
Response to Reviewer:  

(Retype your comments in italic font and then present our responses to the comments) 

 

The submitted manuscript presents HiQ-LAI, a reprocessed leaf area index (LAI) dataset based on the Moderate 

Resolution Imaging Spectroradiometer (MODIS) LAI product that attempts to improve spatiotemporal consistency. 

There is a need to reduce spatiotemporal noise in global LAI products, and the HiQ-LAI dataset appears to offer 

improvements in this respect, so there is obvious potential for it to be useful to the community. I was able to access 

the 5 km dataset on Zenodo (though files appeared to be in .tif format, rather than HDF as claimed on L449), as well 

as the 500 m collection in Google Earth Engine without issue. Although the dataset appears useful, I do have several 

concerns and requests for clarification. 

Response：Special thanks for your positive comments and very detailed suggestions to make the paper 

better. HDF format data has not been stored in GEE at present, and corresponding modifications have 

been made in the paper. Following the Reviewers’ comments, we have carefully revised our manuscript, 

and adequately addressed all the questions and concerns that the referees have raised. Hope this 

revised manuscript has solved all your concerns.  

 

Main concerns: 

1. Too little detail is provided about the Spatio-Temporal Information Compositing Algorithm (STICA) used to 

derive the dataset. Whilst I appreciate that STICA is described in a previous publication 

(https://doi.org/10.1109/TGRS.2023.3264280), a brief overview of how it actually works is still needed. The current 

description is very superficial, outlining only the names of each step, rather than how each step is actually achieved. 

For example, it is not clear what the Multiple Quality Assessment (MQA) information is. Does it relate to the 

‘FparLai_QC’ and ‘FparExtra_QC’ quality indicators? Likewise, how is the MQA information actually used to 

weight different observations in the ‘fusion strategy’? 

Response: Thanks for your suggestions, and we added a detailed description of the STICA in Sect 3.1: 

“Satellite remote sensing observations are often subject to uncertainties arising from climatic factors, 

sensor malfunctions, and other sources, resulting in varying levels of uncertainty for individual pixels. 

To address this issue, this approach employed multiple indicators to evaluate the uncertainty for each 

pixel (referred to as MQA hereafter). These indicators encompass the algorithm path, STD LAI, and 

Relative Time-series Stability (TSS). The algorithm path (AP) is a crucial quality index, distinguishing 

between the main and backup algorithms. The main algorithm offers superior quality and precision 

retrieval, and the weight ratio of the main algorithm and backup algorithm is determined as 6:4 in the 

previous study (Wang et al., 2023). STD LAI reflects the retrieval uncertainty. The AP and STD LAI 

are derived from the FparLai_QC and LaiStdDev layers of the original MODIS data. The third 

indicator, Relative TSS (RE-TSS), indicates the fluctuation of a time series (Zou et al., 2022). Following 

the principle of assigning a higher weight to smaller values, STD LAI and RE-TSS are incorporated 

into the retrieval with the main algorithm, resulting in the generation of a new quality classification 

indicator, MQA. Subsequently, the Inverse Distance Weighting (IDW) method is utilized on the spatial 

scale to calculate the weighted average of all eligible pixels (belonging to the same land cover type) 

within a certain spatial range of the target pixel. In this algorithm, the contribution of a pixel is 

determined not only by its spatial distance but also by its MQA value. In a word, pixels with closer 

proximity and higher MQA value make a more significant contribution to the target pixel. On the 

temporal scale, the Simple Exponential Smoothing (SES) method is employed to calculate the 

weighted average of all eligible pixels within a specific period. Pixels that are closer in time to the 



target pixel and possess higher MQA values are assigned greater weights. Utilizing spatial/temporal 

correlation is based on spatial and temporal autocorrelation, i.e., everything is related to everything 

else, but near things are more related than distant things. The final step of the algorithm is to take a 

weighted average of the original MODIS LAI and the LAI calculated using spatial/temporal 

correlation, with their respective weights quantified using an indicator (TSS) that represents the 

temporal fluctuation of the time series (Zou et al., 2022). All processes of the method are implemented 

using the GEE cloud computing platform. The reprocessed LAI dataset, namely the HiQ-LAI product, 

has been generated with the help of the powerful cloud computing capability of GEE, covering the 

period from 2000 to 2022.” 

 

2. Related to point 1, the authors should make clear what the difference is between the validation results they are 

presenting here and the validation results from the previous publication 

(https://doi.org/10.1109/TGRS.2023.3264280), which seem quite similar (e.g. Figure 6 of the previous publication 

vs. Figure 2 in this paper). How is the present study building on the previous work? Was the previous study limited 

in time and space, whereas this one is more comprehensive? It needs to be made clear to the reader. 

Response: Considering the Reviewer’s suggestion, we added a detailed description of the difference 

between the new results presented here and the validation results from the previous publication.  

“In this study, we utilized the GBOV LAI measurements from a total of 29 sites spanning from 2013 

to 2021 as our ground reference LAI (Bai et al., 2019; Brown et al., 2020). A 3 km ×  3 km square 

centered on the site location was selected as the study area (Fig. 1) so that the corresponding LAI 

product of each site was 36 (6 × 6) pixels. To enhance the credibility of the ground truth LAI, we 

filtered the ground LAI reference of these 29 sites based on the criterion that the "effective pixel" 

exceeded 90% and the input and output of land product value in the data aggregation process were 

within the specified range. This filtering process yielded a total of 818 reliable verification data points. 

Contrary to previous studies (Wang et al., 2023) that utilized only 2018 data from the GBOV site as a 

reference, this study expanded the timeline from 2013 to 2021, increased the number of sites from 24 

to 29, and raised the criterion for effective pixels from 80% to 90%. These modifications were aimed at 

enhancing the reliability of the ground LAI data. Additionally, previous research focused on 

proposing and testing algorithms mainly at the tile scale, but this study migrated the algorithm to 

GEE for generating global long-term data series. Furthermore, the scope of analysis was also 

broadened to a global spatial scale and long-term time series.” 

 

3. Clarification is required regarding the choice of nearest neighbour resampling to go from 500 m to 5 km, which 

appears unsuitable. Surely some form of aggregation (e.g. mean value downsampling) needs to be carried out first? 

Otherwise, a 5 km pixel is being assigned the value of the single 500 m pixel that is closest to its centroid. That single 

500 m pixel could be surrounded by pixels with very different LAI values, unless you are in an environment that is 

homogeneous at 5 km (which I would suggest is unheard of in terrestrial landscapes). This could be a major source 

of error, and I would strongly suggest the authors revisit this aspect. A proper aggregation should be easy to 

implement in Google Earth Engine using the ‘reduceResolution’ method (https://developers.google.com/earth-

engine/guides/resample). 

Response: Yep, we carefully considered the Reviewer’s suggestion, and we generated the 5km data 

using bicubic interpolation on the Google Earth Engine (GEE). This process involves considering 

information beyond just the nearest pixel and incorporating additional data from surrounding pixels 

to calculate new pixel values. The resulting 5km dataset has been successfully stored in GEE (includes 



one LAI layer) and is accessible via the following link 

https://code.earthengine.google.com/?asset=projects/verselab-

398313/assets/HiQ_LAI/wgs_5km_8d_Bicubic.  

 

4. The term ‘uncertainty’ is used too loosely throughout the manuscript. For example, it’s stated on L177-178 that 

‘the approach employed multiple indicators to evaluate the uncertainty for each pixel (referred to as MQA hereafter)’. 

If the MQA information is indeed based on categorical quality indicators, then it does not represent ‘uncertainty’. 

According to the International Standards Organisation’s Guide to the Expression of Uncertainty in Measurement, 

uncertainty ‘characterizes the dispersion of the values that could reasonably be attributed to the measurand’ 

(https://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461). Later in 

the manuscript, it’s suggested that according to validation with ground data, the HiQ-LAI dataset ‘reduces 

uncertainties of the raw LAI retrievals’ (L310). Again, this is improper use of the term ‘uncertainty’ – here the 

appropriate term is ‘error’ or ‘apparent error’ (which represents the difference between the reference value and the 

retrieval, see https://doi.org/10.1016/j.envsci.2015.03.018 for more details). 

Response: Thanks for your comments and we had overwritten this sentence as follows: 

“It reduces apparent error of the raw LAI retrievals and generates smoother time series LAI profiles 

that align better with expected phenological patterns.” 

 

5. In the comparison with GBOV data, it’s stated that ‘GBOV LAI measurements’ are used, but it’s unclear whether 

a correction for woody material was undertaken to go from PAI to LAI. Note that the values provided by GBOV 

represent PAI, not LAI (https://doi.org/10.1016/j.isprsjprs.2021.02.020). If no correction was carried out, the 

‘GBOV LAI’ should really be relabelled ‘GBOV PAI’, and this difference should then be considered in the discussion 

of the results. Related to the GBOV data, it’s also not clear whether upscaled maps or individual in situ reference 

measurements were used – this should be clarified. 

Response: Yep, we carefully read the 《Ground-Based Observations for Validation (GBOV) of 

Copernicus Global Land Products -Algorithm Theoretical Basis Document - Vegetation Products LP3 

(LAI), LP4 (FAPAR) and LP5 (FCOVER)》, which mentions that “For simplicity, the terms LAI and 

LAIe are used interchangeably with PAI and PAIe when referring to LP3”. We have added the relevant 

instructions in Sect 5: “Note that since in-situ measurements may be sensitive to all elements of the 

canopy, the resulting estimate should technically be called the term plant area index (Brown et al., 

2021). Insufficient ground observation data in these regions further hinders accurate uncertainty 

assessments.” 

In addition, we added a description of the use of the data in Sect 2.3.1”The Copernicus Ground-Based 

Observations for Validation (GBOV) service, which is part of the Copernicus Global Land Service 

(CGLS), is dedicated to the development and distribution of robust in situ datasets from various 

ground monitoring sites for the systematic and quantitative validation of land products (Bai et al., 

2019; Brown et al., 2020). A comprehensive GBOV reference measurement database has been 

established through quality control and raw measurements reprocessing obtained from existing in 

situ sites. This database includes canopy reflectance, surface albedo, LAI, FPAR, cover area, 5 cm soil 

moisture, and surface temperature. Currently, 29 available sites provide LAI references from 2013 to 

2022. The data from this database are freely accessible to the scientific community through the GBOV 

portal (https://gbov.acri.fr). In this study, we used the Land Products 3- leaf area index (LP3) as 

reference LAI.” 

 

https://code.earthengine.google.com/?asset=projects/verselab-398313/assets/HiQ_LAI/wgs_5km_8d_Bicubic
https://code.earthengine.google.com/?asset=projects/verselab-398313/assets/HiQ_LAI/wgs_5km_8d_Bicubic


6. The current ground-based validation is rather simple, and more information on the improvement of the HiQ-LAI 

dataset could be provided by reporting the validation statistics over all sites, but split by LAI magnitude, season, 

and biome, so we could clearly see when and where the improvements are. This would help back up the existing 

discussion. 

Response: Thanks for your comments and considering the Reviewer’s suggestion, we added two 

figures (Figure 3 and Figure 4) to explore the accuracy comparison between two products and GBOV 

LAI under different vegetation types, Scatter plot distribution comparison MODIS LAI (green) and 

HiQ-LAI (black) with GBOV LAI reference under different seasons in this study.  

Comparing the LAI difference distribution among various vegetation types (Fig. 3) revealed that HiQ-

LAI exhibited a tighter concentration around the zero value, resulting in decreased RMSE across most 

categories, except for the third biome type (Grasses & Shrubs). Mixed savannas and forests emerged 

as the vegetation types with the widest MODIS LAI difference range. The enhanced HiQ-LAI notably 

narrowed this distribution range, although the median and mean deviated further from zero. Notably, 

the two biome types exhibiting the most conspicuous changes in difference distribution were pure 

forest and mixed crops and savannas. The verification analysis (Fig. 4), comparing both products 

against GBOV LAI references across different seasons, demonstrated that HiQ-LAI had superior 

performance over MODIS LAI throughout all four seasons and exhibited outperformance with the 

ground references. Analyzing the LAI density distribution revealed that MODIS LAI (green) skewed 

towards higher values on the right side compared to HiQ-LAI (black). This indicated that MODIS LAI 

predominantly occupied high-value areas. Furthermore, the RMSE and RRMSE of HiQ-LAI are 

always smaller than that of MODIS LAI. 

 

Figure 3. Accuracy comparison between two products and GBOV LAI under different vegetation types. The 

numbers at the top represent the RMSE between the two products and the GBOV LAI reference, respectively.  

 



 
Figure 4. Scatter plot distribution comparison MODIS LAI (green) and HiQ-LAI (black) with GBOV LAI 

reference under different seasons. 

 

7. In the introduction, the need for the HiQ-LAI dataset could be presented more clearly. Whilst I agree that the 

MODIS LAI product can be subject to noise, the claim needs to be backed up with specific examples and references 

to previous studies that have demonstrated this (for example https://doi.org/10.3390/rs12061017 and 

https://doi.org/10.1016/j.rse.2020.111935 demonstrate noisier temporal profiles from MODIS LAI when compared 

to the Copernicus Global Land Service LAI product from PROBA-V). Likewise, it’s suggested that the noise in the 

MODIS LAI product leads to ‘limitations on its practical applications’ – again some specific examples and references 

are needed here. 

Response: Thanks for your suggestions, and we added the references and specific examples as 

suggested. 

“Specifically, atmospheric conditions (e.g., cloud cover, snow, and aerosol pollution), sensor 

malfunctions, and the inherent uncertainties of the retrieval algorithm all introduce challenges, 

resulting in poor spatiotemporal consistency and high noise in MODIS LAI products (Brown et al., 

2020; Fuster et al., 2020; Yan et al., 2021). Consequently, inconsistency and excessive noise impose 

limitations on its practical applications in research involving yield estimation, crop-growth 

monitoring, terrestrial carbon monitoring, and global ecosystem dynamic simulation (Li et al., 2017; 



Xiao et al., 2009; Chen et al., 2020).” 

 

8. It’s stated several times that ‘MODIS LAI retrievals are calculated independently for each pixel and daily’ (e.g. 

L67-068, L341-342), which may be true on an internal basis. However, I understood that the C6.1 MODIS LAI 

products available to external users (i.e. MOD15A2H, MYD15A2H and MCD15A2H) are only available as 4-day 

and 8-day composites. So, some clarification (and careful wording) is needed here to avoid confusion. 

Response: Thank you for pointing this out, and we reorganized this sentence.  

“The best retrievals are then selected using the temporal compositing method, and the 4-day or 8-day 

product is generated from the daily retrievals. Therefore, MODIS LAI retrievals are calculated 

independently for each pixel and daily. Differences in adjacent observation conditions lead to 

significant uncertainty in the LAI time series.” 

 

9. The distinction between the results and discussion seemed somewhat arbitrary, since new results were shown in 

the discussion. In this case, a combined results & discussion section might make more sense. It was also a bit strange 

to have sections starting with figures. 

Response: Thanks for your suggestions, we combined the Results and Discussion section and adjusted 

the order of paragraphs and figures. 

 

Other comments: 

 

Abstract 

L19: ‘reliable validation results’ -> ‘extensive validation results’? 

Response: Thanks for your suggestion. We have replaced the ‘reliable validation results’ with 

‘extensive validation results’. 

 

L35: It would be better to avoid the term ‘significantly’ unless statistical significance has been tested for – 

‘substantially’ would be more appropriate. There are similar occurrences throughout the manuscript. 

Response: Thank you for pointing this out. We checked all the ‘significantly’ in this paper and 

corrected the incorrect ones with ‘substantially.’  

 

1. Introduction 

L48: The meaning of ‘irreplaceable characteristics’ is unclear. 

Response: Thanks for your comments, and we reorganized this sentence as follows: 

“Among the various time-series LAI products with global coverage, Moderate Resolution Imaging 

Spectroradiometer (MODIS) LAI product was among the most extensively utilized LAI datasets.” 

 

L64 and L66: What is the ‘specified thershold’? 

Response: The yellow ellipse is the uncertainty range of the 𝜒2 distribution determined according to 

the error level set in the red and near-infrared bands, and the average of all the inversion values 

corresponding to the ellipse is taken as the output (rather than only the red dot in the Figure as the 

output). When the uncertainty of the input BRFs falls within a point on the red-NIR plane and an area, 

all canopy or soil patterns are considered as the candidate solutions, and the mean LAI values of these 

solutions are used as the output values of the main algorithm.  

In order to avoid the reader's misunderstanding, we have revised this sentence： 



“When the uncertainty of the input BRFs falls within a point on the red-NIR plane and an area, all 

canopy or soil patterns are considered as the candidate solutions, and the mean LAI values of these 

solutions are used as the output values of the main algorithm.” 

 

Figure. Schematic illustration of the main algorithm (Myneni, 2020). Panel A: Distribution of vegetated 

pixels with respect to their reflectances at red and near-infrared (NIR) spectral bands from Terra 

MODIS tile h12v04. A point on the red-NIR plane and an area about it (yellow ellipse defined by a 𝝌𝟐 

distribution) are treated as the measured BRF at a given sun- sensor geometry and its uncertainty. Each 

combination of canopy/soil parameters and corresponding FPAR values for which modeled 

reflectances belong to the ellipse is an acceptable solution. Panel B: Density distribution function of 

acceptable solutions. Shown is solution density distribution function of LAI for five different pixels. 

The mean LAI and its dispersion (STD LAI) are taken as the LAI retrieval and its uncertainty. This 

technique is used to estimate mean FPAR and its dispersions (STD FPAR). 

 

L98: ‘data value-added’ -> ‘value-added data’ (here and throughout)? 

Response: Thanks for your comments, and we have replaced all phrases of ‘data value-added’ in this 

paper with ‘value-added data’. 

 

L102: A reference for Google Earth Engine might be needed here (https://doi.org/10.1016/j.rse.2017.06.031). 

Response: Thanks for your comments and we added the references as suggested. 

“We implemented the entire algorithm process using the Google Earth Engine (GEE) cloud computing 

platform (Gorelick et al., 2017) to reprocess MODIS C6.1 LAI” 

 

2. Materials 

L145: Perhaps the paragraph on BELMANIP V2.1 belongs in its own section, since it’s related to product 

intercomparison rather than validation with ground reference data. 

Response: Thanks for your suggestion. We reorganized the chapter structure to include BELMANIP 

V2.1 as a separate Section 2.4. 

 

L162: The CEOS WGCV LPV LAI good practice document should be referenced here 

(https://doi.org/10.5067/doc/ceoswgcv/lpv/lai.002). 

Response: Thanks for your comments and we added the references as suggested. 

“By the CEOS WGCV LPV LAI good practices (Fernandes et al., 2014), the ground data were upscaled 

using an empirical "transfer function" between high spatial resolution radiation data and biophysical 



measurements to appropriately account for the spatial heterogeneity of the site.” 

 

3. Methods 

L185-186: Rather than the quote, it might be clearer to just say ‘spatial and temporal autocorrelation’. 

Response: Thanks for your suggestion. We have revised it as follows: 

“Utilizing spatial/temporal correlation is based on spatial and temporal autocorrelation, i.e., 

everything is related to everything else, but near things are more related than distant things.” 

 

4. Results 

L217: ‘R2’ -> ‘R2’ (here and throughout). 

Response: Thank you for pointing this out and we apologize for this point. We checked all 

mathematical symbols and corrected the incorrect ones. 

 

Figures 2 and 3: Could the ground reference and MODIS LAI uncertainties be shown as error bars? 

Response: We added the Figure 3 of accuracy comparison between two products and GBOV LAI 

under different vegetation types. 

 

Figure 3. Accuracy comparison between two products and GBOV LAI under different vegetation types. The 

numbers at the top represent the RMSE between the two products and the GBOV LAI reference, respectively.  

Table 1: It might make more sense to report the statistics by biome, or at least show the biome on the table so the 

reader can see which sites belong to which biomes. Also, is there a reason why the bias and RRMSE are not shown 

here? What about the proportion of retrievals that were compliant with uncertainty requirements (e.g. those from 

GCOS - https://gcos.wmo.int/en/essential-climate-variables/lai/ecv-requirements or others). 

Response: Thanks for your suggestions, we added information about the biome type of site, the 

Relative RMSE (RRMSE), and Bias in Table 1.  

Table 1. Comparison of MODIS LAI and HiQ-LAI over GBOV sites 

Biome Type Site M_RMSE H_RMSE M_R2 H_R2 M_RRMSE (%) H_RRMSE (%) M_Bias H_Bias 

Grasslands 

CPER 0.44 0.40 0.21 0.22 75.90 69.32 -0.39 -0.37 

KONA 1.26 1.19 0.47 0.68 102.32 96.31 -1.20 -1.16 

MOAB --- --- --- --- --- --- --- --- 



ONAQ 0.31 0.29 0.06 0.04 95.57 90.81 -0.20 -0.19 

SRER 0.21 0.21 0.84 0.86 45.16 44.94 -0.11 -0.05 

STER --- --- --- --- --- --- --- --- 

WOOD 1.29 1.19 0.55 0.66 110.19 102.07 -1.24 -1.15 

Forests 

HARV 0.82 0.53 0.72 0.83 19.37 12.41 -0.24 -0.15 

TALL 1.29 1.14 0.77 0.81 38.72 34.10 -1.08 -0.96 

TUMB 1.33 1.31 0.94 0.95 77.58 76.23 -1.19 -1.19 

Grasses  

& Shrubs 

JORN 0.06 0.16 1.00 1.00 14.95 35.91 -0.03 0.01 

VASN --- --- --- --- --- --- --- --- 

Crops  

& Savannas 

BLAN 0.53 0.34 0.41 0.71 36.72 23.76 -0.44 -0.31 

LAJA 0.32 0.17 0.99 0.20 25.31 13.42 -0.24 -0.13 

Grasses  

& Savannas 

GUAN 0.72 0.49 0.36 0.43 22.23 15.13 -0.59 -0.33 

JERC 0.72 0.80 0.70 0.81 24.69 27.42 0.61 0.76 

LITC 0.85 0.68 0.58 0.66 149.71 120.21 -0.83 -0.66 

NIWO 0.49 0.31 0.68 0.64 66.89 42.19 -0.47 -0.30 

Savannas  

& Forests 

BART 0.75 0.46 0.80 0.89 19.60 11.87 -0.14 0.06 

DELA 1.16 1.10 0.05 0.03 26.67 25.17 0.42 0.91 

DSNY 0.76 0.89 0.75 0.86 30.34 35.54 0.75 0.89 

HAIN 1.11 0.45 0.50 0.88 24.83 10.16 0.16 0.21 

ORNL 0.73 0.68 0.44 0.55 18.50 17.05 -0.02 0.39 

OSBS 0.45 0.42 0.85 0.74 18.44 17.24 0.20 0.30 

SCBI 1.05 0.81 0.52 0.78 23.00 17.67 0.41 0.54 

SERC 0.84 1.38 0.83 0.80 18.85 30.92 0.75 1.31 

STEI 0.75 0.65 0.54 0.67 18.17 15.81 -0.20 0.42 

UNDE 0.42 0.28 0.03 0.47 9.50 6.40 0.07 0.14 

WOMB --- --- --- --- --- --- --- --- 

 

L264-266: References needed here? 

Response: Thanks for your comments and we added the references as suggested.  

“These regions are affected by the long-term influence of large cloud cover, high concentration of 

aerosol and saturation of Red-NIR, resulting in limited availability of high-quality observation data 



and poor accuracy in LAI retrieval (Xu et al., 2018; Yan et al., 2016).” 

 

5. Discussion 

L305: ‘unusually high noise’ – unusual compared to what? 

Response: Thanks for your comments, and we have revised it as follows:  

“When affected by atmospheric conditions, sensor malfunctions, and retrieval algorithm uncertainties, 

MODIS LAI experiences poor spatiotemporal consistency and accompanies increased noise level.” 

 

L325: Rather than being about ‘the dense vegetation period of summer’, I suspect this is more related to your next 

point – the high LAI is mostly found in tropical regions where there is greater cloud cover and aerosol load. 

Response: Thanks for your comments, and we have revised it as follows:  

“Ground verification also reveals a consistent pattern between low MQA values and high LAI 

retrievals. Regions with high LAI values are mainly observed in tropical regions where there is greater 

cloud cover and aerosol load, which is prone to signal saturation.” 

 

L326: Whilst I know what is meant by ‘pixel quality is assessed based on the algorithm path’ (i.e. main vs. back-up 

algorithm), it might not be clear to readers who are less familiar with the ins and outs of MODIS LAI. It would also 

be helpful to explain how this is assessed (I am assuming you are assigning a higher quality to the main algorithm 

and a lower one to the backup algorithm, but this is not explicitly mentioned). 

Response: Thank you for pointing this out, and we added the detail description in Sect 3.1.  

“To address this issue, this approach employed multiple indicators to evaluate the uncertainty for 

each pixel (referred to as MQA hereafter). These indicators encompass the algorithm path, STD LAI, 

and Relative Time-series Stability (TSS). The algorithm path (AP) is a crucial quality index, 

distinguishing between the main and backup algorithms. The main algorithm offers superior quality 

and precision retrieval, and the weight ratio of the main algorithm and backup algorithm is 

determined as 6:4 in the previous study (Wang et al., 2023). STD LAI reflects the retrieval uncertainty. 

The AP and STD LAI are derived from the FparLai_QC and LaiStdDev layers of the original MODIS 

data. The third indicator, Relative TSS (RE-TSS), indicates the fluctuation of a time series (Zou et al., 

2022). Following the principle of assigning a higher weight to smaller values, STD LAI and RE-TSS 

are incorporated into the retrieval with the main algorithm, resulting in the generation of a new quality 

classification indicator, MQA.” 

 

L336: ‘Equator’ -> ‘Equatorial’ (here and throughout)? 

Response: Thanks for your comments, and we have replaced word of ‘Equator’’ in this paper with 

‘Equatorial’’.  
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