 In addition to validation against in-situ data., we also compared the fire severity magnitudes of GFBS with
169 the CanLaBS dataset available over Canada. CanLaBS provides burn severity information for burned areas identified
170 from the Canada Landsat Disturbance product at the level of individual 30m resolution pixels. The dataset was derived
171 from Landsat imagery and uses values of pre-fire to post-fire differences in ANBRs for nearly 60 million hectares of

172 burned areas across Canada's forests from 1985 to 2015. [Guindon et al., 2017; Guindon et al., 2018].

173 3. Results
174 3.1. Forest fire coverage of Landsat composites.

175 Figure 3 (a) shows the number of forest fire polygons globally between 2003 and 2016, representing individual fire
176 events, from the Global Fire Atlas dataset. Approximately 80,000 forest fire events occur in the world each year on
177  average, where more than 90,000 happened in 2004 and more than 100,000 in 2003 and 2015, respectively. Figure 3
178 (a) displays the availability of Landsat imagery covering the burn area where individual forest fires happened
179 worldwide. From 2003 to 2012, Landsat 5 could provide images covering between 35% and 68% of the recorded
180 forest fire events in the Global Fire Atlas, while Landsat 7 images covered 83% to 93% of the Global Fire Atlas events.
181 From 2013 to 2016, Landsat 7 images covered between 90% and 98% of the fire events, while Landsat 8 images
182 covered more than 97%. The Landsat composites combining all available Landsat 5 and Landsat 7 images from 2003
183 to 2012 and Landsat 7 and Landsat 8 images from 2013 to 2016 significantly increased the number of forest fires
184 shown by Landsat images, with coverage of the fire events ranging from 88% to 99%. Figure 3 (b) shows the
185 distribution of the spatial coverage of cloud-free Landsat composites for individual fires from the Fire Atlas. We used
186 a cloud and shadow removal algorithm to eliminate invalid poor-quality pixels from recorded forest fires, resulting in
187  aline chart showing the distribution of the percentages of valid pixels to the total burn pixels in each year. Overall,

188  the spatial coverage was above 72%, and the coverage has been above 85% since 2013, when Landsat 8 was launched.
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Figure 3. (a) Numbers of individual fires from the Fire Atlas and available Landsat imagery; (b) Spatial coverage of

cloud-free Landsat composites for individual fires reported in the Fire Atlas.
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Figure 4 shows the data process for a single post-NBR Landsat composite for the fire event that ended on 17
September 2015 in north Washington. The first prior image for NBR calculation was on 20 September 2015 from
Landsat 8 (as image 1). The cloud and shadows are removed in image 1 after applying the cloud/shadow mask. The
next available image on 21 September 2015 from Landsat 7 (as image 2) was then used to fill those gaps in image 1
and obtain a new Landsat composite (phase 1). The third available image on 29 September 2015 from Landsat 8 (as
image 3), image on 15 October 2015 if needed, was adopted sequentially to fill the un-scanned gap pixels in phase 1
and generate the final post NBR image for this event. The process for pre-NBR image calculation is the same but in a

reversed time-order from the start time of the fire event.
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Figure 4. NBR image process for Landsat composite, for the fire event ended on 17 September 2015 in north

Washington.

The scatterplot in Figure 5 (a) shows the NBR values of the overlapping pixels in image 1 and image 2, with
the associated distributions of NBR for the fire event. It is noted that NBR values in images 1 and 2 show high
correlation (r = 0.96), relatively low bias (-23.81%) and similar probability densities, even though they are derived
from two different Landsat images (Landsat 8 and Landsat 7). The scatterplot in Figure 5 (b) shows the NBR values
of overlapping pixels in image 1 and image 3, with the associated distribution of NBR for the fire event. Similarly,
NBR values in image 1 and image 3 have high correlation (r = 0.96) and low bias (12.30 %) and similar probability
densities, even though they are derived from different times (9 days apart). The results indicate that the cloud-free



206 NBR composite mosaicking of all available Landsat images has reasonable accuracy with high spatial and temporal

207  consistency.
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Figure 5. Scatterplots of overlapped pixel values in (a) image 1 and image 2; (b) image 1 and image 3.

208
209 3.2 Comparison between GFBS and CanLaBS over Canada

210 In this section we describe the comparison of the fire severity maps of GFBS and MOSEYV datasets to the ones from
211 the CanLaBS dataset over Canada for an overlapped period from 2003 to 2015. Figure 6 shows the number and the
212 trend of forest fires over Canada from 2003 to 2015, by CanLaBS data and GFBS products, while the vertical bar
213 represents the number of forest fires recorded by both CanLaBS and GFBS each year. Due to the different sources
214  and algorithms to map the burn area, the number of forest fires depicted by CanLaBS is larger than those by GFBS
215 each year. Nevertheless, it is noted that GFBS agrees with CanLaBS in terms of the variations of forest fire activities,

216 such as the intense forest fires in 2004 and 2015 and the relatively low number of forest fires in 2007 and 2008.
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Figure 6. Number of forest fires by CanLaBS and GFBS dataset. Vertical bars show the number of
overlapping forest fires.

Figure 7 illustrate the scatterplots of ANBR of forest fires from CanLaBS against those from GFBS (panel a)
and MOSEV (panel b), for the period 2003 to 2015. Consistent to the results shown in Figure 6, INBR from GFBS
shows strong correlation with the INBR from CanLaBS with r being 0.77 and a slightly underestimation of the overall
dNBR for forest fires (bias = -12.42%). On the other hand, ANBR from MOSEYV exhibited low correlation with the
dNBR from CanLaBS (r = 0.42) and slight overestimation (bias = 11.84 %). Figure 7 (c) displays the probability
density function (PDF) plots of CanLaBS dNBR, GFBS dNBR and MOSEV dNBR. It is noted the close PDFs of
GFBS dNBR and CanLaBS dNBR, though the mode of GFBS distribution is at slightly lower dNBR value relative to
the CanLaBS distribution. On the other hand, the distribution of MOSEV dNBR significantly deviates from CanLaBS
dNBR, having a lower peak and larger tails.
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Figure 7. Scatterplots of dNBR from CanLaBS against those from (a) GFBS and (b) MOSEV; (c¢) density
plot of dNBR from CanLaBS, GFBS and MOSEYV, for forest fires from 2003 to 2015 over Canada.

Figure 8 presents the boxplots of distributions of dNBR from CanLaBS, GFBS and MOSEV separate by
year. Consistent to the previous results, GFBS compares well with CanLaBS in terms of the dNBR distribution of

annual forest fires and as well as the variations of dNBR over time, even though it provides slightly lower dNBR



230
231

232

233
234
235
236
237
238
239

values compared to CanLaBS. On the other hand, MOSEV compared poorly with CanLaBS annual dNBR

distributions, exhibiting overall larger ANBR values and larger anomalies over time.
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Figure 8. Boxplots of annual distributions of dNBR values from CanLaBS, GFBS and MOSEYV for forest
fires over Canada from 2003 to 2015.

3.3. Validation against in situ fire severity category over southeastern Australia

Using as the ground truth the in-situ burn severity categorizations from the 2013 wildfires over southeastern Australia,
we evaluate the performance of GFBS and MOSEV datasets. Figure 9 (a), (b) and (c) display the spatial patterns of
GFBS dNBR and MOSEV dNBR for wildfires that happened on October 15 2023, October 17 2023 and October 21
2023, respectively, in southeastern Australia, where relatively dense in situ burn severity categorization data are
available. It is noted that GFBS dNBR shows similar spatial patterns to the MOSEV dNBR in the events on October
15 2023 and October 17 2023, both showing significant fire centers where high dNBR are found. For the October 21
2023 event, however, the ANBR map from MOSEV shows a larger high burn severity area than GFBS.
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Figure 9. Spatial patterns of dNBR for wildfires on (a) October 15 2023, (b) October 17 2023 and (c) October
21 2023, in southeastern Australia, derived from the GFBS and MOSEYV datasets.

The boxplots in Figure 10 (a), (b) and (c) display the corresponding distributions of ANBR from GFBS and
MOSEYV at different observed severity classes in the events on October 15 2023, October 17 2023 and October 21
2023, respectively. The severity classes, e.g. low, moderate and high, are categorized from the field assessed sites in
the corresponding fire events. For the event on October 15 2023, dNBR from GFBS shows significant difference
between the moderate/high and low severity class, and no difference between high and moderate severity class. The
dNBR from MOSEV, however, presents lower dNBR at high severity class than those at moderate and low severity
class. For the event on October 17 2023, both GFBS and MOSEV show significant discrepancies on dNBR between
high and moderate/low severity class. For the event on October 21 2023, GFBS could clearly differentiate among
high, moderate and low severity classes in terms of ANBR values, while MOSEYV presents the lowest ANBR values at
the moderate severity class, while exhibits small differences in ANBR values between the low and high severity

classes. Figure 10 (d) shows the overall performances of dNBR from GFBS and MOSEYV for the different severity



252 classes, combining all 112 ground verification sites. More significant differences are shown in the GFBS dNBR
253 boxplots between high, moderate and low severity classes than those from MOSEYV, indicating a better skill of GFBS

254 to distinguish between forest fires of different severity levels.
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Figure 10. Boxplots of distributions of dNBR at different burn severity classes from the in situ data for (a) event on October

15 2023; (b) event on October 17 2023; (c) event on October 21 2023; and (d) combining all events with in situ data.
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As mentioned above, MOSEV gave relatively small dNBR values in the event on October 15 2023, where
burn severity is classified from in situ measurement as high. Figure 11 (a) displays the location of the ground
verification sites with the corresponding burn severity class and associated dNBR values from MOSEV and GFBS. It
is noted that within one MOSEV grid cell (500 meter) four ground verification sites are located. The dNBR value
from MOSEYV is 295 for all four sites, while three of the sites are classified as low and only one site is classified as
high severity. On the other hand, at GFBS resolution (30 meter), we can note significant spatial variation in dNBR,
with GFBS dNBR being 239 for the site classified as high and 9, 16 and 68 for the sites classified as low severity. In
a surrounding MOSEYV pixel we note a site classified as high severity, but AINBR from MOSEYV is 188 while dNBR
from GFBS is 397. In the event on October 21 2023, we found that MOSEV gave relatively high dNBR values at

ground verification sites that are classified as low severity. Figure 11 (b) shows the locations of ground verification
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sites with corresponding classified burn severity and associated dNBR values from MOSEV and GFBS. In the two
adjacent MOSEV grids, the dNBR values from MOSEV are 287 and 327 respectively where both sites are classified
as low severity. At GFBS resolution more significant changes between high and low dNBR are found within the same
MOSEV grid, resulting in dNBR values of 30 and 32 for the ground verification sites classified as low severity. The
results demonstrate the significance of GFBS high resolution data in representing the small-scale variations of ANBR

and providing more granular and reliable INBR estimations.
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Figure 11. The location of ground verification sites with burn severity classes overlaid by
dNBR values from GFBS and MOSEYV for the fire event of (a) October 15 2023 and (b)
October 21 2023.

3.4. Validation against CBI over CONUS

Figure 12 (a), (b), (c) and (d) shows the spatial patterns of ANBR derived from GFBS and MOSEV over CONUS for
the forest fires with the largest burn areas (referred to as annual maximum forest fire hereafter) in 2004, 2006, 2007,
and 2013 respectively for which CBI records are available. The figures present the PDFs of dNBR values from GFBS
and MOSEYV, along with spatial distribution maps of dNBR. The similarity in spatial patterns between GFBS burn
severity and MOSEV burn severity is noted in these plots. Significant differences occur, however, between dNBR
from GFBS and MOSEV. Specifically, MOSEV tends to provide overall larger INBR values, but where dNBR from
GFBS is relatively high MOSEV dNBR values are relatively lower. This difference could also be inferred from the
PDFs of dNBR from GFBS and MOSEV where dNBR from MOSEV distributed more on the mean dNBR of around
300, while dNBR from GFBS is bimodal with peaks on both low and high values. For the annual maximum forest fire
in 2007, especially, MOSEV showed more extensive areas with high dNBR values compared to GFBS, a difference
that was also revealed in the large deviation of mean dNBR values in the PDFs of dNBR from the GFBS (mean dNBR
around 100) and MOSEV (mean dNBR around 500) datasets.

The density plot of INBR in Figure 12 also shows the bi-modal distribution for INBR from GFBS, at around
100 (associated with low severity) and 700 (associated with high severity), for the annual maximum forest fire in
2006. dANBR from MOSEYV on the other hand shows a single peak distribution at around 500, indicating that ANBR
from MOSEYV underestimated the high severity occurrences, and overestimated the low severity ones, depicted in the
GFBS dataset. For the annual maximum forest fire in 2013, though the density plot presents two different peaks in the
distributions of GFBS and MOSEYV, indicating a significant difference in the burn severity depicted in the two datasets.
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Figure 12. Spatial patterns of dNBRs for annual maximum fires over CONUS with distribution of
probability density functions in (a) 2004, (b) 2006, (c) 2007, and (d) 2013, derived from the GFBS and
MOSEYV datasets.
291 Figure 13, panels (a), (b), (c), and (d), present the scatterplots of CBI against AINBR from GFBS and dNBR
292 from MOSEV for the annual maximum forest fires in 2004, 2006, 2007, and 2013, respectively. For the annual
293 maximum forest fire in 2004, Figure 13 (a) shows a positive correlation between CBI (r = 0.45) and dNBR from



294 GFBS, while we found no correlation between CBI and ANBR from MOSEV. For the annual maximum forest fire in
295 2006, we found good agreement between the CBI and dNBR from GFBS, with a r value of 0.85, while the r value was
296  only 0.28 for INBR from MOSEV. Though correlations between CBI and dNBR from GFBS and MOSEYV were poor,
297 dNBR from GFBS showed a positive trend to CBI, while the relationship between CBI and dNBR from MOSEV was
298 negative, for the annual maximum forest fire in 2007. For the annual maximum forest fire in 2013, dNBR from GFBS

299 (r=0.72) was more strongly correlated with CBI than dNBR from MOSEV (r = 0.36).
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300 Figure 13. Scatterplots of CBI against ANBR from GFBS and MOSEYV for annual maximum fires in (a) 2004,
301 (b) 2006, (c) 2007, and (d) 2013.

302 Figure 14 (a), (b), (c) and (d) shows the spatial patterns of RANBR from GFBS and MOSEYV along with the
303 associated PDFs of RANBR, for the forest fires over CONUS with the largest burn areas (referred to as annual
304  maximum forest fire hereafter) in 2004, 2006, 2007, and 2013 respectively. RANBR from GFBS and MOSEV exhibit
305 similar spatial patterns yet provide different ranges of RANBR values over burn area. RANBR from MOSEV tended
306 to be higher than RANBR from GFBS, which is consistent to the density plots of RANBR from GFBS. The mean value
307 in the distribution of RANBRs from MOSEYV is larger than the mean value in the distribution of RANBRs from GFBS,
308 for the annual maximum forest fires in 2003, 2006 and 2007. The density plots of RANBR from GFBS and MOSEV
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are largely overlapped for the annual maximum forest fire in 2013, but RANBR from MOSEYV distributed more on the
mean values around 800 than RANBR from GFBS, while RANBR from GFBS distributed more on the extreme low
values above 0 and high values above 1500. These findings demonstrate that RAINBR from MOSEYV represents overall

312

larger burn severity estimations than RANBR from GFBS.
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Figure 14. Spatial patterns of RANBRs for annual maximum fires over CONUS with distribution of
probability density functions in (a) 2004, (b) 2006, (c) 2007, and (d) 2013, derived from the GFBS and

MOSEY datasets.

Figure 15, panels (a), (b), (c), and (d), present the scatterplots of CBI against RANBR from GFBS and

MOSEV, for the annual maximum forest fires in 2004, 2006, 2007, and 2013, respectively. For the annual maximum

forest fire in 2004, RANBR from GFBS shows a positive correlation with CBI (r = 0.57), while no correlation was
found between CBI and RANBR from MOSEV. For the annual maximum forest fire in 2006, RANBR from GFBS
correlated well with the CBI for showing a r value of 0.85, while the r value was only 0.18 between CBI and RANBR
from MOSEV. The correlations between CBI and RANBR from GFBS and MOSEV are bad for the annual maximum
forest fire in 2007, the RANBR from GFBS showed a positive trend to CBI with r = 0.15, while the RANBR from
MOSEYV showed a negative trend to CBI with r = -0.28. For the annual maximum forest fire in 2013, RANBR from
GFBS (r = 0.74) was more strongly correlated with CBI than RANBR from MOSEV (r = 0.40).
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Figure 15. Scatterplots of CBI against RANBR from GFBS and MOSEYV for annual maximum fires in (a) 2004,

(b) 2006, (c) 2007, and (d) 2013.

Figure 16 (a) and (b) shows the scatterplots of CBI against INBR from GFBS and MOSEV, respectively, for
all forest fires from 2003 to 2016 over CONUS. Involving all ground validations, we found GFBS dNBR shows a
stronger correlation with CBI (r = 0.63) than MOSEV dNBR (r = 0.28). Using RANBR as the burn severity, Figure
16 (c) and (d) show that GFBS RANBR (1=0.56) outperformed MOSEV RdANBR (1=0.20).
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Figure 16. Scatterplots of CBI against (a) dNBR from GFBS, (b) dNBR from MOSEYV, (c) RANBR from GFBS, and (d)
RdANBR from MOSEY for forest fires from 2003 to 2016 over CONUS.

330  3.5. Comparison of GFBS and MOSEYV globally

331 Figure 17 (a) displays the global spatial distributions of the overlapping area between the density plots of ANBR from
332 GFBS and MOSEV, which is defined as the area intersected by two probability density functions presented in Figure
333 12 and Figure 14. The overlapping areas in density plots typically represent the percentage of common values between
334 the distributions of two datasets, which ranges from 0 to 1 with the larger value indicating the two distributions are
335 more likely come from the same distribution. As Figure 17 (a) shows, we found the overlapping area over most of the
336  world to be above 0.4, indicating a similarity of 40% between the burn severity information provided by GFBS and
337 MOSEYV in these regions. For some regions, like South America, Western Europe, and southeast Australia, the overlap

338 was above 0.6.

339 From Figure 17 (b), which shows the global distribution of the mean dNBR for each burn pixel derived from
340 GFBS, we found the global spatial heterogeneity of burn severity to be small, with AINBR values from GFBS around
341 100 and 200. The exception was in Western Europe, where dNBR was above 300. The global distribution of the mean
342 dNBR for each burn pixel derived from MOSEV, as shown in Figure 17 (c), however, indicated a large spatial
343 variability in burn severity globally. The MOSEYV dataset, for example, indicated that the forest fires in north CONUS
344 and Canada should have an average dNBR above 300, while in the GFBS dataset the average dNBR value was around
345 100 to 200. The MOSEV dataset also indicated the average dNBR values for forest fires in South Africa and China
346 should be close to or below 0, while in the GFBS dataset they were around 100 to 200, respectively.

347 Figure 17 (d) presents a more detailed comparison between the dNBR from GFBS and MOSEV globally,
348 showing the difference in the mean dNBR for each burn pixel, as calculated by dNBR from MOSEV minus dNBR
349 from GFBS. Globally, MOSEV data indicated higher forest burn severity than GFBS over Canada and CONUS, also
350 found in the results presented in section 3.2 and 3.4, as well as southeast Australia (also found in the results presented

351 in section 3.3). MOSEV data presented lower forest burn severity over Mexico, South Africa, Europe, China, and



352 Southeast Asia. These findings revealed that the forest burn severity information provided by GFBS might be more
353 reliable and reasonable than that provided by MOSEV for some fire-prone areas, such as CONUS, as validated in this
354 study. This improved accuracy over MOSEV data would support advances in decision making in fire management

355 strategies and ecosystem conservation efforts.
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Figure 17. Global spatial distributions of (a) overlapping areas between the density plots of dNBR from GFBS
and MOSEYV, (b) the mean dNBR per burn pixel from GFBS, (c¢) the mean dNBR per burn pixel from MOSEYV,
and (d) the differences in the mean dNBR per burn pixel between MOSEV and GFBS (MOSEYV — GFBS).

4. Discussion

The GFBS dataset presented in this paper is the first to provide fine spatial resolution (30m) burn severity information
for global forest fires from 2003 to 2016. Compared with the existing Landsat based CanLaBS dataset, GFBS shows
closer agreement to CanLaBS in describing the distribution of annual forest fire burn severity than the MODIS based
MOSEV data. As suggested by the validation against the ground reference, GFBS can better represent the spatial
variability and provide higher performance than the MOSEV dataset. In addition, GFBS is shown to have more reliable
burn severity estimations than MOSEV for some fire-prone areas, like CONUS, Canada, and Australia, which could

support advances in decision making in fire management strategies and ecosystem conservation efforts.
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The difference in the performance of GFBS and MOSEV with respect to burn severity can be attributed to
two sources. The first is spatial resolution. GFBS, based on Landsat (5, 7, and 8) images, is at a resolution of 30
meters, while MOSEV is based on MODIS Terra MOD09A1 and Aqua MYDO09A1 images with a resolution of 500
meters. As shown in Figure 11 (a), stemming from the coarse spatial resolution, MOSEV provides dNBR value of
295 for the site classified as high severity as well as for those classified as low severity, leading to an overestimation
for low severity sites. With the improved spatial resolution, GFBS is able to capture more detailed localized variability
of NBR, providing more reasonable dNBR estimation for low severity sites (ANBR equal to 9, 16, 68). Similarly, in
the event shown in Figure 11 (b), MOSEYV provides dNBR estimations of 287 and 327 for the low severity sites, which
is relatively too large. In GFBS, the relative lower dNBR of 30 and 32 is provided at the corresponding low severity
sites. The coarse resolution of MOSEV could also make it more difficult to capture the extreme values, as we found
to be the case for the annual maximum forest fires in 2006 over CONUS. dNBR from GFBS clearly showed two peaks
in the density plot of ANBR at around 100 and 700, representing the low and high severity, respectively. INBR from
MOSEV, however, showed only a single peak at around 500, indicating that the extreme low/high values in the 30m
grid were averaged in the 500m grid. These findings reveal that burn severity from MOSEV has higher uncertainty

for wildfires with larger spatial variabilities.

Another reason leading to the difference in the performances of the two data sets was related to sensors
onboard Landsat and MODIS. MODIS has a wider spectral range and more spectral bands (36) than Landsat 7/8 (7
spectral bands/ 11 spectral bands, respectively), which resulted in different sensitivity to surface reflectance. For
example, the NBR is commonly calculated using near-infrared (NIR) and shortwave infrared (SWIR) bands. In
MOSEV, the bands used to calculate NBR are NIR: Band 2 (Range: 0.841-0.876 um) and SWIR: Band 7 (Range:
2.105-2.155 pm). In GFBS, they are Landsat 5 Band 4 (Range: 0.76—0.90 pm) and SWIR: Band 7 (Range: 2.08-2.35
pm); Landsat 7 Band 4 (Range: 0.77-0.90 um) and SWIR: Band 7 (Range: 2.09-2.35 pm); and Landsat 8 Band 5
(Range: 0.85-0.88 um) and SWIR: Band 7 (Range: 2.11-2.29 pm). While MODIS and Landsat 8 are close in NIR
and SWIR band information, Landsat 5 and 7 both have wider spectrums in NIR and SWIR than MODIS.

This study has shown that combining all available Landsat images, including those from Landsat 5, 7, and 8,
could significantly improve the probability of obtaining dense cloud-free NBR time series. The NBR composite shows
high spatial and temporal consistency with the NBR images closest to the start and end time of the fire event, despite
different band settings used from Landsat 5, 7 and 8. Studies by Koutsias and Pleniou (2015) and Chen et al. (2020)
also have shown that differences are small when using reflectance values from sensors aboard the Landsat 5, 7, and 8
satellites to calculate burn severity over burned area. While studies (Mallinis et al., 2018; Howe et al. 2022) have
demonstrated that Sentinel-2 generally performed as well as Landsat 8 in burn severity mapping, the further extension
of this study will also incorporate images from Sentinel-2 to obtain dNBR composite, especially on extending the
GFBS data set to the present. With the finer spatial resolution (10 meter) and more frequent revisit period (5 days),
GFBS could provide improved burn severity information when incorporating Sentinel-2 images. The National
Aeronautics and Space Administration (NASA) has lounched the Harmonized Landsat and Sentinel-2 (HLS) project

aiming to produce a seamless surface reflectance record from the Operational Land Imager (OLI) and Multi-Spectral
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Instrument (MSI) aboard Landsat-8/9 and Sentinel-2A/B remote sensing satellites, respectively, which is an

alternative source for extending the GFBS dataset (https://hls.gsfc.nasa.gov/)

With the development of radar-based techniques, Synthetic Aperture Radar (SAR) polarimetric images have
been proven to be effective in burn severity mapping, owing to the strong correlation between SAR backscatter and
burn severity [Czuchlewski and Weissel, 2005; Tanase et al., 2010; Tanase et al., 2011; Addisonand Oommen, 2018].
With the unique properties of L-band SAR, it is suitable for assessing and monitoring post-fire effects and burn
severity [Tanase e al., 2010; Peacock et al., 2023]. For example, the frequency of L-band (1.26 GHz) allows it to
penetrate through smoke, ash, and, to some extent, vegetation canopy. This capability makes L-band SAR particularly
useful for assessing areas immediately after a fire, even in the presence of smoke or cloud cover that would obstruct
optical sensors. The incorporation of L-band Synthetic Aperture Radar (SAR) data, such as the ALOS-2 PALSAR-2
ScanSAR Level 2.2 data (https://www.eorc.jaxa.jp/ALOS/en/alos-2/a2_about_e.htm) and and the incoming NASA-

ISRO Synthetic Aperture Radar (NISAR,https://nisar.jpl.nasa.gov/), can also facilitate the retrieval of burn severity.

By comparing GFBS with CanLaBS, we found that the number of forest fires in CanLaBS dataset is larger
than those in GFBS. This is because CanLaBS is based on the burn area map from Canada Landsat Disturbance
product at 30 meter resolution, while GFBS is based on the burn area map from Global Fire Atlas which is derived
from MODIS burn area product at 500 meter resolution. This difference in the spatial resolution of the burn area
causes some small forest fires to be ignored in the GFBS dataset. Therefore, finer spatial resolution burn area product
(10/30 meter) is promoted regionally and globally to better reveal the forest fire behavior, e.g. fire number, size and
severity (Roy et al., 2019; Bar et al., 2020). Despite the differences in number of forest fires, GFBS agreed well to
CanLaBS in terms of the annual forest burn severity. While the method to generate GFBS remains consistent, with
the small difference to be ignored in banding settings from Landsat 5,7 and 8, GFBS provides comprehensive temporal
coverage spanning from 2003 to 2016 for forest burn severity, indicating the potential application of GFBS in long
term analysis of burn severity for forest fires beyond Canada, i.e. regions over the globe, e.g. CONUS, Australia,
where GFBS has been demonstrated to perform well against ground truth. Moreover, integrating the 30 meter GFBS
into the regional forest planning can enhance fire resilience in vulnerable areas, shaping policies that prioritize the
forest environment [Bradley et al., 2016]. As climate change exacerbates the frequency, intensity, and unpredictability
of wildfires globally, the analysis on GFBS data can help to assess the impact of these fires on carbon emissions [Xu
et al., 2020], forest recovery [Meng et al., 2018], and biodiversity [Huerta et al., 2022], which would in turn inform

predictive models that project future fire behavior under various climate scenarios.
5. Conclusion

We have introduced a newly developed dataset, named GFBS, which provides forest burn severity information with
global coverage for the period 2003-2016. We identified global forest fires by overlaying the Global Fire Atlas data
with the annual land cover data, MCD12Q1, and proposed an automated algorithm for calculating the severity of these
fires. The algorithm used the band information from Landsat 5, 7, and 8 surface reflectance imagery to compute the
most used burn severity spectral indices (ANBR and RANBR) with a 30m spatial resolution and provide the output
depicted in the GFBS dataset. Comparison between CanLaBS and GFBS showed good agreement in representing the
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distribution of forest burn severity over Canada. The validation against field assessed burn severity category data in
southeastern Australia showed that GFBS could provide burn severity estimation with clear differentiation between
the high-severity class and moderate/low severity class of the in situ data, while such differences among burn severity
class were not obvious in the MOSEV dataset. The validation results over CONUS showed dNBR values from GFBS
to be more strongly correlated with CBI (r = 0.63) than dNBR from MOSEV (r = 0.28). RANBR from GFBS also
showed better agreement with CBI (r = 0.56) than RANBR from MOSEV (r = 0.20). Thus, this database could be more
reliable than prior sources of information for future studies of forest burn severity at global scale, as well as for studies

to which forest burn severity could be relevant, such as in forest management and CO, emissions research.

A future direction for this study would be to extend the GFBS dataset to the present based on updated Global
Fire Atlas data or other datasets providing global burn area and burn date information. Another direction is to involve
more ground validations from the fire prone areas like south Africa and south Mexico to further evaluate and improve

the performances of GFBS data globally.
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