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Abstract: Forest fires, while destructive and dangerous, are important to the functioning and renewal of ecosystems.  9 

Over the past two decades, large-scale, severe forest fires have become more frequent globally, and the risk is expected 10 

to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of 11 

forest fire damage, we have developed a 30-meter resolution Global Forest Burn Severity (GFBS) database dataset of 12 

information on the degree amounts of biomass that were consumed by fires from 2003 to 2016. To build itdevelop 13 

this dataset, we used the Global Fire Atlas product to determine when and where forest fires occurred during that 14 

period and then we overlaid the available Landsat surface reflectance products to obtain pre-fire and post-fire 15 

normalized burn ratios (NBRs) for each burned pixel, designating the difference between them as dNBR and the 16 

relative difference as RdNBR. WFirst, we compared the GFBS dataset againstUsingCompared toBy comparing with 17 

the Canada Landsat Burned Severity (CanLaBS) datasetproductdatabase, we show that found showing that the exhibits 18 

showed better agreement than the existing MODIS-based global burn severity dataset (MOSEV) in representing the 19 

distribution of forest burn severity to those of CanLaBS over Canada. Second, uUUsing the in situ burn severity 20 

category data available for the 2013 wildfires in southeastern Australia, we demonstrated that GFBS could provide 21 

burn severity estimation with clearer differentiation discrepancy between the high-severity class and moderate/ and 22 

/low severity classes, while such differentiation among the in situ burn severity classes are not captured obvious in the 23 

MOSEV product. ULast, uUsing the CONUS-wide Composite Burn Index (CBI) as a ground truth, we 24 

showedevaluated the performances of GFBS relative to the performances of the existing MODIS-based global burn 25 

severity dataset (MOSEV). The results showed that dNBR of from GFBS was more strongly correlated with CBI (R2 26 

r = 0.463) than dNBR of from MOSEV (R2 r = 0.0828). RdNBR of from GFBS also exhibited better agreement with 27 

CBI (rR2 = 0.3156) than RdNBR of from MOSEV (rR2 = 0.0420). At globalOn a global scale, while the dNBR and 28 

RdNBR spatial patterns extracted by GFBS arewere similar to those of MOSEV, MOSEV tends tended to provide 29 

higher burn severity levels than GFBS. We attribute this difference to variations in reflectance values and the different 30 

spatial resolutions of the two satellites. 31 

 32 



1. Introduction 33 

In recent years, many regions around the world have experienced an increase in the frequency, intensity, and extent 34 

of wildfires (Doerr and Santín, 2016; Shukla et al., 2019; Dupuy et al., 2020). Wildfires are now among the most 35 

popular research topics as a result of this rising global concern, which is further heightened by changes expected in 36 

fire regimes as a consequence of changes in climate and land use (Moreira et al., 2020). While most wildfires occur 37 

in grasslands and savannas (Scholes and Archer, 1997; Abreu et al., 2017), forest fires are more dangerous and 38 

destructive and perhaps of greater interest because of their importance to the functioning and renewal of ecosystems 39 

(Flannigan et al., 2000; Nasi et al., 2002; Flannigan et al., 2006). Changes brought by the warming climate, which has 40 

dried fuels and lengthened fire seasons across the globe (Jolly et al., 2015), are also particularly significant to forested 41 

ecosystems with abundant fuels (Kasischke and Turetsky, 2006; Aragão et al., 2018). 42 

With the rapid development of remote sensing techniques, more frequent observations from satellites 43 

facilitate the monitoring of global fire activities. The valuable information they provide at fine spatial and temporal 44 

resolutions can be used to study the number and size distributions of individual fires (Archibald and Roy, 2009; 45 

Hantson et al., 2015; Oom et al., 2016), fire shapes (Nogueira et al., 2016; Laurent et al., 2018), and locations of 46 

ignition points (Benali et al., 2016; Fusco et al., 2016). Among the most widely accepted techniques are those based 47 

on the Moderate Resolution Imaging Spectrometer (MODIS) (Chuvieco et al., 2016), which retrieves information on 48 

the entire Earth in 36 spectral bands every one to two days. The MODIS-derived burn area (BA) products are essential 49 

for ascertaining the patterns of fire occurrence, extent, propagation (Rodrigues and Febrer, 2018), and frequency 50 

(Andela et al., 2019). Based on these products, an essential indicator called “burn severity” has been derived for 51 

determining the degree of biomass consumption and the overall impact of fire on ecosystems (Keeley, 2009). 52 

Traditionally, burn severity could be quantified from satellite sensors through spectrum information. The 53 

changes caused by fire to near-infrared (NIR) and shortwave infrared (SWIR) reflectance are highly sensitive to, 54 

respectively, canopy density and moisture content (Chuvieco, 2010). Several burn severity datasets have been 55 

generated and released based on this method have been generated and released. Regionally, the Monitoring Trends in 56 

Burn Severity (MTBS) dataset, which includes burn severity assessments for the contiguous United States (CONUS) 57 

and provides information on fire perimeters and severity classes, uses satellite data—specifically, Landsat imagery 58 

(Eidenshink et al., 2007). Similarly, the Canadian Landsat Burn Severity (CanLaBS) product uses Landsat imagery to 59 

assess, and map burn severity at a national scale (Guindon et al., 2021). Globally, MOdis burn SEVerity (MOSEV) 60 

has provided monthly burn severity data with global coverage at 500m spatial resolution, based on MODIS Terra and 61 

Aqua satellites (Alonso-González and Fernández-García, 2021). However, Despite the satellite those datasets used 62 

and the target those datasets for, a dataset products for assessing and mapping global forest burn severity based on 63 

Landsat at high spatial resolution ((30m resolution) is are not yet yet available. Such a productproducts would support 64 

advances in fire management strategies and ecosystem conservation efforts, leading to more resilient and sustainable 65 

landscapes. 66 

In this paper we describe a new global dataset comprising information on burn severity derived at high spatial 67 

resolution (30 meter) from Landsat imagery from the period 2003–2016. This dataset represents a step forward in 68 



quantifying and analyzing wildfire impact on forest ecosystems worldwide. We begin with a section detailing the 69 

input data and the algorithm we used to process the dataset, as well as the analytical techniques employed. Section 70 

3The next section presents the characteristics of the dataset and its performance in representing the distribution of 71 

forest fires. In the results section, we analyze the advantages and disadvantages of the dataset and set forth its main 72 

contributions to forest fire management strategies worldwide. The last section summarizes the primary findings and 73 

suggests possible implications of the dataset. 74 

2. Data and Method 75 

Below we delineate the specifics of data input and pre-processing and the analytical techniques we employed to create 76 

the dataset. The Global Fire Atlas was the main source of global fire records, which was overlaidwhich we overlaid 77 

with annual land cover types from MCD12Q1 to determine when and where forest fires occurred. We then utilized 78 

the reflectance information from Landsat’s satellite archives to calculate burn severity indices for the burned forest 79 

areas. Finally, we compared GFBS with the CanLaBS dataset available over CanadaCannda, and used the field 80 

assessed burn severity category data in southeastern Australia and the CONUS-wide Composite Burn Index (CBI)  as 81 

a the ground truth to evaluate the performances of GFBS relative to that of the existing MODIS-based global burn 82 

severity dataset (MOSEV).  83 

2.1. Input data 84 

The input data we used to build the GFBS dataset comprised the fire records available in the Global Fire Atlas for the 85 

years 2003–2016 and all Landsat images for the same period.  86 

The Global Fire Atlas tracks the daily dynamics of individual fires globally to determine the time and location 87 

of ignition, area burned, and duration, as well as daily expansion, fireline length, velocity, and direction of spread. A 88 

detailed description of its underlying methodology is provided by Andela et al. (2019). 89 

The Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type 90 

(MCD12Q1) Version 6.1 data product provides global land cover types at yearly intervals (Friedl and Sulla-Menashe, 91 

2022). With its global coverage and the insights, it offers into the planet’s diversity of land cover types, the MCD12Q1 92 

dataset is pivotal to various ecological and environmental studies. 93 

Landsat 5,7,8 scene is a 16-day composite image with 7, 8, 11 surface reflectance bands. With its 30 meter 94 

resolution and global coverage, it provides a high-quality, atmospherically corrected snapshot of the Earth’s surface. 95 

Use of the best available observations gathered over the 16-day period ensures the image is as clear and accurate as 96 

possible, minimizing issues, such as cloud cover, that can obscure the satellite’s view. 97 

(https://developers.google.com/earth-engine/datasets/catalog/landsat ). 98 

2.2. Pre-processing 99 

To pre-process the data, we first imported individual fire polygons from the Global Fire Atlas into the Google Earth 100 

Engine (GEE) and then collected the most recent Landsat images based on the tags demarcating the start and end times 101 

of each individual fire. We applied a cloud- and snow-masking algorithm to remove any snow, clouds, and their 102 



shadows from all imagery based on each sensor’s pixel quality assessment band. By mosaicing the masked images, 103 

we created a composite with the smallest possible cloud and shadow extent (https://developers.google.com/earth-104 

engine/guides/landsat ).  105 

2.3. Algorithm overview 106 

We estimated the burn severity indices in two steps, as shown in Figure 1: first, we calculated the normalized burn 107 

ratios (NBRs) from the mosaiced Landsat composites, and second, we selected the pre- and post-fire NBRs for each 108 

burned pixel to create burn severity indices—dNBR and RdNBR—based on the differences between the NBRs.  109 

In the first step, we determined the forest fire polygons using the Global Fire Atlas data associated with the 110 

MCD12Q1 land cover data and then utilized reflectance information from Landsat’s satellite archives to obtain the 111 

forest fire NBRs from the Landsat composites. Healthy plants absorb most of the visible light (for photosynthesis) 112 

while reflecting a large portion of the near-infrared (NIR) light. In contrast, areas that have been burned exhibit low 113 

NIR reflectance and high shortwave-infrared (SWIR) reflectance [Key and Benson, 2003; Montero et al., 2023]. This 114 

change in spectral properties is due to the loss of vegetation and the exposure of the underlying soil and charred 115 

material, which have different reflective characteristics. By computing this ratio for images taken before and after a 116 

fire, it's possible to determine the extent and severity of the burn [Cocke et al., 2005; Alcaras et al., 2022]. 117 

In the second step, we used the pre- and post-fire dates by the Global Fire Atlas data to obtain the 118 

corresponding pre- and post-fire NBRs, which allowed us to create the burn severity indices—that is, dNBR and 119 

RdNBR—based on the respective differences between them.  120 

We took additional steps to validate the performance of the dataset by comparing the burn severity category 121 

data over southeastern Australia and CBIs over CONUS with those based on the MOSEV dataset. These steps are 122 

detailed in Sections 2.3.1, 2.3.2, and 2.3.3. 123 



 

 

Figure 1. Methodology for building the GFBS database (2003–2016) and validation and comparison with the 

MOSEV benchmark. 



2.3.1. Identification of global forest fires 124 

To identify global forest fires, we first overlaid the fire polygons from the Global Fire Atlas with MCD12Q1 data 125 

from the corresponding year. Based on aAnnual International Geosphere-Biosphere Programme (IGBP) classifications 126 

of land cover, we identified a forest fire polygon within each area where we found forest to be the dominant land cover 127 

type within the fire extent—that is, wherever the proportion of burned pixels representing forest, including evergreen 128 

needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, and mixed 129 

forests, was largest relative to the proportion of burned pixels for other land cover types, such as shrublands and 130 

grasslands.  131 

2.3.2. Estimation of the normalized burn ratio (NBR) 132 

We calculated the normalized burn ratio (NBR) spectral index for each Landsat composite. according to the formula 133 

in Equation 1 (https://www.usgs.gov/landsat-missions/landsat-normalized-burn-ratio): 134 

NBR = (NIR – SWIR) / (NIR + SWIR)                             135 

(1) 136 

In Landsat series 4 through 7, we collected NIR information from Band 4 and SWIR information from Band 137 

7. In Landsat 8, we collected NIR information from Band 5 and SWIR information from Band 7.  138 

2.3.3. Estimation of dNBR and RdNBR 139 

Having obtained burn area locations and burn dates from the Fire Atlas product, we selected from the Landsat 16-day 140 

time series valid pre-fire and post-fire NBR pixels that were, respectively, from the date most closely preceding the 141 

start date and the date most closely following the end date of each burned polygon within a three-month time window.  142 

The dNBR index, calculated according to Key and Benson (2006) as shown in equation (2), is the reference 143 

burn severity spectral index used by the European Forest Fire Information System (https://effis.jrc.ec.europa.eu/about-144 

effis) and by the United States’ Monitoring Trends in Burn Severity program (https://www.mtbs.gov). Larger dNBR 145 

values indicate higher burn severity: 146 

dNBR = preNBR – postNBR                             147 

(2) 148 

RdNBR is another burn severity spectral index that is widely used, including by the United States’ Monitoring 149 

Trends in Burn Severity program (https://www.mtbs.gov/,  last access:1 May 2021). The RdNBR normalizes the 150 

dNBR to the square root of pre-fire NBR value, which helps in reducing the variability caused by pre-fire vegetation 151 

conditions and enhances the accuracy in assessing burn severity [Miller et al., 2009]. As formulated in equation (3) 152 

(Miller and Thode, 2007), higher RdNBR values indicate higher burn severity: 153 

RdNBR = dNBR/ඥ|𝑝𝑟𝑒𝑁𝐵𝑅|                                                                 (3)                             154 

(3) 155 



2.4. Validation 156 

To validate the GFBS database developed in this study, we used the 112 ground-verified burn severity category data 157 

following the Fire Extent and Severity Mapping (FESM) scheme for the 2013 wildfires over southeastern Australia. 158 

The FESM severity classes include unburnt, low severity (burnt understory, unburnt canopy), moderate severity 159 

(partial canopy scorch), high severity (complete canopy scorch, partial canopy consumption), and extreme severity 160 

(full canopy consumption).  Besides FESM, we used the ground-measured CONUS-wide Composite Burn Index (CBI) 161 

from 2003 to 2016. CBI was developed by Key and Benson (2006) to assess the aboveground effects of fire on 162 

vegetation and soil land use types (i.e., burn severity). It is determined through direct field observations after a fire 163 

when assessors visited various sites within the burned area to evaluate the effects of the fire on different components 164 

of the ecosystem, such as the degree of charring, percentage of foliage consumed, changes in ground cover, and 165 

mortality of plants. The CBI score for each site was calculated by averaging the scores of the different components. 166 

This overall score represents the burn severity at a that specific site. The index ranges continuously from 0.0 167 

(unburned) to 3.0 (high severity). These values can behave been compared related to satellite-derived burn severity 168 

data values to developthrough regression equations (https://burnseverity.cr.usgs.gov/products/cbi). In this study, we 169 

used all available CBI values over CONUS to establish the regression relationships between CBI and the dNBR and 170 

RdNBR values of the GFBS and MOSEV databasedatasets. We applied used the Pearson correlation coefficient and 171 

biascoefficient of determination as metrics to evaluate the performance of GFBS the two datasetsrelative to the 172 

corresponding performance of the MOSEV database, which is currently used to evaluate global burn severity. Figure 173 

2 (a) shows the locations of the 112 ground-verified burn severity sites for the 2013 wildfires over southeastern 174 

Australia. Figure 2 (b) shows the locations of available CBI observations s over CONUS fromfor the period from 2003 175 

to 2016. Of the 1,315 ground-surveyed CBI reports for forest fires during that time, most came from western states, 176 

such as Arizona, Colorado, and Oregon, where forest fires are more frequent and severe. Fewer CBI records are 177 

available in eastern states, such as Florida and Georgia. 178 

In addition to validation against in-situ data., we also compared the fire severity magnitudes of GFBS with the 179 

CanLaBS dataset available over Canada. CanLaBS providesd burn severity information for burned areas identified 180 

from the Canada Landsat Disturbance product at the level of individual 30m resolution pixels. The dataset was derived 181 

developed from Landsat imagery and uses values of pre-fire to post-fire differences in dNBRs for nearly 60 million 182 

hectares of burned areas across Canada's forests from 1985 to 2015. [Guindon et al., 2017; Guindon et al., 2018]. 183 

Figure 2 (a) shows the locations of the 112 ground-verified burn severity sites for 2013 wildfires over southeastern 184 

Australia. Figure 2 (b) shows the locations of available CBIs over CONUS from 2003 to 2016. Of the 1,315 ground-185 

surveyed CBI reports for forest fires during that time, most came from western states, such as Arizona, Colorado, and 186 

Oregon, where forest fires are more frequent and severe. Fewer CBI records are available in eastern states, such as 187 

Florida and Georgia.  188 



  

(a) (b) 

Figure 2. Locations of (a) ground verification burn severity sites over southeastern Australia and (b) forest 

fire CBIs over CONUS. 

 189 

In addition to validation against in-situ data., we also compared the fire severity magnitudes of GFBS with 190 

the CanLaBS dataset available over Canada. CanLaBS providesdprovides burn severity information for burned areas 191 

identified from the Canada Landsat Disturbance product at the level of individual 30m resolution pixels. The dataset 192 

was derived from Landsat imagery and uses values of pre-fire to post-fire differences in dNBRs for nearly 60 million 193 

hectares of burned areas across Canada's forests from 1985 to 2015. [Guindon et al., 2017; Guindon et al., 2018]. 194 

 195 

3. Results 196 

3.1. Forest fire coverage of Landsat composites.Landsat mosaiced composites 197 

Figure 2 3 (a) shows the number of forest fire polygons globally between 2003 and 2016, representing individual fire 198 

events, from the Global Fire Atlas dataset. Approximately 80,000 forest fire events occur in the world each year on 199 

average, with where more than 90,000 happening happened in 2004 and more than 100,000 in 2003 and 2015, 200 

respectively. Figure 2 3 (a) also displays the availability of Landsat imagery covering the burn area where individual 201 

forest fires happened worldwide. From 2003 to 2012, Landsat 5 could provide images covering only between 35% to 202 

and 68% of the recorded forest fire events in the Global Fire Atlas, while Landsat 7 images could covered 83% to 203 

93% of the Global Fire Atlas events. From 2013 to 2016, Landsat 7 images covered about between 90% to and 98% 204 

of the fire events, while Landsat 8 images covered more than 97%. The Landsat composites combining all available 205 

Landsat 5 and Landsat 7 images from 2003 to 2012 and Landsat 7 and Landsat 8 images from 2013 to 2016 206 

significantly increased the number of forest fires shown by Landsat images, with coverage of the fire events ranging 207 

from 88% to 99%. Figure 2 3 (b) shows the distribution of the spatial coverage of cloud-free Landsat composites for 208 

individual fires from the Fire Atlas. We used a cloud and shadow removal algorithm to eliminate invalid poor-quality 209 

pixels from recorded forest fires, resulting in a line chart showing the distribution of the percentages of valid pixels to 210 



the total burn pixels in each year. Overall, the spatial coverage was above 72%, and the coverage has been above 85% 211 

since 2013, when Landsat 8 was launched. 212 

  

(a) (b) 

Figure 23. (a) Numbers of individual fires from the Fire Atlas and available Landsat imagery; (b) Spatial coverage 

of cloud-free Landsat composites for individual fires from reported in the Fire Atlas. 

 213 

Figure 4 shows displays the data process for a single post-NBR Landsat composite for the fire event that 214 

ended on 17 September 2015 in north Washington. The first prior image for NBR calculation wawas on 20 September 215 

2015 from Landsat 8 (as image 1). The cloud and shadows are removed in image 1 after applying the cloud/shadow 216 

mask. The next available image on 21 September 2015 from Landsat 7 (as image 2) wais then used to fill those gaps 217 

in image 1 and obtain a new Landsat composite (phase 1).  The third available image on 29 September 2015 from 218 

Landsat 8 (as image 3), image on 15 October 2015 if needed, was is adopted sequentially to fill the un-scanned gap 219 

pixels in phase 1 and generate the final post NBR image for this event. The process for pre-NBR image calculation is 220 

the same but in a reversed time-order from the start time of the fire event. 221 



Figure 4. NBR image process for Landsat composite, for the fire event ended on 17 September 2015 in north 

Washington. 

 222 

The scatterplot in Figure 5 (a) shows the NBR values of the overlapping pixels in image 1 and image 2, with 223 

the associated distributions of NBR for the fire event. It is noted that NBR values in images 1 and 2 show high 224 

correlation (with r = 0.96), relatively low bias (= -23.81%) and similar probability densities, even though they 225 

arethough are derived from two different Landsat images (Landsat 8 and Landsat 7). The scatterplot in Figure 5 (b) 226 

shows the NBR values of overlapping pixels in image 1 and image 3, with the associated distribution of NBR for the 227 

fire event. Similarly, NBR values in image 1 and image 3 have high correlation (with r = 0.96) and low bias (= 228 

12.30 %) and similar probability densitiesy, even though they aredensity though are derived from different times (with 229 

a 9 -days apart)interval. The results indicate that the cloud-free NBR composite mosaicking of all available Landsat 230 

images has reasonable accuracy with high spatial and temporal consistency. 231 



  

(a) (b) 

Figure 5. Scatterplots of overlapped pixel values in (a) image 1 and image 2; (b) image 1 and image 3.  

 232 

3.2 Comparison between GFBS and CanLaBS over Canada 233 

In this section we describe the We comparison of edrespectively the fire severity maps of GFBS and MOSEV datasets 234 

to the ones from the CanLaBS dataset over Canada for an overlapped period from 2003 to 2015. Figure 6 shows the 235 

number and the trend of forest fires over Canada from 2003 to 2015, by CanLaBS data and GFBS products, while the 236 

vertical bar represents the number of forest fires recorded by both CanLaBS and GFBS each year. Due to the different 237 

sources and algorithms to map the burn area, the number of forest fires depicted by CanLaBS is larger than those by 238 

GFBS each year. It is notedNevertheless, it is noted that GFBS agrees with CanLaBS in terms of the variations of 239 

forest fire activities, such as the intense forest fires in 2004 and 2015 and the relatively low number of forest fires in 240 

2007 and 2008. 241 

 



Figure 6. Number of forest fires by CanLaBS and GFBS dataset. Vertical bars show the number of 

overlapping forest fires. 

 242 

Figure 7 illustrate the scatterplots of dNBR of forest fires from CanLaBS against those from GFBS (panel a) 243 

and MOSEV (panel b), for the period from 2003 to 2015. Consistent to the results shown in Figure 6, dNBR from 244 

GFBS shows strong stronger correlation with the dNBR from CanLaBS with r being 0.77 and a slightly 245 

underestimation ofngunderestimate the overall dNBR for forest fires (with bias = being -12.42%). On the other hand, 246 

While dNBR from MOSEV exhibited low correlation with the dNBR from CanLaBS performed worse when 247 

compared to dNBR from CanLaBS (ith r = being 0.42) and slight overestimation (bias = being 11.84 %). Figure 7 (c) 248 

displays the probability density function (PDF) plots of CanLaBS dNBR, GFBS dNBR and MOSEV dNBR. It is noted 249 

the close that PDFs of GFBS dNBR and is closer to the PDF of CanLaBS dNBR, though the mode of GFBS 250 

distribution is at slightly lower dNBR value relative to the CanLaBS distribution. On the other hand, , the distribution 251 

of MOSEV dNBR significantly deviates from CanLaBS dNBR, having aand has a lower peak and larger tails. 252 

  

(a) (b) 

  

 

 

(c)  

Figure 7. Scatterplots of dNBR from CanLaBS against those from (a) GFBS and (b) MOSEV; (c) density 

plot of dNBR from CanLaBS, GFBS and MOSEV, for forest fires from 2003 to 2015 over Canada. 

 253 



Last, Figure 8 presents the boxplots of distributions of dNBR from CanLaBS, GFBS and MOSEV separate 254 

by yearfor each year from . Consistent to the previous results, GFBS compares well with CanLaBS in terms of the 255 

dNBR distribution of dNBR for annual forest fires and as well as the variations of dNBR over time, even though it 256 

provides slightly lower dNBR values compared to CanLaBS. On the other hand, MOSEV compared poorly with 257 

CanLaBS annual dNBR  in terms of the distributions, of dNBR exhibiting overall larger dNBR values and larger 258 

anomalies over time. 259 

Figure 8. Boxplots of annual distributions of dNBR values from CanLaBS, GFBS and MOSEV for forest 

fires over Canada from 2003 to 2015. 

3.3. Validation against in situ fire severity category over southeastern Australia 260 

Using as the ground truth the in- situground-verified burn severity categorizations from ofthe 2013 wildfires over 261 

southeastern Australia , we evaluate the performance of GFBS and MOSEV datasets in the 2013 wildfires over 262 

southeastern Australia. Figure 9 (a), (b) and (c) display the spatial patterns of GFBS dNBR and MOSEV dNBR for 263 

wildfires that happened on October 15 2023, October 17 2023 and October 21 2023, respectively, in southeastern 264 

Australia, where relatively dense in situ burn severity categorization data are available. It is noted that GFBS dNBR 265 

shows similar spatial patterns to the MOSEV dNBR in the events on October 15 2023 and October 17 2023, both 266 

showing significant fire centers where high dNBR are found. For the October 21 2023 event, however, the dNBR map 267 

from MOSEV shows a larger high burn severity area than GFBS. 268 



(a) 

(b) 

(c) 

Figure 9. Spatial patterns of dNBR for wildfires on (a) October 15 2023, (b) October 17 2023 and (c) October 

21 2023, in southeastern Australia, derived from the GFBS and MOSEV datasets. 

 269 

The boxplots in Figure 10 (a), (b) and (c) display the corresponding distributions of dNBR from GFBS and 270 

MOSEV at different observed severity classes in the events on October 15 2023, October 17 2023 and October 21 271 

2023, respectively. The severity classes, e.g. low, moderate and high, are categorized from the field assessed sites in 272 

the corresponding fire events. For the event on October 15 2023, dNBR from GFBS shows significant difference 273 

between the moderate/high and low severity class, and no difference between high and moderate severity class. The 274 

dNBR from MOSEV, however, presents lower dNBR at high severity class than those at moderate and low severity 275 

class. For the event on October 17 2023, both GFBS and MOSEV show significant discrepancies on dNBR between 276 

high and moderate/low severity class. For the event on October 21 2023, GFBS could clearly differentiate among 277 

high, moderate and low severity classesclass in terms of dNBR values, while MOSEV presents the lowest dNBR 278 

values at the moderate severity class, while exhibits small differences in dNBR values between the low and high 279 

severity classes. Figure 10 (d) shows the overall performances of dNBR from GFBS and MOSEV for the different 280 



severity classes, combining all 112 ground verification sites. More significant differences are shown in the GFBS 281 

dNBR boxplots between high, moderate and low severity classes than those from MOSEV, indicating a better skill of 282 

GFBS to distinguish between forest fires of different severity levels. 283 

  

(a) (b) 

  

(c) (d) 

Figure 10. Boxplots of distributions of dNBR at different burn severity classes from the in situ datacategory classified  

from the in situby ground verified data for (a) event on October 15 2023; (b) event on October 17 2023; (c) event on 

October 21 2023; and (d) combining events involve all events with in situ dataground validation. 

 284 

As mentioned above, MOSEV gave relatively small dNBR values in the event on October 15 2023, where 285 

burn severity is classified from in situ measurement as high. Figure 11 (a) displays the location of the ground 286 

verification sites with the corresponding burn severity class and associated dNBR values from MOSEV and GFBS. It 287 

is noted that within one MOSEV grid cell (500 meter) four 4 ground verification sites are located. The dNBR value 288 

from MOSEV is 295 for all four sites, while three of the sites are classified as low and only one site is classified as 289 

high severity. On the other hand, at GFBS resolution (30 meter), we can note significant spatial variation in 290 

dNBRshownfound, with GFBS dNBR being 239 for onethe 1 site classified as high and 9, 16 and 68 for the threesites 291 

classified as low severity. In a surrounding MOSEV pixel we note a site classified as 1 high severity is located  site is 292 



located, but dNBR from MOSEV is 188 while dNBR from GFBS is 397. In the event on October 21 2023, we found 293 

that MOSEV gave relatively high dNBR values at ground verification sites that are classified as low severity. Figure 294 

11 (b) shows the locations of ground verification sites with corresponding classified burn severity and associated 295 

dNBR values from MOSEV and GFBS. In the two adjacent MOSEV grids, the dNBR values from MOSEV are 287 296 

and 327 respectively where both sites are classified as low severity. At GFBS resolution more significant changes 297 

between high and low dNBR are found within the same MOSEV grid, resulting in dNBR values of 30 and 32 for the 298 

ground verification sites classified as low severity. The results demonstrate the significance superiority of GFBS high 299 

resolution data in representing the small-scale variations of dNBR and providing more granular and reliable dNBR 300 

estimations, due to the improved spatial resolution. 301 

 

(a) 



 

(b) 

Figure 11. The location of ground verification sites with classified burn severity classes 

overlaid byand associated dNBR values from GFBS and MOSEV for the fire event of (a) 

October 15 2023 and (b) October 21 2023. 

 302 

3.24. Validation against CBI over CONUS 303 

Figure 3 shows the spatial locations of available CBIs over CONUS from 2003 to 2016. Of the 1,315 ground-surveyed 304 
CBI reports for forest fires during that time, most came from western states, such as Arizona, Colorado, and Oregon, 305 



where forest fires are more frequent and severe. Fewer CBI records are available in eastern states, such as Florida and 306 
Georgia.  307 

Figure 3. Spatial locations of forest fire CBIs over CONUS. 

 308 

Figure 4 12 (a), (b), (c) and (d) shows the spatial patterns of dNBR derived from GFBS and MOSEV over CONUS 309 

for the forest fires with the largest burn areas (referred to as annual maximum forest fire hereafter) in 2004, 2006, 310 

2007, and 2013 respectively for which CBI records are available. The figures present the associated probability density 311 

functions (PDFs) of dNBR values from GFBS and MOSEV, along with spatial distribution maps of dNBR. The 312 

similarity in spatial patterns between GFBS burn severity and MOSEV burn severity is noted in these plotsobvious. 313 

Significant differences occur, however, between GFBS dNBR from andGFBS and MOSEV dNBR. We found that, 314 

when we relied on MODIS products, MOSEV dNBR tended to underestimate the high severity and overestimate the 315 

low severity of the annual maximum forest fire in 2004, compared with GFBS dNBR. Specifically, MOSEV tends to 316 

providetends provide overall larger dNBR values, but where dNBR from GFBS is relatively high MOSEV dNBR 317 

values are relatively lower where dNBR from GFBS is relatively low and smallerand provide smalledNBR where 318 

dNBR from GFBS is relatively high. This difference could also be inferred from the PDFs of dNBR from GFBS and 319 

MOSEV, where MOSEV dNBR from MOSEV distributed more on the mean value of dNBR of around 300, while 320 

GFBS dNBR from GFBS is bi-modal with peaks on both low and high valuesdistributed more on the extreme low and 321 

high values. For the annual maximum forest fire in 2007, especially, MOSEV dNBRMOSEV greatly 322 

generallyoverestimated showed more extensive areas with high the severity dNBR values levels compared to GFBS 323 

dNBR, a difference that was also reflected revealed in the large deviation of mean dNBR values in the PDFs of dNBR 324 

for from the GFBS (mean dNBR around 100) and MOSEV (mean dNBR around 500) datasets.  325 



The density plot of dNBR in Figure 4 12 also clearly shows the bi-modaltwo peaks distribution for GFBS 326 

dNBR from GFBS, at around 100 (associated withrepresentingrepresent  as the low severity) and 700 (associated 327 

withrepresent as high severity), for the annual maximum forest fire in 2006. MOSEV dNBR from MOSEV on the 328 

other hand shows a single peak distribution at around 500, indicating that MOSEV dNBR from MOSEV 329 

underestimated the high severity occurrences, and while overestimated theing low severity ones, depictedcompared 330 

in the with GFBS dNBR from GFBS dataset. For the annual maximum forest fire in 2013, although though the density 331 

plot presents two different peaks in the distributions offor both dNBR from GFBS and MOSEV, indicating a 332 

significant shiftdifference in the burn severity depicted in the two datasets dNBR, the corresponding corresponded 333 

dNBR values where at the peaks are located in the distribution differ. For GFBS dNBR from GFBS, the two peaks 334 

are around 0 and 900, representing the low and high severity, respectively, while for MOSEV dNBR from MOSEV 335 

they are around 400 and 600. 336 
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(c) 

 

(d) 

Figure 412. Spatial patterns of dNBRs for annual maximum fires over CONUS with distribution of 

probability density functions in (a) 2004, (b) 2006, (c) 2007, and (d) 2013, derived from the GFBS and 

MOSEV datasets. 

 337 

Figure 513, panels (a), (b), (c), and (d), present the scatterplots of CBI against GFBS dNBR from GFBS and 338 

MOSEV dNBR from MOSEV for the annual maximum forest fires in 2004, 2006, 2007, and 2013, respectively. For 339 

the annual maximum forest fire in 2004, the figure Figure 13 (a) clearly shows a positive correlation with between 340 

CBI (R2 r = 0.2145) for and GFBS dNBR from GFBS, while we found no correlation for between CBI and MOSEV 341 

dNBR from MOSEV. For the annual maximum forest fire in 2006, we found good agreement with between the CBI 342 

for and GFBS dNBR from GFBS, with an a R2 r value of 0.7285, while the R2 r value was only 0.08 28 for MOSEV 343 

dNBR from MOSEV. Although Though correlations with between CBI was poor for bothand dNBR from GFBS and 344 

MOSEV were poor,  dNBR from GFBS for the annual maximum forest fire in 2007, the former still showed a positive 345 

trend to CBI, while the relationship for between CBI and dNBR from MOSEVthe latter was negative, for the annual 346 

maximum forest fire in 2007. For the annual maximum forest fire in 2013, GFBS dNBR from GFBS (R2 r = 0.5272) 347 

was more strongly correlated with CBI than MOSEV dNBR from MOSEV (R2 r = 0.1336). 348 



  

(a) (b) 



  

(c) (d) 

Figure 513. Scatterplots of CBI against dNBR of from GFBS and MOSEV for annual maximum fires in (a) 349 

2004, (b) 2006, (c) 2007, and (d) 2013.  350 

 351 

 352 

Figure 6 14 (a), (b), (c) and (d) shows the spatial patterns of RdNBR from GFBS and MOSEV along with 353 

the associated PDFs of RdNBR, for the forest fires over CONUS with the largest burn areas (referred to as annual 354 

maximum forest fire hereafter) in 2004, 2006, 2007, and 2013 respectively. for which recorded CBIs are available. 355 

Like Figure 4, Figure 6 displays the spatial distribution maps of RdNBR from GFBS and MOSEV, along with the 356 

associated probability density functions (PDFs) of RdNBR values. The figureRdNBR from GFBS and MOSEV 357 

exhibits similar spatial patterns for GFBS and MOSEV dataset , but yet provide the burn severity level in terms of 358 

RdNBR differeddifferent rangesrange of RdNBR values over burn area. RdNBR for from MOSEV data tended to be 359 

higher than RdNBR fromfor GFBS dNBR, which is consistent to the can could be clearly seen found in the density 360 

plots of RdNBR from GFBS . and MOSEV The mean value in the distribution of RdNBRs from MOSEV that the 361 

mean RdNBR in the distribution of MOSEV is is largerisobviously larger than the mean value in the distribution of 362 

RdNBRs from GFBSthe mean RdNBR in the distribution of GFBS, for the annual maximum forest fires in 2003, 2006 363 

and 2007. The density plots of RdNBR from GFBS and MOSEV RdNBR for the annual maximum forest fire in 2013 364 



are largely overlapped for the annual maximum forest fire in 2013, but MOSEV RdNBR from MOSEV distributes 365 

distributed more on the mean values around 800 than GFBS RdNBR from GFBS, while GFBS RdNBR from GFBS 366 

distributes distributed more on the extreme low values above 0 and high values above 1500. These findings 367 

demonstrate that MOSEV RdNBR from MOSEV represents overall higher larger burn severity levels estimations than 368 

GFBS RdNBR from GFBS. 369 
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(d) 

Figure 614. Spatial patterns of RdNBRs for annual maximum fires over CONUS with distribution of 

probability density functions in (a) 2004, (b) 2006, (c) 2007, and (d) 2013, derived from the GFBS and 

MOSEV datasets. 

 370 

Figure 715, panels (a), (b), (c), and (d), present the scatterplots of CBI against GFBS RdNBR from GFBS 371 

and MOSEV, RdNBR for the annual maximum forest fires in 2004, 2006, 2007, and 2013, respectively. For the annual 372 

maximum forest fire in 2004, the figureRdNBR from GFBS shows a positive correlation with CBI (R2 r = 0.3357) for 373 

GFBS dNBR, while we found no correlation was found between CBI and for RdNBR from MOSEV dNBR. For the 374 

annual maximum forest fire in 2006, we found goodRdNBR from GFBS correlated well agreement with the CBI for 375 

GFBS dNBR withshowing an a R2 r value of 0.7285, while the R2 r value was only 0.03 18 for between CBI and 376 

RdNBR from MOSEV dNBR. Although The correlations with between CBI was poor for bothand RdNBR from GFBS 377 

and MOSEV dNBR are bad for the annual maximum forest fire in 2007, the RdNBR from GFBS former still showed 378 

a positive trend to CBI with r = 0.15, while the RdNBR from MOSEV showed a negative trend to CBI with r = -379 

0.28relationship for the latter was negative. For the annual maximum forest fire in 2013, GFBS RdNBR from GFBS 380 

(R2 r = 0.5574) was more strongly correlated with CBI than RdNBR from MOSEV dNBR (R2 r = 0.1640). 381 

 382 



  

(a) (b) 



  

(c) (d) 

Figure 715. Scatterplots of CBI against RdNBR of from GFBS and MOSEV for annual maximum fires in (a) 383 

2004, (b) 2006, (c) 2007, and (d) 2013.  384 

 385 

Figure 8 16 (a) and (b) shows the scatterplots of CBI against GFBS dNBR from GFBS and MOSEV dNBR, 386 

respectively, for all forest fires from 2003 to 2016 over CONUS. Considering all forest firesInvolving all ground 387 

validations, we found GFBS dNBR shows more stronglya stronger correlated correlation with CBI (R2 r = 0.463) than 388 

MOSEVMOSEV dNBR (R2 r = 0.0828). Using RdNBR as the burn severity, Figure 8 16 (c) and (d) show that GFBS 389 

RdNBR (r=0.56) still outperformed MOSEV RdNBR (r=0.20). 390 

 391 
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(c) (d) 

Figure 816. Scatterplots of CBI against (a) dNBR of from GFBS, (b) dNBR of from MOSEV, (c) RdNBR of from GFBS, 

and (d) RdNBR of from MOSEV for all forest fires from 2003 to 2016 over CONUS. 

 392 

3.35. Comparison of GFBS and MOSEV globally 393 

Figure 9 17 (a) displays the global spatial distributions of the areas of overlapoverlapping area between the density 394 

plots of dNBR from GFBS dNBR and MOSEV dNBR, which is defined as the area intersected by two probability 395 

density functions presented in Figure 4 12 and Figure 614. The overlapping areas in density plots typically represent 396 

the percentage of common values between the distributions of two datasets, which ranges from 0 to 1 with the larger 397 

value indicating the two distributions are more likely come from the same distribution. As  the figure Figure 17 (a) 398 

shows, we found the overlapping area over most of the world to be above 0.4, indicating a close similarity of 40% 399 

between the burn severity information provided, respective ly, by GFBS and MOSEV in these regions. For some 400 

regions, like South America, Western Europe, and southeast Australia, the overlap was above 0.6.  401 

FromIn Figure 9 17 (b), which shows the global distribution of the mean dNBR for each burn pixel derived 402 

from GFBS, it is obvious that we found the global spatial heterogeneity of burn severity to be small, with dNBR values 403 

from GFBS around 100 and 200. The exception was in Western Europe, where dNBR was above 300. The global 404 

distribution of the mean dNBR for each burn pixel derived from MOSEV, as shown in Figure 9 17 (c), however, 405 

indicated a large spatial variability in burn severity globally. The MOSEV dataset, for example, indicated that the 406 

forest fires in north CONUS and Canada should have the an average dNBR value above 300, while in the GFBS 407 

dataset the average dNBR value was around 100 to 200. The MOSEV dataset also indicated the average dNBR values 408 

for forest fires in South Africa and China should be close to or below 0, while in the GFBS dataset they were around 409 

100 to 200, respectively.  410 

Figure 9 17 (d) presents a more detailed comparison between the dNBR from GFBS dNBR and MOSEV 411 

dNBR globally, showing the difference in the mean dNBR for each burn pixel, as calculated by MOSEV dNBR from 412 

MOSEV minus dNBR from GFBS dNBR. Globally, MOSEV data indicated higher forest burn severity than GFBS 413 

over Canada and CONUS and Canada, also found in the results presented in section 3.2 and 3.4, as well as southeast 414 

Australia (also found in the results presented in section 3.3) than shown by GFBS data. MOSEV data presented lower 415 

forest burn severity over Mexico, South Africa, Europe, China, and Southeast Asia. These findings revealed that the 416 

forest burn severity information provided by GFBS might be less under- or overestimatedmore reliable and reasonable 417 

than that provided by MOSEV for some fire-prone areas, such as CONUS, as validated in this study. The finding 418 

could also be applicable to other regions, including Canada, South Africa, and Australia. This improved accuracy over 419 

MOSEV data would support advances in decision making in fire management strategies and ecosystem conservation 420 

efforts. 421 
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(d) 

Figure 917. Global spatial distributions of (a) overlapping areas between the density plots of GFBS dNBR from 

GFBS and MOSEV dNBR, (b) the mean dNBR per burn pixel from GFBS, (c) the mean dNBR per burn pixel 

from MOSEV, and (d) the differences in the mean dNBR per burn pixel between MOSEV and GFBS (MOSEV – 

GFBS). 

 422 

4. Discussion 423 

Our The GFBS dataset presented in this paper is the first to provide fine spatial resolution (30m) burn severity 424 

information for global forest fires from 2003 to 2016. Compared with the existing Landsat based CanLaBS dataset, 425 

GFBS shows closer agreement to CanLaBS in describing the distribution of annual forest fire burn severity than the 426 

MODIS based MOSEV data. As suggested by the validation against the CBI ground reference, GFBS can capture 427 

better represent themore spatial variability and provide higher performance than the MOSEV dataset. In addition, 428 

GFBS is shown to have less over- or underestimationmore reliable burn severity estimations than MOSEV for some 429 

fire-prone areas, like CONUS, Canada, South Africa, and Australia, which could support advances in decision making 430 

in fire management strategies and ecosystem conservation efforts.  431 

The difference in the performance of GFBS and MOSEV with respect to burn severity can be attributed to 432 

two sources. The first is the spatialspatial resolution. GFBS, based on Landsat (5, 7, and 8) images, is at a resolution 433 

of 30 meters, while MOSEV is based on MODIS Terra MOD09A1 and Aqua MYD09A1 images with a resolution of 434 

500 meters. As shown in Figure 11 (a), stemming from the coarse spatial resolution, MOSEV provides dNBR value 435 

of 295 for the site classified as high severity as well as for those classified as low severity, leading to an overestimation 436 

for low severity sites. WithWhile with the improved spatial resolution, GFBS is able to capture more detailed localized 437 

variability of dNBR, providing more reasonable dNBR estimation for low severity sites (dNBR equal to 9, 16, 68). 438 

Similarly, in the event shown in Figure 11 (b), MOSEV provides dNBR estimations of 287 and 327 for the low severity 439 

sites, which is relatively too large. In GFBS, the relative lower dNBR of 30 and 32 is provided at the corresponding 440 

low severity We based GFBS on Landsat (5, 7, and 8) images with a resolution of 30 meters, while MOSEV is based 441 



on MODIS Terra MOD09A1 and Aqua MYD09A1 images with a resolution of 500 meters. GFBS dNBR varies from 442 

210 to 310, showing a better correlation with CBI than MOSEV. Thesites. The coarse resolution of MOSEV could 443 

also make it more difficult to capture the extreme values, as we found to be the case for the annual maximum forest 444 

fires in 2006 over CONUS. GFBS dNBR from GFBS clearly showed two peaks in the density plot of dNBR at around 445 

100 and 700, representing the low and high severity, respectively. MOSEV dNBR from MOSEV, however, showed 446 

only a single peak at around 500, indicating that the extreme low/high values in the 30m grid were averaged in the 447 

500m grid. These findings reveal that burn severity from MOSEV has higher uncertainty for wildfires with larger 448 

spatial variabilities. 449 

Another reason leading to Thethe difference in the performances of the two data sets was related to sensors 450 

onboard Landsat and MODIS. MODIS has a wider spectral range and more spectral bands (36) than Landsat 7/8 (7 451 

spectral bands/ 11 spectral bands, respectively), which resulted in different sensitivity to surface reflectance. For 452 

example, spectrum reflectance information.  tThe NBR is commonly calculated using near-infrared (NIR) and 453 

shortwave infrared (SWIR) bands. In MOSEV, the bands used to calculate NBR are NIR: Band 2 (Range: 0.841–454 

0.876 µm) and SWIR: Band 7 (Range: 2.105–2.155 µm). In GFBS, they are Landsat 5 Band 4 (Range: 0.76–0.90 µm) 455 

and SWIR: Band 7 (Range: 2.08–2.35 µm); Landsat 7 Band 4 (Range: 0.77–0.90 µm) and SWIR: Band 7 (Range: 456 

2.09-2.35 µm); and Landsat 8 Band 5 (Range: 0.85–0.88 µm) and SWIR: Band 7 (Range: 2.11–2.29 µm). While 457 

MODIS and Landsat 8 are close in NIR and SWIR band information, Landsat 5 and 7 both have wider spectrums in 458 

NIR and SWIR than MODIS.  459 

This study has shown that using and combining all available Landsat images, including those from Landsat 460 

5, 7, and 8, could significantly improve the probability of obtaining dense cloud-free NBR time series. The NBR 461 

composite shows high spatial and temporal consistency with the NBR images closest to the start and end time of the 462 

fire event, despite different band settings used from Landsat 5, 7 and 8. Studies by Koutsias and Pleniou (2015) and 463 

Chen et al. (2020) also have shown that differences are small when using reflectance values from sensors aboard the 464 

Landsat 5, 7, and 8 satellites to calculate burn severity over burned area. While studies (Mallinis et al., 2018; Howe et 465 

al. 2022) have demonstrated that Sentinel-2 generally performed as well as Landsat 8 in burn severity mapping, the 466 

further extension of this study will also incorporate images from Sentinel-2 to obtain dNBR composite, especially on 467 

extending the GFBS data set to the present. With the finer spatial resolution (10 meter) and more frequent revisit 468 

period (5 days), GFBS could provide improved burn severity information when incorporating Sentinel-2 images. The 469 

National Aeronautics and Space Administration (NASA) has lounched initiated the Harmonized Landsat and Sentinel-470 

2 (HLS) project aiming to produce a seamless surface reflectance record from the Operational Land Imager (OLI) and 471 

Multi-Spectral Instrument (MSI) aboard Landsat-8/9 and Sentinel-2A/B remote sensing satellites, respectively, which 472 

is an alternative source for extending the GFBS dataset (https://hls.gsfc.nasa.gov/) 473 

With the development of radar-based techniques, Synthetic Aperture Radar (SAR) polarimetric images have 474 

been proven to be effective in burn severity mapping, owing to the strong correlation between SAR backscatter and 475 

burn severity [Czuchlewski and Weissel, 2005; Tanase et al., 2010; Tanase et al., 2011; Addisonand Oommen, 2018]. 476 

With the unique properties of L-band SAR, it is suitable for assessing and monitoring post-fire effects and burn 477 



severity [Tanase e al., 2010; Peacock et al., 2023]. For example, the frequency of L-band (1.26 GHz) allows it to 478 

penetrate through smoke, ash, and, to some extent, vegetation canopy. This capability makes L-band SAR particularly 479 

useful for assessing areas immediately after a fire, even in the presence of smoke or cloud cover that would obstruct 480 

optical sensors. The incorporation of L-band Synthetic Aperture Radar (SAR) data, such as the ALOS-2 PALSAR-2 481 

ScanSAR Level 2.2 data (https://www.eorc.jaxa.jp/ALOS/en/alos-2/a2_about_e.htm) and and the incoming NASA-482 

ISRO Synthetic Aperture Radar (NISAR,https://nisar.jpl.nasa.gov/), can also facilitate the retrieval of burn severity. 483 

By comparing GFBS with CanLaBS, we found that the number of forest fires in CanLaBS dataset is larger 484 

than those in GFBS. This is because CanLaBS is based on the burn area map from Canada Landsat Disturbance 485 

product at 30 meter resolution, while GFBS is based on the burn area map from Global Fire Atlas which is derived 486 

from MODIS burn area product at 500 meter resolution. This difference in the spatial resolution of the burnof burn 487 

area causes somecauses that some small forest fires to be ignored in the GFBSin GFBS dataset. Therefore, finer spatial 488 

resolution burn area product (10/30 meter) is promoted regionally and globally to better reveal the forest fire behavior, 489 

e.g. fire number, size and severity (Roy et al., 2019; Bar et al., 2020). Despite the differences in number of forest fires, 490 

GFBS agreed well to CanLaBS in terms of the annual forest burn severity. While the method to generate GFBS 491 

remains consistent, with the small difference to be ignored in banding settings from Landsat 5,7 and 8, GFBS provides 492 

comprehensive temporal coverage spanning from 2003 to 2016 for forest burn severity, indicating the potential 493 

application of GFBS in long term analysis of burn severity for forest fires beyond Canada, i.e. regions over the globe, 494 

e.g. CONUS, Australia, where GFBS has been demonstrated to perform well against ground truth. Moreover, 495 

integrating the 30 meter GFBS into the regional forest planning can enhance fire resilience in vulnerable areas, shaping 496 

policies that prioritize the forest environment [Bradley et al., 2016]. As climate change exacerbates the frequency, 497 

intensity, and unpredictability of wildfires globally, the analysis on GFBS data can help to assess the impact of these 498 

fires on carbon emissions [Xu et al., 2020], forest recovery [Meng et al., 2018], and biodiversity [Huerta et al., 2022], 499 

which would in turn informs predictive models that project future fire behavior under various climate scenarios. 500 

 501 

One limitation of the GFBS database is related to the relatively long revisit period of Landsat satellites (16 502 

days). This low temporal resolution may impede us from obtaining the dense cloud-free NBR time series that can be 503 

indispensable to calculating burn severity indices in regions of persistent cloud cover. This study has shown, however, 504 

that using and combining all available Landsat images, including those from Landsat 5, 7, and 8, could significantly 505 

improve the probability of obtaining dense cloud-free NBR time series. With the launch of Landsat 9 in September 506 

2021 and other satellites like Sentinel-2 (in June 2015, with a five-day revisit period), it is highly possible that we 507 

could build a denser cloud-free NBR time series to calculate burn severity. 508 

A second limitation of GFBS is that it uses different band information varies in spectrum range from Landsat 509 

5, 7, and 8, which might cause data quality to differ across years, while MOSEV uses the same bands in all years, 510 

showing better data consistency. 511 

5. Conclusion 512 



We have introduced a newly developed dataset GFBS database, named GFBS, which provides forest burn severity 513 

information with global coverage for the period 2003–2016. We identified global forest fires by overlaying the Global 514 

Fire Atlas data with the annual land cover data, MCD12Q1, and proposed an automated algorithm for calculating the 515 

severity of these fires. The algorithm used the band information from Landsat 5, 7, and 8 surface reflectance imagery 516 

to compute the most used burn severity spectral indices (dNBR and RdNBR) with a 30m spatial resolution and provide 517 

the output depicted in theas the GFBS dataset. Comparison between CanLaBS and GFBS showed good 518 

agreementindicateds that GFBS agreed well in representing the distribution of forest burn severity to those of 519 

CanLaBS over Canada. The validation against field assessed burn severity category data in southeastern Australia 520 

showed that GFBS could provide burn severity estimation with clear differentiation discrepancy between the high-521 

severity class and moderate/low severity class of the in situ data, while such differences among burn severity class 522 

were are not obvious in the MOSEV dataset. The validation results over CONUS showed dNBR of values from GFBS 523 

to be more strongly correlated with CBI (R2 r = 0.463) than dNBR fromof MOSEV (R2 r = 0.0828). RdNBR of from 524 

GFSS GFBS also showed better agreement with CBI (R2 r = 0.3156) than RdNBR of from MOSEV (R2 r = 0.0420). 525 

Thus, this database could be more reliable than prior sources of information for future studies of forest burn severity 526 

at the global scale in a computationally cost-effective way, as well as for studies to which forest burn severity could 527 

be relevant, such as in forest management and CO2 CO2 emissions research.  528 

A One future direction for this study would will be to extend the GFBS dataset to the present based on 529 

updated Global Fire Atlas data or other datasets providing global similar burn area and burn date information. Another 530 

direction  second is to involve more ground validations from the fire prone areas like south Africa and south Mexico 531 

to further evaluate and improve the performances of GFBS data globally. 532 

show the similar spatial patterns in presenting burn severity from GFBS and MOSEV dataset, the less 533 

over/underestimated GFBS data could serve as an optional input for adjusting the bias in MOSEV data and take the 534 

advantage of high spatial resolution of GFBS data, the spatial downscaling of MOSEV data is applicable in regions 535 

where GFBS and MOSEV show high consistency. 536 
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