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Abstract. Grazing activities constitute the paramount challenge to grassland conservation over the 8 

Qinghai-Tibet Plateau (QTP), underscoring the urgency for obtaining detailed extent, patterns, and 9 

trends of grazing information to access efficient grassland management and sustainable development. 10 

Here, to inform these issues, we provided the first annual Gridded Dataset of Grazing Intensity maps 11 

(GDGI) with a resolution of 100 meters from 1990 to 2020 for the QTP. Five most commonly used 12 

machine learning algorithms were leveraged to develop livestock spatialization model, which spatially 13 

disaggregate the livestock census data at the county level into a detailed 100 m× 100 m grid, based on 14 

seven key predictors from terrain, climate, vegetation and socio-economic factors. Among these 15 

algorithms, the extreme trees (ET) model performed the best in representing the complex nonlinear 16 

relationship between various environmental factors and livestock intensity, with an average absolute 17 

error of just 0.081 SU/hm2, a rate outperforming the other models by 21.58%~414.60%. By using the 18 

ET model, we further generated the GDGI dataset for the QTP to reveal the spatio-temporal 19 

heterogeneity and variation in grazing intensities. The GDGI indicates grazing intensity remained high 20 

and largely stable from 1990 to 1997, followed by a sharp decline from 1997 to 2001, and fluctuated 21 

thereafter. Encouragingly, comparing with other open-access datasets for grazing distribution on the 22 

QTP, the GDGI has the highest accuracy, with the determinant coefficient (R2) exceed 0.8. Given its 23 

high resolution, recentness and robustness, we believe that the GDGI dataset can significantly enhance 24 

understanding of the substantial threats to grasslands emanating from overgrazing activities. 25 

Furthermore, the GDGI product holds considerable potential as a foundational source for other 26 

researches, facilitating rational utilization of grasslands, refined environmental impact assessments, and 27 

the sustainable development of animal husbandry. The GDGI product developed in this study is 28 

available at https://doi.org/10.5281/zenodo.13141090 (Zhou et al., 2024). 29 
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1 Introduction  30 

Livestock is a crucial contributor to global food systems through the provision of essential animal 31 

proteins and fats, and plays a significant role in supporting human survival and socio-economic 32 

development (Gilbert et al., 2018; Godfray et al., 2018; Humpenöder et al., 2022; Kumar et al., 2022). 33 

However, the escalating increase in human demand for meat and dairy products over recent decades has 34 

triggered a livestock boom, which in turn has increasingly threatened grassland ecosystems and placed 35 

a heavy burden on the environment through overgrazing and land-use change (Tabassum et al., 2016; 36 

Wei et al., 2022; Minoofar et al., 2023). It is estimated that up to 300 million hectares of land are used 37 

globally for grazing and cultivating fodder crops (Tabassum et al., 2016). Grazing activities could alter 38 

vegetation phenology and community structure (Dong et al., 2020), and trigger deforestation (García 39 

Ruiz et al., 2020), grassland degradation (Sun et al., 2020), soil erosion (Shakoor et al., 2021), and 40 

associated direct releases in greenhouse gas that lead to climate change feedback (Godfray et al., 2018; 41 

Chang et al., 2021). Additionally, livestock are responsible for large-scale dispersion of pathogens, 42 

organic matter, and residual medications into soil and groundwater, thereby contaminating the 43 

environment (Venglovsky et al., 2009; Tabassum et al., 2016; Hu et al., 2017; Muloi et al., 2022). 44 

Consequently, more and more scholars have called attention to provide reliable contemporary dataset to 45 

illustrate the spatio-temporal heterogeneity and variation of livestock (Petz et al., 2014; Fetzel et al., 46 

2017; Zhang et al., 2018; Li et al., 2021).  47 

One of the major challenges in monitoring grazing activity at regional or even larger scale, is the 48 

determination of the livestock distribution pattern. Despite the importance of geographical grazing 49 

information, high spatio-temproal grazing dataset remain unavailable, posing the most critical challenge 50 

to grassland management, particularly for vulnerable grassland ecosystems in fragile regions grappling 51 

with economic and sustainable development contradictions (Meng et al., 2023; Pozo et al., 2021; Miao et 52 

al., 2020; He et al., 2022). In the early 2000s, the Food and Agriculture Organization of the United 53 

Nations (FAO) launched the Gridded Livestock of the World (GLW) project to facilitate a detailed 54 

evaluation of livestock production, aiming to provide pixel-scale livestock densities instead of traditional 55 

administrative unit benchmarks (Nicolas et al., 2016). Consequently, the world’s inaugural dataset of 56 

livestock spatialization map (GLW1) was released in 2007, providing the first globally standardized 57 

livestock density distribution map at a spatial resolution of 0.05 decimal degrees (≈5 km at the equator) 58 

for 2002. It was not until 2014 that an updated GLW2 map with a 1 km resolution for 2006 was 59 

released, by using a stratified regression approach, superior spatial resolution predictor variables, and 60 

more detailed livestock census data (Robinson et al., 2014). Furthermore, an evolutionary step in 61 

machine learning technology saw Gilbert et al. (2018) using random forests algorithm to forge a global 62 

livestock distribution map with a 10-km resolution for 2010 (GLW3), succeeding traditional multivariate 63 

regression methods and surpassing the precision of previous GLW1 and GLW2 maps. Beyond these 64 

global mappings, several maps with different scales have also been published, including intercontinental, 65 

national, state or provincial, and local scale (Neumann et al., 2009; Prosser et al., 2011; Van Boeckel et 66 

al., 2011; Nicolas et al., 2016). However, these maps are fundamentally coarse due to constraints such as 67 

the availability of fine scale and contemporary census data, the grazing spatialization method, as well as 68 

the identification of appropriate indicators, thereby limiting their application to local or regional-scale 69 

studies (Nicolas et al., 2016; Gilbert et al., 2018; Robinson et al., 2014). Hence, there is an emergent 70 

demand for more refined grazing map products (Mulligan et al., 2020; Martinuzzi et al., 2021). 71 

An exemplar of this need can be observed in the Qinghai-Tibet Plateau (QTP), the world's most 72 
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elevated pastoral region and an important grazing area in China (Zhan et al., 2023). It was possessing 73 

abundant grassland that spans 1.5 million km2, accounting for 50.43% of China's total grassland area, 74 

with Yak and Tibetan sheep as primary grazing livestock (Feng et al., 2009; Cai et al., 2014; Zhan et al., 75 

2023). Over recent decades, the QTP has undergone escalating grassland degradation, leading to many 76 

ecological and socio-economic problems, which calls for an urgent need for detailed livestock 77 

distribution dataset (Li et al., 2022a). Unfortunately, despite researchers' efforts at mapping the QTP's 78 

grazing intensity, current livestock dataset still suffer from coarse spatio-temporal resolution and 79 

modelling accuracy. Apart from the aforementioned global grazing dataset, several other maps also 80 

cover the QTP. For instance, Liu et al. (2021) generated annual 250-m gridded carrying capacity maps 81 

for 2000-2019, by employing multiple linear regressions of livestock numbers, population density, NPP, 82 

and topographic features. Li et al. (2021) used machine learning algorithms to produce gridded livestock 83 

distribution data at 1 km resolution for 2000-2015 in western China at five year interval, based on 84 

county-level livestock census data and 13 factors from land use practice, topography, climate, and 85 

socioeconomic aspects, including grassland coverage, arable land coverage, forest land coverage, desert 86 

coverage, NDVI, elevation, slope, daytime surface temperature, precipitation, distance to river, travel 87 

time to major cities, population density, and GDP (Li et al., 2021). A contribution from Meng et al. 88 

(2023) brought forth annual longer time-series grazing maps by using random forests model, integrating 89 

climate, soil, NDVI, water distance, and settlement density to decompose county-level livestock census 90 

data to a 0.083° (≈10 km at the equator) grid for 1982-2015 (Meng et al., 2023). Similarly, Zhan et al. 91 

(2023) also used random forests algorithm to combine eleven influence factors to provide a winter and 92 

summer grazing density map at 500 m resolution for 2020 (Zhan et al., 2023).  93 

However, although these maps have provided good help in understanding grazing conditions on the 94 

QTP, there are currently still no maps that can satisfy the need for fine-scale grassland management 95 

with a long time span. In addition, the available livestock distribution maps of the QTP still need 96 

improvement in terms of modelling techniques and factor selection to obtain high-precision livestock 97 

spatialization data. For example, traditional methods like multiple linear regression, while proven 98 

fundamental and widely applicable for livestock spatialization (Robinson et al., 2014; Ma et al., 2022), 99 

are being challenged by the development of computational science in recent years. Among them, 100 

machine learning technology is providing new opportunities towards more accurate predictions of 101 

livestock distribution (García et al., 2020). Random forests regression, for instance, is currently widely 102 

used to construct global, national as well as regional livestock spatialization dataset, and has been proved 103 

to have much better accuracy than traditional mapping techniques (Rokach, 2016; Nicolas et al., 2016; 104 

Gilbert et al., 2018; Dara et al., 2020; Chen et al., 2019; Li et al., 2021). Nevertheless, other more 105 

advanced machine learning methods with superior feature learning and more robust generalization 106 

capabilities, remains largely untapped for modelling geographic data (Ahmad et al., 2018; Heddam et al., 107 

2020; Long et al., 2022). Thus, exploring the potential application of new advanced machine learning 108 

technologies in livestock spatialization remains a critical task. Furthermore, selecting the suitable factors 109 

that influencing livestock grazing preferences is also the other critical challenge for enhancing the 110 

precision of grazing distribution dataset (Meng et al., 2023). Livestock grazing activities are often 111 

affected by abiotic and biotic resources, including climatic and environmental factors (Waha et al., 112 

2018), herd foraging and grazing behaviours (Garrett et al., 2018; Miao et al., 2020), and 113 

conservation-oriented policies (Li et al., 2021). For instance, regions exceeding elevations of 5,600 m or 114 

slope greater than 40% are customarily unsuitable for grazing (Luo et al., 2013; Mack et al., 2013; 115 

Robinson et al., 2014; Chen et al., 2019). Moreover, the livestock generally prefer areas abundant in 116 
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water and pasture resources for foraging (Li et al., 2021). Besides, ecological conservation policies also 117 

exert substantial influence, significantly affecting grazing distribution relative to the level of 118 

conservation priority. In addition, the health status of the grassland is an important factor influencing 119 

whether livestock choose to feed or not (Li et al., 2021). Consequently, indicators related to the above 120 

aspects are often employed to gauge the spatial heterogeneity of livestock distribution (Allred et al., 121 

2013; Sun et al., 2021; Meng et al., 2023). Nonetheless, some most commonly used indicators like NPP 122 

or NDVI can result in misconceptions, as they may not fully characterize the grazing intensity. For 123 

example, grasslands with high NPP or NDVI are often preferred by livestock, but this doesn't necessarily 124 

correlate with grazing intensity in nature reserves due to strict policy restrictions (Veldhuis et al., 2019; 125 

O'neill and Abson, 2009; Zhang et al., 2021b). Conversely, areas with sparse grassland cover may 126 

support considerable livestock numbers, despite evidence of degradation (Zhang et al., 2021a; Guo et al., 127 

2015). Accordingly, further investigation of novel indicators is imperative to enhance the correlation 128 

between grassland and grazing intensity, thereby optimizing the integration of such influencing factors 129 

into grazing spatialization models. 130 

In summary, the QTP is in pressing need for a high spatio-temporal resolution grazing dataset to 131 

address urgent and realistic challenges. But the existing livestock dataset specific to the QTP are fraught 132 

with several insufficient, predominantly concerning rough resolution, relatively backward census data, 133 

as well as conventional methods in livestock spatialization. Moreover, the discrepancies in predictive 134 

indicators and modelling approaches within these dataset discourage their application in time-series 135 

analysis. Consequently, the generation of high-resolution and high-quality grazing map products has 136 

emerged as the most pressing challenge for the QTP. Here, we aim to (1) establish a methodological 137 

framework by using more rational models and indicators than traditional studies to achieve fine-scale 138 

livestock spatialization; (2) select the grazing spatialization model with good performance by 139 

incorporating multi-source data with advanced machine learning techniques; and (3) ultimately, provide 140 

an annual grazing intensity dataset with 100 m resolution spanning from 1990-2020. These maps can not 141 

only provide fundamental dataset with finer spatio-temporal resolution to address the limitations of 142 

existing grazing intensity maps, but enhance a better understanding of sustainable management practices 143 

as well as other grassland-related issues across the QTP. 144 

2 Data and methods 145 

2.1 Study area 146 

Known as the Asia's water tower and the world's third pole, the QTP is geographically situated 147 

between 73°19~104°47′ east longitude and 26°00′~39°47′ north latitude, with a total area of about 2.61 148 

million square kilometers (Figure 1). Its jurisdiction encompasses 182 counties within six provincial 149 

regions of China, including Tibet Autonomous Region, Qinghai Province, Xinjiang Uygur Autonomous 150 

Region, Gansu Province, Sichuan Province, and Yunnan Province (Meng et al., 2023). Elevation on the 151 

QTP predominantly ranges between 3,000 m and 5,000 m, with an average altitude exceeding 4,000 m. 152 

With grasslands constituting over half of its land cover, the QTP emerges as one of the most important 153 

pastoral areas in China. Alpine steppe, alpine meadow, and temperate steppe characterize the main 154 

grassland types on the QTP (Han et al., 2019; Zhai et al., 2022; Zhu et al., 2023b). The complex 155 

geographical and climatic conditions of the QTP contributes to the markedly heterogeneous grassland 156 

distribution, which correspondingly lead to the high heterogeneity in livestock distribution. Moreover, 157 

social and economic development, coupled with policy initiatives directed towards grassland restoration, 158 
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have noticeably impacted the livestock numbers on the QTP over recent decades (Li et al., 2021; Li et al., 159 

2016). 160 

 
Figure 1. The geographic zoning map of the Qinghai-Tibet Plateau (QTP) superposed with grassland vegetation. 161 

Boundaries for the six provinces used for statistical analysis are also shown. 162 

2.2 Data source 163 

2.2.1 Census livestock data 164 

The county-level census livestock data for the period between 1990 and 2020 were obtained from 165 

the Bureau of Statistics of each county across the QTP (Table 1). The data includes the number of cattle, 166 

sheep, horse and mule, with the exception of counties in Yunnan Province, which lack data for the 167 

years from 1990 to 2007, and Ganzi Prefecture in Sichuan Province, which lack data for the years from 168 

1990 to 1999, and Muli county in Sichuan Province, which lack data for the years from 1990 to 2007. 169 

For these counties belonging to the same prefecture, including counties in Ganzi and Aba prefectures in 170 

Sichuan Province, we used the livestock census data at the prefecture-level to carry out spatialization. 171 

For these counties in Yunnan Province, since they belong to different municipalities, it is not reasonable 172 

to replace them with municipal-level data. For these counties without livestock census data for some 173 

years, we supplemented the missing data by linear interpolation with grazing density data in available 174 

year. In total, livestock data were available for 182 counties, and 4,998 independent records were 175 

finally generated. Furthermore, the respective quantities of different livestock types are converted to 176 

Standard Sheep Units (SU), in compliance with the Chinese national regulations (Meng et al., 2023). 177 

Due to the difficulty of collecting township-level census livestock data, the validation data at the 178 

township scale collected in this study only involved these townships of Baching County (2010-2018) 179 

and Gaize County (2018-2020) in Tibet, and Hongyuan County in Sichuan Province (2008). The 180 

township-level census livestock data cumulatively involves 18 townships with a total of 112 records, 181 

and were only used for auxiliary validation of the simulation results. 182 

The validation data at the pixel scale also encompass a total of 112 records from 68 sites, which 183 

were collected from literatures, questionnaires and field surveys. Specifically, 93 records at 49 sites 184 
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spanning the 1990-2021 period were obtained from 17 literatures, 19 records at 19 sites were obtained 185 

from the questionnaires and the field survey in 2021. The detailed information for these records can be 186 

found in the Supplementary files (Figure S3 and Table S3). 187 

Table 1. Summary of the livestock data used in this study 188 

Variables Scale Time Sources 

Livestock numbers 

County 1990-2020 Statistical bureau 

Township 2008-2020 Statistical bureau 

Pixel 1990-2021 Literatures, questionnaires and field surveys 

2.2.2 Factors affecting grazing activities 189 

Livestock grazing activities are often affected by abiotic and biotic resources, including climatic 190 

and environmental factors (Waha et al., 2018), herd foraging and grazing behaviours (Garrett et al., 191 

2018; Miao et al., 2020). For instance, high-altitude and steep hillsides are unsuitable for grazing due to 192 

terrain constraints, and the distribution of herders directly affects the grazing areas (Luo et al., 2013; 193 

Mack et al., 2013; Robinson et al., 2014; Chen et al., 2019). Moreover, the livestock generally prefer 194 

areas abundant in water and pasture resources for foraging (Li et al., 2021). Therefore, in this study, 195 

topography, climatic, environmental and socio-economic impacts were considered as influential factors 196 

on grazing activities (Li et al., 2021; Meng et al., 2023).  197 

Table 2. Summary of factors affecting grazing activities on the QTP.  198 

Variables Format Period 
Time 

Resolution 

Spatial 

Resolution 
Source 

Altitude GeoTIFF —— —— 30m https://www.gscloud.cn 

Slope GeoTIFF —— —— 30m https://data.tpdc.ac.cn 

Water source Shapefile 1990-2020 Annual —— https://data.tpdc.ac.cn 

Population 

density 
GeoTIFF 1990-2020 Annual 100m See supplementary file 

Temperature GeoTIFF 1990-2020 Annual 100m See supplementary file 

Precipitation GeoTIFF 1990-2020 Annual 100m See supplementary file 

HNPP GeoTIFF 1990-2020 Annual 100m See supplementary file 

   We utilized correlation analysis and the Random Forest importance ranking tool to eliminate 199 

redundant environmental factors and determine the contribution of each factor. Ultimately, altitude, 200 

slope, distance to water source, population density, air temperature, precipitation and human-induced 201 

impacts on NPP (HNPP) was selected as indicators (Table 2). Specifically, elevation is derived from the 202 

DEM dataset accessible via the Resource and Environmental Data Cloud Platform of the Chinese 203 

Academy of Sciences (https://www.gscloud.cn), which also facilitated slope calculation. Rivers and 204 

lakes were obtained from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn), and the 205 

nearest Euclidean distance from each pixel to rivers or lakes is calculated accordingly. Meteorological 206 

elements such as daily air temperature and precipitation were downloaded from the China 207 

Meteorological Data Service Center (http://data.cma.cn). For the grid dataset that is not conditionally 208 

available, including population density, temperature, precipitation and HNPP, we detailed the creation 209 

process in the Supplementary file. All datasets utilized in this study were harmonized to consistent 210 

coordinate systems and resolutions (WGS 1984 Albers, 100 m). 211 
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2.3 Methodological framework 212 

We adopted a comprehensive methodological framework for mapping high-resolution grazing 213 

intensity on the QTP. Three major steps are included to predict the distribution pattern of grazing 214 

intensity: (1) identifying factors affecting grazing activities and extracting theoretical suitable areas for 215 

livestock grazing, (2) building grazing spatialization model, and (3) filtering the model and correcting 216 

the grazing map. An exhaustive explanation of each step is provided in Figure 2. 217 

 218 

Figure 2. Flowchart of creating grazing intensity maps using different methods and source products. 219 

2.3.1 Identifying factors and theoretical suitable areas for grazing 220 

In this study, we assumed that grazing activities are confined solely to grassland. Consequently, the 221 

potential grazing areas for each year were identified on the basis of grassland boundaries, which was 222 

extracted from the 30 m annual land cover dataset (CLCD) (Yang and Huang, 2021). Furthermore, 223 

grassland with slope over 40% and elevation higher than 5,600 m respectively, were considered 224 

unsuitable for grazing and were therefore excluded from the potential grazing area in the subsequent 225 

simulations (Robinson et al., 2014). In addition, the grassland with population density greater than 50 226 

inhabitants km-2 were also excluded (Li et al., 2018). The remaining isolated grassland was thus 227 

categorized as theoretical feasible grazing regions. 228 

The spatial patterns of abiotic and biotic resources, incorporating food availability, environmental 229 

stress, and herder preference critically affect grazing activities (Meng et al., 2023). In light of this, 230 

seven influencing factors in four aspects were selected for grazing intensity mapping (Figure 2-1). 231 
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2.3.2 Building grazing spatialization model 232 

By performing regional statistics, the annual average values for each grazing influence factor were 233 

extracted from the theoretically suitable grazing areas at the county scale, and were further used as 234 

independent variables in the model construction. The dependent variable for the model was acquired by 235 

determining the livestock density within each county, followed by a logarithmic transformation of the 236 

values to normalize the distribution of the dependent variable. Consequently, a total of 4,998 samples 237 

were derived from the aforementioned independent and dependent variables. Of these samples, 70% 238 

were allocated for model training, while the remaining 30% comprised the test sets, serving to validate 239 

the model's performance. Subsequently, we built grazing spatialization models using five machine 240 

learning algorithms at the county scale, including Support Vector regression (SV) (Cortes and Vapnik, 241 

1995; Lin et al., 2022), K-Nearest Neighbors (KNN) (Cover and Hart, 1967), Gradient Boosting 242 

regression (GB) (Friedman, 2001; Pan et al., 2019), Random Forests (RF) (Breiman, 2001) and Extra 243 

Trees regression (ET) (Geurts et al., 2006; Ahmad et al., 2018) (see Supplementary file for details). 244 

Lastly, to assess the accuracy of the spatialized livestock map, the predicted livestock intensity values 245 

were juxtaposed with the livestock statistical data from each respective county. 246 

2.3.3 Correcting the grazing map 247 

We further used the optimal model to predict the geographical distribution of grazing density across 248 

the QTP. To maintain better consistency between the predicted livestock number and the census data, 249 

the estimated results were adjusted using the census livestock numbers at the county scale as a control 250 

according to Equation (1). Consequently, the corrected and refined map is presented as the final grazing 251 

intensity map in this study. 252 

𝐿௖௢௥௥௘௖௧௜௢௡=
௅಴಴೐೙ೞೠೞ

௅಴೒ೝ೔೏
ൈ 𝐿௚௥௜ௗ                (1) 253 

where Lcorrection is the predicted pixel-scale livestock number after adjustment, LCgrid represents the 254 

estimated livestock number for each county, LCCensus is the census livestock number for each county, 255 

and Lgrid refers to the predicted livestock number at the pixel scale.  256 

2.4 Accuracy evaluation 257 

We used three accuracy validation indexes to evaluate the performance of five machine learning 258 

algorithms, including coefficients of determination (R2), mean absolute error (MAE), and root mean 259 

square error (RMSE), by through a comparison of the predicted value with the census data. The 260 

definitions of three metrics are presented in Equation (2) to (4). 261 

R2=1-
∑ (Ci-Pi)

2n
i=1

∑ (Ci-Cഥ)
2n

i=1

                                     (2) 262 

MAE=
1

n
∑ |Ci-Pi| 

n
i=1                                  (3) 263 

RMSE =ට1

n
∑ (Ci-Pi)

2 n
i=1                               (4) 264 

where Ci and Pi are the census livestock data and the predicted value for county i, respectively; Cഥ 265 

represents the mean census value for all county; and n gives the total number of counties. 266 
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2.5 uncertainties evaluation  267 

   Uncertainty in our grazing intensity maps can stem from multiple sources, such as the constraints of 268 

cross-scale modeling and the intrinsic inaccuracies of the input data. To quantify these uncertainties, we 269 

utilized the Monte Carlo (MC) method, conducting 100 iterations of simulation. Subsequently, we 270 

evaluated uncertainty through the Mean Relative Error (MRE) and assessed the model's robustness 271 

using the Standard Deviation (STD), following established methodologies (Yang et al., 2020; 272 

Alexander et al., 2017; Mcmillan et al., 2018). The definitions for these metrics are delineated in 273 

Equations (5) to (7). 274 

MC ൌ
ଵ

௡
∑ 𝑓ሺ𝑥௜ሻ

௡
௜ୀଵ                                   (5) 275 

MRE=
1

n
∑ ቚ

௫೔ି௫̅

௫̅
ቚ  n

i=1                                  (6) 276 

STD ൌ
ଵ

௡
∑ 𝑓ሺ𝑥௜ሻටଵ

௡
௡
௜ୀଵ ∑ ሺ𝑥௜ െ 𝑥̅ሻ௡

௜                       (7) 277 

where 𝑥௜  are random samples, 𝑓ሺ𝑥௜ሻ is the function evaluated at 𝑥௜ , and 𝑛  is the number of 278 

simulations. 𝑥̅ represents the mean value for all simulation maps. 279 

3 Results 280 

3.1 Performances of models 281 

Table 3 summarizes the efficiency of the five used machine learning models with considering all 282 

three accuracy evaluators of R2, MAE and RMSE. It can be seen that the ET model performs the best, 283 

with its R2 exceeding 0.955, and MAE (0.081 SU/hm2) and RMSE (0.164 SU/hm2) significantly lower 284 

than the value of RF, GB, KNN and SVM models. Figure 3 illustrates the correlation between the 285 

census livestock data and the livestock numbers predicted by the model for each county from 1990 to 286 

2020. It demonstrated that the ET-predicted data displayed a distribution pattern consistent with that of 287 

other models, but the scatter points of the ET model were more convergent to the 1:1 diagonal line, 288 

indicating a superior fit compared to the other models. These comparisons suggest that the ET model 289 

possesses superior robustness and can, therefore, provide stable estimations of livestock intensity on 290 

the QTP. 291 

Table 3. Comparison of mapping accuracy for five machine learning models based on the same validation datasets 292 

Models R2 MAE (SU/hm2) RMSE (SU/hm2) 

ET 0.955 0.081 0.164 

RF 0.928 0.099 0.208 

GB 0.859 0.197 0.300 

KNN 0.786 0.186 0.384 

SVM 0.380 0.419 0.750 
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 293 
Figure 3. Scatterplots of model-predicted livestock numbers and census grazing data at the county scale. The red 294 

solid line and the black solid line are the fitting line and the 1:1 diagonal line, respectively. 295 

  296 

Figure 4. Accuracy of the ET-predicted grazing intensity results at spatial resolution of 100 m from 1990 to 2020. 297 

(a) absolute error (AE) between the predicted and the census data at the county scale from 1990 to 2020; (b) 298 

comparison of the predicted and census data of the whole QTP from 1990 to 2020; (c) spatial distribution of the 299 

mean absolute error (MAE) during 1990 to 2020 for each county.  300 

   Using the ET model, we projected the spatio-temporal distribution of grazing intensity across the 301 

QTP from 1990 to 2020 at a 100 m × 100 m resolution. To validate the accuracy of these predictive 302 

maps, we upscaled the pixel-level predictions to the county level and compared them against livestock 303 

census data (Figures 4a and 4b). The results clearly show a high degree of consistency between the 304 
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predicted livestock intensity and the county-level census data, especially in areas with lower grazing 305 

intensity (Figures 4a and 4b). Specifically, while the mean census data indicated 2.983 SU/hm² for 306 

livestock intensity, our county-level predictions yielded an average of 3.106 SU/hm², with a MAE of 307 

0.123 SU/hm², a RMSE of 0.580 SU/hm², and an R² value of 0.669. Additionally, 76.31% of the 308 

counties (n=3,814) exhibited data discrepancies of no more than 0.6 SU/hm², and 91.74% (n=4,585) 309 

had discrepancies under 1.0 SU/hm². Regarding spatial distribution, areas with data discrepancies of 310 

less than 0.3 SU/hm² were predominantly located in the northwest and southeast regions of the QTP. In 311 

certain counties of the northeast and southwest, the variations were even below 1.0 SU/hm² (Figure 4c). 312 

3.2 Evaluation of uncertainties	313 

   We have chosen the Mean Relative Error (MRE) as a key metric for evaluating the simulation 314 

accuracy of grazing intensity within the QTP. Employing Monte Carlo simulations spanning the period 315 

from 1990 to 2020, our research findings demonstrate that the average MRE for grazing intensity 316 

across the QTP ranged between 6.84% and 9.08% (Figure 5a). The spatial distribution of MRE 317 

indicates that the majority of the plateau exhibits low error margins. For example, in 2020, areas with 318 

an MRE of less than 5% accounted for 35.86% of the total grassland area, while those with an MRE 319 

below 10% constituted 75.84%. Only 3.38% of the grasslands had an MRE exceeding 20%, with these 320 

regions primarily located in the southwestern portion of the QTP (Figure 5b). Moreover, the robustness 321 

analysis suggests that the majority of regions within the QTP display relatively stable grazing intensity 322 

trends. For instance, the overall standard deviation (STD) in 2020 was 0.059 SU/hm², with the 323 

northwest region demonstrating remarkable stability, reflected in an STD of less than 0.005 SU/hm². 324 

Although some areas within the Yarlung Zangbo River Basin and the eastern part of Qinghai Province 325 

experienced higher variability, their STD was still maintained below 0.3 SU/hm² (Figure 5c). 326 

 327 

Figure 5. Uncertainty analysis of grazing intensity maps based on ET and Monte Carlo methods. (a) MRE of 328 

grazing intensity maps from 1990 to 2020, (b) spatial distribution of MRE, (c) spatial distribution of STD. 329 
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3.3 Validation of the GDGI dataset 330 

After employing county-level livestock census as a benchmark for quality control, we obtained the 331 

annual Gridded Dataset of Grazing Intensity maps (GDGI) across the QTP spanning 31 years from 332 

1990 to 2020.We firstly confirmed the accuracy of the GDGI dataset based on 112 field grazing 333 

intensity records at 68 sites (see Table S3 in Supplementary file for details), which ranged from 0 to 334 

5.61 sheep unit per hectare (SU/hm2), and covered three main grasslands on the QTP: the alpine steppe 335 

(N=62), alpine meadow (N=46), and alpine desert steppe (N=4). The GDGI dataset was assessed by 336 

undertaking a comparative accuracy assessment between it and the field grazing intensity data (Figure 337 

6a). It can be seen that in general, our dataset was highly consistent with the reference ground-truth 338 

validation data, with R2 = 0.804, MAE = 0.572 SU/hm2, and RMSE = 0.953 SU/hm2. Moreover, the 339 

absolute errors between the GDGI data and the field grazing intensity data were relatively small, with 340 

more than half of the records having an error below 0.3 SU/hm2, 78.57% below 1.0 SU/hm2, and 89.29% 341 

below 1.5 SU/hm2 (Figure 6b).  342 

 343 

Figure 6. Validation of the GDGI dataset using 112 field grazing intensity records at the pixel scale: (a) linear 344 

fitting results; (b) absolute error (AE) distribution. 345 

We further validated the precision of the GDGI dataset using the township-level livestock census 346 

data. Encouragingly, the evaluation results showed that the GDGI dataset has excellent performance at 347 

the township scale (Figure 7a), with R2 of 0.867, MAE of 0.208 SU/hm2, and RMSE of 0.276 SU/hm2. 348 

In addition, similarly to the census data, the GDGI dataset indicated that some townships with few 349 

grasslands are still under high grazing pressure (Figure 7b and 7c). 350 

 351 

Figure 7. Validation of the GDGI dataset using census livestock data at the township level: (a) linear fit of 352 

predicted number and census data; (b-c) logistic fit of grazing intensity data and grassland area. 353 
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3.4 Spatio-temporal variations of grazing intensity	354 

In terms of the temporal trends of grazing intensity, the GDGI dataset overall exhibited consistent 355 

trends with the livestock census data (Figure 8d-8f). Specifically, the census data indicated the 356 

livestock numbers remained high and largely stable from 1990 to 1997, followed by a sharp decline 357 

from 1997 to 2001, and then remained a period of fluctuation post-2001, which was successfully 358 

captured by the GDGI dataset. Moreover, the spatial heterogeneity of grazing intensity within the 359 

counties over the QTP was also effectively reflected by the GDGI dataset, a characteristic not 360 

illustrated by the census dataset. For example, areas of high grazing intensity were concentrated in the 361 

northeastern and south-central regions of the plateau, mainly including the eastern part of Qinghai 362 

Province, the southwestern part of Gansu Province, the northwestern part of Sichuan Province, and the 363 

eastern region of the Tibet Autonomous Region (Figure 8e and 8f).  364 

Over the past 31 years, 63.95% of the plateau’s grassland showed a decreasing trend in grazing 365 

intensity, with 49.80% showing significant decreases, primarily located in the eastern Sanjiangyuan 366 

area and the southwestern region of the QTP (Figure 8e and 8f). Meanwhile, grazing intensity was 367 

increasing in 36.05% of the grassland, but most of them (60.16%) did not reach the level of 368 

significance and were mainly distributed in the northeastern plateau (Figure 8e and 8f). 369 

 370 

Figure 8. Validation of the GDGI maps using the census grazing data from 1990 to 2020: (a) violin plot of the 371 

census data and the predicted value; (b-c) spatial distribution in SU per pixel; (d) temporal change in SU per year 372 

(only including 124 counties with livestock census data); (d-f) spatial distribution of SU changes tested by sen’s 373 

slope and Mann-Kendall. Note: ESI for Extremely Significant Increase (slope>0 & p<0.01); SI for Significant 374 

Increase (slope>0 & p<0.05); NSI for Non-significant increase (slope>0 & p>0.05); ESD for Extremely 375 

Significant Decrease (slope<0 & p<0.01); SD for Significant decrease (slope<0 & p<0.05); NSD for 376 

Non-significant decrease (slope<0 & p>0.05). 377 
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4 Discussion 378 

4.1 Comparison with other grazing intensity maps 379 

To further assess the effectiveness and reliability of the developed GDGI dataset, the mapping 380 

results were juxtaposed with seven publicly available grazing intensity maps covering the QTP (Table 381 

4). It can be seen that despite their public availability, these maps lacked both in spatial and temporal 382 

resolution when juxtaposed with the GDGI maps. Our analysis was extended to four openly accessible 383 

gridded livestock datasets, including GI-Sun (Sun et al., 2021), ALCC (Liu, 2021), GI-Meng (Meng et 384 

al., 2023) and GLWs (Gilbert et al., 2018). Among the GLW series, GLW3 and GLW4 were chosen 385 

owing to their superior performances over GLW1 and GLW2, as indicated by Gilbert et al. (2018). A 386 

commonality among all five maps was the consistency for the spatial patterns of grazing intensity, with 387 

prevalent high and low intensities in the northeast and northwest regions, respectively (Figure 9). 388 

However, these maps differed significantly in terms of accuracy. As the grazing intensity maps of 389 

GLWs and ALCC were produced based on the livestock census data in 2001 and 2015, an accuracy 390 

comparison for the corresponding years was conducted among the five datasets both at county and 391 

township scale. Observations at the county scale indicate that all four datasets, with the exception of 392 

GI-Sun, are largely in alignment with the county census data (Figure 9b). When examined at the 393 

township scale, GI-Sun and GLW demonstrate the most significant discrepancies, with MRE 394 

surpassing 68%. ALCC and GI-Meng follow, recording MREs of 30.69% and 38.80%, respectively. 395 

Additionally, the GDGI shows the highest degree of accuracy in relation to the township census data, 396 

as indicated by the lowest MAE and RMSE values (Figure 9c). Moreover, the GDGI dataset spanning 397 

31 years (1990-2020) earmarked it as a more suitable choice for long-term studies in comparison to the 398 

other four datasets. Regarding spatial distribution, the overall patterns of these grazing maps are largely 399 

consistent, exhibiting higher density patterns in the southeast and lower in the northwest. However, 400 

notable discrepancies are still apparent in the finer details. In general, in terms of visually representing 401 

the spatial distribution of livestock, the GDGI maps exhibit the best performance. 402 

The above advantageous of the GDGI dataset are understandable. First, the livestock census data 403 

used in GDGI is more detailed, aiding in enhancing the accuracy of the estimation results. Specifically, 404 

GI-sun, ALCC, GI-Meng and GDGI all use county-level livestock statistics to map grazing intensity, 405 

whereas GLW3 and GLW4 are based on provincial-level census data to map, which results in their 406 

accuracy lagging significantly behind the four other datasets (Nicolas et al., 2016; Sun et al., 2021). 407 

Second, grazing densities are estimated by dividing the number of livestock from the statistical data, 408 

after a mask excluding theoretical unsuitable grazing areas. However, these maps differ in their 409 

definitions of suitable grazing areas. In this study, as with the GI-sun and GI-Meng maps, we 410 

considered grazing to occur only on grasslands, and further excluded unsuitable areas such as high 411 

elevations and steep slopes. This kind of definition is clearly more reasonable than the GLW series, 412 

which removed only water bodies, urban core areas, and protected areas with relatively tight 413 

regulations of human activity (Mcsherry and Ritchie, 2013; He et al., 2022). However, the GI-Meng 414 

dataset considers the core areas of protected areas as grazing-free region, it does not match the actual 415 

situation on the QTP (Jiang et al., 2023; Li et al., 2022b; Zhao et al., 2020). Those different thresholds 416 

for the definition of suitable grazing areas are account for the fact each map has different theoretical 417 

grazing regions. Third, these maps decompose the livestock census data to pixels based on different 418 

mathematical theories, which also leads to differences in prediction accuracy across maps. Specifically, 419 
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ALCC used a multivariate linear regression algorithm to predict grazing intensity, which has been 420 

shown to be significantly inferior to the RF machine learning method employed by GI-Meng, GLW3 421 

and GLW4 (Nicolas et al., 2016; Li et al., 2021). In this study, we used the ET model to predict 422 

livestock numbers and achieved higher accuracy accordingly. Finally, differences in the selection of 423 

factors affecting livestock distribution across maps may also lead to differences in map accuracy. 424 

Specifically, GI-sun only used the NPP as indicator, but it is not simply linearly related to grazing 425 

intensity (Sun et al., 2021; Ma et al., 2022; Gilbert et al., 2018). ALCC considered the population 426 

density, NPP, and terrain as indicators, which are also incomplete considerations of the influencing 427 

factors. On the other hand, GLW series dataset considered 12 factors, such as NDVI, EVI, population 428 

distribution and elevation. GI-Meng dataset incorporated 14 factors including NDVI, soil PH, available 429 

nitrogen, available phosphorus, and available potassium. However, GLWs and GI-Meng ignored the 430 

decrease in the prediction accuracy due to redundancy among the factors. In this study, we selected 431 

factors related to grazing activities including terrain, climate, environment and social factor, and 432 

constructed a prediction model with seven factors including population density, elevation, climate, and 433 

HNPP. Unlike other livestock products, this study used HNPP for the first time to replace the 434 

commonly used NPP, or NDVI, or EVI as indicator, which has be proved to be more accurately 435 

expressed the relationship between livestock and grassland (Huang et al., 2022). 436 
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Table 4. Summary of map-derived parameters for this study and other seven public gridded livestock datasets covering the QTP.	437 

Dataset Accessibility Census Temporal resolution Spatial resolution Period (years) Method Livestock type 

GDGI Yes County annual 100 m 1990-2020 (31) ET Standard SU 

GLW3 Yes Province/sub-Province annual 0.083°(≈10 km) 2001 (1) RF Cattle, ducks, pigs, chickens, 

sheep, goats GLW4 Yes Province/sub-Province annual 0.083°(≈10 km) 2015 (1) RF 

GI-Sun Yes County five-year interval 1 km 1990-2015 (6)  LRA Standard SU 

ALCC Yes Province/sub-Province annual 250 m 2000-2019 (20) MLR Standard SU 

GI-Meng Yes County annual 0.083°(≈10 km) 1982-2015 (34) RF Standard SU 

GI-Li No County five-year interval 1 km 2000-2015 (4) DNN Cattle and sheep 

GI-Zhan No County season 15″(≈500 m) 2020 (2) RF Standard SU 

Note: LRA is the abbreviation of linear regression analysis.	438 
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	439 

Figure 9. Comparisons of different grazing datasets for the years 2001 and 2015: (a) spatial patterns; (b) predicted livestock number and census data at county scale; (c) accuracy evaluation 440 

between predicted livestock number and census data at township scale. 441 
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4.2 Spatial heterogeneity of grazing intensities 442 

In general, the multiyear average grazing intensity on the QTP increased from west to east during 443 

1990 to 2020, with broad spatial heterogeneity (Figure 8). Highest grazing intensity was found mainly 444 

in the northeastern and south-central regions of the Plateau (mostly higher than 5.0 SU/hm²), while 445 

they were lowest in the northwest (mostly less than 1.0 SU/hm²). Over the past 31 years, the average 446 

grazing intensity decreased across most of the Plateau, but 36.05% of the entire QTP grassland still 447 

encountered continuous grazing intensity increase, especially in the northeastern regions (Figure 8). 448 

The spatial heterogeneity of grazing intensities on the QTP may be attributed to the following 449 

reasons. First, complex geographic and climatic conditions on the QTP determine the heterogeneity of 450 

grassland, which in turn affects livestock distribution (Wang et al., 2018; Wei et al., 2022). In general, 451 

the grazing intensity patterns shown in the GDGI maps are basically consistent with the stocking rate 452 

threshold patterns in the QTP grasslands, both decreased from east to west (Zhu et al., 2023a). This 453 

phenomenon partially reflects the heterogeneity of the grasslands, as the alpine meadows and the 454 

steppes mainly distributed in the east and the west, respectively. Second, the dynamics of 455 

socio-economic development are obviously another important factors determining grazing intensity. In 456 

areas falling behind in terms of the socio-economic indicators, herders prefer to increase livestock in 457 

efforts to improve household incomes, leading to greater pressure on grasslands in these regions (Fang 458 

and Wu, 2022). In addition, the perceived increases in human population also resulted in the 459 

considerably increased need to more livestock (Wei et al., 2022).  460 

The grazing intensity dynamics across the QTP are partly reflective of the impacts of various 461 

management policies that have been implemented over distinct periods. For example, a significant 462 

increase in grazing intensity on the QTP was observed in the early 1990s, potentially a direct result of 463 

the introduction of the household contract responsibility system. Moreover, the grazing intensity 464 

experienced a pronounced decline from 1997 to 2001, as illustrated in Figure 8d, indicative of the 465 

adverse effects of natural disasters. Notably, the severe snowstorms that struck Naqu in the central QTP 466 

during 1997-1998 are documented to have caused the mortality of over 820,000 livestock (Ye et al., 467 

2020). Figure 8d further delineates a considerable upsurge in grazing intensity on the QTP between 468 

2000 and 2010, aligning with the trends reported by Sun et al. (2021) and Li et al. (2021). This 469 

observed increase may be attributed to a rebound in grazing activity following the aforementioned 470 

natural disasters. In addition, Figure 8d indicates a sustained decrease in grazing intensity post-2010 471 

across the plateau, which can be predominantly ascribed to the implementation of extensive ecological 472 

conservation projects. 473 

4.3 Implications for grazing management 474 

Nearly half of the grasslands on the QTP have been reported to be degraded over the past four 475 

decades (Wang et al., 2018; Dong et al., 2020), with some reports even indicating that the degraded 476 

grassland has reached 90% (Wang et al., 2021). It is widely recognized that overgrazing is the 477 

predominant and most pervasive unsustainable human activity continuing to drive grassland 478 

degradation on the QTP (Wang et al., 2018; Chen et al., 2019). Generally, these degraded grassland on 479 

the QTP can be effectively restored by adaptive management (Wang et al., 2022). However, better 480 

management of grasslands requires a deeper understanding of the anthropogenic activities, which still 481 

remain an important challenge and can be effectively addressed by the GDGI dataset. 482 
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According to the GDGI maps generated in this study, high-intensity grazing activities are mainly 483 

concentrated in the northeastern as well as the south-central part of the QTP, with the grazing intensity 484 

in some areas even nearly more than ten times than the average value of the entire plateau (Figure 6b), 485 

and have exceeded the stocking rate threshold of these grasslands (Zhu et al., 2023a). Population 486 

growth and the related increasing livelihood demands is one of the main reasons for this increase. To 487 

meet daily needs and enhance household income, the herders have endeavored to increase livestock, 488 

thereby intensifying grazing pressures on the grasslands over the QTP (Fang and Wu, 2022; Abu 489 

Hammad and Tumeizi, 2012). Although the current average grazing intensity in the northwest QTP 490 

(around 1.0 SU/hm²) is below their average stocking rate threshold (around 1.5 SU/hm²) (Zhu et al., 491 

2023a), the grassland management should still be given adequate attention. Because as the most arid 492 

areas with low stocking rate threshold on the QTP, the grazing intensity in this region has been 493 

increasing in recent years. Nevertheless, it must be noted that the stocking rate threshold may exceed 494 

the carrying capacity, because it is predicted to lead to an extreme grassland degradation (Zhu et al., 495 

2023a). The GDGI dataset also showed a similar pattern between the grazing intensity data and the 496 

WorldPop data near the built-up areas, indicating higher grazing intensity around settlements than other 497 

regions on the QTP. In addition, the GDGI dataset also indicate that from 1990 to 2020, although the 498 

grazing intensity of the Plateau has generally decreased, the hotspot areas for grazing activities have 499 

remained almost unchanged. This implies that these regions should be the focus of adaptive grassland 500 

management to effectively prevent grassland degradation, mainly based on the grass–livestock balance 501 

which varies by time and space.  502 

Encouragingly, the GDGI dataset show that the grazing intensity for two-thirds of the entire QTP 503 

grassland decreased over the past 31 years, which is also consistent with other studies (Sun et al., 2021; 504 

Li et al., 2021). Recent decades of biodiversity protection, active restoration projects as well as 505 

management measures, such as nature reserves, grazing exclusion, part grazing ban combined with 506 

fencing enclosure, are believed to have driven these decrease (Deng et al., 2017; Li and Bennett, 2019). 507 

In addition, most grassland in the eastern Sanjiangyuan, the mid-eastern Changtang, and the northern 508 

foothills of the Himalayas, showed a significant decrease with grazing intensity (Figure 6e), indicating 509 

the importance of protected areas on preventing overstock and grassland degradation. Meanwhile, the 510 

GDGI maps also show that the grazing density varies greatly among protected areas, possibly owing to 511 

the difference in policy implementation. For instance, it can be seen from the GDGI maps that grazing 512 

intensity are increasing in some protected areas, especially several wetland nature reserves on the Zoige 513 

plateau (Figure 6e). Moreover, the average grazing intensity in all nature reserves on the QTP has 514 

overall increased from 1990 to 2020, although their increase rate is much lower than the non-protected 515 

areas (0.0125 SU/hm2·10a vs 0.0304 SU/hm2·10a), which implies that grassland management in 516 

protected areas still needs to be strengthened on the QTP. 517 

The grazing initiatives in alignment with the Sustainable Development Goals (SDGs) on the QTP 518 

can benefit from the GDGI dataset. Firstly, determination a reasonable stocking rate is vital to prevent 519 

overstocking of the pastures, which will possibly induce extreme grassland degradation (Zhu et al., 520 

2023a). Stocking rate determination can be optimized by using our grazing intensity maps and the 521 

stocking rate threshold maps of the QTP. Secondly, the GDGI maps can contribute to strategic 522 

placement of fence, which is a common practice adopted to prevent grassland degradation on the QTP. 523 

Building fences in areas with high grazing intensity and exceeding the carrying capacity can improve 524 

the effectiveness of fence construction (Zhou et al., 2023; Zhang et al., 2023). Thirdly, the GDGI 525 
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dataset can provide a solid support for promoting effective nature reserve management, which in total 526 

covering nearly one third of the entire QTP. For example, the GDGI maps showed that grazing 527 

activities still exist in most nature reserves on the Plateau, although most of them have significantly 528 

lower grazing intensities compared with their adjacent non-protected areas. By using the GDGI maps, 529 

the conflict between ecological protection and grazing activities in nature reserves can be alleviated. 530 

Finally, our grazing intensity maps can act as a basic dataset to support other grassland-related policies. 531 

Currently, these policies on the QTP often adopt a one-size-fits-all approach to determine the carrying 532 

capacity and carry out ecological compensation, which may lead to overstock or unfair financial 533 

distribution (Wang et al., 2022). The grassland management strategies balancing carrying capacity and 534 

stocking rates are more likely to result in optimal management choices for policymakers and 535 

stakeholders, and our GDGI maps can contribute to this decision-making processes. 536 

4.4 Uncertainties and limitations 537 

Although this study has collected as reliable datasets as possible, users of the GDGI products 538 

should be cognizant of inherent uncertainties and limitations within these datasets. Notably, the mean 539 

relative error of the GDGI dataset spanning 1990 to 2020 was recorded at 4.2% (Figure 4a), calculated 540 

from the average errors across 182 counties within the QTP that had accessible livestock census data. 541 

Furthermore, approximately 8.26% of grassland areas exhibited a relative error exceeding 1.0 SU/hm2 542 

(Figure 4b). Such discrepancies arise from several limitations that were subsequently propagated to the 543 

final grazing intensity maps, thereby contributing to the dataset's overall uncertainties. 544 

Firstly, the estimations of grazing intensities were fundamentally conservative, primarily due to the 545 

lack of comprehensive input data. Livestock numbers, derived from year-end data at the county level, 546 

inadvertently led to underestimations of grazing intensity by not accounting for livestock off-take rates. 547 

Likewise, the evaluation focused solely on livestock grazing intensity, excluding wild herbivores and 548 

forage-dependent livestock, which potentially underestimate actual grazing pressures on the QTP. 549 

Additionally, despite identifying seven main factors influencing livestock distribution, the study did not 550 

encompass all potential factors, such as fencing, forage availability, road proximity, and season 551 

transformation in grazing practices. Moreover, to align with county-scale livestock census data, we 552 

averaged the environmental factors at the county-scale. Although this approach have been widely used 553 

on the hypothesis that a consistent causal relationship between livestock intensity and environmental 554 

factors persists across various scales (Robinson et al., 2014; Nicolas et al., 2016; Li et al., 2021; Meng 555 

et al., 2023), it might oversimplify the intricate dynamics between grazing intensity and lead to a 556 

certain degree of estimation inaccuracies. In addition, the reliance on linear extrapolation to 557 

Supplementary missing gridded 100-m population density data from 1990-1999 introduced further 558 

uncertainties due to the limited resolution (1-km) and interval (5-year) of the ChinaPop dataset. 559 

Secondly, the modeling process for mapping grazing intensity also suffered from several challenges. 560 

For instance, the ET model was trained with a limited sample size of 4,998 and applied to a vast area 561 

consisting of 150 million pixels, which could compromise the model's accuracy. In addition, despite the 562 

ET model's design to reduce overfitting risks by using randomly selected features and partition decision, 563 

the potential for overfit effects still remained, particularly when faced with a high number of output 564 

classes or insufficient sample sizes (Geurts et al., 2006; Galelli and Castelletti, 2013). In fact, this 565 

limitation was evident in this study, as the generalization capability of the ET model was restricted by 566 

the disparity between the number of training samples and the total number of pixels, leading to 567 

predictions that often exceeded actual livestock census (Figure 4a). 568 
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Thirdly, our methodological framework for high-resolution gridded grazing dataset mapping was 569 

developed based on the assumption that all grassland were accessible to livestock. However, in reality, 570 

the amount of available grassland was less due to fencing and grazing bans on the QTP (Zhan et al., 571 

2023). Moreover, transhumant herders generally follow a seasonal calendar for summer pastures and 572 

winter pastures on the QTP. However, we did not consider this seasonal movements due to data 573 

limitations, which further restrict the analysis of seasonal livestock distribution patterns (Kolluru et al., 574 

2023). Additionally, the model's reliance on human population as a proxy for livestock locations 575 

overlooked the possibility of high grazing intensity in areas with low human populations on the QTP, 576 

particularly in regions designated for summer pastures. 577 

Finally, it is important to note that gathering livestock census data in the Qinghai-Tibet Plateau 578 

presents significant challenges, leading to a scarcity of livestock validation data in this study, 579 

particularly at the township and pixel scales. This limitation may, to some extent, impact the reliability 580 

of the grazing intensity data we have presented. 581 

In summary, all these limitations associated with input data, the modeling process, and the 582 

methodological framework collectively contribute to the uncertainties and potentially reduce accuracy 583 

of the GDGI maps. We henceforth recommend that future research should aim to incorporate more 584 

detailed data, consider additional influential factors, enhance key dataset's time-series consistency, and 585 

refine the methodological framework to improve the accuracy of grazing intensity mapping. 586 

5 Data availability 587 

The annual gridded grazing intensity maps of the QTP spanning from 1990 to 2020 are accessible 588 

at the following link: https://doi.org/10.5281/zenodo.13141090 (Zhou et al., 2024). Each map is 589 

catalogued by year and recorded in GeoTIFF format, with values represented in SU/hm2 per year. 590 

These datasets, with a spatial resolution of 100 m and annual temporal resolution, utilize the 591 

WGS-1984-Albers geographic coordinate system. To streamline data transfer and download processes, 592 

the comprehensive 31-year dataset has been compressed into a ZIP file, readily available for download 593 

and compatible with Geographic Information System (GIS) software for viewing. 594 

6 Conclusions 595 

In this study, we introduce a framework utilizing ET machine learning algorithms to achieve 596 

fine-scale livestock spatialization, subsequently generating the GDGI dataset across the QTP. The 597 

GDGI has a spatial resolution of 100 m and expands 31 years from 1990 to 2020. It is consistent with 598 

livestock census data of the QTP, and has a relatively higher precision than previous datasets with 599 

MAE of 0.006 SU/hm2 based on 4,998 independent test samples. In addition, the accuracy evaluations 600 

at both pixel-level and township-level underscore the outstanding reliability and applicability of the 601 

GDGI dataset, which can successfully capture the spatial heterogeneity and variation in grazing 602 

intensities in greater details. Moreover, comparisons between the GDGI dataset and other existing 603 

grazing map products further proved the robust and efficient of our dataset, and demonstrate the 604 

validity of the proposed framework in the research of livestock spatialization. The GDGI dataset 605 

presented in this study can address existing limitations and enhance the understanding of grazing 606 

activities on the QTP. This, in turn, can aid in the rational utilization of grasslands and facilitate the 607 

implementation of informed and sustainable management practices. 608 
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