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Supplementary Methods 42 

 43 

There is a conspicuous absence of a systematic database with superior spatio-temporal 44 

resolution, including population density, temperature, precipitation, and Human-activity-induced 45 

Net Primary Productivity (HNPP). The lack of such a comprehensive dataset significantly 46 

compromises the empirical robustness of research endeavors in the domain of livestock 47 

distribution mapping. Consequently, this study is committed to providing precise and detailed 48 

mappings that integrate the aforementioned elements. The subsequent section demonstrated the 49 

methodologies employed to generate these comprehensive maps. 50 

Population density database 51 

Data source. The gridded annual population data with a resolution of 100 m spanning from 52 

2000 to 2020 (referred to as Pop I) for this study were acquired from the WorldPop dataset 53 

(https://hub.worldpop.org, accessed on 5 January 2023). Concurrently, the gridded population data 54 

at 1 km resolution with five-year intervals for the period of 1990-2015 (referred to as Pop II) were 55 

obtained from the Resource and Environment Science and Data center of the Chinese Academy of 56 

Sciences (https://www.resdc.cn, accessed on 9 January 2023). Moreover, the demographic data 57 

spanning the years 1990-2000 were extracted from the statistical yearbooks of the respective 58 

provinces. 59 

Data processing. All collected gridded population data were meticulously geo-referenced to 60 

the WGS_1984_Albers Equal-Area Conic coordinate system, and were subsequently clipped by 61 

the comprehensive boundary of the entire Qinghai-Tibetan Plateau (QTP). Furthermore, the PopII 62 

dataset was aggregated to a 100 m resolution to maintain consistency. Given the inherent 63 

disparities between the Pop I and Pop II datasets—originating from distinct demographic data and 64 

divergent methodologies—an integration process was required to prevent data breakage and 65 

ensure continuity across datasets. In this study, for the overlapping year of 2000-2015, both Pop I 66 

and Pop II data were harmoniously amalgamated to construct a linear regression model, according 67 

to the formula 1~3. Subsequently, consistent gridded population data with a spatial resolution of 68 

100 m × 100 m, were generated for the years 1990 to 1999, undergoing stringent quality control 69 

procedures utilizing the acquired demographic data. 70 

𝑦 = 𝑎𝑥 + 𝑏                                       (1) 71 

𝑎 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1
∑ (𝑥𝑖−𝑥̅𝑛

𝑖=1 )
                                  (2) 72 

𝑏 = 𝑦̅ − 𝑎𝑥̅                                      (3) 73 

where y is Pop I, X is Pop II, and n is the number of samples. 74 

https://hub.worldpop.org/
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Climate database 75 

Data source. In the present study, the mean daily temperature and precipitation data of 228 76 

meteorological stations in the QTP and its surrounding areas during 1990-2020 were obtained 77 

from China Meteorological Data Service Center (http://data.cma.cn, accessed on 4 January 2023). 78 

The quality and uniformity of the acquired data were assessed and validated by the National 79 

Meteorological Information Center, ensuring the reliability and consistency of the datasets in use.  80 

Data processing. To avoid the influence of anomalous values, average values were selected for 81 

interpolation of air temperature, while interpolation of precipitation incorporated total values 82 

(Bryan and Adams, 2002). Subsequent to the exclusion of abnormal data, the annual average 83 

temperature and the annual cumulative precipitation for each station were ascertained. Previous 84 

studies reveals that both the ANUSPLIN and Co-Kriging methodologies are typically conducive to 85 

generating robust and reliable estimations for climatic data (Parra and Monahan 2008, Cho et al. 86 

2020, Tan et al. 2021). Consequently, after comparing the results from all possible parameter 87 

combinations, eight models were constructed with three independent variables, including altitude, 88 

slope, and aspect, as detailed in Table S1.  89 

The ANUSPLIN model serves as an advanced interpolation technique, proficient in generating 90 

geographically cohesive climate surfaces, utilizing both weather station data and topographical 91 

variables. This model is constructed employing thin-plate smoothing splines, demonstrating a 92 

notable suitability for interpolating climate data characterized by substantial noise, whilst 93 

maintaining a propensity to yield a mean error that is lower compared to alternate interpolation 94 

models (Price et al., 2000; Hutchinson, 2005). The theoretical framework underpinning this model 95 

is articulated through Formula (4), serving as a testament to its mathematical robustness and 96 

empirical reliability in addressing the complexities inherent to climatic data. 97 

𝑍𝑖 = 𝑓(𝑥𝑖) + 𝑏𝑇𝑦𝑖 + 𝑒𝑖   (i=1,…,n)                 (4) 98 

where Zi represents the predicted value at location i; xi is the spline independent variable as a 99 

multidimensional vector, and f represents a smoothing function of xi which needs to be estimated; 100 

yi is the independent covariable as a multidimensional vector, and b is the unknown coefficients 101 

for the yi; n is the number of observational data. Each ei is an independent, zero mean error term 102 

with variance wiσ2, where wi is the known relative error variance and σ2 is the error variance 103 

which is constant across all data points. 104 

Co-Kriging represents a sophisticated multivariate geostatistical technique, functioning as an 105 

advanced extension of the Ordinary Kriging method, and is adept at transitioning from a singular 106 

spatial random variable to encompassing multiple spatially correlated random variables. This 107 

technique incorporates multiple correlated datasets into the estimation process, typically resulting 108 

http://data.cma.cn/


in predictions characterized by enhanced accuracy (Tajgardan et al., 2010). The mathematical 109 

theory underpinning Co-Kriging is delineated in Formula (5). 110 

𝑍∗(𝑥0) = ∑ β1iZ1(x1i) +
n1
i=1

∑ β2jZ2(x2j) +
n2
j=1

∑ β3pZ3(x3p) +
n3
p=1 ∑ β4qZ4(x4q)

n4
q=1     (5) 111 

where Z*(X0) is the simulated value of the point X0 to be evaluated, the measured climate value of 112 

Z1 (x1i) is taken as the main variable, and Z2 (x2j), Z3 (3i) and Z4 (x4i) are taken as the covariates; β 113 

represents the weight; n represents the number of data; Xi, XJ, XP and Xq represent the location, 114 

and I = 1, 2, 3.. n1, j=1,2,3…… n2, p=1,2,3…… n3, q=1,2,3…… n4. 115 

 116 

Table S1. Interpolation models using different combinations of covariates for prediction of air 117 

temperature and precipitation  118 

Climate ANUSPLIN Co-Kriging 

Temperature 
A-T-Ⅰ CV：Altitude K-T-Ⅰ CV：Altitude 

A-T-Ⅱ CV：Altitude; slope; aspect K-T-Ⅱ CV：Altitude; slope; aspect 

Precipitation 
A-P-Ⅰ CV：Altitude K-P-Ⅰ CV：Altitude 

A-P-Ⅱ CV：Altitude; slope; aspect K-P-Ⅱ CV：Altitude; slope; aspect 

Note: CV is an abbreviation for concomitant variable 119 

 120 

Model assessment. To rigorously evaluate the efficacy of the eight models, we engaged in the 121 

construction and assessment of all predictive models utilizing repeated 10-fold cross-validation 122 

(Yoo et al., 2018). This method systematically divided the original observation data from the 228 123 

meteorological stations into ten equitably sized subsamples. Nine of these subsamples were 124 

deployed in the training process, subsequently generating predictions on the remaining subsample. 125 

This cross-validation process was hen repeated a further nine times, ensuring each observation 126 

was exclusively used once as validation data. Hence, ten distinctive combinations of training and 127 

test sets were established, with each pair undergoing comprehensive application and evaluation. 128 

The conclusive assessment of the 10-fold cross-validation was derived from the average error 129 

across the ten test sets, culminating in a singular, consolidated estimate. 130 

The mean absolute error (MAE) and the root mean square error (RMSE) were employed as 131 

evaluation metrics to quantify the discrepancies between the forecasted data and the actual 132 

observed data, serving as indicators of model performance. The MAE and RMSE were computed 133 

for 56,544 (228×31×8) samples, as detailed in Table S2, to systematically assess the accuracy of 134 

the models. The optimal model was adjudged based on the relative minimization of both MAE and 135 

RMSE during the modeling and forecasting stages. The results indicated that the A-T-Ⅱ model 136 

exhibited superior performance in predicting temperature, whereas the K-P-Ⅰ model demonstrated 137 



paramount accuracy in forecasting precipitation. Consequently, the A-T-Ⅱ and K-P-Ⅰ models were 138 

deployed to construct the annual temperature and precipitation maps of the QTP spanning the 139 

period from 1990 to 2020, as illustrated in Figure S1. 140 

Table S2. Model performance for the response prediction models 141 

Climate Temperature Precipitation 

Models A-T-Ⅰ A-T-Ⅱ K-T-Ⅰ K-T-Ⅱ A-P-Ⅰ A-P-Ⅱ K-P-Ⅰ K-P-Ⅱ 

Test samples 7068 7068 7068 7068 7068 7068 7068 7068 

MAE 1.506 0.998 1.89 1.91 109.509 110.614 99.05 99.47 

RMSE 2.75 1.551 2.54 2.55 172.770 175.483 147.28 147.68 

 142 

 143 

Figure S1. Distribution of mean cumulative precipitation and mean temperature in the QTP as 144 

predicted by K-P-Ⅰ and A-T-II model, respectively 145 

 146 

Human-activity-induced Net Primary Productivity (HNPP) database 147 

Data source. The MOD17A3HGF Version 006 NPP product (referred to as NPP-I) with 500 m 148 

resolution covering 2000 to 2020 were obtained from the Land Processes Distributed Active 149 

Archive Center (https://lpdaac.usgs.gov, accessed on 18 January 2023). Additionally, the actual 150 

NPP dataset during 1990-2015 at 1 km resolution (referred to as NPP-Ⅱ) was derived from the 151 

MOD17A3 NPP product (http://www.ntsg.umt.edu, accessed on 22 January 2023). 152 

Data processing. To reconcile the discrepancies inherent between NPP-I and NPP-II datasets, an 153 

initial re-projection to the WGS_1984_Albers Equal-Area Conic coordinate system was 154 

undertaken. Subsequently, the resolution of NPP-II was resampled to 500-m through the 155 

employment of the nearest neighbor resampling algorithm. Based on the NPP-I and NPP-II data 156 

for the overlapping year of 2000-2015, a linear regression correction equation was established in 157 

https://lpdaac.usgs.gov/
http://www.ntsg.umt.edu/


accordance with formula 1~3. Consequently, the consistent gridded NPP data (referred to as 158 

NPP-III) at 500 m×500 m spatial resolution from 1990 to 2000 was generated. 159 

Human-induced NPP (HNPP) is delineated by the discrepancy between the climate-driven 160 

potential NPP (PNPP) and the actual NPP (ANPP). In this study, the NPP-III data epitomize the 161 

ANPP, elucidating the extant conditions of vegetative growth. To estimate the PNPP, the 162 

Thornthwaite Memorial model was utilized, incorporating temperature and precipitation as 163 

determining variables (Naeem et al. 2020; Yin et al. 2020; Qin et al. 2021). Subsequently, the 164 

differentiation between PNPP and ANPP was performed to manifest the influence of human 165 

activities on NPP. HNPP values in the negative spectrum indicate gains in NPP attributable to 166 

anthropogenic activities, while positive values represent losses in NPP due to human interventions. 167 

The computations for PNPP and HNPP were conducted as outlined below: 168 

PNPP = 3000[1 − e−0.0009695(v−20)]                   (6) 169 

v =
1.05r

√1+(1+
1.05r

L
)2

                                  (7) 170 

L = 3000 + 25t + 0.05t3                           (8) 171 

𝐻𝑁𝑃𝑃 = 𝑃𝑁𝑃𝑃 − 𝐴𝑁𝑃𝑃                             (9) 172 

where PNPP represents the total annual potential NPP (gC m-2), v represents the annual mean 173 

actual evapotranspiration (mm), L represents the annual mean potential evapotranspiration (mm), r 174 

represents the annual precipitation (mm) and t represents the average annual temperature (° C). 175 

 176 

Figure S2. Technical flowchart for mapping the HNPP on the QTP 177 
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