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8 

Abstract. Grazing activities constitute the paramount challenge to grassland conservation over the 9 

Qinghai-Tibet Plateau (QTP), underscoring the urgency for obtaining detailed extent, patterns, and 10 

trends of grazing information to access efficient grassland management and sustainable development. 11 

Here, to inform these issues, we provided the first annual Gridded Dataset of Grazing Intensity maps 12 

(GDGI) with a resolution of 100 meters from 1990 to 2020 for the QTP. Five most commonly used 13 

machine learning algorithms were leveraged to develop livestock spatialization model, which spatially 14 

disaggregate the livestock census data at the county level into a detailed 100 m× 100 m grid, based on 15 

seven key predictors from terrain, climate, land cover and socioeconomic factors. Among these 16 

algorithms, the extreme trees (ET) model performed the best in representing the complex nonlinear 17 

relationship between various environmental factors and livestock intensity, with an average absolute 18 

error of just 0.081 SU/hm2, a rate outperforming the other models by 21.58%~414.60%. By using the 19 

ET model, we further generated the GDGI dataset for the QTP to reveal the spatio-temporal 20 

heterogeneity and variation in grazing intensities. The GDGI indicates grazing intensity decreased from 21 

1990 to 2001 period, and fluctuated thereafter. Encouragingly, comparing with other open-access 22 

datasets for grazing distribution on the QTP, the GDGI has the highest accuracy, with the determinant 23 

coefficient (R2) exceed 0.8. Given its high resolution, recentness and robustness, we believe that the 24 

GDGI can significantly enhance understanding of the substantial threats to grasslands emanating from 25 

overgrazing activities. Furthermore, the GDGI product holds considerable potential as a foundational 26 

source for research, facilitating rational utilization of grasslands, refined environmental impact 27 

assessments, and the sustainable development of animal husbandry. The GDGI product developed in 28 

this study is available at https://figshare.com/s/ad2bbc7117a56d4fd88d (Zhou et al., 2023). 29 
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1 Introduction 40 

Livestock is a crucial contributor to global food systems through the provision of essential animal 41 

proteins and fats, and plays a significant role in supporting human survival and socio-economic 42 

development (Gilbert et al., 2018; Godfray et al., 2018; Humpenöder et al., 2022; Kumar et al., 2022). 43 

However, the escalating increase in human demand for meat and dairy products over recent decades has 44 

triggered a livestock boom, which in turn has increasingly threatened grassland ecosystems and placed 45 

a heavy burden on the environment through overgrazing and land-use change (Tabassum et al. 2016, 46 

Wei et al. 2022, Minoofar et al. 2023). It is estimated that up to 300 million hectares of land are used 47 

globally for grazing and cultivating fodder crops (Tabassum et al. 2016). Grazing activities could alter 48 

vegetation phenology and community structure (Dong et al., 2020), and trigger deforestation 49 

(García-Ruiz et al., 2020), grassland degradation (Sun et al., 2020), soil erosion (Shakoor et al., 2021), 50 

and associated direct releases in greenhouse gas that lead to climate change feedback (Godfray et al., 51 

2018; Chang et al., 2021). Additionally, livestock are responsible for large-scale dispersion of pathogens, 52 

organic matter, and residual medications into soil and groundwater, thereby contaminating the 53 

environment (Tabassum et al., 2016; Hu et al., 2017; Muloi et al., 2022). Consequently, more and more 54 

scholars have called attention to provide reliable contemporary dataset to illustrate the spatio-temporal 55 

heterogeneity and variation of livestock (Fetzel et al., 2017; Zhang et al., 2018; Li et al., 2021).  56 

One of the major challenges in monitoring grazing activity at regional or even larger scale, is the 57 

determination of the livestock distribution pattern. Despite the importance of geographical grazing 58 

information, high spatio-temproal grazing dataset remain unavailable, posing the most critical challenge 59 

to grassland management, particularly for vulnerable grassland ecosystems in fragile regions grappling 60 

with economic and sustainable development contradictions (Miao et al., 2020; Pozo et al., 2021; He et al., 61 

2022; Meng et al., 2023). In the early 2000s, the Food and Agriculture Organization of the United 62 

Nations (FAO) launched the Gridded Livestock of the World (GLW) project to facilitate a detailed 63 

evaluation of livestock production, aiming to provide pixel-scale livestock densities instead of traditional 64 

administrative unit benchmarks (Nicolas et al., 2016). Consequently, the world’s inaugural dataset of 65 

livestock spatialization map (GLW1) was released in 2007, providing the first globally standardized 66 

livestock density distribution map at a spatial resolution of 0.05 decimal degrees (≈5 km at the equator) 67 

for 2002. It was not until 2014 that an updated GLW2 map with a 1 km resolution for 2006 was 68 

released, by using a stratified regression approach, superior spatial resolution predictor variables, and 69 

more detailed livestock census data (Robinson et al., 2014). Furthermore, an evolutionary step in 70 

machine learning technology saw Gilbert et al. (2018) using random forest algorithms to forge a global 71 

livestock distribution map with a 10-km resolution for 2010 (GLW3), succeeding traditional multivariate 72 

regression methods and surpassing the precision of previous GLW1 and GLW2 maps. Beyond these 73 

global mappings, several maps with different scales have also been published, including intercontinental, 74 

national, state or provincial, and local scale (Prosser et al., 2011; Van Boeckel et al., 2011; Nicolas et al., 75 

2016). However, these maps are fundamentally coarse due to constraints such as the availability of fine 76 

scale and contemporary census data, the grazing spatialization method, as well as the identification of 77 

appropriate indicators, thereby limiting their application to local or regional-scale studies (Robinson et 78 

al., 2014; Nicolas et al., 2016; Gilbert et al., 2018). Hence, there is an emergent demand for more refined 79 

grazing map products (Mulligan et al., 2020; Martinuzzi et al., 2021). 80 

An exemplar of this need can be observed in the Qinghai-Tibet Plateau (QTP), the world's most 81 

elevated pastoral region and an important grazing area in China (Zhan et al., 2023). It was possessing 82 
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abundant grassland that spans 1.5 million km2, accounting for 50.43% of China's total grassland area, 83 

with Yak and Tibetan sheep as primary grazing livestock (Cai et al., 2014; Zhan et al., 2023). Over recent 84 

decades, the QTP has undergone escalating grassland degradation, leading to many ecological and 85 

socio-economic problems, which calls for an urgent need for detailed livestock distribution dataset (Li et 86 

al., 2022a). Unfortunately, despite researchers' efforts at mapping the QTP's grazing intensity, current 87 

livestock dataset still suffer from coarse spatio-temporal resolution and modelling accuracy. Apart from 88 

the aforementioned global grazing dataset, several other maps also cover the QTP. For instance, Liu et al. 89 

(2021) generated an annual 250-m gridded carrying capacity map for 2000-2019 employing multiple 90 

linear regressions of livestock numbers, population density, NPP, and topographic features. Li et al. 91 

(2021) used machine learning algorithms to produce gridded livestock distribution data at 1 km 92 

resolution for 2000-2015 in western China at five year interval, based on county-level livestock census 93 

and 13 factors including NDVI, topography, climate, and population density (Li et al., 2021). A 94 

contribution from Meng et al. (2023) brought forth annual longer time-series grazing maps using a 95 

random forest model, integrating climate, soil, NDVI, water distance, and settlement density to 96 

decompose county-level livestock census data to a 0.083° (≈10 km at the equator) grid for 1982-2015 97 

(Meng et al., 2023). Similarly, Zhan et al. (2023) also used a random forest algorithm to combine eleven 98 

influence factors to provide a winter and summer grazing density map at a 500 m resolution for 2020.  99 

However, although these maps have provided good help in understanding grazing conditions on the 100 

QTP, there are currently still no maps that can satisfy the need for fine-scale grassland management 101 

with a long time span. In addition, the available livestock distribution maps of the QTP still need 102 

improvement in terms of modelling techniques and factor selection to obtain high-precision livestock 103 

spatialization data. For example, traditional methods like multilayer linear regression, while proven 104 

fundamental and widely applicable for livestock spatialization (Robinson et al., 2014; Ma et al., 2022), 105 

are being challenged by the development of computational science in recent years. Among them, 106 

machine learning technology is providing new opportunities towards more accurate predictions of 107 

livestock intensity (García et al., 2020). Random forest regression, for instance, is currently widely used 108 

to construct global, national as well as regional livestock spatialization dataset, and has been proved to 109 

have much better accuracy than traditional mapping techniques (Rokach, 2016; Nicolas et al., 2016; 110 

Gilbert et al., 2018; Chen et al., 2019; Dara et al., 2020; Li et al., 2021). Nevertheless, other more 111 

advanced machine learning methods with superior feature learning and more robust generalization 112 

capabilities, remains largely untapped for modelling geographic data (Ahmad et al., 2018; Heddam et al., 113 

2020; Long et al., 2022). Thus, exploring the potential application of new advanced machine learning 114 

technologies in livestock spatialization remains a critical task. Furthermore, selecting the suitable factors 115 

that influencing livestock grazing preferences is also the other critical challenge for enhancing the 116 

precision of grazing dataset (Meng et al., 2023). Livestock grazing activities are often affected by 117 

abiotic and biotic resources, including climatic and environmental factors (Waha et al., 2018), herd 118 

foraging and grazing behaviours (Garrett et al., 2018; Miao et al., 2020), and conservation-oriented 119 

policies (Li et al., 2021). For instance, regions exceeding elevations of 5600 m or slope greater than 40% 120 

are customarily unsuitable for grazing (Mack et al., 2013; Robinson et al., 2014; Chen et al., 2019). The 121 

livestock generally prefer areas abundant in water and pasture resources for foraging (Li et al., 2021). 122 

Besides, ecological conservation policies also exert substantial influence, significantly affecting grazing 123 

distribution relative to the level of conservation priority. In addition, the health status of the grassland is 124 

an important factor influencing whether livestock choose to feed or not (Li et al., 2021). Consequently, 125 

indicators related to the above aspects are often employed to gauge the spatial heterogeneity of livestock 126 
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distribution (Allred et al., 2013; Sun et al., 2021; Meng et al., 2023). Nonetheless, some most commonly 127 

used indicators like NPP or NDVI can result in misconceptions, as they may not fully characterize the 128 

grazing intensity. For example, grasslands with high NPP or NDVI are often preferred by livestock, but 129 

this doesn't necessarily correlate with grazing intensity in nature reserves due to strict policy restrictions 130 

(Veldhuis et al., 2019; Zhang et al., 2021b). Conversely, areas with sparse grassland cover may support 131 

considerable livestock numbers, despite evidence of degradation (Guo et al., 2015; Zhang et al., 2021a). 132 

Accordingly, further investigation of novel indicators is imperative to enhance the correlation between 133 

grassland and grazing intensity, thereby optimizing the integration of such influencing factors into 134 

grazing spatialization models. 135 

In summary, the QTP is in pressing need for a high spatio-temporal resolution grazing dataset to 136 

address urgent and realistic challenges. But the existing livestock dataset specific to the QTP are fraught 137 

with several insufficient, predominantly concerning rough resolution, relatively backward census data, 138 

and conventional methods in livestock spatialization. Moreover, the discrepancies in predictive 139 

indicators and modelling approaches within these dataset discourage their application in time-series 140 

analysis. Consequently, the generation of high-resolution and high-quality grazing map products has 141 

emerged as the most pressing challenge for the QTP. Here, we aim to (1) establish a new methodological 142 

framework to improve the traditional methods in generating gridded grazing dataset; (2) select the 143 

grazing spatialization model with good performance by incorporating multi-source data with advanced 144 

machine learning techniques; and (3) ultimately, provide an annual grazing intensity map with 100 m 145 

resolution spanning from 1990-2020. These maps can not only provide fundamental comprehensive 146 

dataset with finer spatio-temporal resolution to improve degraded grassland and enhance sustainability 147 

through stocking rates adjustment across the QTP, but support a better understanding of other 148 

socio-economics related studies. 149 

2 Data and methods 150 

2.1 Study area 151 

Known as the Asia's water tower and the world's third pole, the QTP is geographically situated 152 

between 73°19~104°47′ east longitude and 26°00′~39°47′ north latitude, with a total area of about 2.61 153 

million square kilometers (Figure 1). Its jurisdiction encompasses 182 counties within six provincial 154 

regions of China, including Tibet Autonomous Region, Qinghai Province, Xinjiang Uygur Autonomous 155 

Region, Gansu Province, Sichuan Province, and Yunnan Province (Meng et al., 2023). Elevation on the 156 

QTP predominantly ranges between 3000 m and 5000 m, with an average altitude exceeding 4000 m. 157 

With grasslands constituting over half of its land cover, the QTP emerges as one of the most important 158 

pastoral areas in China. Alpine steppe, alpine meadow, and temperate steppe characterize the main 159 

grassland types on the QTP (Han et al., 2019; Zhai et al., 2022; Zhu et al., 2023). The complex 160 

geographical and climatic conditions of the QTP contributes to the markedly heterogeneous grassland 161 

distribution, which correspondingly lead to the high heterogeneity in livestock distribution. Moreover, 162 

social and economic development, coupled with policy initiatives directed towards grassland restoration, 163 

have noticeably impacted the livestock numbers on the QTP over recent decades (Li et al., 2021). 164 

 165 
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 166 
Figure 1. The geographic zoning map of the Qinghai-Tibet Plateau (QTP) superposed with grassland vegetation. 167 

Boundaries for the six provinces used for statistical analysis are also shown. 168 

2.2 Data source 169 

2.2.1 Census livestock data 170 

The county-level census livestock data for the period between 1990 and 2020 were obtained from 171 

the Bureau of Statistics of each county across the QTP. The data includes the number of cattle, sheep, 172 

horse and mule, with the exception of counties in Yunnan Province, which lack data for the years from 173 

1990 to 2007, and Ganzi Prefecture in Sichuan Province, which lack data for the years from 1990 to 174 

1999, and Muli county in Sichuan Province, which lack data for the years from 1990 to 2007. In total, 175 

livestock data were available for 182 counties, and 4998 independent records were finally generated. 176 

Furthermore, the respective quantities of different livestock types are converted to Standard Sheep 177 

Units (SU), in compliance with the Chinese national regulations (Meng et al., 2023). 178 

Due to the difficulty of collecting township-level census livestock data, the township data collected 179 

in this study only involved Baching County (2010-2018) and Gaize County (2018-2020) in Tibet, and 180 

Hongyuan County in Sichuan Province (2008). The township-level census livestock data cumulatively 181 

involves 18 townships with a total of 112 records, and were only used for auxiliary validation of the 182 

simulation results. 183 

2.2.2 Factors affecting grazing activities 184 

In this study, topography, climatic, environmental and socio-economic impacts were considered as 185 

influential factors on grazing activities (Li et al., 2021; Meng et al., 2023). Accordingly, altitude, slope, 186 

distance to water source, population density, air temperature, precipitation and human-induced impacts 187 

on NPP (HNPP) was selected as indicators. Specifically, elevation is derived from the DEM dataset 188 

accessible via the Resource and Environmental Data Cloud Platform of the Chinese Academy of 189 

Sciences (https://www.gscloud.cn), which also facilitated slope calculation. Rivers and lakes were 190 
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obtained from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn), and the nearest 191 

Euclidean distance from each pixel to rivers or lakes is calculated accordingly. Meteorological elements 192 

such as daily air temperature and precipitation were downloaded from the China Meteorological Data 193 

Service Center (http://data.cma.cn). For the grid dataset that is not conditionally available, including 194 

population density, temperature, precipitation and HNPP, we detailed the creation process in the 195 

Supplementary file. All datasets utilized in this study were harmonized to consistent coordinate systems 196 

and resolutions (WGS 1984 Albers, 100 m). 197 

2.3 Methodological framework 198 

We developed a comprehensive methodological framework for mapping high-resolution grazing 199 

intensity on the QTP. Four major steps are included to predict the distribution pattern of grazing 200 

intensity: (1) identifying factors affecting grazing, (2) extracting theoretical suitable areas for livestock 201 

grazing, (3) building grazing spatialization model, and (4) filtering the model and correcting the 202 

grazing map. An exhaustive explanation of each step is provided in Figure 2. 203 

 204 

Figure 2. Flowchart of creating grazing intensity maps using different methods and source products. 205 

2.3.1 Identifying factors affecting grazing activities 206 

The spatial patterns of abiotic and biotic resources, incorporating food availability, environmental 207 

stress, and herder preference critically affect grazing activities (Meng et al., 2023). In light of this, 208 

seven influencing factors in four aspects were selected for grazing intensity mappingd (Figure 2-1).  209 
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2.3.2 Extracting theoretical suitable areas for grazing  210 

In this study, we assumed that grazing activities are confined solely to grassland. Consequently, the 211 

potential grazing areas were identified on the basis of grassland boundaries, which was extracted from 212 

the 30 m annual land cover dataset (CLCD) (Yang and Huang, 2021). Furthermore, grassland with 213 

slope over 40% and elevation higher than 5600 m respectively, were considered unsuitable for grazing 214 

and were therefore excluded from the potential grazing area in the subsequent simulations (Robinson et 215 

al., 2014; Meng et al., 2023). In addition, the grassland with population density greater than 50 216 

inhabitants hm-2 were also excluded. The remaining isolated grassland was thus categorized as 217 

theoretical feasible grazing regions. 218 

2.3.3 Building grazing spatialization model 219 

By performing regional statistics, the annual average values for each grazing influence factor were 220 

extracted from the theoretically suitable grazing areas at the county scale, and were further used as 221 

independent variables in the model construction. The dependent variable for the model was acquired by 222 

determining the livestock density within each county, followed by a logarithmic transformation of the 223 

values to normalize the distribution of the dependent variable. Consequently, a total of 4998 samples 224 

were derived from the aforementioned independent and dependent variables. Of these samples, 70% 225 

were allocated for model training, while the remaining 30% comprised the test sets, serving to validate 226 

the model's performance. Subsequently, we built grazing spatialization models using five machine 227 

learning algorithms at the county scale, including Support Vector regression (SV) (Cortes and Vapnik, 228 

1995; Lin et al., 2022), K-Nearest Neighbors (KNN) (Cover and Hart, 1967), Gradient Boosting 229 

regression (GB) (Friedman, 2001; Pan et al., 2019), Random Forest (RF) (Breiman, 2001) and Extra 230 

Trees regression (ET) (Geurts et al., 2006; Ahmad et al., 2018). Lastly, to assess the accuracy of the 231 

spatialized livestock map, the predicted livestock intensity values were juxtaposed with the livestock 232 

statistical data from each respective county. 233 

2.3.4 Correcting the grazing map 234 

We further used the optimal model to predict the geographical distribution of grazing density across 235 

the QTP. To maintain better consistency between the predicted livestock number and the census data, 236 

the estimated results were adjusted using the census livestock numbers at the county scale as a control. 237 

Consequently, the corrected and refined map is presented as the final grazing intensity map in this 238 

study. 239 

2.4 Accuracy evaluation 240 

We used three accuracy validation indexes to evaluate the performance of five machine learning 241 

algorithms, including coefficients of determination (R2), mean absolute error (MAE), and root mean 242 

square error (RMSE), by through a comparison of the predicted value with the census data. The 243 

definitions of three metrics are presented in Eq. (1)~(3). 244 

R2=1-
∑ (Ci-Pi)

2n
i=1

∑ (Ci-C̅)
2n

i=1

                                (1) 245 

MAE=
1

n
∑ |Ci-Pi| 

n
i=1                             (2) 246 
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RMSE =√
1

n
∑ (Ci-Pi)

2 n
i=1                          (3) 247 

where Ci and Pi are the census livestock data and the predicted value for county i, respectively; C̅ 248 

represents the mean census value for all county; and n gives the total number of counties. 249 

3 Results 250 

3.1 Performances of models 251 

Table 1 summarizes the efficiency of the five used machine learning models with considering all 252 

three accuracy evaluators of R2, MAE and RMSE. It can be seen that the ET model performs the best, 253 

with its R2 exceeding 0.955, and MAE (0.081 SU/hm2) and RMSE (0.164 SU/hm2) significantly lower 254 

than the value of RF, GB, KNN and SVM models. Figure 3 illustrates the correlation between the 255 

census livestock data and the livestock numbers predicted by the model for each county from 1990 to 256 

2020. It demonstrated that the ET-predicted data displayed a distribution pattern consistent with that of 257 

other models, but the scatter points of the ET model were more convergent to the 1:1 diagonal line, 258 

indicating a superior fit compared to the other models. These comparisons suggest that the ET model 259 

possesses superior robustness and can, therefore, provide stable estimations of livestock intensity on 260 

the QTP. 261 

Table 1. Comparison of mapping accuracy for five machine learning models based on the same validation datasets 262 

Models R2 MAE (SU/hm2) RMSE (SU/hm2) 

ET 0.955 0.081 0.164 

RF 0.928 0.099 0.208 

GB 0.859 0.197 0.300 

KNN 0.786 0.186 0.384 

SVM 0.380 0.419 0.750 

 263 
Figure 3. Scatterplots of model-predicted livestock numbers and census grazing data at the county scale. The red 264 

solid line and the black solid line are the fitting line and the 1:1 diagonal line, respectively. 265 
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Utilizing the ET model, we predicted the spatio-temporal distribution of grazing intensity across the 266 

QTP from 1990 to 2020 with a resolution of 100 m × 100 m. To test the accuracy of these maps, we 267 

aggregated the prediction results from the pixel level to county level and compared them with the 268 

livestock census data (Figure 4a). It is evident that the predicted livestock intensity was highly 269 

consistent with the county-level census data, displaying particular robustness in lower grazing intensity 270 

scenarios (Figure 4b). Specifically, comparing with 2.983 SU/hm2 for the mean census data, our 271 

county-level predicted datasets revealed an average grazing intensity of 3.106 SU/hm2, with data 272 

discrepancies for 76.31% (number of counties=3814) not exceeding 0.6 SU/hm2, and 91.74% (number 273 

of counties=4585) remaining under 1.0 SU/hm2. Furthermore, employing county-level livestock census 274 

data as a benchmark for quality control, we obtained the final annual gridded datasets for grazing 275 

intensity (GDGI) across the QTP spanning 31 years from 1990 to 2020. 276 

 277 

Figure 4. Accuracy of the ET-predicted grazing intensity results at spatial resolution of 100 m from 1990 to 2020. 278 

(a) comparison of the predicted value and the census data at the county scale; (b) absolute error for each county.  279 

3.2 Validation of the GDGI dataset at the county scale 280 

Figure 5a-c illustrated the highly consistency between the GDGI dataset and the county-scale 281 

census livestock data, as evidenced by R2 of 1, and MAE and RMSE of 0.006 SU/hm2 and 0.099 282 

SU/hm2, respectively. Moreover, the spatial heterogeneity within the counties was effectively reflected 283 

by the GDGI dataset, a characteristic not illustrated by the census dataset (Figure 5b, 5c). In terms of 284 

the temporal trends of grazing intensity, the GDGI dataset overall exhibited consistent trends with the 285 

livestock statistic data (Figure 5d-5f). Specifically, the census data indicated a substantial decline in 286 

grazing intensity from 1990 to 2001, followed by a period of fluctuation post-2001, which was 287 

successfully captured by the GDGI dataset (Figure 5). In addition, the GDGI dataset can also capture 288 

the spatial distribution of livestock, depicting a decrease and fluctuation in grazing intensity within 289 

western and certain central regions, whilst noting an increase in other areas (Figure 5e, 5f). 290 

 291 
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 292 

Figure 5. Validation of the GDGI maps using the census grazing data from 1990 to 2020: (a) violin plot of the 293 

census data and the predicted value; (b-c) spatial distribution in SU per pixel; (d) temporal change in SU per year; 294 

(d-f) spatial distribution of SU changes tested by sen’s slope and Mann-Kendall. 295 

Note: ESI for Extremely Significant Increase (slope>0 & p<0.01); SI for Significant Increase (slope>0 & p<0.05); 296 

NSI for Non-significant increase (slope>0 & p>0.05); ESD for Extremely Significant Decrease (slope<0 & 297 

p<0.01); SD for Significant decrease (slope<0 & p<0.05); NSD for Non-significant decrease (slope<0 & p>0.05). 298 

 299 

 300 

 301 

Table 2. Accuracy assessments for the GDGI dataset in different provinces from 1990 to 2020 302 

Province 
Number of 

counties 

Census 

(SU/hm2) 

GDGI 

(SU/hm2) 

MAE 

(SU/hm2) 

RMSE 

(SU/hm2) 
R2 

XinJiang 13 3.231 3.246 0.017 0.230 0.997 

YunNan 6 20.401 20.401 0.00 0.00 1 

GanSu 14 7.459 7.439 0.020 0.143 1 

QingHai 43 3.761 3.757 0.005 0.042 1 

SiChuan 32 2.379 2.383 0.004 0.094 0.992 

Tibet 74 1.225 1.223 0.010 0.025 0.993 

QTP 182 2.983 2.981 0.006 0.099 1 

Note: AE represents absolute error 303 
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A further comparison of the accuracy of grazing intensity maps across various provinces revealed 304 

distinct differences. Specifically, Table 2 showed that Yunan province achieved the best accurate 305 

prediction (MAE=0.000, RMSE=0.00 and R2=1), closely followed by Sichuan Province (MAE=0.004, 306 

RMSE=0.094 and R2=0.992). Conversely, prediction performance from Xinjiang Uygur Autonomous 307 

Region trailed behind (MAE=0.017, RMSE=0.230 and R2=0.997). 308 

3.3 Validation of the GDGI dataset at the township scale 309 

We further validated the precision of the GDGI dataset using the township-level livestock statistic 310 

data. Encouragingly, the evaluation results showed that the GDGI dataset still has excellent 311 

performance at the township scale (Figure 6a), with R2 of 0.867, MAE of 0.208 SU/hm2, and RMSE of 312 

0.276 SU/hm2. In addition, similarly to the census data, the GDGI dataset indicated that some 313 

townships with few grassland area are still under high grazing pressure (Figure 6b, 6c). 314 

 315 

Figure 6. Validation results of grazing intensity between the GDGI dataset and the township census livestock data: 316 

(a) linear fit of predicted number and statistic data; (b-c) logistic fit of grazing data and grassland area. 317 

4 Discussion 318 

4.1 Comparison with other grazing intensity maps 319 

To further assess the effectiveness and reliability of the developed GDGI dataset, the mapping 320 

results were juxtaposed with seven publicly available grazing intensity maps covering the QTP (Table 321 

3). It can be seen that despite their public availability, these maps lacked both in spatial and temporal 322 

resolution when juxtaposed with the GDGI maps. Our analysis was extended to four openly accessible 323 

gridded livestock datasets, including GI-Sun (Sun et al., 2021), ALCC (Liu, 2021), GI-Meng (Meng et 324 

al. 2023) and GLWs (Gilbert et al., 2018). Among the GLW series, GLW3 and GLW4 were chosen 325 

owing to their superior performances over GLW1 and GLW2, as indicated by Gilbert et al. (2018). A 326 

commonality among all five maps was the consistency for the spatial patterns of grazing intensity, with 327 

prevalent high and low intensities in the northeast and northwest regions, respectively (Figure 7). 328 

However, these maps differed significantly in terms of accuracy. As the grazing intensity maps of 329 

GLWs and ALCC were produced based on the livestock census data in 2001 and 2015, an accuracy 330 

comparison for the corresponding years was conducted among the five datasets. It was observed from 331 
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the scatter diagrams that R² between the predicted and livestock statistic data for GI-Sun, ALCC, and 332 

GLWs are lower than 0.6, which is significantly lower than the accuracy of GDGI (R² exceeds 0.9) 333 

(Figure 7a). Furthermore, GDGI exhibited the closest to the census data, as evidenced by the fact that 334 

MAE and RMSE are less than 1 (Figure 7b, 7c). Moreover, the GDGI dataset spanning 31 years 335 

(1990-2020) earmarked it as a more suitable choice for long-term studies in comparison to the other 336 

four datasets. Regarding spatial distribution, the overall patterns of these grazing maps are largely 337 

consistent, exhibiting higher density patterns in the southeast and lower in the northwest. However, 338 

notable discrepancies are still apparent in the finer details. Generally speaking, in terms of visually 339 

representing the spatial distribution of livestock, the GDGI maps exhibit the best performance. 340 

The above advantageous of the GDGI dataset are understandable. First, the livestock census data 341 

used in GDGI is more detailed, aiding in enhancing the accuracy of the estimation results. Specifically, 342 

GI-sun, ALCC, GI-Meng and GDGI all use county-level livestock statistics to map grazing intensity, 343 

whereas GLW3 and GLW4 are based on provincial-level census data to map, which results in their 344 

accuracy lagging significantly behind the four other datasets (Nicolas et al. 2016, Sun et al. 2021). 345 

Second, grazing densities are estimated by dividing the number of livestock from the statistical data, 346 

after a mask excluding theoretical unsuitable grazing areas. However, these maps differ in their 347 

definitions of suitable grazing areas. In this study, as with the GI-sun and GI-Meng maps, we 348 

considered grazing to occur only on grasslands, and further excluded unsuitable areas such as high 349 

elevations and steep slopes. This kind of definition is clearly more reasonable than the GLW series, 350 

which removed only water bodies, urban core areas, and protected areas with relatively tight 351 

regulations of human activity (McSherry and Ritchie 2013, He et al. 2022). However, the GI-Meng 352 

dataset considers the core areas of protected areas as grazing-free region, it does not match the actual 353 

situation on the QTP (Zhao et al., 2020; Li et al., 2022b; Jiang et al., 2023). Those different thresholds 354 

for the definition of suitable grazing areas are account for the fact each map has different theoretical 355 

grazing regions. Third, these maps decompose the livestock census data to pixels based on different 356 

mathematical theories, which also leads to differences in prediction accuracy across maps. Specifically, 357 

ALCC used a multivariate linear regression algorithm to predict grazing intensity, which has been 358 

shown to be significantly inferior to the RF machine learning method employed by GI-Meng, GLW3 359 

and GLW4 (Nicolas et al. 2016, Li et al. 2021). In this study, we used the ET model to predict livestock 360 

numbers and achieved higher accuracy accordingly. Finally, differences in the selection of factors 361 

affecting livestock distribution across maps may also lead to differences in map accuracy. Specifically, 362 

GI-sun only used the NPP as indicator, but it is not simply linearly related to grazing intensity (Gilbert 363 

et al., 2018; Sun et al., 2021; Ma et al., 2022). ALCC considered the population density, NPP, and 364 

terrain as indicators, which are also incomplete considerations of the influencing factors. On the other 365 

hand, GLW series dataset considered 12 factors, such as NDVI, EVI, population distribution and 366 

elevation. GI-Meng dataset incorporated 14 factors including NDVI, soil PH, available nitrogen, 367 

available phosphorus, and available potassium. However, GLWs and GI-Meng ignored the decrease in 368 

the prediction accuracy due to redundancy among the factors. In this study, we selected factors related 369 

to grazing activities including terrain, climate, environment and social factor, and constructed a 370 

prediction model with seven factors including population density, elevation, climate, and HNPP. Unlike 371 

other livestock products, this study used HNPP for the first time to replace the commonly used NPP, or 372 

NDVI, or EVI as indicator, which has be proved to be more accurately expressed the relationship 373 

between livestock and grassland (Huang et al., 2022). 374 

https://doi.org/10.5194/essd-2023-403
Preprint. Discussion started: 4 December 2023
c© Author(s) 2023. CC BY 4.0 License.



1
3

 

3
7

5
 

T
ab

le 3
. S

u
m

m
ary

 o
f m

ap
-d

eriv
ed

 p
aram

eters fo
r th

is stu
d
y

 an
d

 o
th

er sev
en

 p
u

b
lic g

rid
d

ed
 liv

esto
ck

 d
atasets co

v
erin

g
 th

e Q
T

P. 
3

7
6

 

D
a

ta
set 

A
ccessib

ility
 

C
en

su
s 

T
em

p
o

ra
l reso

lu
tio

n
 

S
p

a
tia

l reso
lu

tio
n

 
P

erio
d

 (y
ea

rs) 
M

eth
o
d

 
L

iv
esto

ck
 ty

p
e 

G
D

G
I 

Y
es 

C
o

u
n

ty
 

an
n

u
al 

1
0

0
 m

 
1

9
9

0
-2

0
2

0
 (3

1
) 

E
T

 
S

tan
d

ard
 S

U
 

G
L

W
3
 

Y
es 

P
ro

v
in

ce/su
b

-P
ro

v
in

ce 
an

n
u

al 
0

.0
8

3
°(≈

1
0

 k
m

) 
2

0
0

1
 (1

) 
R

F
 

C
attle, d

u
ck

s, p
ig

s, ch
ick

en
s, 

sh
eep

, g
o

ats 
G

L
W

4
 

Y
es 

P
ro

v
in

ce/su
b

-P
ro

v
in

ce 
an

n
u

al 
0

.0
8

3
°(≈

1
0

 k
m

) 
2

0
1

5
 (1

) 
R

F
 

G
I-S

u
n
 

Y
es 

C
o

u
n

ty
 

fiv
e-y

ear in
terv

al 
1

 k
m

 
1

9
9

0
-2

0
1

5
 (6

) 
L

R
A

 
S

tan
d

ard
 S

U
 

A
L

C
C

 
Y

es 
P

ro
v

in
ce/su

b
-P

ro
v

in
ce 

an
n

u
al 

2
5

0
 m

 
2

0
0

0
-2

0
1

9
 (2

0
) 

M
L

R
 

S
tan

d
ard

 S
U

 

G
I-M

en
g
 

Y
es 

C
o

u
n

ty
 

an
n

u
al 

0
.0

8
3

°(≈
1

0
 k

m
) 

1
9

8
2

-2
0

1
5

 (3
4
) 

R
F

 
S

tan
d

ard
 S

U
 

G
I-L

i 
N

o
 

C
o

u
n

ty
 

fiv
e-y

ear in
terv

al 
1

 k
m

 
2

0
0

0
-2

0
1

5
 (4

) 
D

N
N

 
C

attle an
d

 sh
eep

 

G
I-Z

h
an

 
N

o
 

C
o

u
n

ty
 

seaso
n
 

1
5″

(≈
5

0
0

 m
) 

2
0

2
0

 (2
) 

R
F

 
S

tan
d

ard
 S

U
 

N
o

te: L
R

A
 is th

e ab
b

rev
iatio

n
 o

f lin
ear reg

ressio
n
 an

aly
sis. 

3
7

7
 

3
7

8
 

https://doi.org/10.5194/essd-2023-403
Preprint. Discussion started: 4 December 2023
c© Author(s) 2023. CC BY 4.0 License.



1
4

 

3
7

9
 

F
ig

u
re 7

. C
o

m
p

ariso
n

s o
f d

ifferen
t g

razin
g

 d
atasets fo

r th
e y

ears 2
0
0

1
 an

d
 2

0
1

5
: (a) sp

atial p
attern

s; (b
) p

red
icted

 liv
esto

ck
 n

u
m

b
er a

n
d

 cen
su

s d
ata at co

u
n

ty
 scale; (c) 

3
8

0
 

accu
racy

 ev
alu

atio
n

 b
etw

een
 p

red
icted

 liv
esto

ck
 n

u
m

b
er an

d
 statistic d

ata.
3

8
1

 

https://doi.org/10.5194/essd-2023-403
Preprint. Discussion started: 4 December 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

4.2 Implications for grazing management 382 

Nearly half of the grasslands on the QTP have been reported to be degraded over the past four 383 

decades (Wang et al. 2018; Dong et al. 2020), with some reports even indicating that the degraded 384 

grassland has reached 90% (Wang et al. 2021). It is widely recognized that overgrazing is the 385 

predominant and most pervasive unsustainable human activity continuing to drive grassland 386 

degradation on the QTP (Wang et al. 2018; Chen et al. 2019). However, identifying overgrazed areas 387 

remains an important challenge that can be effectively addressed by grazing intensity maps. 388 

According to the GDGI maps generated in this study, high-intensity grazing activities are mainly 389 

concentrated in the northeastern part of the QTP, with the grazing intensity in some areas even nearly 390 

more than ten times than the average value of the entire plateau (Figure 5b). Therefore, there is an 391 

urgent need to optimize grassland resource management in these areas. Encouragingly, the GDGI 392 

dataset show a decreasing trend in grazing intensity over the past 31 years in about two-thirds of the 393 

QTP. This trend is also consistent with other studies (Li et al. 2021, Sun et al. 2021). The areas with 394 

decreasing grazing intensity on the QTP are mainly located in the Sanjiangyuan region and the northern 395 

foothills of the Himalayas (Figure 5e). 396 

The spatial heterogeneity of grazing intensities on the QTP may be attributed to the following 397 

reasons. First, complex geographic and climatic conditions on the QTP determine the heterogeneity of 398 

grassland, which in turn affects livestock distribution (Wang et al. 2018; Wei et al. 2022). Second, 399 

social-economic development is another important factor. In areas where social-economic development 400 

is relatively lagging behind, herders sought to increase livestock numbers in efforts to improve 401 

household incomes, leading to greater pressure on grasslands in these regions (Hammad and Tumeizi, 402 

2012; Fang and Wu, 2022). In addition, the perceived increases in human population also resulted in 403 

the considerably increased need to more livestock numbers (Wei et al. 2022). Finally, the 404 

policy-induced reduction of livestock number might be one potential explanation for the grazing 405 

intensity decrease on the QTP. For example, Chinese government passed the Grassland Law in 1985, 406 

implemented the Grazing Withdrawal Program in 2003, approved the implementation of the 407 

Qinghai-Tibet Plateau Regional Ecological Construction and Environmental Protection Plan in 2011, 408 

and implemented the Law of the People's Republic of China on Ecological Protection of the 409 

Qinghai-Tibet Plateau in 2023. Moreover, environmental protection programs, including Grazing 410 

Withdraw Program (GWP), conversion of cropland to grassland, ecological compensation, fencing 411 

degrading grassland, and controlling the number of livestock have been implemented throughout the 412 

QTP since 2000. All these policies focused on applying grazing bans and can promote the sustainable 413 

use of grasslands, which resulted in the overall decrease of grazing intensity during the past three 414 

decades in the QTP. 415 

4.3 Uncertainties and limitations 416 

There are still some uncertainties and limitations in this study. First, we embarked on mapping 417 

grazing intensities, but these are fundamentally conservative estimations. For example, the livestock 418 

stocking numbers utilized were from year-end data at the county scale, inadvertently leading to a 419 

possible underestimation of grazing intensity due to our inability to consider livestock off-take rates 420 

within the constraints of data availability. Likewise, forage-dependent livestock were not considered in 421 

our study. Second, although seven main factors affecting livestock distribution were identified in this 422 
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study, we still did not fully cover all influential factors. For instance, factors like fencing, road 423 

proximity, and grazing season transformation were not taken into account in this study, which 424 

potentially influencing the livestock distribution. Third, some baseline data also need to be improved. 425 

For example, the gridded 100-m population density data during the 1990-1999 period were absent. 426 

Although we supplemented this data by using linear extrapolation method, errors arising from the 427 

resampling process may have propagated further uncertainties. Fourth, the ET model in this study was 428 

trained with only 4998 samples and subsequently applied to a massive 150 million pixels, possibly 429 

compromising the accuracy of model simulations due to the lack of training samples. Last, we assessed 430 

merely the livestock grazing intensity, excluding wild herbivores, thereby potentially underestimating 431 

the actual grazing pressure on the QTP. We henceforth recommend that subsequent efforts should 432 

explore the inclusion of more detailed livestock census data, more appropriate factors, and strive for 433 

refinement in the time series persistence of key datasets. 434 

5 Data availability 435 

The annual gridded grazing intensity maps of the QTP spanning from 1990 to 2020 are accessible 436 

at the following link: https://figshare.com/s/ad2bbc7117a56d4fd88d (Zhou et al., 2023). Each map is 437 

catalogued by year and recorded in GeoTIFF format, with values represented in SU/hm2 per year. 438 

These datasets, with a spatial resolution of 100 m and annual temporal resolution, utilize the 439 

WGS-1984-Albers geographic coordinate system. To streamline data transfer and download processes, 440 

the comprehensive 31-year dataset has been compressed into a ZIP file, readily available for download 441 

and compatible with Geographic Information System (GIS) software for viewing. 442 

7 Conclusions 443 

In this study, we introduce a framework utilizing ET machine learning algorithms to achieve 444 

fine-scale livestock spatialization, subsequently generating the GDGI dataset across the QTP. The 445 

GDGI has a spatial resolution of 100 m and expands 31 years from 1990 to 2020. It is consistent with 446 

livestock census data, and can better highlight grazing intensity details, and has a relatively higher 447 

precision. The MAE for the QTP is 0.006 SU/hm2 based on 4998 independent test samples. In addition, 448 

the accuracy evaluations at both county-level and township-level underscore the outstanding reliability 449 

and applicability of the GDGI dataset, which can successfully capture the spatial heterogeneity and 450 

variation in grazing intensities in greater details. Moreover, comparisons between the GDGI dataset and 451 

other existing grazing map products further proved the robust and efficient of our dataset, and 452 

demonstrate the validity of the proposed framework in the research of livestock spatialization. The 453 

GDGI dataset presented in this study can address existing limitations and enhance the understanding of 454 

grazing activities on the QTP. This, in turn, can aid in the rational utilization of grasslands and facilitate 455 

the implementation of informed and sustainable management practices. 456 

Supplement. 457 

For gridded datasets influencing grazing that are not directly available, or that do not meet 458 

spatio-temporal resolution requirements—such as those pertaining to population density, temperature, 459 

precipitation, and HNPP—we have delineated the processing or creation procedures in the 460 

Supplementary file. 461 
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