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Abstract. Winter-triticeae crops, such as winter wheat, winter barley, winter rye, and triticale, are important in human diets 

and planted worldwide, and thus accurate spatial distribution information of winter-triticeae crops is crucial for monitoring 

crop production and food security. However, there is still a lack of global high-resolution maps of winter-triticeae crops 

because of the reliance of existing crop mapping methods on training samples, which limits their application at the global scale. 

In this study, we propose a new method based on the Winter-Triticeae Crops Index (WTCI) for global winter-triticeae crops 15 

mapping. This is a new sample-free method for identifying winter-triticeae crops based on differences in their normalized 

difference vegetation index (NDVI) characteristics from the heading to the harvesting stages and those of other types of 

vegetation. Based on this new method, we produced the first global 30 m resolution distribution maps of winter-triticeae crops 

from 2017 to 2022. Validation using field survey samples and Google Earth samples indicated that the method exhibited 

satisfying performance and stable spatiotemporal transferability, with producer’s accuracy, user’s accuracy and overall 20 

accuracy of 81.12%, 87.85% and 87.7%, respectively. Moreover, compared with the Cropland Data Layer (CDL) and the Land 

Parcel Identification System (LPIS) datasets, the overall accuracy and F1 score in most regions of the United States and Europe 

were more than 80% and 0.75. The identified area of winter-triticeae crops was consistent with the agricultural statistical area 

in almost all investigated counties or regions, and the correlation coefficient (R2) between the identified area and the statistical 

area was over 0.6, while the relative mean absolute error (RMAE) was less than 30% in all six years. Overall, this study 25 

provides a reliable and automatic identification method for winter-triticeae crops without any training samples. The high-

resolution distribution maps of global winter-triticeae crops are expected to support multiple agricultural applications. The 

distribution maps can be obtained at https://doi.org/10.57760/sciencedb.12361 (Fu et al., 2023a). 

1 Introduction 

Crop mapping can provide detailed location and analyse spatiotemporal dynamics of crops (Skakun et al., 2017). As one of 30 

the important types of grain in the world, the planting area and production of winter-triticeae crops (such as winter wheat, 

https://doi.org/10.57760/sciencedb.12361
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winter barley, winter rye, and triticale) in 2020 accounted for approximately 30% and 41% of global grain area and production, 

respectively (https://www.fao.org/faostat/en/#data), playing a crucial role in global food production and trade. Closely 

monitoring the spatial distribution information of winter-triticeae crops is therefore beneficial for evaluating yield, optimizing 

land use, and assessing food security (Fu et al., 2021; Nelson and Burchfield, 2021; Wardlow et al., 2007). 35 

Previous studies have mainly focused on mapping winter-triticeae crops distribution in limited regions rather than at the global 

scale (Gella et al., 2021; Zhang et al., 2019; Zhang et al., 2021). Few studies have attempted to produce global triticeae crop 

maps (You et al., 2014), but efforts have been limited to coarse resolutions. For example, Monfreda et al. (2008) combined 

census statistics with global cropland data (Ramankutty et al., 2008) to generate a global distribution map of crops (including 

barley, rye, triticale, wheat) for the year 2000, with a spatial resolution of 10 km. A recent study produced circa 2015 annual 40 

crop harvested area for 26 crops (including barley and wheat) worldwide at 5-min resolution based on a crop production system 

(irrigated and rainfed) (Grogan et al., 2022). The coarse spatial resolution of these datasets highly limits their applications (Luo 

et al., 2022). The WorldCereal project proposed by European Space Agency (ESA) has released a global crop maps with a 

spatial resolution of 10 m for 2021, addressing the limitations of spatial resolution in global-scale crop mapping (Van Tricht., 

2023). However, this product is currently only available for one year, which will affect the demand for long time-scale. At 45 

present, the available long-term and high-spatial resolution distribution maps of winter-triticeae crops are mainly at small or 

national scales (Dong et al., 2020a; Huang et al., 2022; He et al., 2019; Zhang et al., 2019), with the most well-known being 

the Cropland Data Layer (CDL) product in the United States, which is updated annually and has an accuracy greater than 90% 

for winter-triticeae crops (Boryan et al., 2011). However, in most countries where winter-triticeae crops are planted widely, 

such maps are still in short supply. Therefore, it is necessary to produce long-term distribution maps of winter-triticeae crops 50 

with a high-spatial resolution for these countries. 

The greatest challenge in global crop mapping is the need for substantial field samples for algorithm training. Several methods 

have been proposed to address this problem when there are only a few or even no ground samples in the target year. Some 

studies developed a cross-region classifier transfer method (Macdonald and Hall, 1980; Xu et al., 2020). For example, Ge et 

al. (2021) combined Landsat images with the CDL production of Arkansas to train a classifier and then assessed the ability of 55 

the classifier in California, USA, and Liaoning, China. Other studies proposed a temporal transfer method to alleviate the 

limitation of insufficient ground samples, i.e., training a classifier based on historical crop samples and then applying it to a 

target year (Cai et al., 2018; Konduri et al., 2020; Yaramasu et al., 2020). Such as, a previous study used the NDVI features 

extracted from 2013 crop samples to establish classification rule, and then transferred this rule to identify the crop types for 

2011-2013 (Liu et al., 2016). Nevertheless, the accuracy of these methods is relatively low due to the fact that the trained 60 

classifier focuses on a specific region and year, while neglecting the differences in crop phenology in different regions and 

across years (Zhang et al., 2019).  

https://www.fao.org/faostat/en/#data
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Here, based on Landsat 7, Landsat 8 and Sentinel-2 satellite data, this study developed the Winter-Triticeae Crops Index 

(WTCI), a sample-free method for identifying the global distribution of winter-triticeae crops. Specifically, we first designed 

the WTCI based on the NDVI differences between winter-triticeae crops and other vegetation types. Then, we applied this 65 

method to identify the winter-triticeae crops in 66 countries worldwide. Finally, we assessed the accuracy and spatiotemporal 

transferability of the WTCI method based on field survey samples, visual interpretation samples from high-resolution images 

on Google Earth, CDL dataset, the Land Parcel Identification System (LPIS) dataset and agricultural statistical data. Ultimately, 

we produced 30 m spatial resolution distribution maps of winter-triticeae crops from 2017 to 2022 in 66 countries (2020 for 

US, see 2.2.2 for details) worldwide to fill such product gaps, providing a data basis for yield estimation and crop management. 70 

2 Data and method 

2.1 Study area 

The study area covers 66 countries, including 36 European countries, 15 Asian countries, 8 African countries, 2 North 

American country, 4 South American countries, and 1 Oceania country (Fig.1). The area of global triticeae crops (including 

spring and winter varieties) is 278.87 million ha in 2020 (https://www.fao.org/faostat/en/#data), with winter-triticeae crops 75 

accounting for about 75% (i.e., 209.15 million ha) of the global triticeae crops area (Zhao et al., 2018). According to the 

statistics of the winter-triticeae area provided on official websites of various countries (Table S1), the total area of winter-

triticeae in our study area in 2020 is 207,45 million ha, occupying 99.19% of the global winter-triticeae crops area. The study 

area features an intricate interweaving of plains and mountains, resulting in a complex and varied agricultural landscape and 

different tillage systems. In addition, the study area has a diverse climate dominated by temperate and subtropical conditions. 80 

Winter-triticeae crops are usually sown in the autumn of the previous year and harvested in the summer of the following year. 

 

https://www.fao.org/faostat/en/#data
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Figure 1: Distribution of the study area and validation samples. The study area is the region covered in green; The legend indicates 

the winter-triticeae (WT) crops samples and non-winter-triticeae (Non-WT) crops samples from Cropland Data Layer (CDL) 85 
dataset of the United States, the Land Parcel Identification System (LPIS) dataset of Europe, and field survey in China, as well as 

visual interpretation base on Google Earth images, respectively. 

2.2 Data 

The data used in this study included: (1) reflectance data from Landsat 7, Landsat 8 and Sentinel-2; (2) Synthetic Aperture 

Radar (SAR) data from Sentinel-1; (3) field survey samples, visual interpretation samples, CDL and LPIS datasets; (4) 90 

agricultural statistical data. Reflectance data and SAR data were used to generate winter-triticeae crops maps; field survey 

samples, visual interpretation samples, and CDL and LPIS datasets, as well as agricultural statistical data were used to assess 

the performance of the proposed method. 

2.2.1 Satellite data 

In this study, we used Landsat 7 collection 2 data and Landsat 8 collection 2 data, as well as Sentinel-2 data on the Google 95 

Earth Engine (GEE) platform to obtain NDVI from 2016 to 2022, all of which were surface reflectance (SR) products and 

have undergone atmospheric correction. The SR products of Landsat 7 and Landsat 8 have a spatial resolution of 30 m and a 

temporal resolution of 16 days. The spatial and temporal resolution of Sentinel-2 is 10 m and 5 days, respectively. To reduce 

the impact of clouds and ensure the quantity and quality of effective observation data, we first removed the pixels with clouds. 

The quality band BQA was used to remove pixels with clouds from Landsat 7 and Landsat 8, and the quality band QA60 was 100 

used to remove pixels contaminated by clouds from Sentinel-2. Then, based on nearest neighbour method, we resampled the 

NDVI of Sentinel-2 to 30 m to keep the same spatial resolution as Landsat data. Furthermore, we obtained NDVI of all cloud-

free pixels, and chose the maximum values of monthly composites with 30 m spatial resolution, which has been proven 
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effective for crop mapping and displaying crop growth stage (Huang et al., 2022). Last, we used linear interpolation and the 

Savitzky-Golay filter methods (Chen et al., 2004) to fill the missing values and smooth the NDVI series to reduce the 105 

contamination from cloud, rain and snow (Zheng et al., 2022). The above processes were run on the GEE platform. 

The VH band with 10 m spatial resolution from SAR of Sentinel-1 was employed to distinguish winter-triticeae crops from 

other winter crops (i.e., winter rapeseed) (Dong et al., 2020a). Specifically, we implemented thermal noise removal, 

radiometric calibration, and terrain correction for all images from 2016 to 2022 on the GEE platform to obtain the backscatter 

coefficient (σ◦) in decibels (dB). We further applied a refined Lee filter (Abramov et al., 2017) to alleviate the impact of 110 

speckle noise caused by the interferences between adjacent backscatter returns. We finally obtained the monthly maximum 

composite values of VH and resampled them to 30 m using the nearest neighbour method to keep consistency with NDVI. 

These operations were also run on the GEE platform. 

2.2.2 Validation samples 

The validation samples were obtained from: (1) field surveys, (2) Google Earth images, (3) CDL dataset and (4) LPIS dataset. 115 

We conducted field surveys in Hebei, Henan, Shandong, Anhui, and Jiangsu provinces in China in 2019 and 2020, and marked 

3,054 winter-triticeae crops samples and 4,088 non-winter-triticeae crops samples (Fig. 1) using GPS (G120, UniStrong, 

Beijing, China) (Fu et al., 2023b). For other provinces in China and other countries (except US), we relied on high-resolution 

images from Google Earth from 2019 to 2020 for visual interpretation. We first chose regions with available images during 

the study period and selected samples from these regions based on the texture features. In order to ensure the accuracy of the 120 

samples, we then validated the selected samples on GEE platform by checking whether the NDVI temporal features of these 

samples matched the characteristics of winter-triticeae crops, and finally obtained 7,029 winter-triticeae crops samples and 

8,897 non-winter-triticeae crops samples (Fig. 1). In addition, we used CDL and LPIS datasets to further evaluate the 

performance of WTCI method. The CDL released annually has high accuracy in capturing crop distribution in US and has 

been widely used as a base map for crop dynamic monitoring and production estimation. We thus treated CDL labels as ground 125 

truth and randomly selected 7,500 winter-triticeae crops samples and 12,500 non-winter-triticeae crops samples in 2020 to 

validate the accuracy of our method in US (Fig. 1). The LPIS dataset produced by European Union, accurately records and 

describes field geometry and landcover in EU countries. We thus collected and selected 10 countries with data clearly labelled 

with winter-triticeae crops, including winter spelt, winter barley, winter durum hard wheat, winter common soft wheat, winter 

triticale, winter rye and winter oats (https://zenodo.org/records/10118572). These data cover the period from 2018 to 2021, 130 

from which we randomly extracted 2,000 winter-triticeae crops samples and 3,000 non-winter-triticeae crops samples to assess 

the result of WTCI method in Europe (Fig. 1). 

2.2.3 Agricultural statistical data  

https://zenodo.org/records/10118572
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To evaluate the consistency between the identified area of winter-triticeae crops by the proposed method and the agricultural 

statistical area, we collected the planting area data of winter-triticeae crops from 2017 to 2022 through the official websites of 135 

all countries (Table S1). Overall, we obtained the total planting area data of winter-triticeae crops in each country and the 

planting area data at the state (or province) or municipal or county level in 34 countries. 

2.3 Method 

2.3.1 Time series characteristics of NDVI for different land cover types 

The design of the Winter-Triticeae Crops Index (WTCI) is based on the analysis of NDVI time series for different land cover 140 

types. Specifically, we first selected the NDVI time series of each pixel during the growth season (i.e., autumn to summer of 

the following year) of winter-triticeae crops. Pixels with NDVI greater than 0.4 are usually indicative of vegetation cover 

(Peng et al., 2019). Therefore, pixels with a maximum NDVI greater than 0.4 during the selected growth period were retained 

as the potentially identified pixels. After applying these steps, the main remaining land cover types in the potentially identified 

pixels were forest, grassland, and cultivated land.  145 

There are significant differences in the temporal variations of NDVI between winter-triticeae crops and natural vegetation 

types (i.e., deciduous forest, evergreen forest, and grassland) during the growing season of winter-triticeae crops (Fig. 2). 

Specifically, in the period from seedling to tillering stages, winter-triticeae crops are in a state of slow growth, with their NDVI 

gradually increasing. In contrast, natural vegetation types are in the deciduous stage, and exhibit a continuous decrease in 

NDVI during this period (Fig. 2). From the regreening to the heading stages, the NDVI of winter-triticeae crops rapidly 150 

increases and reaches its maximum value, while the NDVI increase of natural vegetation types tends to lag behind that of 

winter-triticeae crops (Fig. 2). Furthermore, winter-triticeae crops show a downward trend and reach their lowest value during 

the harvesting stage. However, natural vegetations enter their growth season at this time, and their NDVI values rapidly 

increase (Fig. 2). Additionally, except for winter rapeseed, there are significant differences in the growth season of maize, rice, 

and soybean compared to that of winter-triticeae crops. Although the NDVI time series characteristics of these crops share 155 

similarities with winter-triticeae crops, they do not interfere with the identification of winter-triticeae crops. 

Based on the above analysis, there are two periods that can be used to distinguish between winter-triticeae crops and natural 

vegetation types, i.e., the seedling to tillering stages and the heading to harvesting stages (Fig. 2), during which the NDVI of 

winter-triticeae crops and natural vegetation types showed opposite temporal variations. Compared with the period from 

seedling to tillering, the NDVI characteristics of winter-triticeae crops from heading to harvesting stages are more stable, and 160 

more significantly different from those of natural vegetation types. A previous study on the relatively weak growth and not 

obvious increase of NDVI of winter-triticeae crops from seedling to tillering stages (Wang et al., 2015) further supports our 

finding. Therefore, this study used the NDVI time series characteristics of winter-triticeae crops from heading to harvesting 

stages to design the WTCI. 
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 165 

Figure 2: NDVI time series characteristics of different land cover types. The red five-pointed stars represent the different 

phenological stages of winter-triticeae crops. 

2.3.2 Development of the Winter-Triticeae Crops Index 

Based on the comparison of the NDVI time series characteristics of winter-triticeae crops with natural vegetation types, this 

study highlights the following two points: (1) the NDVI of winter-triticeae crops peaks at the heading stage, which is close to 170 

the maximum value of natural vegetation during its growing season. (2) Winter-triticeae crops have low NDVI values during 

the harvesting stage, when the surface tends to be close to bare land after crop removal. On the contrary, the NDVI of natural 

vegetation peaks. Therefore, two boundaries were defined to represent the difference between vegetation (V line) and bare 

land (B line) (Fig. 3). Then, three indicators, f (D), f (V), and f (B), were constructed to represent the unique NDVI 

characteristics of winter-triticeae crops from the heading to the harvesting stages (Fig. 3), and their integrate (i.e., WTCI) were 175 

employed to determine whether the potentially identified pixel is winter-triticeae crops: 

𝑊𝑇𝐶𝐼 = 𝑓(𝐷) × 𝑓(𝑉) × 𝑓(𝐵), 𝑛1 < 𝑛2 ,         (1) 
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where n1 and n2 represent the time when the maximum and minimum NDVI appear, respectively (Fig. 3). It should be noticed 

that Eq. (1) was used to identify the winter- triticeae crops only when n1<n2, i.e., the maximum NDVI should appear before 

the minimum NDVI.  180 

Specifically, f (D), f (V), and f (B) were designed as follows: 

𝑓(𝐷) =
1

1+𝑒
(
𝑣−𝑏
2 −𝐷)

, 𝐷 = 𝑚1 −𝑚2 ,         (2) 

𝑓(𝑉) = 1 − 𝑉2, 𝑉 = {

1, 𝑚1 ≤ 𝑏
𝑣−𝑚1

𝑣−𝑏
, 𝑏 < 𝑚1 ≤ 𝑣

0, 𝑚1 > 𝑣

 ,         (3) 

𝑓(𝐵) = 1 − 𝐵2, 𝐵 = {

1,𝑚2 ≥ 𝑣
𝑚2−𝑏

𝑣−𝑏
, 𝑏 ≤ 𝑚2 < 𝑣

0,𝑚2 < 𝑏

 ,         (4) 

where v and b represent the NDVI corresponding to the V and B lines, respectively. m1 and m2 represent the maximum and 185 

minimum NDVI of the potentially identified pixel from the heading to harvesting stages (Fig. 3), respectively. f (D) quantifies 

the similarity of the range of NDVI variation between the potentially identified pixels and those of winter-triticeae crops. 

Given a pixel with D (i.e., m1 – m2) closer to the value of v – b, the higher the value of f (D), the higher the likelihood that it 

represents a winter-triticeae crops. f (V) quantifies the similarity of the maximum NDVI (m1) of the potentially identified 

pixels with that of vegetation. The pixels closer to the V line at the n1 period (i.e., m1 approaches v) are more likely to be 190 

winter-triticeae crops. Additionally, f (B) quantifies the similarity of the minimum NDVI (m2) of the potentially identified 

pixel with that of bare land. Pixels closer to the B line at the n2 period (i.e., m2 approaches b) have a greater likelihood of 

being winter wheat crops. The algorithms of f (D), f (V), and f (B) reported by Xu et al. (2023) were used in this study.  

Winter-triticeae crops should simultaneously have all the above three characteristics; therefore, the WTCI is designed to 

integrate these three indicators. The values of f (D), f (V), and f (B) range from 0 to 1. Therefore, WTCI varies between 0 and 195 

1, and pixels with higher WTCI have a greater probability of being winter-triticeae crops. In addition, this study uses 

agricultural statistical data to determine the threshold of WTCI. When the WTCI of the potentially identified pixel is greater 

than this threshold, it is considered a winter-triticeae crop pixel. 
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Figure 3: Characteristics of NDVI time series for designing the Winter-Triticeae Crops Index. The black solid line represents the 200 
NDVI time series of winter-triticeae crops. The green and orange solid lines represent the V line and the B line, respectively; The 

red five-pointed stars indicate the heading and harvesting stages of winter-triticeae crops; m1 and n1 represent the maximum value 

of NDVI and the time when the maximum value occurs during the study period; m2 and n2 represent the minimum value of NDVI 

and the time when the minimum value occurs during the study period. 

2.3.3 WTCI-based winter-triticeae crops identification 205 

In this study, we considered each state (or province) as an identification unit in China, Brazil, India, Australia and US, and the 

threshold of WTCI was determined based on statistical area at state (or province) scale. For the remaining countries, we treated 

each country as an identification unit, and the threshold of WTCI was calculated relied on statistical area at national scale. 

Furthermore, given the diversity and complexity of land cover types and agricultural planting structures in the study area, we 

used different percentile combinations of the V and B lines, including 36 calculations for each region. Specifically, this study 210 

referred to crop calendar data provided by the United States Department Agriculture (USDA) 

(https://ipad.fas.usda.gov/ogamaps/cropcalendar.aspx) to determine the growth season of winter-triticeae crops in each country. 

Then, we extracted the maximum and minimum NDVI of all potentially identified pixels during the growing season of winter-

triticeae crops. Meanwhile, different percentiles (5%, 20%, 40%, 60%, 80%, and 95%) of all maximum and minimum NDVI 

were collected, and the values corresponding to the percentile of the maximum and minimum NDVI were chosen as v and b, 215 

respectively. After the above steps, we conducted winter-triticeae crops identification for all countries in 2020 based on the 

calculated WTCI, with each identification unit having its corresponding V line (v) and B line (b). When calculating WTCI, we 

searched for the maximum and minimum NDVI values between the regreening and harvesting stages of winter-triticeae crops. 

In this study, the regreening stage was based on the start time of spring in the northern (March) and southern (September) 

hemispheres (Ren et al., 2019), and the harvesting stage referred to the crop calendar provided by USDA. We first determined 220 

the maximum NDVI value and its occurrence time of each potentially identified pixel, then looked for the minimum NDVI 

value in the period after the maximum NDVI appears, and further calculated WTCI. Pixels that do not meet this condition are 
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identified as non-winter-triticeae crops. In addition, we determined the optimal combination of V and B lines according to the 

identification accuracy at the pixel scale (F1 score) and the relative mean absolute error (RMAE) between identified and 

agricultural statistical areas. For countries lacking agricultural statistical data, the optimal combination was decided solely 225 

based on the F1 score. Based on the optimal combination of V and B lines of each identification unit in 2020, winter-triticeae 

crops from 2017 to 2019 and 2021 to 2022 were identified to evaluate the temporal transferability of the WTCI. 

The identification of winter-triticeae crops in the study area may be affected by winter rapeseed and garlic, as these crops have 

similar growth season and spectral characteristics with winter-triticeae crops (Fu et al., 2023b; Tian et al., 2021). Winter 

rapeseed is mainly distributed in China, India and parts of Europe. The planting area of winter rapeseed in some states (or 230 

provinces) of China and India is equivalent to or even higher than that of winter-triticeae crops, while the planting area in 

countries such as France, Germany, Poland, Britain, Hungary, and Ukraine, accounts for 17% -32% of the planting area of 

winter-triticeae crops. Winter garlic is mainly distributed in some provinces of China, Spain, and Ukraine. However, the 

planting area of winter garlic is very small compared to that of winter-triticeae crops and winter rapeseed. For example, the 

planting area of winter garlic in China, the largest planting country, only accounted for about 2% of the winter crops 235 

(http://data.stats.gov.cn/). Therefore, this study only distinguished between winter rapeseed and winter-triticeae crops. The 

NDVI time series of winter rapeseed shows a downward trend from the heading to harvest stages of winter-triticeae crops, 

which is resemble winter-triticeae crops (Fig. 2). Tao et al. (2023) have also demonstrated that winter rapeseed and winter-

triticeae crops have similar NDVI characteristics, making it difficult to distinguish them only based on optical images (Veloso 

et al., 2017). Fortunately, previous studies have indicated that the VH (vertical transmit and horizontal receive) band can 240 

effectively eliminate the interference from winter rapeseed in the identification of winter-triticeae crops in China and Europe 

(Dong et al., 2020a; Huang et al., 2022). Therefore, we distinguished winter rapeseed and winter-triticeae crops based on the 

methods of these studies, and the VH threshold set by Dong et al. (2020a), which was obtained by comparing filed samples, 

was employed in this study. Specifically, in regions of India where winter rapeseed is planted, we calculated the VH values 

from Sentinel-1 images in March considering the lower latitude and earlier harvest period of these regions. In other Asian 245 

regions where winter rapeseed is grown, this study obtained VH values for April. Then this study identified these pixels with 

VH values greater than -15.5 in March or April as non-winter-triticeae crops. Similarly, in some European countries, we 

calculated VH values for May, and considered that pixels with VH values greater than -15.5 were non-winter-triticeae crops 

(Huang et al., 2022). 

2.4 Accuracy assessment 250 

This study evaluated the accuracy at both pixel and regional scales. The producer’s accuracy (PA), user’s accuracy (UA), 

overall accuracy (OA) and F1 score (Congalton, 1991; Hripcsak and Rothschild, 2005) were employed to validate the 

identification accuracy at the pixel scale. At the regional scale, we obtained the identified areas of winter-triticeae crops based 

on the total pixel area of winter-triticeae crops on the identification maps. In China, Brazil, India, Australia and the US, we 

http://data.stats.gov.cn/
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used the statistical area at municipal or county scale to validate the accuracy of identified area at state (or province) scale. For 255 

other counties, the statistical area of all states or provinces or municipalities or counties included in each country was used to 

evaluate the accuracy at national scale. The correlation coefficient (R2) and relative mean absolute error (RMAE) were used 

to examine the consistency between the identified area and the statistical area. 

3 Results 

3.1 The spatial transferability of the WTCI method 260 

This study first identified the spatial distribution of winter-triticeae crops in 66 countries in 2020 based on the WTCI. Fig. 4 

shows that winter-triticeae crops are mainly distributed in mid-latitude regions, including most countries in Europe (Fig. 4b), 

the plains of Asia (Fig. 4c), northern Africa (Fig. 4d), the southern edge of Australia (Fig. 4e), middle of US (Fig. 4f) and the 

southeast regions of South America (Fig. 4g). To display the detailed information of the winter-triticeae crops map produced 

by this study, we selected twelve typical areas in different countries to zoom in and compared them with high-resolution images 265 

from Google Earth (Fig. 5). In general, despite some noise, the identification map clearly displays the fields planted with 

winter-triticeae crops and effectively distinguishes roads and rivers between the fields. 
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Figure 4: Spatial distribution of winter-triticeae crops in the study area in 2020. (a) shows the distribution of winter-triticeae crops 

in 66 countries; (b-g) show the zoomed-in maps of Europe, Asia, Africa, Australia, North America and South America, respectively. 270 
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Figure 5: Comparison between the identification maps of winter-triticeae crops and high-resolution images from Google Earth in 

the study area. (A1-L1) represent the high-resolution images from Google Earth of different regions; (A2-L2) represent the zoomed-

in maps of area A-L in Figure 4. 

Based on the field survey samples and visual interpretation samples, the overall accuracy (OA), producer’s accuracy (PA), and 275 

user’s accuracy (UA) of the winter-triticeae crops identification maps in 65 countries (except US) were 87.7%, 81.12% and 

87.85%, respectively, and the F1 score was 0.84 (Fig. 6). PA and UA varied between 52% and 97.73%, 63.64% and 97.83% 

over the various countries, and OA and F1 ranged from 70.86% to 96.05% and 0.66 to 0.96, respectively. At state (province) 

scale, the variation range of OA and F1 score in China were 77.68% to 95.9% and 0.71 to 0.94, respectively (Fig. 7a). In Brazil, 

the OA and F1 score were in the range of 76.99%-94.74% and 0.78-0.96 (Fig. 7b). The OA in India was between 67.53% and 280 
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92.07%, and the F1 score was between 0.65 and 0.92 (Fig. 7c). The OA and F1 score in Australia lied in the range of 79.21% 

to 91.67% and 0.69 to 0.91(Fig. 7d). In general, the F1 score in most of the identification units was greater than 0.75, indicating 

that the WTCI method shows satisfactory accuracy in identifying winter-triticeae crops. The regions with F1 scores less than 

0.75 were mainly found in small winter-triticeae crops planting areas and complex winter crop types, such as Croatia (HRV), 

Albania (ALB), Sichuan (SC) province in China, and Bihar (BR) state in India. On the contrary, the identification accuracy of 285 

regions with larger planting areas of winter-triticeae crops was significantly higher than that of regions with smaller plating 

areas. 



15 

 

 

Figure 6: The producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and F1 score of the identification maps of 

winter-triticeae crops at national scale in 2020. The abbreviations of countries are shown in Table S2 in the supplement. 290 
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Figure 7: The producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and F1 score of the identification maps of 

winter-triticeae crops at state (province) scale in 2020. (a-d) represent the identification accuracy at state (province) scale in China, 

Brazil, India and Australia, respectively. The abbreviations of states (provinces) are shown in Table S3 in the supplement. 

In addition, compared to the agricultural statistical area in different administrative units in 2020, the WTCI method can 295 

effectively estimate the planting area of winter-triticeae crops. At national scale, the R2 between the identified and the statistical 

areas of winter-triticeae crops ranged from 0.62 to 1, with an RMAE of 8.47% to 38.51% (Fig. 8a and 8b). At state (province) 

scale, the R2 and RMAE between identified and statistical areas in China were between 0.75-0.99 and 12.64% - 45.1%, 

respectively (Fig. 9a1 and 9a2). In Brazil, the R2 was in the range of 0.84 to 0.91, with RMAE of 36.04% to 48.02% (Fig. 9b1 

and 9b2). The R2 and RMAE of 15 states in India ranged from 0.58 to 0.98 and 6.12% to 47.61%, respectively (Fig. 9c1 and 300 

9c2). The R2 and RMAE in Australia varied from 0.79 to 0.98 and 23.61% to 38.43%, respectively (Fig. 9d1 and 9d2). Overall, 

all of these results demonstrate that the WTCI method exhibits reliable spatial applicability in identifying winter-triticeae crops. 
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Figure 8: Comparison between identified and statistical areas of winter-triticeae crops at national scale from 2017 to 2022. (a) and 

(b) show the correlation coefficient and RMAE between identified and statistical areas, respectively. 305 
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Figure 9: Comparison between identified and statistical areas of winter-triticeae crops at state (province) scale from 2017 to 2022. 

(a1-d1) represent the correlation coefficient at state (province) scale in China, Brazil, India, and Australia, respectively; (a2-d2) 

represent the RMAE at state (province) scale in China, Brazil, India, and Australia, respectively. 
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3.2 The temporal transferability of the WTCI method 310 

To examine the temporal transferability of the WTCI method, this study applied the optimal percentile of the V and B lines in 

2020 to other years. The results show that the R2 between identified and statistical areas of winter-triticeae crops in all years 

was between 0.51-1, and RMAE was between 1.14%-51.04% at national scale (Fig. 8a and 8b). At state (province) scale, the 

R2 and RMAE ranged from 0.56 to 0.99 and 6.52% to 45.72% in China, respectively (Fig. 9a1 and 9a2). In Brazil, the range 

of these two metrics was from 0.71 to 0.91 and 33.29% to 51.29%, respectively (Fig. 9b1 and 9b2). In India, they varied from 315 

0.44 to 0.97 and 5.82% to 84.47%, respectively (Fig. 9c1 and 9c2). The R2 in most identification units were more than 0.6, 

and RMAE was less than 30%. These results illustrate that there is good consistency between the identified and statistical areas 

of winter-triticeae crops, confirming the stable temporal transferability of the WTCI method. Similar to the results of 2020, 

the regions with a higher error are concentrated in areas with small planting areas of winter-triticeae crops and diverse planting 

types of winter crops. 320 

3.3 The performance of the WTCI method validated using CDL and LPIS datasets 

Based on CDL and LPIS datasets, we further validated the performance of the WTCI method in the US and Europe. In 2020, 

the OA and F1 score in the US were 86.84% and 0.82, respectively, and the PA and UA were 76.96% and 88.13%, respectively 

(Fig. 10). The performance of the WTCI method varied by state. For all states planting winter-triticeae crops, the OA varied 

from 70.42% to 94.24%, and the F1 score ranged from 0.67 to 0.91 (Fig. 10a-10c). In major planting states, such as Kansas, 325 

Oklahoma and Texas, the planting area of winter-triticeae crops account for approximately 50% of the total area of winter-

triticeae crops in the US, displaying high accuracy with OA and F1 score over 92% and 0.85, respectively (Fig. 10a). The 

identified area of WTCI method exhibited good consistency with official statistical data. At national scale, the R2 and RMAE 

were 0.89 and 28.9%, respectively (Fig. 11a). At state scale, the R2 varied between 0.52 to 1, and the RMAE was in 9.01%-

57.84% (Fig. 11b-11w). In Europe, the PA, UA and OA in 10 countries were 73.18%, 86% and 83.88%, respectively, and the 330 

F1 score was 0.79 (Fig. 10d). The PA and UA ranged from 63.68% to 84.77%, and 71.43% to 96.24% over the various 

countries, respectively. The OA and F1 score varied from 71.22% to 94.79% and 0.68 to 0.9, respectively (Fig. 10d). In general, 

the OA and F1 score in most of regions of US and Europe were higher than 80% and 0.75, implying that the WTCI method 

exhibited satisfactory results compared to the CDL and LPIS datasets. Additionally, we presented spatial detail information of 

the identification map produced by the WTCI method in US and Europe for comparison with CDL and LPIS datasets (Fig. 335 

12). The results indicate that the identification map and can effectively capture the field distribution of winter-triticeae crops 

in the US and Europe (Fig. 12). 
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Figure 10: The producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and F1 score of the identification maps of 

winter-triticeae crops in the US and Europe. The abbreviations of countries and states are shown in Table S2 and S3 in the 340 
supplement. 2018FRA indicates the identification accuracy of the country in 2018. 
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Figure 11: Comparison between identified and statistical areas of winter-triticeae crops in 2020 in the US. (a) show the results 

between identified and statistical areas at national scale; (b-w) show the results between identified and statistical areas for each state, 

respectively. The green symbols represent the counties of each state. The yellow solid lines are the regression lines, and the grey 345 
short-dashed lines are the 1:1 lines. The red, blue and purple numbers represent R2, slope and RMAE values between identified and 

statistical areas, respectively.  
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Figure 12: Comparison of the identification maps of winter-triticeae crops with CDL and LPIS datasets. (a) shows the comparison 

results between the identification maps and CDL dataset in the US; (b) shows the comparison results between the identification 350 
maps and LPIS samples in Europe. 
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3.4 Harvest dynamics of global winter-triticeae crops 

We finally calculated the harvest time of winter-triticeae crops in the study area in 2020 based on the time when the minimum 

NDVI occurred during the harvesting stage. Overall, the harvest time of winter-triticeae crops is delayed with increasing 

latitude (Fig. 13). In the Northern Hemisphere, winter-triticeae crops in East and South Asia are harvested in May and June 355 

(Fig. 13c), and the harvested area accounts for about 35.64% of the total harvested area in the study area (Fig. 14). The harvest 

time in Central Asia, Europe, North Africa and North America is concentrated between July and August (Fig. 13b, 13c 13d 

and 13f), and the proportion of harvested area to the total area is around 47.05% (Fig. 14). In the Southern Hemisphere, the 

harvest time of winter-triticeae crops is mainly from November to January of the following year (Fig. 13e and 13g), with the 

harvested area accounting for 13.7% of the total harvested area (Fig. 14). 360 



24 

 

 

Figure 13: Harvest time of winter-triticeae crops in the study area in 2020. 
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Figure 14: Harvested area and proportion of winter-triticeae crops in the study area in 2020. 

4 Discussion 365 

Winter-triticeae crops are among the most important grain crops in the world. Therefore, the ability to efficiently capture the 

distribution information about these crops is critical for monitoring crop growth and drafting grain subsidy policies (Liu et al., 

2018). To our knowledge, there is currently a lack of a global distribution map for winter-triticeae crops at high resolution. 

Although there have been previous studies focusing on global triticeae crops mapping (Monfreda et al., 2008; Portmann et al., 

2010; You et al., 2014), they resulted in maps for single or discontinuous years and with coarse spatial resolution, which may 370 

include large amounts of mixed pixels and have limited applications. For example, Lou et al. (2022) used inflection- and 

threshold-based methods to produce the global wheat map at a spatial resolution of 4 km, but the accuracy was low due to 

mixed pixel problems in medium and small fields of South America. The available high-resolution maps of winter-triticeae 

crops with wide coverage can display more accurate information on planting location, such as the CDL in the US, winter wheat 

maps in China (Dong et al, 2020a), and winter cereals maps in Europe (Huang et al., 2022), but they are not currently available 375 

globally. In this study, we produced the first distribution maps of winter-triticeae crops with 30 m spatial resolution for 66 

countries from 2017 to 2022 (2020 for US) based on the new WTCI method, filling the gap in the lack of global continuous 

years and high-resolution winter-triticeae crops maps. 
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In addition, the method proposed in this study has the following advantages. First, f (V) and f (B) were incorporated in WTCI 

to alleviate errors and uncertainties in determining crop types based only on the part of features. Most previous studies only 380 

considered the differences between the maximum and minimum values of vegetation indices at key crop phenological stages 

(Atzberger et al., 2013; Chu et al., 2016; Manfron et al., 2017; Qiu et al., 2017). For example, Qu et al. (2021) set rules to 

determine the maximum and minimum NDVI before and after the over-wintering stage, respectively, and designed the winter 

wheat index (WWI) using the product of the differences between maximum and minimum NDVI. However, in some regions, 

the maximum NDVI values are not easy to determine before over-wintering, either due to the crop varieties or climate, resulting 385 

in very small differences between the maximum and minimum NDVI before over-wintering, which increases omission errors. 

Similar to this study, Xu et al. (2023) developed a spectral index for rice identification based on SAR data and tested the 

differences using partial features and three features. The results showed that considering three features simultaneously could 

better distinguish between rice and other crops, as well as other land cover types, and achieved the highest accuracy. 

Second, all parameters of the WTCI are determined automatically. For example, based on the NDVI of each identification unit, 390 

the V and B lines are automatically generated to adapt to the differences in climate and land cover types between different 

regions, making the WTCI method more stable. This study selected two representative regions to test the sensitivity of 

identification accuracy to different percentile combinations of the V line (v) and the B line (b) (Fig. 15). The results demonstrate 

that the identification accuracy is insensitive to the percentiles of the V (v) and B lines (b) where winter-triticeae crops are the 

dominant crops (Fig. 15a). However, where winter-triticeae crops are not dominant, the identification accuracy is sensitive to 395 

the percentiles of the V (v) and B lines (b) (Fig. 15b). Overall, we achieved promising results in each identification unit, 

indicating that the WTCI method can be flexibly applied to different regions. Users can choose the appropriate percentile based 

on the local situation. Besides, the maximum and minimum NDVI values are automatically searched between the regreening 

and harvesting stages of winter-triticeae crops, avoiding the limitations caused by the use of a large number of constraints 

(Bazzi et al., 2019; Cai et al., 2019). Manfron et al. (2017) set multiple conditions based on expert knowledge to search for  400 

NDVI characteristics of key phenological stages to identify winter wheat. Although high identification accuracy was achieved 

in the study area, the application of the method was limited due to the proposed conditions in specific areas. 
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Figure 15: Identification accuracy under different percentile combinations of V line (v) and B line (b). V05 and B05 represent the 

5% percentile of the V and B lines, respectively. 405 

Finally, the WTCI method is not limited by samples and has strong transferability in time and space, making it suitable for 

mapping winter-triticeae crops in large regions. Supervised classification algorithms can extract information features from 

training samples and achieve high identification accuracy in specific years or regions (Brown and Pervez, 2014; Yin et al., 

2020). However, the accuracy is often affected by insufficient training samples (Petitjean et al., 2012) or classification rules 

and regional limitations of parameters (Zhong et al., 2014) when the trained model is transferred to other years or regions, 410 

which makes it difficult to apply them on a large scale. The WTCI method does not require training samples and has achieved 

accurate results in most of the countries, with the OA values of 88.35% and 88.97% in China and Europe, respectively, which 

are comparable to the results of previous studies (Dong et al., 2020a; Huang et al., 2022). Moreover, the satisfactory 

performance in capturing the field distribution of winter-triticeae crops in CDL and LPIS datasets supports the reliability and 

applicability of the WTCI method.  415 

Despite the advantages, our study also suffers from some uncertainties. First, the commission error is higher in regions where 

winter-triticeae crops are not dominant crops, such as in Sichuan (SC), West Bengal (WB), Bihar (BR), Karnataka (KA) and 

few countries in Mediterranean Sea region, indicating that here non-winter-triticeae crops are misclassified as winter-triticeae 

crops. Second, although we used synthetized images from Landsat and Sentinel productions to increase the amount of effective 

data, there are still large differences in the available images among the study area. A previous study highlighted that the 420 

availability of effective data greatly affected crop identification accuracy (Dong et al., 2015). In this study, the error between 

the identified area and statistical area of winter-triticeae crops was relatively high in the south of China and in some regions 

of India and South America, where the RMAE was greater than 35%. One potential reason for this is the quality of the satellite 
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data. For example, cloud and rain contaminations introduce noise in the NDVI data and consequently dampen the winter-

triticeae crops detection signal (Song et al., 2017; Xiao et al., 2014). Additionally, due to the scan line corrector failed of the 425 

Landsat 7 sensor, the striping issues and reduced data availability may also impact the accuracy of NDVI time series (Ju and 

Roy., 2008), leading the errors in identification results. Besides, the wavelength difference between Sentinel-2 and Landsat 

sensors may affect the quality of synthesized NDVI. It is still a challenge to completely eliminate the impact from this 

difference (He et al., 2018). In the future, identifying useful bands or vegetation indexes that eliminate interferences from other 

land covers, as well as increasing the availability and quality of satellite data, will further promote the performance of the 430 

WTCI method. 

5 Data availability 

The 30 m resolution distribution maps of winter-triticeae crops in 66 countries worldwide from 2017 to 2022 (2020 for the 

US) are available at https://doi.org/10.57760/sciencedb.12361 (Fu et al., 2023a). The product is provided in GeoTIFF format 

with pixel values of 1 for winter-triticeae crops and 0 for other land covers. 435 

6 Conclusions 

This study proposed the WTCI, a new method for identifying winter-triticeae crops based on the NDVI time series 

characteristics of winter-triticeae crops from the heading to the harvesting stages, and examined its performance in 66 countries 

worldwide. Moreover, the first 30 m spatial resolution distribution maps of winter-triticeae crops in these 66 countries from 

2017 to 2022 (2020 for US) were produced by the WTCI method. When validated with 23,068 field survey samples and Google 440 

Earth samples, the PA and UA of the distribution maps in 2020 were 81.12% and 87.85%, respectively, while the OA and F1 

score reached 87.7% and 0.84, respectively. Based on CDL and LPIS datasets, the OA and F1 score in the US were 86.84% 

and 0.82, respectively, and the OA and F1 score in Europe were 83.88% and 0.79, respectively. The identified area of winter-

triticeae crops was consistent with the statistical area in most identification units. The WTCI method explained more than 62% 

of the spatial variability in the planting area at national scale and more than 80% of the spatial variability in most of states (or 445 

provinces) in 2020. The method also exhibited a stable temporal transferability, with most identification units having a R2 

greater than 0.6 and RMAE less than 30% in other years. In general, the WTCI method has strong spatiotemporal transferability 

and satisfactory performance, and is not limited by training samples, making it useful for long-term and large-scale crop 

mapping. 
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