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Abstract. The use of remote sensing method to accurately measure cloud properties and their 

spatiotemporal changes has been widely welcomed in many fields of atmospheric research. The Nanjing 

Joint Institute for Atmospheric Sciences (NJIAS) Himawari-8/9 Cloud Feature Dataset (HCFD) provides 

a comprehensive description of cloud features over the East Asia and west North Pacific regions for the 

7 yr period from April 2016 to December 2022. Multiple cloud variables, such as cloud mask, phase/type, 15 

top height, optical thickness, and particle effective radius, as well as snow, dust and haze masks, were 

generated from the visible and infrared measurements of the Advanced Himawari Imager (AHI) onboard 

the Japanese geostationary satellites Himawari-8/9 using a series of cloud retrieval algorithms recently 

developed. Verifications with the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) 1-km 

cloud layer product and the Moderate Resolution Imaging Spectroradiometer (MODIS) Level-2 cloud 20 

product (MYD06) demonstrates that the NJIAS HCFD gives higher skill scores than the Japanese 

Himawari-8/9 operational cloud product for all cloud variables except for the particle effective radius. 

The NJIAS HCFD even outperforms the MYD06 in the nighttime cloud detection, cloud-top 

height/pressure/temperature estimation, and the infrared-only cloud-top phase determination. All 

evaluations are performed at the nominal 2 km scale, not including the effects of sub-pixel cloudiness or 25 

very thin cirrus. Two examples are presented, to demonstrate applications of the NJIAS HCFD for 

climate and typhoon research. The NJIAS HCFD has been published at the Science Data Bank 

(https://doi.org/10.57760/sciencedb.09950, Zhuge 2023a; https://doi.org/10.57760/sciencedb.09953, 

Zhuge 2023b; https://doi.org/10.57760/sciencedb.09954, Zhuge 2023c; 

https://doi.org/10.57760/sciencedb.10158, Zhuge 2023d; https://doi.org/10.57760/sciencedb.09945, 30 

Zhuge 2023e). 
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1 Introduction 

Clouds play a crucial role in severe weather systems. The formation, development, and dissipation 

of convective storms are closely related to cloud microphysical processes (Zhuge and Zou, 2018; Liu et 35 

al., 2020). The intensity and size of a tropical cyclones are also indicated by the states of clouds (Zhuge 

et al., 2015; Sun et al., 2021). In addition, clouds modulate the planetary radiation budget by reflecting 

incoming solar radiation and absorbing outgoing long-wave radiation in Earth’s climate system (Stephens, 

2005; Yang et al., 2015) and affect the Earth's hydrological cycle by altering the water distribution 

through precipitation (Rosenfeld et al., 2014; Stevens and Bony, 2013). However, cloud processes are 40 

not yet well understood nor accurately predicted by current weather and climate models. Obtaining global 

cloud properties and their spatiotemporal changes has always been of great interest to weather and 

climate community at large. 

Satellite remote sensing is an approach to observe and retrieve cloud properties on a global scale. 

There are two types of satellite sensors: active and passive sensors. Active sensors, such as the Cloud-45 

Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared 

Pathfinder Satellite Observation (CALIPSO) satellite (Winker et al., 2007), and the Cloud Profiling 

Radar (CPR) onboard the CloudSat satellite (Stephens et al., 2002), can provide cloud profile information 

at a high spatial resolution with high accuracy. However, these sensors have limited spatial coverage due 

to their nadir-only sampling mode. In contrast, the passive sensors provide measurements of wide swaths 50 

and multiple channels, which allows cloud top properties be retrieved over a large-coverage area. For 

example, the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Earth Observing 

System Aqua and Terra platforms provide observations that are highly sensitive to cloud. It has 36 

channels ranging from visible (VIS) to infrared (IR) at a nadir spatial resolution of 0.25–1 km (Platnick 

et al., 2003). The unique spectral and spatial capabilities have resulted in the generation of MODIS Level-55 

2 cloud products (known as MOD06 for Terra and MYD06 for Aqua) which have been proven to have 

high accuracy and are widely used within the earth system science research community. Due to the safety 

concerns arising from MODIS extended service life, the National Aeronautics and Space Administration 

(NASA) is promoting a migration project to apply the MYD06 algorithms to the Visible Infrared Imaging 
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Radiometer Suite (VIIRS) onboard the U.S. polar-orbiting operational environmental satellites (Platnick 60 

et al., 2021). However, both MODIS and VIIRS have a revisit interval of 1-2 days, which means that the 

temporal evolution of clouds cannot be captured by these instruments. 

 The new generation of geostationary satellite imagers, such as the Advanced Himawari Imager 

(AHI) onboard Japanese Himawari-8/9 satellites (Bessho et al. 2016), the Advanced Baseline Imager 

(ABI) onboard U.S. Geostationary Operational Environmental Satellite (GOES)-R series (Schmit et al., 65 

2017), the Advanced Geostationary Radiation Imager (AGRI) onboard Chinese Fengyun-4 satellites 

(Yang et al., 2017), and the Flexible Combined Imager (FCI) onboard European Meteosat Third 

Generation (MTG; Holmlund et al. 2021), can continuously observe large-scale regions at a high 

spatiotemporal resolution. This capability enables a comprehensive remote sensing of various cloud 

properties. 70 

The GOES-R Algorithm Working Group has developed a series of retrieval algorithms for ABI 

cloud (Heidinger and Straka, 2013) and fog (Calvert and Pavolonis, 2010) masks, cloud height (Heidinger, 

2012), cloud phase and type (Pavolonis, 2010), as well as daytime (Walther et al., 2013) and nighttime 

(Minnis and Heck, 2012) optical/microphysical parameters. For AHI operational cloud algorithms, the 

techniques developed by Imai and Yoshida (2016) and Mouri et al. (2016a, b) are used for the AHI cloud 75 

mask, cloud height and cloud phase determinations, and a multifunctional algorithm called 

Comprehensive Analysis Program for Cloud Optical Measurement (CAPCOM) is employed to retrieve 

the optical and microphysical parameters for liquid-water (Nakajima and Nakajma, 1995; Kawamoto et 

al., 2001) and ice (Letu et al., 2019, 2020) clouds. The AHI level-2 operational cloud product from 

September 2015 to the present at a low spatial resolution of 0.05°×0.05° is archived on the P-Tree System, 80 

Japan Aerospace Exploration Agency (JAXA). All cloud variables are available only during the daytime 

at solar zenith angles below 80°. As a result, only the semi-diurnal variation of cloud cover (e.g., Shang 

et al., 2018; Yu et al., 2022) or convective activity (e.g., Li et al., 2021) during the daytime can be obtained 

from the AHI level-2 operational cloud product. 

To supplement the JAXA operational cloud algorithms and products, starting from 2016, the authors 85 

have successively developed multiple algorithms for AHI cloud mask (Zhuge and Zou, 2016; Zhuge et 

al., 2017), cloud-top phase (Zhuge et al., 2021a), cloud type (Zhang et al., 2019; Sun et al., 2019), and 

daytime cloud optical/microphysical parameters (DCOMPs; Zhuge et al., 2021b). They are now 

collectively referred to as Nanjing Joint Institute for Atmospheric Sciences (NJIAS) cloud retrieval 
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algorithms. Over the past three years, it has been discovered that the NJIAS cloud retrieval algorithms 90 

have several shortcomings and weaknesses, such as inadequate detection of low-level clouds at high solar 

zenith angles or over snow-covered surfaces, and insufficient masks of dust, haze and fog. Accordingly, 

a number of enhancements to the NJIAS cloud retrieval algorithms have been implemented. Finally, 30 

variables are generated at the 0.5 h interval in the 7 yr period from April 2016 to December 2022 using 

these algorithms. They are named as the NJIAS Himawari-8/9 Cloud Feature Dataset (HCFD). The 95 

objectives of this article are twofold: 1) to give an in-depth overview of the NJIAS HCFD, including the 

updates made to NJIAS cloud retrieval algorithms since 2021; and 2) to objectively evaluate the accuracy 

of NJIAS HCFD, particularly its comparative performance with existing datasets. 

The remaining parts of this article are organized as follows. Section 2 gives a detailed overview of 

the NJIAS HCFD. Section 3 presents results of an evaluation of the NJIAS HCFD accuracy against the 100 

CALIOP and Collection-6.1 MYD06 datasets. Section 4 presents two application examples: one on cloud 

climatology in southwestern China and the other on cloud and precipitation features of landfalling 

typhoons. After a description on data availability (section 5), a summary and conclusions are given in 

section 6. 

2 Overview of the NJIAS HCFD 105 

2.1 Input data 

The primary sensor data employed by the NJIAS HCFD are the multispectral observations of the 

AHI onboard Himawari-8/9. Himawari-8 became operational on July 7, 2015 and was replaced by its 

successor, Himawari-9 on December 13, 2022. The AHI provides a full-disk scan every 10 min with a 

spatial resolution of 0.5–2 km at the sub-satellite point around 140.7°E. During the data dissemination 110 

step, AHI full disk imagery is divided into ten segments from north to south by the Japan Meteorological 

Agency. The NJIAS HCFD only focuses on Segments 2–4, covering the vast majority of the East Asia 

and western North Pacific (WNP) regions. Given that the AHI IR channels have coarser spatial 

resolutions (nominal 2 km) than the VIS and shortwave-IR (SWIR) ones (nominal 0.5–1 km), data from 

finer-resolution channels are each aggregated to nominal 2 km resolution. 115 

Clear-sky brightness temperatures (BTs) and transmission profiles for AHI 10 IR channels are 

simulated by using the Community Radiative Transfer Model (CRTM) of version 2.2.3 (Han et al., 2007) 
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with the vertical profiles of pressure, temperature, water vapor and composition, as well as surface 

variables of surface skin temperature and 10-m wind, from the U.S. National Centers for Environmental 

Prediction (NCEP) Final operational global (FNL) analyses (Kalnay et al., 1996) as the input. The NCEP 120 

FNL analysis, which has a 0.25° × 0.25° horizontal resolution and a 6-h interval, is remapped to AHI 

observation times and pixels using a linear interpolation method. Other ancillary data including surface 

type, terrestrial elevation, and land surface emissivity are extracted from the one-minute land ecosystem 

classification product (http://modis-atmos.gsfc.nasa.gov/ECOSYSTEM/index.html), global 30 arc-

second elevation dataset (http://webmap.ornl.gov/ogcdown/dataset.jsp?ds_id510003), and University of 125 

Wisconsin–Madison High Spectral Resolution Emissivity dataset (http://cimss.ssec.wisc.edu/iremis), 

respectively. 

 

Table 1: List of output variables. 

Short name Long name Assigned value or Unit 

CldMask Cloud mask 
Confidently clear=0; Probably clear=1; Probably 

cloudy =2; Confidently cloudy=3 

FogMask Fog/Low stratus mask Probably Foggy = 1; Confidently foggy = 2 

CldType Cloud type 

Confidently clear=0; Probably clear=1; Broken=2; 

Warm water = 3; Supercooled water = 4; Mixed = 

5; Opaque Ice = 6; Cirrus = 7; Overlapped = 8; 

Overshooting = 9 

CldType2 Cloud type in ISCCP rule1 

Confidently clear=0; Probably clear=1; Broken=2; 

Cu = 3; Sc = 4; St = 5; Ac = 6; As = 7; Ns = 8; Ci = 

9; Cs=10; Cb=11 

CldPhase Cloud-top thermodynamic phase 
Clear =0; Warm-water = 1; Supercooled-water = 2; 

Mixed/uncertain = 3; Ice = 4 

CldTemperature Cloud-top temperature  K 

CldHeight Cloud-top height m AGL 

CldPressure Cloud-top pressure hPa 

ACHA_COD 
Cloud optical thickness from the 

ACHA approach2 
unitless 

ACHA_CPS 
Cloud-top particle effective radius 

from ACHA the approach2 
μm 

DCOMP*_COD3 
Cloud optical thickness from the 

DCOMP approach1  
unitless 

DCOMP*_CPS3 
Cloud-top particle effective radius 

from the DCOMP approach1 
μm 

DCOMP*_LWP3 
Cloud liquid water path from the 

DCOMP approach1  
g m-2 

DCOMP*_IWP3 
Cloud ice water path from the 

DCOMP approach1  
g m-2 

LatPC Latitude after parallax corrections ° N 

LonPC 
Longitude after parallax 

corrections 
° E 

SST Clear-sky sea skin temperature K 

ShadowMask Shadow1  Shallow=1 

HazeMask Haze1  Haze=1 
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SnowMask Snow and sea-ice surface1  Snow/Ice = 1; Permanent snow = 2 

FireMask Active fire Possible fire=1; Confident fire=2 

DustMask Dust Possible dust=1; Confident dust=2 

1 Daytime only. 130 
2 Only reliable for cirrus clouds. 

3 DCOMP* represents DCOMP35, DCOMP36 and DCOMP37, meaning the variables are derived using 0.64-μm 

and either 1.6- , 2.3-, or 3.9-μm channels, respectively. 

 

2.2 Output variables 135 

The NJIAS HCFD provides a comprehensive description of cloud features over the East Asia and 

WNP regions. It includes 30 variables, such as cloud mask, cloud optical thickness (τ), cloud-top 

thermodynamic phase, cloud-top height (CTH), and cloud-top particle effective radius (Re), as well as 

snow, dust and haze masks. The 30 output variables are briefly described in Table 1. 

2.3 NJIAS cloud retrieval algorithms 140 

 During the past three years, a number of improvements to the NJIAS cloud retrieval algorithms 

have been incorporated. Improvements include the following. 

2.3.1 Cloud mask algorithm refinements 

 The NJIAS cloud mask algorithm is developed on the basis of previous two works (Zhuge and Zou, 

2016; Zhuge et al., 2017). Eight of ten cloud-mask tests used in Zhuge and Zou (2016) and one test used 145 

in Zhuge et al. (2017) are inherited. These nine cloud-mask tests are called relative thermal contrast test 

(RTCT), emissivity at tropopause test (ETROP), positive channel-14 minus 15 test (PFMFT), relative 

channel-14 minus 15 test (RFMFT), cirrus water vapor test (CIRH2O), uniform low stratus test (ULST), 

new optically thin cloud test (N-OTC), temporal IR test (TEMPIR), and VIS-based cloud index test (VCI). 

To enhance the detection of low-level clouds, additional six cloud-mask tests are employed by the NJIAS 150 

algorithm, that is, relative VIS contrast test (RVCT), reflectance ratio test (RRT), terminator thermal 

stability test (TTST), nighttime low stratus test over desert (DZT_NLS), daytime low stratus test over 

sunglint regions (SG_DLS), and reflectance similarity test (RST). The mathematical formulas for the 

above-mentioned 15 cloud-mask tests are listed in Table 2. Note that x mO   is the observed BT or 

reflectance at x-μm wavelength, x mB   is the simulated x-μm BT under clear-sky conditions,  x mI T  155 
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represents the radiance at temperature T  and x-μm wavelength that is computed by the Planck 

function. The threshold (  ) for a certain test is generally derived via a comparison of co-located 

AHI/ABI with CALIOP data (Zhuge and Zou, 2016; Zhuge et al., 2017). The flowchart of the NJIAS 

cloud mask algorithm is shown in Fig. 1. 

 160 

 

Figure 1: Flowchart of the NJIAS cloud mask algorithm. 
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Table 2: Names and mathematical formulas for the 15 tests employed by the NJIAS cloud mask algorithm.  

Name Condition for cloudy pixels Remarks 

RTCT  max

11.2 11.2m m RTCTO O     

Inherited from 

Zhuge and Zou 

(2016) 

ETROP 
   

 
11.2 11.2 11.2 11.2

11.2 11.2 11.2

m m m m

ETROPtrop

m m m

I O I B

R I B

   

  







 

PFMFT  
 
 

11.2

11.2 12.4 11.2 12.4

12.4

260
( )

260

m

m m m m PFMFT

m

O K
O O B B

B K



   






    


 

RFMFT  11.2 12.4 11.2 12.4( )NWC NWC

m m m m RFMFTO O O O         

CIRH2O  11.2 7.3 2,m m CIRH OO O    

ULST 
 
 

 
 

3.9 3.9 3.9 3.9

3.9 11.2 3.9 11.2

m m m m

ULST

m m m m

I B I O

I B I O

   

   

   

N-OTC 3.9 12.4m m N OTCO O      

TEMPIR 
10min

11.2 11.2m m TEMPIRO O      

VCI      
2 2 2

' ' ' ' ' '

0.47 0.64 0.47 0.86 0.64 0.86

3

m m m m m m

VCI

O O O O O O     


    
  

Inherited from 

Zhuge et al. 

(2017) 

RVCT 
,min

0.64 0.64

Norm Norm

m m M RVCTO O      

Adopted from 

Heidinger and 

Straka (2013) 

RRT 
0.86

0.64

m

RRT

m

O

O





  

TTST 

1

11.2 11.2 2hr

m mO O 

    and 
1hrCM TRUE   and 

1 1

11.2 8.6 11.2 8.6( ) ( )hr hr

m m m m TTSTO O O O          

SG_DLS 

3.9 3.9 _ 1m m SG DLSB O     or 

 3.9 10.4

_ 2

0.64

m m

SG DLS

m

O O

O

 






  

Newly added 
DZT_NLS 

12.4 10.4 0m mO O    and 

   10.4 3.9 12.4 10.45 /10 4 / 6 0.16m m m mO O O O          and 

 
 

 
 

3.9 3.9 3.9 3.9

_

3.9 11.2 3.9 11.2

m m m m

DZT NLS

m m m m

I B I O

I B I O

   

   

   

RST 

1.6

0.64

0.8
m

m

O

O





  and 
1.6 0.05

300

Norm sol
mO 


   and 

 
NeighborCM TRUE  and 

0.64

0.64

m

RST

m

Neighbor

O

O





  

 165 

For cloud detection over sun-glint regions, SG_DLS assumes that sea surface reflectance is greater 

than that of clouds. Thus, the 3.9-μm BTs over cloudy areas should be lower than those of model 
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simulations under clear-sky conditions. SG_DLS also compares the reflectance between 3.9-μm and 

0.64-μm channels by simply using the formula 
 3.9 10.4

0.64

m m

m

O O

O

 




 and marks those pixels as cloudy 

where the reflectance in the 3.9-μm channel is significantly weaker compared to that in the 0.64-μm 170 

channel. During nighttime, the low-level clouds and clear-sky desert have very similar characteristics of 

3.9-μm emissivity. Relative to ULST, DZT_NLS employs two extra criteria ( 12.4 10.4 0m mO O    and 

   10.4 3.9 12.4 10.45 /10 4 / 6 0.16m m m mO O O O         ) so that the clear-sky desert pixels would 

not be falsely flagged as cloudy. 

Detection of low-level clouds at high solar zenith angles is challenging since the VIS reflectance 175 

becomes very sensitive to aerosol and noise. To mitigate the labeling of haze pixels as being cloudy, VCI 

and RRT were slightly modified. The pixels should firstly satisfy two basic conditions 

(
1.6 0.05

300

Norm sol
mO 


   and 11.2 1.6323 150 Norm

m mO O    ) before they could proceed to next step. 

Here, sol  is the solar zenith angle in degree, and 1.6

Norm

mO   is the 1.6-μm reflectance normalized by the 

cosine of sol . Meanwhile, given that existing three reflectance-based tests (i.e., VCI, RVCT, and RRT) 180 

are not as effective as at noon, TTST and RST are incorporated into the NJIAS cloud mask algorithm to 

improve cloud detection at high solar zenith angles. As described by Heidinger and Straka (2013), TTST 

classifies a pixel as cloudy if its IR spectral signatures are similar to those of a cloudy pixel that was 

detected at the same location one hour ago. RST is a completely new cloud-mask test, being specifically 

utilized for pixels with a solar zenith angle between 60° and 83°. The RST is implemented subsequent to 185 

the preliminary cloud mask determination derived from the other 14 tests. The objective of RST is to 

spatially extend the initial cloud “seeds” to their neighboring pixels that exhibit similar reflectance 

characteristics. Again, these candidate cloudy pixels should firstly satisfy non-haze conditions 

(
1.6

0.64

0.8
m

m

O

O





 and 
1.6 0.05

300

Norm sol
mO 


  ). Figure 2 illustrates the utility of incorporating the RST 

for low-level cloud detection in the early morning. The scene occurred at 23:00 UTC 10 April 2023, 190 

when a vast expanse of quasi-stationary cloud belts were located over southern China. When detecting 

clouds without RST, a lot of foggy and/or stratus pixels were missed, and thus the identified cloud belts 

were fragmented (Fig. 2c). Cloud mask results with RST are much more reasonable (Fig. 2d). 



10 
 

 

 195 

 

Figure 2: (a) AHI false-color image (red, 0.64 μm; green, 1.6 μm; blue, 11.2 μm reversed) showing land/ocean 

in dark, thick ice clouds in magenta, cirrus in blue, and low clouds in yellow or white, (b) solar zenith angle 

(unit: degree), and (c)-(d) cloud mask results (c) without and (d) with RST at 23:00 UTC on 10 April 2023. 

 200 

Like other cloud mask algorithms, the NJIAS algorithm also generates a four-level mask whose 

categories are confidently clear, probably clear, probably cloudy, and confidently cloudy. Probably clear 

pixels are defined as those failing the uniformity tests, and probably cloudy pixels are those located at 

cloud edges. 

2.3.2 Newly added snow, dust, and haze mask algorithms  205 

 Snow mask is an important procedure implemented before cloud mask. In the NJIAS algorithm, the 

pixels satisfy one of following three conditions are firstly identified as snow candidates: (1) they are over 

oceans with surface temperature analyses being lower than 263 K, (2) the underlying surface type is 

“permanent snow”, and (3) both the normalized differential snow index (NDSI; 
0.64 1.6

0.64 1.6

m m

m m

O O

O O

 

 




) and 
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the enhanced NDSI (

0.33 0.33

0.64 1.6

0.33 0.33

0.64 1.6

m m

m m

O O

O O

 

 




) are larger than 0.1, and meanwhile the normalized differential 210 

vegetation index (
0.86 0.64

0.86 0.64

m m

m m

O O

O O

 

 




) is larger than -0.1. A serious of strict tests are then performed to 

rule out the candidates presenting unique spectral characteristics of ice clouds (e.g., mobile; more 

apparent on the water vapor images; much colder than the surface). However, the pixels that have an 

NDSI value greater than 0.1 and were classified as snow one hour ago would be restored to snow again. 

 215 

 

Figure 3: (a) AHI “Dust” RGB composite image ( dust in pinkish color) and (b) NFMFT value (unit: K), and 

(c)-(d) cloud mask results derived from (c) old and (d) new versions of the NJIAS cloud algorithms at 09:00 

UTC on 12 April 2023. 

 220 

 In the old version of NJIAS cloud mask algorithm, dust was often identified as cloudy, especially 

when it is transported over oceans. A remarkable example of this occurred at 09:00 UTC 12 April 2023 

(Fig. 3). The poor performance is primarily a result of the usage of the negative channel-14 minus 15 test 

(NFMFT) that was originally applied to detect opaque clouds. In fact, the dust can generate a NFMFT 
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value (  11.2 12.4 11.2 12.4( )m m m mO O B B      ) as great as the opaque clouds, as shown in Fig. 3b. 225 

Now, NFMFT is removed from the NJIAS cloud mask algorithm but added to the NJIAS dust mask 

algorithm, which originally included an empirically dust mask test developed based on the principle used 

by “Dust” RGB composite images (Lensky and Rosenfeld, 2008). The dust mask is implemented after 

cloud mask. Accordingly, cloud mask results derived from the NJIAS cloud algorithms are improved 

(Fig. 3d). 230 

 Similar consideration is applied to haze detection. The reflectance gross contrast test (RGCT) that 

was employed by various cloud mask algorithms is added to the haze mask algorithm. RGCT works on 

the assumption that clouds have larger 0.64-μm reflectance than clear sky, which is also true for haze. 

The original haze mask algorithm only included a heavy aerosol test—Test 1 in Hutchison et al. (2008), 

assuming that haze is transparent at the 2.3-μm wavelength but much reflective at the 0.64-μm 235 

wavelength.  

2.3.3 Updates to the cloud-top property algorithm 

 The NJIAS cloud height algorithm follows mainly the architecture of the ABI Cloud Height 

Algorithm (ACHA; Heidinger, 2012). It derives cloud-top temperature (CTT), CTH, cloud-top pressure 

(CTP), τ, and Re with a consistent accuracy for day and night. Note that τ and Re from the ACHA 240 

approach are only reliable for cirrus clouds because the long-wave IR observations cannot provide the 

desired sensitivity to cloud microphysics for optically thick clouds. Besides, the CTH in the NJIAS 

algorithm is measured above ground level (AGL), i.e., true altitude minus terrain elevation, which is 

different from the definition used in the MYD06 algorithm and the ACHA. 

The NJIAS IR cloud-top phase algorithm is developed based on Zhuge et al. (2021a). It categorizes 245 

cloudy tops into liquid-water, ice, and mixed/uncertain phases, by employing the IR-window and IR-

water vapor channels as well as several spectral and spatial tests. The liquid-water phase is further refined 

into being either supercooled-water or warm-water, depending on whether the CTT is below 0 °C or not. 

For ice-phase cloud tops, they are further divided into opaque-ice, cirrus, overlapped, and overshooting 

tops based on the results of the BT-based cirrus test, a beta-parameter-based overlap test, and a cloud-250 

emissivity-based overshooting test (Platnick et al., 2019). In addition, a new cloud type named “broken” 

is defined for cirrus pixels which are located at cloud edges (i.e., cloud-mask value equals 2). 

 A pixel will be identified as probably foggy if it is liquid-water phase and the spatial uniformity 
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(i.e., the standard deviation of 11.2-μm BTs) over a 3×3 pixels array is below 0.5 K. Meanwhile, the 11.2-

μm BT difference between satellite observations and model simulations (OMB) should be less negative 255 

than -10 (-15) K over land during daytime (nighttime) or -6 K over oceans all day. Subsequently, 

confidently foggy pixels are determined from the probably foggy ones if they have been classified as 

confidently cloudy and their spatial uniformity are below 0.3 K. 

2.3.4 Updates to the DCOMP algorithm 

Same as Zhuge et al. (2021b), the NJIAS DCOMP algorithm uses the bispectral method described 260 

by Nakajima and King (1990) in the daytime τ and Re retrievals. Three pairs of non-absorption and 

water-absorption channels at VIS, SWIR, and mid-wave IR wavelengths are employed to separately 

derive three DCOMP products (designated as DCOMP35, DCOMP36 and DCOMP37, meaning a 

combination of 0.64-μm and either 1.6- , 2.3-, or 3.9-μm channels, respectively). The NJIAS DCOMP 

algorithm utilizes parameterization schemes and retrieval procedures that are nearly consistent to those 265 

used in Zhuge et al. (2021b) except for the lookup tables (LUTs). 

 

Table 3: Grid point values of the LUT parameters. 

Parameter 
Number 

of points 
Grid point values 

Re (μm) 
16 

12 

3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 25 (liquid-water cloud) 

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 (ice cloud) 

τ 34 

0.05, 0.10, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.39, 2.87, 3.45, 4.14, 4.97, 6.0, 

7.15, 8.58, 10.30, 12.36, 14.83, 17.80, 21.36, 25.63, 30.76, 36.91, 44.30, 53.16, 

63.80, 76.56, 91.88, 110.26, 132.31, 158.78 

μ
sat

 28 

0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.7625, 0.7750, 0.7875, 0.8000, 

0.8125, 0.8250, 0.8375, 0.8500, 0.8625, 0.8750, 0.8875, 0.900, 0.9125, 0.9250, 

0.9375, 0.9500, 0.9625, 0.9750, 0.9875, 1.0 

μ
sol

 33 

0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.7625, 

0.7750, 0.7875, 0.8000, 0.8125, 0.8250, 0.8375, 0.8500, 0.8625, 0.8750, 0.8875, 

0.900, 0.9125, 0.9250, 0.9375, 0.9500, 0.9625, 0.9750, 0.9875, 1.0 

Δφ (°) 37 0:5:180 
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 270 

 

Figure 4: Variations of rc at 0.64 μm and either 1.6 (top panels), ~2.2 (middle panels), or ~3.8 μm (bottom 

panels) for Re = 3, 4, 5, 10, 15 and 25 μm (solid curve) and τ =1, 4, 6, 10, 16, 25 and 63 (dashed curve) for 

liquid-water phase (left panels) and for Re = 5, 10, 15, 25, 40 and 60 μm (solid curve) and τ =1, 4, 6, 10, 16, 25 

and 63 (dashed curve) for ice phase (right panels) from Collection-6.1 MYD06 (green) and NJIAS (blue) 275 

datasets when μ
sol

 = μ
sat

 = 0.5 and Δφ = 60°. 

 

Forward radiative transfer calculations for the LUTs were performed with the discrete ordinates 
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radiative transfer (DISORT) model implemented in libRadTran 2.0.3 (Mayer and Kylling, 2005; Emde 

et al., 2016). The atmospheric temperature and humidity profile is the U.S. Standard Atmosphere, and 280 

the absorption /scattering by air molecules or aerosols are neglected. The cloud layer is assumed to be 1 

km thick and placed at an altitude of 5 km above a non-reflecting surface. The bulk single-scattering 

properties of clouds are considered separately for liquid-water and ice clouds. For liquid-water clouds, 

the scattering properties of water droplets are computed from Lorenz–Mie theory, assuming a gamma 

size distribution. For ice clouds, a scattering parameterization named Baum_v36 (Heymsfield et al., 2013; 285 

Yang et al., 2013; Baum et al., 2014) with ice crystal habit of severely roughened aggregated column is 

used. The water droplet and ice crystal assumptions are identical to those in the Collection-6.1 MYD06 

algorithm. The final LUTs of cloud emissivity, reflectance, and transmissions as well as the spherical 

albedo are functions of Re, τ, the cosine of satellite zenith angle ( sat ), the cosine of solar zenith angle 

( sol ), and the relative azimuth angle (  ). Table 3 summarizes the grid point values for Re, τ, sat , 290 

sol  and   used in constructing the LUTs. Figure 4 shows visualizations of cloud reflectance ( cr ) 

at 0.64 μm and either 1.6, ~2.2, or ~3.8 μm for liquid-water and ice clouds for an arbitrarily chosen solar-

viewing geometry. Green and blue curves are the LUTs used by Collection-6.1 MYD06 and NJIAS 

algorithms, respectively. Relative to the pairs of 0.64–1.6-μm channels and 0.64–~3.8-μm channels, the 

pair of 0.64–~2.2-μm channels has a noticeable difference in the LUTs of cr  between MYD06 and 295 

NJIAS algorithms. The 2.3-μm cr  values of the NJIAS LUTs are systematically larger than the 2.1-

μm cr values of the MYD06 LUTs when the τ, Re, and solar-viewing geometry are same. This 

characteristic is especially significant for ice clouds. 

Once τ and Re are determined, these two retrievals are used subsequently to calculate the total mass 

of water in a cloud column, known as liquid water path (LWP) and ice water path (IWP) for liquid-water 300 

and ice clouds, respectively. Assuming a vertical homogeneity of cloud, LWP (IWP) is derived using 

4

3
e

e

R
Q


  (Stephens, 1978; Khanal and Wang, 2018), where   is the density of liquid water (ice), 

and eQ  is the liquid water (ice) extinction efficiency. Meanwhile, the CTP and τ retrievals are applied 

for determining cloud types based on the International Satellite Cloud Climatology Project (ISCCP) rule 
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(Rossow and Schiffer, 1999). 305 

2.4 Cloud products 

Currently, the NJIAS HCFD has three cloud products, namely FLDK (for Segments 2–4 of the full 

disk imagery), 0.04Deg (on regular latitude-longitude grids at 0.04° × 0.04° resolution) and TyWNP (for 

WNP Typhoons). The 0.04Deg and TyWNP products can be directly derived from the FLDK product via 

projection conversion using the nearest-neighbor approach. For the TyWNP product, typhoon center 310 

positions are determined by the tropical-cyclone-red-green-blue (TC-RGB) composites, as introduced in 

Chen et al. (2022). Table 4 lists the coverage and resolution in space and time for two products. A finer 

resolution would retain more clouds of ~2 km size. Users can select any of the three cloud products 

appropriate for their purpose. 

 315 

Table 4: Brief descriptions of three products of the NJIAS HCFD. 

Product 

Name 

Variables 

Included 
Domain Coverage Time Period 

Spatial 

Resolution Time Interval 

FLDK all variables 

Segments 2–4 of the 

Himawari-8/9 full 

disk imagery 

April 2016–

December 2022 

2 km at the sub-

satellite point 

30 minutes 

0.04Deg 

all variables 

except 

ShadowMask, 

HazeMask, 

FireMask, SST 

50° N–10° N, 90° 

E–170° W 

April 2016–

December 2022 
0.04° 

TyWNP 

all variables 

except 

ShadowMask, 

SnowMask, 

DustMask, 

HazeMask, 

FireMask, SST 

a 20° ×20° 

longitude-latitude 

grid box 

surrounding the 

typhoon center 

typhoon seasons 

from 2016 to 2022 
0.02° 

 

3 Evaluation of the NJIAS HCFD 

 In this section, results obtained by the NJIAS cloud mask and cloud-top property algorithms are 

objectively evaluated at the nominal 2-km pixel level against the CALIOP 1-km cloud layer products of 320 

version 4.20 (Avery et al., 2020) in the whole year of 2017. Because the CALIOP and AHI operate under 

different sampling schemes, only those AHI pixels within which the CALIOP cloud identification results 

are in complete agreement are retained. The temporal difference between CALIOP and AHI observations 

is limited to ±5 min. Also evaluated against CALIOP data are the Collection-6.1 MYD06 and JAXA 
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cloud products to make a comparison on the performance of NJIAS HCFD with these two existing cloud 325 

feature datasets. The values at the MYD06/JAXA grids that are spatiotemporally nearest to the CALIOP 

columns are used. 

Collection-6.1 MYD06 dataset is employed to evaluate the NJIAS DCOMP retrievals. Similar to 

the collocation between CALIOP and AHI pixels, all of the MODIS pixels within one AHI pixel shall 

have a consistent phase, otherwise this MODIS-AHI data pair will not be included. For those pairs that 330 

are retained, the retrievals of MODIS pixels within each matched AHI pixel are averaged first before the 

comparison with the AHI retrievals. 

3.1 Cloud mask results 

The CALIOP columns with zero cloud layer are assigned to clear-sky category, and those with at 

least one cloud layer are assigned to cloudy category. The CALIOP columns are then aggregated to 335 

completely cloudy, completely clear-sky, and sub-pixel cloudy cases at nominal 2 km scales. Figure 5 

shows the proportions of confidently clear, probably clear, probably cloudy and confidently cloudy pixels 

in MYD06, NJIAS and JAXA cloud-mask results for three types of CALIOP cases. It is noted that the 

JAXA product has the largest proportions of probably cloudy and the smallest proportions of probably 

clear pixels among three cloud products. Overall, the MYD06 classifications are in best agreement with 340 

those of CALIOP with higher confidence during daytime. The NJIAS classification results are similar to 

the MODIS results with fractional differences of less than 10%. Three products (MYD06, NJIAS and 

JAXA) have a probability of 25–35% to classify sub-pixel cloudy cases as confidently clear or probably 

clear over oceans or during daytime. This probability increases to approximately 47% for the NJIAS 

product over continental areas at night. 345 
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Figure 5: Proportions of confidently clear, probably clear, probably cloudy, and confidently cloudy pixels in 

MYD06, NJIAS and JAXA cloud-mask results for CALIOP-observed (a) completely cloudy, (b) completely 

clear-sky, and (c) sub-pixel cloudy cases in 2017. 350 

 

To quantitatively evaluate the cloud-mask retrievals, the following four indices are introduced: 

probability of detection (POD), false-alarm rate (FAR), Heike skill score (HSS), and the equitable threat 

score (ETS). The definitions of the POD, FAR, HSS and ETS were described in Zhuge et al. (2011). 

Table 5 lists the scores of POD, FAR, HSS and ETS for cloud-mask retrievals of three datasets. Here, 355 

confidently cloudy and probably cloudy are grouped as “cloudy” while confidently clear and probably 

clear are grouped as “clear”. It can be seen that MYD06 and JAXA datasets always have a POD greater 

than 92%, regardless over oceans or land. The MYD06 also has a low FAR for all scenarios except during 
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nighttime over land. In contrast, the JAXA dataset has high FARs of more than 12% over oceans and 

land. The PODs and FARs for the NJIAS algorithm are ~88% and ~6%, respectively. Consequently, the 360 

NJIAS HCFD achieves an HSS of 0.75 and an ETS of 0.60 during nighttime over land, surpassing the 

MYD06 dataset which has an HSS of 0.73 and an ETS of 0.57. NJIAS HCFD and MYD06 datasets have 

same skill scores of HSS (0.72) and ETS (0.56) during nighttime over oceans. In daytime scenarios, the 

NJIAS HCFD outperforms the JAXA dataset, but not exceeding the MYD06. Note that the 

aforementioned statistical analysis excluded all cases with sub-pixel cloudiness or very thin cirrus 365 

(Karlsson et al., 2018; 2023). If the sub-pixel cloudy cases were misinterpreted as either completely clear-

sky or completely cloudy, the estimation of all the scores would be biased unpredictably. 

 

Table 5: Sample sizes and POD, FAR, HSS and ETS sores for cloud-mask retrievals of MYD06, NJIAS and 

JAXA datasets over oceans and land and during daytime and nighttime when validated with CALIOP 370 

products in the whole year of 2017. The highest skill scores for each scenario are shown in boldface. 

 Sample Size POD FAR HSS ETS 

Ocean 

Day 

MYD06 482527 94.18% 6.28% 0.822 0.697 

NJIAS 482527 88.34% 5.89% 0.755 0.606 

JAXA 482527 96.48% 15.86% 0.658 0.490 

Ocean 

Night 

MYD06 451539 92.03% 8.04% 0.721 0.563 

NJIAS 451539 88.18% 5.39% 0.721 0.563 

Land 

Day 

MYD06 128990 93.12% 8.10% 0.772 0.629 

NJIAS 128990 89.19% 6.06% 0.758 0.610 

JAXA 128990 95.30% 12.81% 0.706 0.546 

Land 

Night 

MYD06 158640 94.33% 13.81% 0.729 0.574 

NJIAS 158640 85.05% 5.66% 0.752 0.602 

 

3.2 Cloud height results 

The cloud height retrievals are evaluated against the CALIOP 1-km cloud layer products. The 

CALIOP CTH is interpreted as the top altitude of the uppermost CALIOP cloud layer. The CALIOP CTP 375 

and CTT are from the Modern Era-Retrospective analysis for Research and Applications, Version 2 

(MERRA-2) and are interpolated to the CALIOP CTH altitude (Avery et al., 2020). Figure 6 shows the 

joint probability histograms of three cloud height parameters (CTT, CTH and CTP) between CALIOP 

and MYD06 and between CALIOP and NJIAS datasets in 2017. To facilitate comparisons, CTH is 



20 
 

expressed in kilometers above sea level. Overall, the NJIAS cloud height retrieval algorithm outperforms 380 

its MYD06 counterpart. The correlation coefficients (CCs) of CTH, CTP and CTT between NJIAS and 

CALIOP products are 0.84, 0.84 and 0.80, respectively—each surpassing the corresponding values 

obtained from MYD06 retrievals. It is noteworthy that the NJIAS retrievals tend to slightly underestimate 

CTH and overestimate both CTP and CTT for high clouds, possibly due to the fact that only a single 

channel centered at 13.3 μm is allocated within the broad carbon dioxide absorption region for the AHI. 385 

Consequently, the multiplicative biases (MBs; Zhuge et al., 2021b) associated with these three cloud 

height parameters stand at 1.16, 0.91, and 0.97, respectively. Incorporating additional carbon dioxide 

absorption channels would enhance the inference of cloud-top pressure and effective cloud amount for 

high-level clouds, especially semi-transparent clouds such as cirrus (Platnick et al., 2019). The MYD06 

algorithm also comes with its limitations. There exists a significant proportion of instances in which the 390 

MYD06 algorithm mistakes mid- and high-level clouds for boundary layer clouds. The root-mean-square 

errors (RMSEs) for MYD06 CTH, CTP and CTT retrievals are 3.51 km, 196.80 hPa and 22.89 K, 

respectively, substantially larger than those reported for the NJIAS retrievals. 

The JAXA operational cloud height algorithm incorporates the IR window technique, the radiance 

rationing technique, and the IR-water vapor intercept technique, and choose one of them contingent upon 395 

the result of cloud type classifications (Mouri et al., 2016b). This conventional methodology is different 

from the maximum likelihood estimation algorithms, such as the ACHA. The JAXA dataset includes two 

cloud height parameters, CTH and CTT, which are available only in daytime. By comparing NJIAS 

daytime CTH and CTT retrievals to JAXA’s results, Figure 7 confirms the remarkable improvement in 

the accuracy of these two cloud height parameters yielded by the NJIAS. The JAXA retrievals exhibit a 400 

more obvious tendency to underestimate the CTH and overestimate the CTT of mid-to-high-level clouds 

than the NJIAS retrievals. Meanwhile, there is a poor agreement between CALIOP and JAXA CTH 

retrievals for low-level clouds, with most samples straying away from the one-to-one ratio lines. As a 

result, the RMSE values for the JAXA CTH and CTT retrievals are 3.17 km and 22.42 K, respectively, 

which are much larger than the metrics of 2.65 km and 17.90 K for the NJIAS retrievals. 405 
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Figure 6: Joint probability density histograms of CTH (km; top panels), CTP (hPa; middle panels) and CTT 

(℃; bottom panels) between CALIOP and MYD06 (left panels) and between CALIOP and NJIAS (right 

panels) datasets in 2017. Also indicated in each panel are sample size (N), correlation coefficient (CC), 410 

multiplicative bias (MB) and root-mean-square error (RMSE). Clear pixels identified by either MYD06 or 

NJIAS are excluded from the statistics. 



22 
 

 

 

Figure 7: Joint probability density histograms of CTH (km; left panels) and CTT (℃; right panels) between 415 

CALIOP and MYD06 (top panels), between CALIOP and NJIAS (middle panels), and between CALIOP and 

JAXA (bottom panels) datasets in daytimes of 2017. Clear pixels identified by MYD06, NJIAS, or JAXA are 

excluded from the statistics. Only daytime data are retained. 
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3.3 Cloud-top phase results 420 

The CALIOP cloud-top phase is defined as the CALIOP cloud phase of the uppermost cloud layer, 

which will serve as the truth in the following evaluations. The CALIOP classification currently provide 

four categories of phases, that is, liquid-water, randomly oriented-ice (ROI), horizontally oriented-ice, 

and unknown (Hu et al., 2009). The latter two categories are not considered in this study because of their 

low percentages of occurrence (less than 1.0%) (Zhuge et al., 2021a). In addition, the Collection-6 425 

MYD06 dataset provides two independent cloud-top phase retrievals. One is an IR-only results available 

all day, and the other is derived from a combination of SWIR and IR tests that runs during daytime only 

(Baum et al., 2012). 

 

 430 

Figure 8: Proportions of liquid-water (turquoise), ice (blue), and mixed/uncertain (magenta) phases identified 

by MYD06 IR-only (solid bars) and NJIAS (hatched bars) for CALIOP pixels with (a) liquid-water- and (b) 

ROI-phase cloud tops in 2017 over oceans and land. Clear pixels identified by either MYD06 or NJIAS are 

excluded from the statistics. 

 435 

Figure 8 demonstrates that the NJIAS cloud-top phase retrievals perform better than the MYD06 
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IR-only retrievals. For CALIOP liquid-water and ROI cloud tops over oceans, the PODs of NJIAS 

retrievals are 82.60% and 88.59%, respectively. These two metrics slightly decrease to 82.17% and 85.35% 

over land. Over oceans, the MYD06 IR-only and NJIAS datasets exhibit similar behavior for CALIOP 

ROI cloud-top phases. However, compared to NJIAS HCFD, the MYD06 IR-only dataset tends to 440 

classify more CALIOP liquid-water phases as ice or uncertain phases, resulting in a POD of 71.59%. 

Over land, the MYD06 IR-only dataset classifies many CALIOP cloud tops as having an uncertain phase, 

resulting in low PODs of only 66.03% and 65.63% for CALIOP liquid-water and ROI cloud tops, 

respectively. 

 445 

 

Figure 9: Proportions of liquid-water (turquoise), ice (blue), and mixed/uncertain (magenta) phases identified 

by MYD06 SWIR+IR (solid bars), NJIAS (hatched bars) and JAXA (dotted bars) for CALIOP pixels with (a) 

liquid-water- and (b) ROI-phase cloud tops in daytimes of 2017 over oceans and land. Clear pixels identified 

by MYD06, NJIAS, or JAXA are excluded from the statistics. Only daytime data are retained. 450 

 

Intercomparisons of cloud-top phase retrievals are also made among the MYD06 SWIR+IR, the 

NJIAS, and the JAXA datasets during daytime only (Fig. 9). It can be seen that NJIAS cloud-top phase 

retrievals exhibit a consistent accuracy for both day and night. Meanwhile, the MYD06 SWIR+IR 

retrievals (Fig. 9) show a significant improvement over the IR-only retrievals (Fig. 8) by supplementing 455 
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the IR tests with those from solar channels. Figure 9 also reveals a deficiency of the JAXA retrievals in 

identifying ice phases. The PODs of the JAXA dataset for CALIOP ROI phases are as low as 71.69% 

over oceans and 61.84% over land, which are significantly worse than those for CALIOP liquid-water 

phases. 

 460 

 

Figure 10: Sample size variations of cloud-top phases identified by MYD06 IR-only (plus signs connected by 

thin lines), MYD06 SWIR+IR (open circles connected by thin lines), NJIAS (thick solid curves) and JAXA 

(dashed curves) with respect to the CTT values in daytimes of June and December 2017 over (a) oceans and 

(b) land. 465 
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It is worthwhile to examine the distributions of the MYD06 IR-only, MYD06 SWIR+IR, NJIAS 

and JAXA identified cloud-top phases with respect to the CTT values (Fig. 10). The NJIAS HCFD tends 

to classify cloudy pixels with CTT above 0°C as liquid-water and those with CTT below -30°C as ice. 

When CTT is between -30°C and 0°C, the NJIAS-identified cloud-top phase could be liquid water, ice, 470 

or a mixture of both. However, there are cases where the MYD06 IR-only or the JAXA classified cloud 

tops with a CTT greater than 0°C as ice phase, revealing a limitation of these two products. Continent 

cloud tops with uncertain (liquid-water) phase are also found in the MYD06 IR-only (SWIR+IR) 

retrievals when CTT is below −40°C. Considering that in situ observations have not revealed the presence 

of a mixed or supercooled-water phase at temperatures below −40°C (Korolev et al., 2017), it is necessary 475 

to reexamine the two MYD06 cloud-top phase classifications over land. 

3.4 DCOMP results 

The NJIAS DCOMP retrievals are evaluated using the Collection-6.1 MYD06 products in June, 

July and August 2017. Note that both the NJIAS and the MYD06 have three τ retrievals. In most cases 

these three τ retrievals are nearly identical. Accordingly, the DCOMP35 τ is selected as a representative 480 

in this study. Besides, since all current bispectral-based DCOMP algorithms have large uncertainties or 

errors in the Re retrievals of thin clouds, samples with τ less than 5 are removed during the Re valuations. 

Figure 11 illustrates pixel-to-pixel comparisons of Re and τ between the MYD06 and NJIAS 

retrievals. The NJIAS Re1.6 retrievals are generally consistent with the MYD06 Re1.6 values for both 

liquid-water and ice clouds. Most samples are distributed evenly around the one-to-one ratio lines. The 485 

CC of the NJIAS Re1.6 retrievals for liquid-water (ice) clouds is 0.72 (0.85), and the corresponding MB 

and RMSE values are 1.06 (0.95) and 3.42μm (6.10μm), respectively. The NJIAS Re3.9 retrievals for 

liquid water clouds are systematically smaller than their MYD06 counterparts that has an MB of 0.85 

and a CC of 0.85. However, such an underestimation is not found in the NJIAS Re3.9 retrievals for ice 

clouds, which yielded an MB of 1.00, a CC of 0.76 and a RMSE of 6.04 μm. Overall, the NJIAS τ 490 

retrievals agree well with the MYD06 τ values for both liquid-water and ice clouds. The MB ranges from 

1.08 to 1.12, and the CC ranges from 0.73 to 0.76. 

The JAXA dataset only provides one pair of Re and τ derived using 0.64-μm and 2.3-μm channels. 

Figure 12 compares the results between the NJIAS and JAXA retrievals. Note that the sample sizes are 

less than those in Fig. 11 due to a large amount of retrieval failures in the JAXA algorithm. The NJIAS 495 
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Re2.3 retrievals in both liquid-water and ice clouds show a systematic overestimation (~2 μm) when 

MYD06 Re2.1 retrievals are regarded as the “truth”. The overestimations are likely due to a discrepancy 

in the sensor central wavelengths which will affect the reflectance observations and the DCOMP LUTs 

(Wang et al., 2018). Interestingly, the overestimations are not found in the JAXA retrievals. A detailed 

comparison of the LUTs used by the NJIAS and the JAXA is essential. The performances of τ retrievals 500 

from NJIAS and JAXA are similar in general, except for a slight overestimation of ice clouds in the 

JAXA products. 
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Figure 11: Joint probability density histograms of Re1.6 (top panels), Re3.8 [Re3.9] (middle panels), and τ 505 

(bottom panels) between MYD06 and NJIAS datasets for liquid water (left panels) and ice (right panels) 

clouds in daytimes of June, July and August 2017. 
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Figure 12: Joint probability density histograms of (a–d) Re2.1 [Re2.3] and (e–h) τ between MYD06 and NJIAS 510 

(left panels) and between MYD06 and JAXA (right panels) datasets for (a–b, e–f) liquid-water and (c–d, g–h) 

ice clouds in daytimes of June, July and August 2017. 

 

3.5 Case study 

To better illustrate the differences in cloud retrievals among three datasets, a case occurring over 515 

the WNP at 04:50 UTC on 7 June 2017 is presented (Fig. 13). At this time, the lower-right portions of 

the AHI VIS and SWIR images were contaminated by the sun glint (Fig. 13a).  

Cloud mask results in the three datasets exhibit significant discrepancies in region “A”, where 

MYD06 indicates cloudiness (Figs. 13c) while NJIAS and JAXA indicate clear conditions (Figs. 13d and 

13e). It can been inferred that the MYD06 identifies region “A” as cirrus because the cloud top phase 520 

derived by the MYD06 was ice (Fig. 13f). Besides, the JAXA product classifies some clear-sky pixels 

and a majority of cloudy pixels as probably cloudy over the sun-glint areas (Fig. 13e). This is the reason 

for JAXA dataset to have high PODs but also high FARs. 

The MYD06 misclassifies water clouds in region “B” (which appear white on the false-color image) 

as ice clouds. However, both the MYD06 and NJIAS products demonstrate good performances in 525 

multilayer cloud cases. Both datasets report an ice phase in region “C” where thin cirrus clouds were 

overlying low-level water clouds (Figs. 13f and 13g). In contrast, the JAXA product gives a liquid-water 

phase in region “C” (Fig. 13h), suggesting that the JAXA cloud-top phase algorithm requires further 

enhancement. 

The NJIAS dataset underestimates the CTH of high-level clouds by 0.5–1 km when compared to 530 

the MYD06 product. Nevertheless, the MYD06 has obvious limitations in the CTH estimations for thin 

cirrus. For example, the ice-phase clouds (i.e., cirrus) in region “A” have a CTH of less than 1 km, which 

is not reasonable. The JAXA dataset fails in the CTH retrievals over the sun-glint areas. According to the 

CALIOP observations (Fig. 13b), region “D” was covered by fogs, with a CTH of less than 1 km. 

However, the JAXA CTH values in region “D” are ~3km, higher than those reported by both MYD06 535 

and NJIAS. JAXA also tends to underestimate the CTH of multilayer clouds by ~5 km. All of the above 

reveal some shortcomings of the JAXA CTH algorithm. 
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Figure 13: A case at 04:50 UTC on 7 June 2017, illustrating the differences in cloud retrievals among three 540 

datasets. (a) AHI false-color image (red, 0.64 μm; green, 1.6 μm; blue, 11.2 μm reversed), (b) CALIOP cloud 

phase profile, as well as (c–e) cloud mask, (f–h) cloud-top phase, and (i–k) CTH (unit: km AGL) results from 

the MYD06 (left panels), NJIAS (center panels) and JAXA (right panels). The red line in (a) and (c–k) 

indicates the CALIOP track. 
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4 Application Examples 545 

4.1 Cloud climatology in southwestern China 

 The climate in southwestern China is controlled by the East Asian and South Asian monsoons, in 

combination with the complex terrain. During the cold season (November–April), a quasi-stationary front 

frequently occurs over the Yunnan–Guizhou Plateau (Cai et al., 2022), resulting in a sharp contrast of 

weather conditions on its two sides: cloudy or rainy sky in Guizhou province (103°–109° E, 24°–29° N) 550 

but clear sky in Yunnan province (97°–106° E, 21°–29° N). Meanwhile, the moist environment and calm 

winds provide favorable conditions for the frequent foggy weather over the Sichuan Basin (103°–108° 

E, 28°–32° N).  

Figure 14 presents a simple analysis of the cloud climatology over southwestern China based on the 

cloud products in the cold seasons of years 2016–2020. Three daytime variables including cloud mask, 555 

CTH and τ are employed. The MODIS/Aqua provides daytime observations at most once per day, at 

~13:30 local solar time. Therefore, results from the MYD06 are for reference only. It can be seen that the 

NJIAS HCFD provides a reasonable description of the spatial distribution of cloud covers over 

southwestern China in the cold season. The cloud occurrence frequencies are ~30% over Yunnan and 

~80% over Guizhou. However, the JAXA dataset presents a weaker contrast of cloud occurrence 560 

frequencies on the two sides of the quasi-stationary front. The cloud occurrence frequencies are as high 

as ~50% over Yunnan, which is only 30% less than those over Guizhou. Moreover, the JAXA returns a 

factitious high-frequency of greater than 90% of cloud occurrences in the eastern part of the Tibetan 

Plateau (95°–103° E, 26°–35° N), which is likely a result from mislabeling glacier or snow-covered areas 

as clouds (figures omitted). The spatial distributions of averaged CTH also exhibit large differences 565 

between the NJIAS and JAXA datasets. The JAXA tends to underestimate the CTH, especially in the 

areas where cloud covers are obviously overestimated. For the spatial pattern of the averaged τ, there is 

a distinct regional difference between the eastern and western parts of southwestern China. Thick clouds 

often occur over the eastern part of southwestern China while thin clouds often occur over the western 

part, which are revealed by both the NJIAS and JAXA datasets. Nonetheless, the thick (thin) clouds tend 570 

to have a greater (smaller) τ in the JAXA dataset than those in NJIAS dataset.  
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Figure 14: Spatial distributions of (a–c) cloud occurrence frequency (unit: %), (d–f) averaged CTH (unit: km 

AGL) and (g–i) τ (unitless) within 0.05°×0.05° grid boxes over southwestern China using 5-yr boreal cold-575 

season cloud products of MYD06 (left panels), NJIAS (center panels), and JAXA (right panels). Only daytime 

data are retained. 

 

4.2 Cloud and precipitation features of landfalling typhoons 

The NJIAS HCFD–TyWNP provides a comprehensive description of cloud macro- and micro-580 

physical characteristics within a 20° × 20° longitude-latitude grid box surrounding the center of WNP 

typhoons. This product is useful for understanding cloud and precipitation features of typhoons. Figure 

15 illustrates the utility of NJIAS HCFD–TyWNP for analyzing the intensity of typhoon rainfall in In-

Fa (2021) and Hagupit (2020). The typhoon In-Fa (202106) brought record-breaking hourly rainfall to 

Henan Province on 21 July 2021 when it was still positioned offshore (Wei et al., 2023). In-Fa made its 585 

first landfall at 04:30 UTC on 25 July on Zhoushan Islands at the northern coast of Zhejiang Province, 
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with a minimum central pressure of 970 hPa according to the best-track records (Lu et al., 2021). Prior 

to its first landfall in Zhejiang, the central dense overcast (CDO) of In-Fa gradually disintegrated and the 

convection weakened. The eastern half of CDO was characterized by extensive cumulonimbus clouds 

with a CTH of 14 km. Due to land effects, the western half of CDO was dominated by liquid-water clouds, 590 

with a significantly low CTH and very weak vertical motion. As a result, within 24 hours before and after 

In-Fa made the first landfall, most areas of Zhejiang province experienced a stable stratiform 

precipitation. The rain rates measured by rain gauges were generally weak, mainly 5–20 mm h-1, and the 

local maximum rain rate was only 49.0 mm h-1. The rain rate at the landing site was only 29 mm h-1. In 

contrast, typhoon Hagupit (202004) made its landfall at 19:30 UTC on 3 August 2020 in southeastern 595 

Zhejiang, with a minimum central pressure of 965 hPa, similar to the intensity of In-Fa (202106) making 

landfall. However, during the landfall of Hagupit, the CDO distribution was complete and compact. As 

a result, rainstorms were produced along the track of Hagupit. The maximum rain rate measured by rain 

gauges in Zhejiang during the 24 hours before and after Hagupit’s landfalling time was 98.7 mm h-1. 

 600 
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Figure 15: (a–b) AHI TC-RGB composite images, as outlined in Chen et al. (2022), featuring two modes with 

distinct color representations: (a) for the day mode (red, 0.64 μm; green, 0.64 μm; blue, 11.2 μm reversed), 
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cirrus appears blue, convective clouds appear white, and low clouds appear yellow; and (b) for the night mode 

(red, 12.3 μm -10.4 μm; green, 10.4 μm - 3.9 μm; blue, 11.2 μm reversed), cirrus appears blue, low clouds 605 

appear bright green, and convective clouds appear dark violet, (c–d) cloud types including clear (clr), broken 

(brkn), warm-water (wtr), supercooled-water (scwt), mixed (mix), opaque-ice (op_ice), cirrus (ci), overlapped 

(ovlp), and overshooting (ovsht), and (e–f) CTH (unit: km AGL) at the landfalling time tlf , as well as (g–h) 

maximum gauge rain rate within the tlf ±24 h time window (unit: mm h-1) for Typhoons In-Fa (202106) (left 

panels) and Hagupit (202004) (right panels). The thick lines denote the boundaries of Zhejiang province. The 610 

red curve denotes the typhoon track at 3-h interval during the tlf ±24 h time window. 

5 Data availability 

The NJIAS HCFD described in this article was released to the general public. Since the Science 

Data Bank accepts up to 1 TB per data publication, the NJIAS HCFD–0.04Deg was divided into four 

parts and published at https://doi.org/10.57760/sciencedb.09950 (Zhuge, 2023a), 615 

https://doi.org/10.57760/sciencedb.09953 (Zhuge, 2023b), https://doi.org/10.57760/sciencedb.09954 

(Zhuge, 2023c), and https://doi.org/10.57760/sciencedb.10158 (Zhuge, 2023d). The NJIAS HCFD–

TyWNP is published at https://doi.org/10.57760/sciencedb.09945 (Zhuge, 2023e). 

6 Summary and conclusions 

To supplement the JAXA Himawari-8/9 operational cloud products, which are daytime only, a 620 

dataset named the NJIAS HCFD was constructed. The NJIAS HCFD provides 30 variables (e.g., cloud 

mask, cloud-top phase, CTH, τ and Re, as well as snow, dust and haze masks) and covers a vast majority 

of the East Asia and WNP regions over the 7 yr period from April 2016 to December 2022. In this study, 

the NJIAS HCFD data quality has been evaluated against the CALIOP 1-km cloud layer product and the 

Collection-6.1 MYD06 dataset. The evaluation results are summarized as follows. 625 

1) The POD and FAR of the NJIAS HCFD for cloud detections are ~88% and ~6%, respectively. 

The NJIAS HCFD gives higher skill scores than the MYD06 during nighttime. For daytime scenario, the 

NJIAS HCFD lags behind the MYD06, but outperforms JAXA dataset. Note that in the statistical analysis, 

CALIOP cases with sub-pixel cloudiness or very thin cirrus (Karlsson et al., 2018; 2023) have been 

excluded. 630 
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2) The three cloud height parameters (CTT, CTH and CTP) derived from the NJIAS HCFD show 

better agreement with the CALIOP data than those obtained from the MYD06. The NJIAS retrievals tend 

to slightly underestimate CTH and overestimate both CTP and CTT for high clouds. The JAXA product 

has a more pronounced tendency to underestimate the CTH and overestimate the CTT of mid-to-high-

level clouds. 635 

3) The PODs of the NJIAS phase determinations for the CALIOP liquid-water and ROI cloud tops 

are 82.60% (82.17%) and 88.59% (85.35) over oceans (land), respectively. Problems are found for the 

MYD06 and JAXA retrievals, such as misclassifying pixels with a CTT greater than 0°C as ice phase 

over ocean, and misclassifying pixels with a CTT below -40°C as non-ice phase over land. 

4) Overall, the NJIAS DCOMP retrievals have high correlations with the Collection-6.1 MYD06 640 

results, with CC ranging from 0.722 to 0.853. The JAXA dataset only provides Re values retrieved from 

the AHI 2.3-μm channel. However, the overestimation in the NJIAS Re2.3 retrieval is not found in the 

JAXA retrievals. 

The NJIAS HCFD is subject to uncertainties. For example, the NCEP FNL analysis with a 6-h 

temporal resolution, although having been interpolated to align with AHI observation times, are 645 

insufficient for capturing the rapid changes in land surface temperatures observed in certain regions and 

during specific times of the day, such as early morning hours. The accuracy of the fog and snow masks, 

which heavily depend on land surface temperature observations, could be compromised due to an 

inability to imprecisely represent diurnal temperature variations. Furthermore, given the systematic 

overestimation found in the NJIAS Re2.3 retrieval, an in-depth inter-sensor radiometric analysis is crucial. 650 

A radiometric adjustment factor, which excludes the effect of central wavelength shift, can be employed 

for aligning AHI’s relative radiometric calibration more closely with that of the MODIS. The quantitative 

assessment of the uncertainties associated with the NJIAS HCFD will be the focus of future 

investigations. 

Despite the issues addressed above, it is anticipated that the NJIAS HCFD will play an important 655 

role in monitoring the evolutions of convection and weather systems, studying aerosol-cloud-

precipitation-climate interactions, and evaluating cloud parameterization schemes in weather/climate 

models. Two examples presented in this article demonstrate the use of the NJIAS HCFD for climate and 

typhoon research. In the future, the time period of the dataset will be extended continuously. More cloud 

variables, such as cloud-base height and nighttime optical/microphysical parameters, may be added to 660 
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the dataset by using the deep-learning-based cloud retrieval algorithms recently developed by Wang et 

al. (2022, 2023). 
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