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Abstract. Grazing activities constitute the paramount challenge to grassland conservation over the 8 

Qinghai-Tibet Plateau (QTP), underscoring the urgency for obtaining detailed extent, patterns, and 9 

trends of grazing information to access efficient grassland management and sustainable development. 10 

Here, to inform these issues, we provided the first annual Gridded Dataset of Grazing Intensity maps 11 

(GDGI) with a resolution of 100 meters from 1990 to 2020 for the QTP. Five most commonly used 12 

machine learning algorithms were leveraged to develop livestock spatialization model, which spatially 13 

disaggregate the livestock census data at the county level into a detailed 100 m× 100 m grid, based on 14 

seven key predictors from terrain, climate, vegetation and socio-economic factors. Among these 15 

algorithms, the extreme trees (ET) model performed the best in representing the complex nonlinear 16 

relationship between various environmental factors and livestock intensity, with an average absolute 17 

error of just 0.081 SU/hm2, a rate outperforming the other models by 21.58%~414.60%. By using the 18 

ET model, we further generated the GDGI dataset for the QTP to reveal the spatio-temporal 19 

heterogeneity and variation in grazing intensities. The GDGI indicates grazing intensity remained high 20 

and largely stable from 1990 to 1997, followed by a sharp decline from 1997 to 2001, and fluctuated 21 

thereafter. Encouragingly, comparing with other open-access datasets for grazing distribution on the 22 

QTP, the GDGI has the highest accuracy, with the determinant coefficient (R2) exceed 0.8. Given its 23 

high resolution, recentness and robustness, we believe that the GDGI dataset can significantly enhance 24 

understanding of the substantial threats to grasslands emanating from overgrazing activities. 25 

Furthermore, the GDGI product holds considerable potential as a foundational source for other 26 

researches, facilitating rational utilization of grasslands, refined environmental impact assessments, and 27 

the sustainable development of animal husbandry. The GDGI product developed in this study is 28 

available at https://doi.org/10.5281/zenodo.13141090 1085111913672152 (Zhou et al., 2024).29 
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1 Introduction  32 

Livestock is a crucial contributor to global food systems through the provision of essential animal 33 

proteins and fats, and plays a significant role in supporting human survival and socio-economic 34 

development (Gilbert et al., 2018; Godfray et al., 2018; Humpenöder et al., 2022; Kumar et al., 2022). 35 

However, the escalating increase in human demand for meat and dairy products over recent decades has 36 

triggered a livestock boom, which in turn has increasingly threatened grassland ecosystems and placed 37 

a heavy burden on the environment through overgrazing and land-use change (Tabassum et al., 2016; 38 

Wei et al., 2022; Minoofar et al., 2023). It is estimated that up to 300 million hectares of land are used 39 

globally for grazing and cultivating fodder crops (Tabassum et al., 2016). Grazing activities could alter 40 

vegetation phenology and community structure (Dong et al., 2020), and trigger deforestation (García 41 

Ruiz et al., 2020), grassland degradation (Sun et al., 2020), soil erosion (Shakoor et al., 2021), and 42 

associated direct releases in greenhouse gas that lead to climate change feedback (Godfray et al., 2018; 43 

Chang et al., 2021). Additionally, livestock are responsible for large-scale dispersion of pathogens, 44 

organic matter, and residual medications into soil and groundwater, thereby contaminating the 45 

environment (Venglovsky et al., 2009; Tabassum et al., 2016; Hu et al., 2017; Muloi et al., 2022). 46 

Consequently, more and more scholars have called attention to provide reliable contemporary dataset to 47 

illustrate the spatio-temporal heterogeneity and variation of livestock (Petz et al., 2014; Fetzel et al., 48 

2017; Zhang et al., 2018; Li et al., 2021).  49 

One of the major challenges in monitoring grazing activity at regional or even larger scale, is the 50 

determination of the livestock distribution pattern. Despite the importance of geographical grazing 51 

information, high spatio-temproal grazing dataset remain unavailable, posing the most critical challenge 52 

to grassland management, particularly for vulnerable grassland ecosystems in fragile regions grappling 53 

with economic and sustainable development contradictions (Meng et al., 2023; Pozo et al., 2021; Miao et 54 

al., 2020; He et al., 2022). In the early 2000s, the Food and Agriculture Organization of the United 55 

Nations (FAO) launched the Gridded Livestock of the World (GLW) project to facilitate a detailed 56 

evaluation of livestock production, aiming to provide pixel-scale livestock densities instead of traditional 57 

administrative unit benchmarks (Nicolas et al., 2016). Consequently, the world’s inaugural dataset of 58 

livestock spatialization map (GLW1) was released in 2007, providing the first globally standardized 59 

livestock density distribution map at a spatial resolution of 0.05 decimal degrees (≈5 km at the equator) 60 

for 2002. It was not until 2014 that an updated GLW2 map with a 1 km resolution for 2006 was 61 

released, by using a stratified regression approach, superior spatial resolution predictor variables, and 62 

more detailed livestock census data (Robinson et al., 2014). Furthermore, an evolutionary step in 63 

machine learning technology saw Gilbert et al. (2018) using random forests algorithm to forge a global 64 

livestock distribution map with a 10-km resolution for 2010 (GLW3), succeeding traditional multivariate 65 

regression methods and surpassing the precision of previous GLW1 and GLW2 maps. Beyond these 66 
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global mappings, several maps with different scales have also been published, including intercontinental, 67 

national, state or provincial, and local scale (Neumann et al., 2009; Prosser et al., 2011; Van Boeckel et 68 

al., 2011; Nicolas et al., 2016). However, these maps are fundamentally coarse due to constraints such as 69 

the availability of fine scale and contemporary census data, the grazing spatialization method, as well as 70 

the identification of appropriate indicators, thereby limiting their application to local or regional-scale 71 

studies (Nicolas et al., 2016; Gilbert et al., 2018; Robinson et al., 2014). Hence, there is an emergent 72 

demand for more refined grazing map products (Mulligan et al., 2020; Martinuzzi et al., 2021). 73 

An exemplar of this need can be observed in the Qinghai-Tibet Plateau (QTP), the world's most 74 

elevated pastoral region and an important grazing area in China (Zhan et al., 2023). It was possessing 75 

abundant grassland that spans 1.5 million km2, accounting for 50.43% of China's total grassland area, 76 

with Yak and Tibetan sheep as primary grazing livestock (Feng et al., 2009; Cai et al., 2014; Zhan et al., 77 

2023). Over recent decades, the QTP has undergone escalating grassland degradation, leading to many 78 

ecological and socio-economic problems, which calls for an urgent need for detailed livestock 79 

distribution dataset (Li et al., 2022a). Unfortunately, despite researchers' efforts at mapping the QTP's 80 

grazing intensity, current livestock dataset still suffer from coarse spatio-temporal resolution and 81 

modelling accuracy. Apart from the aforementioned global grazing dataset, several other maps also 82 

cover the QTP. For instance, Liu et al. (2021) generated annual 250-m gridded carrying capacity maps 83 

for 2000-2019, by employing multiple linear regressions of livestock numbers, population density, NPP, 84 

and topographic features. Li et al. (2021) used machine learning algorithms to produce gridded livestock 85 

distribution data at 1 km resolution for 2000-2015 in western China at five year interval, based on 86 

county-level livestock census data and 13 factors from land use practice, topography, climate, and 87 

socioeconomic aspects, including grassland coverage, arable land coverage, forest land coverage, desert 88 

coverage, NDVI, elevation, slope, daytime surface temperature, precipitation, distance to river, travel 89 

time to major cities, population density, and GDP (Li et al., 2021). A contribution from Meng et al. (2023) 90 

brought forth annual longer time-series grazing maps by using random forests model, integrating climate, 91 

soil, NDVI, water distance, and settlement density to decompose county-level livestock census data to a 92 

0.083° (≈10 km at the equator) grid for 1982-2015 (Meng et al., 2023). Similarly, Zhan et al. (2023) also 93 

used random forests algorithm to combine eleven influence factors to provide a winter and summer 94 

grazing density map at 500 m resolution for 2020 (Zhan et al., 2023).  95 

However, although these maps have provided good help in understanding grazing conditions on the 96 

QTP, there are currently still no maps that can satisfy the need for fine-scale grassland management 97 

with a long time span. In addition, the available livestock distribution maps of the QTP still need 98 

improvement in terms of modelling techniques and factor selection to obtain high-precision livestock 99 

spatialization data. For example, traditional methods like multiple linear regression, while proven 100 

fundamental and widely applicable for livestock spatialization (Robinson et al., 2014; Ma et al., 2022), 101 

are being challenged by the development of computational science in recent years. Among them, 102 

machine learning technology is providing new opportunities towards more accurate predictions of 103 

livestock distribution (García et al., 2020). Random forests regression, for instance, is currently widely 104 

used to construct global, national as well as regional livestock spatialization dataset, and has been proved 105 

to have much better accuracy than traditional mapping techniques (Rokach, 2016; Nicolas et al., 2016; 106 

Gilbert et al., 2018; Dara et al., 2020; Chen et al., 2019; Li et al., 2021). Nevertheless, other more 107 

advanced machine learning methods with superior feature learning and more robust generalization 108 

capabilities, remains largely untapped for modelling geographic data (Ahmad et al., 2018; Heddam et al., 109 
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2020; Long et al., 2022). Thus, exploring the potential application of new advanced machine learning 110 

technologies in livestock spatialization remains a critical task. Furthermore, selecting the suitable factors 111 

that influencing livestock grazing preferences is also the other critical challenge for enhancing the 112 

precision of grazing distribution dataset (Meng et al., 2023). Livestock grazing activities are often 113 

affected by abiotic and biotic resources, including climatic and environmental factors (Waha et al., 114 

2018), herd foraging and grazing behaviours (Garrett et al., 2018; Miao et al., 2020), and 115 

conservation-oriented policies (Li et al., 2021). For instance, regions exceeding elevations of 5,600 m or 116 

slope greater than 40% are customarily unsuitable for grazing (Luo et al., 2013; Mack et al., 2013; 117 

Robinson et al., 2014; Chen et al., 2019). Moreover, the livestock generally prefer areas abundant in 118 

water and pasture resources for foraging (Li et al., 2021). Besides, ecological conservation policies also 119 

exert substantial influence, significantly affecting grazing distribution relative to the level of 120 

conservation priority. In addition, the health status of the grassland is an important factor influencing 121 

whether livestock choose to feed or not (Li et al., 2021). Consequently, indicators related to the above 122 

aspects are often employed to gauge the spatial heterogeneity of livestock distribution (Allred et al., 2013; 123 

Sun et al., 2021; Meng et al., 2023). Nonetheless, some most commonly used indicators like NPP or 124 

NDVI can result in misconceptions, as they may not fully characterize the grazing intensity. For example, 125 

grasslands with high NPP or NDVI are often preferred by livestock, but this doesn't necessarily correlate 126 

with grazing intensity in nature reserves due to strict policy restrictions (Veldhuis et al., 2019; O'neill and 127 

Abson, 2009; Zhang et al., 2021b). Conversely, areas with sparse grassland cover may support 128 

considerable livestock numbers, despite evidence of degradation (Zhang et al., 2021a; Guo et al., 2015). 129 

Accordingly, further investigation of novel indicators is imperative to enhance the correlation between 130 

grassland and grazing intensity, thereby optimizing the integration of such influencing factors into 131 

grazing spatialization models. 132 

In summary, the QTP is in pressing need for a high spatio-temporal resolution grazing dataset to 133 

address urgent and realistic challenges. But the existing livestock dataset specific to the QTP are fraught 134 

with several insufficient, predominantly concerning rough resolution, relatively backward census data, 135 

as well as conventional methods in livestock spatialization. Moreover, the discrepancies in predictive 136 

indicators and modelling approaches within these dataset discourage their application in time-series 137 

analysis. Consequently, the generation of high-resolution and high-quality grazing map products has 138 

emerged as the most pressing challenge for the QTP. Here, we aim to (1) establish a methodological 139 

framework by using more rational models and indicators than traditional studies to achieve fine-scale 140 

livestock spatialization; (2) select the grazing spatialization model with good performance by 141 

incorporating multi-source data with advanced machine learning techniques; and (3)  ultimately, 142 

provide an annual grazing intensity dataset with 100 m resolution spanning from 1990-2020. These maps 143 

can not only provide fundamental dataset with finer spatio-temporal resolution to address the limitations 144 

of existing grazing intensity maps, but enhance a better understanding of sustainable management 145 

practices as well as other grassland-related issues across the QTP. 146 

2 Data and methods 147 

2.1 Study area 148 

Known as the Asia's water tower and the world's third pole, the QTP is geographically situated 149 

between 73°19~104°47′ east longitude and 26°00′~39°47′ north latitude, with a total area of about 2.61 150 

million square kilometers (Figure 1). Its jurisdiction encompasses 182 counties within six provincial 151 
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regions of China, including Tibet Autonomous Region, Qinghai Province, Xinjiang Uygur Autonomous 152 

Region, Gansu Province, Sichuan Province, and Yunnan Province (Meng et al., 2023). Elevation on the 153 

QTP predominantly ranges between 3,000 m and 5,000 m, with an average altitude exceeding 4,000 m. 154 

With grasslands constituting over half of its land cover, the QTP emerges as one of the most important 155 

pastoral areas in China. Alpine steppe, alpine meadow, and temperate steppe characterize the main 156 

grassland types on the QTP (Han et al., 2019; Zhai et al., 2022; Zhu et al., 2023b). The complex 157 

geographical and climatic conditions of the QTP contributes to the markedly heterogeneous grassland 158 

distribution, which correspondingly lead to the high heterogeneity in livestock distribution. Moreover, 159 

social and economic development, coupled with policy initiatives directed towards grassland restoration, 160 

have noticeably impacted the livestock numbers on the QTP over recent decades (Li et al., 2021; Li et al., 161 

2016). 162 

 
Figure 1. The geographic zoning map of the Qinghai-Tibet Plateau (QTP) superposed with grassland vegetation. 163 

Boundaries for the six provinces used for statistical analysis are also shown. 164 

2.2 Data source 165 

2.2.1 Census livestock data 166 

The county-level census livestock data for the period between 1990 and 2020 were obtained from 167 

the Bureau of Statistics of each county across the QTP (Table 1). The data includes the number of cattle, 168 

sheep, horse and mule, with the exception of counties in Yunnan Province, which lack data for the 169 

years from 1990 to 2007, and Ganzi Prefecture in Sichuan Province, which lack data for the years from 170 

1990 to 1999, and Muli county in Sichuan Province, which lack data for the years from 1990 to 2007. 171 

For these counties belonging to the same prefecture, including counties in Ganzi and Aba prefectures in 172 

Sichuan Province, we used the livestock census data at the prefecture-level to carry out spatialization. 173 

For these counties in Yunnan Province, since they belong to different municipalities, it is not reasonable 174 

to replace them with municipal-level data. For these counties without livestock census data for some 175 

years, we supplemented the missing data by linear interpolation with grazing density data in available 176 

year. In total, livestock data were available for 182 counties, and 4,998 independent records were 177 
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finally generated. Furthermore, the respective quantities of different livestock types are converted to 178 

Standard Sheep Units (SU), in compliance with the Chinese national regulations (Meng et al., 2023). 179 

Due to the difficulty of collecting township-level census livestock data, the validation data at the 180 

township scale collected in this study only involved these townships of Baching County (2010-2018) 181 

and Gaize County (2018-2020) in Tibet, and Hongyuan County in Sichuan Province (2008). The 182 

township-level census livestock data cumulatively involves 18 townships with a total of 112 records, 183 

and were only used for auxiliary validation of the simulation results. 184 

The validation data at the pixel scale also encompass a total of 112 records from 68 sites, which 185 

were collected from literatures, questionnaires and field surveys. Specifically, 93 records at 49 sites 186 

spanning the 1990-2021 period were obtained from 17 literatures, 19 records at 19 sites were obtained 187 

from the questionnaires and the field survey in 2021. The detailed information for these records can be 188 

found in the Supplementary files (Figure S3 and Table S3). 189 

Table 1. Summary of the livestock data used in this study 190 

Variables Scale Time Sources 

Livestock numbers 

County 1990-2020 Statistical bureau 

Township 2008-2020 Statistical bureau 

Pixel 1990-2021 Literatures, questionnaires and field surveys 

2.2.2 Factors affecting grazing activities 191 

Livestock grazing activities are often affected by abiotic and biotic resources, including climatic 192 

and environmental factors (Waha et al., 2018), herd foraging and grazing behaviours (Garrett et al., 193 

2018; Miao et al., 2020). For instance, high-altitude and steep hillsides are unsuitable for grazing due to 194 

terrain constraints, and the distribution of herders directly affects the grazing areas (Luo et al., 2013; 195 

Mack et al., 2013; Robinson et al., 2014; Chen et al., 2019). Moreover, the livestock generally prefer 196 

areas abundant in water and pasture resources for foraging (Li et al., 2021). Therefore, in this study, 197 

topography, climatic, environmental and socio-economic impacts were considered as influential factors 198 

on grazing activities (Li et al., 2021; Meng et al., 2023).  199 

We utilized correlation analysis and the Random Forest importance ranking tool to eliminate 200 

redundant environmental factors and determine the contribution of each factor. Ultimately, altitude, 201 

slope, distance to water source, population density, air temperature, precipitation and human-induced 202 

impacts on NPP (HNPP) was selected as indicators (Table 2). Specifically, elevation is derived from the 203 

DEM dataset accessible via the Resource and Environmental Data Cloud Platform of the Chinese 204 

Academy of Sciences (https://www.gscloud.cn), which also facilitated slope calculation. Rivers and 205 

lakes were obtained from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn), and the 206 

nearest Euclidean distance from each pixel to rivers or lakes is calculated accordingly. Meteorological 207 

elements such as daily air temperature and precipitation were downloaded from the China 208 

Meteorological Data Service Center (http://data.cma.cn). For the grid dataset that is not conditionally 209 

available, including population density, temperature, precipitation and HNPP, we detailed the creation 210 

process in the Supplementary file. All datasets utilized in this study were harmonized to consistent 211 

coordinate systems and resolutions (WGS 1984 Albers, 100 m). 212 

Table 2. Summary of factors affecting grazing activities on the QTP.  213 

Variables Format Period  Time 

Resolution 

Spatial 

Resolution 

Source 

https://data.tpdc.ac.cn/
http://data.cma.cn/


7 
 

Altitude GeoTIFF —— —— 30m https://www.gscloud.cn 

Slope GeoTIFF —— —— 30m https://data.tpdc.ac.cn 

Water source Shapefile 1990-2020 Annual —— https://data.tpdc.ac.cn 

Population 

density 

GeoTIFF 1990-2020 Annual 100m See supplementary file 

Temperature GeoTIFF 1990-2020 Annual 100m See supplementary file 

Precipitation GeoTIFF 1990-2020 Annual 100m See supplementary file 

HNPP GeoTIFF 1990-2020 Annual 100m See supplementary file 

2.3 Methodological framework 214 

We adopted a comprehensive methodological framework for mapping high-resolution grazing 215 

intensity on the QTP. This study applied FAO’s assumption that the relationship between environmental 216 

factors and livestock intensity is identical at both the administrative and pixel level. Three major steps 217 

are included to predict the distribution pattern of grazing intensity: (1) identifying factors affecting 218 

grazing activities and extracting theoretical suitable areas for livestock grazing, (2) building grazing 219 

spatialization model, and (3) filtering the model and correcting the grazing map. An exhaustive 220 

explanation of each step is provided in Figure 2. 221 

 222 

Figure 2. Flowchart of creating grazing intensity maps using different methods and source products. 223 

https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
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2.3.1 Identifying factors and theoretical suitable areas for grazing 224 

In this study, we assumed that grazing activities are confined solely to grassland. Consequently, the 225 

potential grazing areas for each year were identified on the basis of grassland boundaries, which was 226 

extracted from the 30 m annual land cover dataset (CLCD) (Yang and Huang, 2021). Furthermore, 227 

grassland with slope over 40% and elevation higher than 5,600 m respectively, were considered 228 

unsuitable for grazing and were therefore excluded from the potential grazing area in the subsequent 229 

simulations (Robinson et al., 2014). In addition, the grassland with population density greater than 50 230 

inhabitants km-2 were also excluded (Li et al., 2018). The remaining isolated grassland was thus 231 

categorized as theoretical feasible grazing regions. 232 

The spatial patterns of abiotic and biotic resources, incorporating food availability, environmental 233 

stress, and herder preference critically affect grazing activities (Meng et al., 2023). In light of this, 234 

seven influencing factors in four aspects were selected for grazing intensity mapping (Figure 2-1). 235 

2.3.2 Building grazing spatialization model 236 

By performing regional statistics, the annual average values for each grazing influence factor were 237 

extracted from the theoretically suitable grazing areas at the county scale , and were further used as 238 

independent variables in the model construction. The dependent variable for the model was acquired by 239 

determining the livestock density within each county, followed by a logarithmic transformation of the 240 

values to normalize the distribution of the dependent variable. Consequently, a total of 4,998 samples 241 

were derived from the aforementioned independent and dependent variables. Of these samples, 70% 242 

were allocated for model training, while the remaining 30% comprised the test sets, serving to validate 243 

the model's performance. Subsequently, we built grazing spatialization models using five machine 244 

learning algorithms at the county scale, including Support Vector regression (SV) (Cortes and Vapnik, 245 

1995; Lin et al., 2022), K-Nearest Neighbors (KNN) (Cover and Hart, 1967), Gradient Boosting 246 

regression (GB) (Friedman, 2001; Pan et al., 2019), Random Forests (RF) (Breiman, 2001) and Extra 247 

Trees regression (ET) (Geurts et al., 2006; Ahmad et al., 2018) (see Supplementary file for details). 248 

Lastly, to assess the accuracy of the spatialized livestock map, the predicted livestock intensity values 249 

were juxtaposed with the livestock statistical data from each respective county. 250 

2.3.3 Correcting the grazing map 251 

We further used the optimal model to predict the geographical distribution of grazing density across 252 

the QTP. To maintain better consistency between the predicted livestock number and the census data, 253 

the estimated results were adjusted using the census livestock numbers at the county scale as a control 254 

according to Equation (1). Consequently, the corrected and refined map is presented as the final grazing 255 

intensity map in this study. 256 

𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛=
𝐿𝐶𝐶𝑒𝑛𝑠𝑢𝑠

𝐿𝐶𝑔𝑟𝑖𝑑
× 𝐿𝑔𝑟𝑖𝑑                (1) 257 

where Lcorrection is the predicted pixel-scale livestock number after adjustment, LCgrid represents the 258 

estimated livestock number for each county, LCCensus is the census livestock number for each county, 259 

and Lgrid refers to the predicted livestock number at the pixel scale.  260 
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2.4 Accuracy evaluation 261 

We used three accuracy validation indexes to evaluate the performance of five machine learning 262 

algorithms, including coefficients of determination (R2), mean absolute error (MAE), and root mean 263 

square error (RMSE), by through a comparison of the predicted value with the census data. The 264 

definitions of three metrics are presented in Equation (2) to (4). 265 

R2=1-
∑ (Ci-Pi)

2n
i=1

∑ (Ci-C̅)
2n

i=1

                                     (2) 266 

MAE=
1

n
∑ |Ci-Pi| 

n
i=1                                  (3) 267 

RMSE =√
1

n
∑ (Ci-Pi)

2 n
i=1                               (4) 268 

where Ci and Pi are the census livestock data and the predicted value for county i, respectively; C̅ 269 

represents the mean census value for all county; and n gives the total number of counties. 270 

2.5 uncertainties evaluation  271 

   Uncertainty in our grazing intensity maps can stem from multiple sources, such as the constraints of 272 

cross-scale modeling and the intrinsic inaccuracies of the input data. To quantify these uncertainties, we 273 

utilized the Monte Carlo (MC) method, conducting 100 iterations of simulation. Subsequently, we 274 

evaluated uncertainty through the Mean Relative Error (MRE) and assessed the model's robustness 275 

using the Standard Deviation (STD), following established methodologies (Yang et al., 2020; 276 

Alexander et al., 2017; Mcmillan et al., 2018). The definitions for these metrics are delineated in 277 

Equations (5) to (7). 278 

MC =
1

n
∑ f(xi)

n
i=1                                   (5) 279 

MRE=
1

𝑛
∑ |

𝑥𝑖-�̅�

�̅�
| 𝑛

𝑖=1                                  (6) 280 

STD=
1

n
∑ f(xi)√

1

n
∑ (xi-x̅)n

i
n
i=1                            (7) 281 

where 𝑥𝑖  are random samples, 𝑓(𝑥𝑖) is the function evaluated at 𝑥𝑖 , and 𝑛  is the number of 282 

simulations. �̅� represents the mean value for all simulation maps. 283 

3 Results 284 

3.1 Performances of models 285 

Table 3 summarizes the efficiency of the five used machine learning models with considering all 286 

three accuracy evaluators of R2, MAE and RMSE. It can be seen that the ET model performs the best, 287 

with its R2 exceeding 0.955, and MAE (0.081 SU/hm2) and RMSE (0.164 SU/hm2) significantly lower 288 

than the value of RF, GB, KNN and SVM models. Figure 3 illustrates the correlation between the 289 

census livestock data and the livestock numbers predicted by the model for each county from 1990 to 290 

2020. It demonstrated that the ET-predicted data displayed a distribution pattern consistent with that of 291 

other models, but the scatter points of the ET model were more convergent to the 1:1 diagonal line, 292 

indicating a superior fit compared to the other models. These comparisons suggest that the ET model 293 

possesses superior robustness and can, therefore, provide stable estimations of livestock intensity on 294 

the QTP. 295 
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Table 3. Comparison of mapping accuracy for five machine learning models based on the same validation datasets 296 

Models R2 MAE (SU/hm2) RMSE (SU/hm2) 

ET 0.955 0.081 0.164 

RF 0.928 0.099 0.208 

GB 0.859 0.197 0.300 

KNN 0.786 0.186 0.384 

SVM 0.380 0.419 0.750 

Note: The MAE and RMSE have calculated using inverse logarithmic transformation, presenting the 297 

actual values. 298 

 299 
Figure 3. Scatterplots of model-predicted livestock numbers and census grazing data (scaled by logarithm) at the 300 

county scalelevel. The red solid line and the black solid line are the fitting line and the 1:1 diagonal line, 301 

respectively. 302 
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 303 
Figure 4. Accuracy of the ET-predicted grazing intensity results at spatial resolution of 100 m from 1990 to 2020. 304 

(a) absolute error (AE) between the predicted and the census data at the county scale from 1990 to 2020; (b) 305 

comparison of the predicted and census data of the whole QTP from 1990 to 2020; (c) spatial distribution of the 306 

mean absolute error (MAE) during 1990 to 2020 for each county. 307 

Using the ET model, we projected the spatio-temporal distribution of grazing intensity across the 308 

QTP from 1990 to 2020 at a 100 m × 100 m resolution. To validate the accuracy of these predictive 309 

maps, we up scaled the pixel-level predictions to the county level and compared them against livestock 310 

census data (Figures 4a and 4b). The results clearly show a high degree of consistency between the 311 

predicted livestock intensity and the county-level census data, especially in areas with lower grazing 312 

intensity (Figures 4a and 4b). Specifically, while the mean census data indicated 2.983 SU/hm² for 313 

livestock intensity, our county-level predictions yielded an average of 3.106 SU/hm², with a MAE of 314 

0.123 SU/hm², a RMSE of 0.580 SU/hm², and an R² value of 0.669. Additionally, 76.31% of the 315 

counties (n = 3,814) exhibited data discrepancies of no more than 0.6 SU/hm², and 91.74% (n = 4,585) 316 

had discrepancies under 1.0 SU/hm². Regarding spatial distribution, areas with data discrepancies of 317 

less than 0.3 SU/hm² were predominantly located in the northwest and southeast regions of the QTP. In 318 

certain counties of the northeast and southwest, the variations were even below 1.0 SU/hm² (Figure 4c). 319 

3.2 Evaluation of uncertainties  320 

We have chosen the Mean Relative Error (MRE) as a key metric for evaluating the simulation 321 

accuracy of grazing intensity within the QTP. Employing Monte Carlo simulations spanning the period 322 

from 1990 to 2020, our research findings demonstrate that the average MRE for grazing intensity 323 

across the QTP ranged between 6.84% and 9.08% (Figure 5a). The spatial distribution of MRE 324 

indicates that the majority of the plateau exhibits low error margins. For example, in 2020, areas with 325 

an MRE of less than 5% accounted for 35.86% of the total grassland area, while those with an MRE 326 

below 10% constituted 75.84%. Only 3.38% of the grasslands had an MRE exceeding 20%, with these 327 

regions primarily located in the southwestern portion of the QTP (Figure 5b). Moreover, the robustness 328 
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analysis suggests that the majority of regions within the QTP display relatively stable grazing intensity 329 

trends. For instance, the overall standard deviation (STD) in 2020 was 0.059 SU/hm², with the 330 

northwest region demonstrating remarkable stability, reflected in an STD of less than 0.005 SU/hm². 331 

Although some areas within the Yarlung Zangbo River Basin and the eastern part of Qinghai Province 332 

experienced higher variability, their STD was still maintained below 0.3 SU/hm² (Figure 5c). 333 

 334 

Figure 5. Uncertainty analysis of grazing intensity maps based on ET and Monte Carlo methods. (a) MRE of 335 

grazing intensity maps from 1990 to 2020, (b) spatial distribution of MRE, (c) spatial distribution of STD. 336 

3.3 Validation of the GDGI dataset 337 

After employing county-level livestock census as a benchmark for quality control, we obtained the 338 

annual Gridded Dataset of Grazing Intensity maps (GDGI) across the QTP spanning 31 years from 339 

1990 to 2020.We firstly confirmed the accuracy of the GDGI dataset based on 112 field grazing 340 

intensity records at 68 sites (see Table S3 in Supplementary file for details), which ranged from 0 to 341 

5.61 sheep unit per hectare (SU/hm2), and covered three main grasslands on the QTP: the alpine steppe 342 

(N = 62), alpine meadow (N = 46), and alpine desert steppe (N = 4). The GDGI dataset was assessed by 343 

undertaking a comparative accuracy assessment between it and the field grazing intensity data (Figure 344 

6a). It can be seen that in general, our dataset was highly consistent with the reference ground-truth 345 

validation data, with R2 = 0.804, MAE = 0.572 SU/hm2, and RMSE = 0.953 SU/hm2. Moreover, the 346 

absolute errors between the GDGI data and the field grazing intensity data were relatively small, with 347 

more than half of the records having an error below 0.3 SU/hm2, 78.57% below 1.0 SU/hm2, and 89.29% 348 

below 1.5 SU/hm2 (Figure 6b).  349 
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 350 

Figure 6. Validation of the GDGI dataset using 112 field grazing intensity records at the pixel scale: (a) linear 351 

fitting results; (b) absolute error (AE) distribution. 352 

We further validated the precision of the GDGI dataset using the township-level livestock census 353 

data. Encouragingly, the evaluation results showed that the GDGI dataset has excellent performance at 354 

the township scale (Figure 7a), with R2 of 0.867, MAE of 0.208 SU/hm2, and RMSE of 0.276 SU/hm2. 355 

In addition, similarly to the census data, the GDGI dataset indicated that some townships with few 356 

grasslands area are still under high grazing pressure (Figure 7b and 7c). 357 

 358 

Figure 7. Validation of the GDGI dataset using census livestock data at the township level: (a) linear fit of 359 

predicted number and census data; (b-c) logistic fit of grazing intensity data and grassland area. 360 

3.4 Spatio-temporal variations of grazing intensity 361 

In terms of the temporal trends of grazing intensity, the GDGI dataset overall exhibited consistent 362 

trends with the livestock census data (Figure 8d-8f). Specifically, the census data indicated the 363 

livestock numbers remained high and largely stable from 1990 to 1997, followed by a sharp decline 364 

from 1997 to 2001, and then remained a period of fluctuation post-2001, which was successfully 365 

captured by the GDGI dataset. Moreover, the spatial heterogeneity of grazing intensity within the 366 

counties over the QTP was also effectively reflected by the GDGI dataset, a characteristic not 367 

illustrated by the census dataset. For example, areas of high grazing intensity were concentrated in the 368 
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northeastern and south-central regions of the plateau, mainly including the eastern part of Qinghai 369 

Province, the southwestern part of Gansu Province, the northwestern part of Sichuan Province, and the 370 

eastern region of the Tibet Autonomous Region (Figure 8e and 8f).  371 

Over the past 31 years, 63.95% of the plateau’s grassland showed a decreasing trend in grazing 372 

intensity, with 49.80% showing significant decreases, primarily located in the eastern Sanjiangyuan 373 

area and the southwestern region of the QTP (Figure 8e and 8f). Meanwhile, grazing intensity was 374 

increasing in 36.05% of the grassland, but most of them (60.16%) did not reach the level of 375 

significance and were mainly distributed in the northeastern plateau (Figure 8e and 8f). 376 

 377 

Figure 8. Validation of the GDGI maps using the census grazing data from 1990 to 2020: (a) violin plot of the 378 

census data and the predicted value; (b-c) spatial distribution in SU per pixel; (d) temporal change in SU per year 379 

(only including 124 counties with livestock census data); (d-f) spatial distribution of SU changes tested by sen’s 380 

slope and Mann-Kendall. Note: ESI for Extremely Significant Increase (slope>0 & p<0.01); SI for Significant 381 

Increase (slope > 0 & p < 0.05); NSI for Non-significant increase (slope>0 & p>0.05); ESD for Extremely 382 

Significant Decrease (slope<0 & p<0.01); SD for Significant decrease (slope<0 & p<0.05); NSD for 383 

Non-significant decrease (slope<0 & p>0.05). 384 

4 Discussion 385 

4.1 Comparison with other grazing intensity maps 386 

To further assess the effectiveness and reliability of the developed GDGI dataset, the mapping 387 

results were juxtaposed with seven publicly available grazing intensity maps covering the QTP (Table 388 

4). It can be seen that despite their public availability, these maps lacked both in spatial and temporal 389 
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resolution when juxtaposed with the GDGI maps. Our analysis was extended to four openly accessible 390 

gridded livestock datasets, including GI-Sun  (Sun et al., 2021), ALCC (Liu, 2021), GI-Meng (Meng 391 

et al., 2023) and GLWs (Gilbert et al., 2018). A commonality among all five maps was the consistency 392 

for the spatial patterns of grazing intensity, with prevalent high and low intensities in the northeast and 393 

northwest regions, respectively (Figure 9). However, these maps differed significantly in terms of 394 

accuracy. As the grazing intensity maps of GLWs and ALCC were produced based on the livestock 395 

census data in 2001 and 2015, an accuracy comparison for the corresponding years was conducted 396 

among the five datasets both at county and township scale. Observations at the county scale indicate 397 

that all four datasets, with the exception of GI-Sun, are largely in alignment with the county census 398 

data (Figure 9b). When examined at the township scale, GI-Sun and GLW demonstrate the most 399 

significant discrepancies, with MRE surpassing 68%. ALCC and GI-Meng follow, recording MREs of 400 

30.69% and 38.80%, respectively. Additionally, the GDGI shows the highest degree of accuracy in 401 

relation to the township census data, as indicated by the lowest MAE and RMSE values (Figure 9c). 402 

Moreover, the GDGI dataset spanning 31 years (1990-2020) earmarked it as a more suitable choice for 403 

long-term studies in comparison to the other four datasets. Regarding spatial distribution, the overall 404 

patterns of these grazing maps are largely consistent, exhibiting higher density patterns in the southeast 405 

and lower in the northwest. However, notable discrepancies are still apparent in the finer details. In 406 

general, in terms of visually representing458 the spatial distribution of livestock, the GDGI maps 407 

exhibit the best performance. 408 

The above advantageous of the GDGI dataset are understandable. Several potential factors may 409 

contribute to the improved accuracy of the GDGI. First, the livestock census data used in GDGI is 410 

more detailed, aiding in enhancing the accuracy of the estimation results. Specifically, GI-sun, ALCC, 411 

GI-Meng and GDGI all use county-level livestock statistics to map grazing intensity, whereas GLW3 412 

and GLW4 are based on provincial-level census data to map, which results in their accuracy lagging 413 

significantly behind the four other datasets (Nicolas et al., 2016; Sun et al., 2021). Second, grazing 414 

densities are estimated by dividing the number of livestock from the statistical data, after a mask 415 

excluding theoretical unsuitable grazing areas. However, these maps differ in their definitions of 416 

suitable grazing areas. In this study, as with the GI-sun and GI-Meng maps, we considered grazing to 417 

occur only on grasslands, and further excluded unsuitable areas such as high elevations and steep 418 

slopes. This kind of definition is clearly more reasonable than the GLW series, which removed only 419 

water bodies, urban core areas, and protected areas with relatively tight regulations of human activity 420 

(Mcsherry and Ritchie, 2013; He et al., 2022). However, the GI-Meng dataset considers the core areas 421 

of protected areas as grazing-free region, it does not match the actual situation on the QTP (Jiang et al., 422 

2023; Li et al., 2022b; Zhao et al., 2020). Those different thresholds for the definition of suitable 423 

grazing areas are account for the fact each map has different theoretical grazing regions. Third, the 424 

selection of models and environmental factors may also be a significant contributing factor, leading to 425 

variations in predictive accuracy. For instance, different algorithms were employed, including linear 426 

regression and machine learning methods (Nicolas et al., 2016; Li et al., 2021). Additionally, the 427 

environmental factors considered varied; specifically, the GDGI utilized the Human-induced Net 428 

Primary Productivity (HNPP) to represent grasslands, whereas other maps relied on Net Primary 429 

Productivity (NPP) and Normalized Difference Vegetation Index (NDVI) (Allred et al., 2013; Sun et al., 430 

2021; Meng et al., 2023).Third, the selection of models and environmental factors may also be a 431 

contributing factor, which also leads to differences in prediction accuracy across maps. For instance, 432 

different algorithms were applied—linear regression and machine learning (Nicolas et al., 2016; Li et 433 域代码已更改
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al., 2021).. The environmental factors also varied. Specifically, when representing grasslands, GDGI 434 

employed HNPP, whereas other maps used NPP and NDVI (Allred et al., 2013; Sun et al., 2021; Meng 435 

et al., 2023).Third, these maps decompose the livestock census data to pixels based on different 436 

mathematical theories, which also leads to differences in prediction accuracy across maps. Specifically, 437 

ALCC used a multivariate linear regression algorithm to predict grazing intensity, which has been 438 

shown to be significantly inferior to the RF machine learning method employed by GI-Meng, GLW3 439 

and GLW4 (Nicolas et al., 2016; Li et al., 2021). In this study, we used the ET model to predict 440 

livestock numbers and achieved higher accuracy accordingly. Finally, differences in the selection of 441 

factors affecting livestock distribution across maps may also lead to differences in map accuracy. 442 

Specifically, GI-sun only used the NPP as indicator, but it is not simply linearly related to grazing 443 

intensity (Sun et al., 2021; Ma et al., 2022; Gilbert et al., 2018). ALCC considered the population 444 

density, NPP, and terrain as indicators, which are also incomplete considerations of the influencing 445 

factors. On the other hand, GLW series dataset considered 12 factors, such as NDVI, EVI, population 446 

distribution and elevation. GI-Meng dataset incorporated 14 factors including NDVI, soil PH, available 447 

nitrogen, available phosphorus, and available potassium. However, GLWs and GI-Meng ignored the 448 

decrease in the prediction accuracy due to redundancy among the factors. In this study, we selected 449 

factors related to grazing activities including terrain, climate, environment and social factor, and 450 

constructed a prediction model with seven factors including population density, elevation, climate, and 451 

HNPP. Unlike other livestock products, this study used HNPP for the first time to replace the 452 

commonly used NPP, or NDVI, or EVI as indicator, which has be proved to be more accurately 453 

expressed the relationship between livestock and grassland (Huang et al., 2022). 454 

域代码已更改

设置了格式: 图案: 清除 (白色)



17 
 

Table 4. Summary of map-derived parameters for this study and other seven public gridded livestock datasets covering the QTP. 455 

Dataset Accessibility Census Temporal resolution Spatial resolution Period (years) Method Livestock type 

GDGI Yes County annual 100 m 1990-2020 (31) ET Standard SU 

GLW3 Yes Province/sub-Province annual 0.083°(≈10 km) 2001 (1) RF Cattle, ducks, pigs, chickens, 

sheep, goats GLW4 Yes Province/sub-Province annual 0.083°(≈10 km) 2015 (1) RF 

GI-Sun Yes County five-year interval 1 km 1990-2015 (6)  LRA Standard SU 

ALCC Yes Province/sub-Province annual 250 m 2000-2019 (20) MLR Standard SU 

GI-Meng Yes County annual 0.083°(≈10 km) 1982-2015 (34) RF Standard SU 

GI-Li No County five-year interval 1 km 2000-2015 (4) DNN Cattle and sheep 

GI-Zhan No County season 15″(≈500 m) 2020 (2) RF Standard SU 

Note: LRA is the abbreviation of linear regression analysis. 456 
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 457 

Figure 9. Comparisons of different grazing datasets for the years 2001 and 2015: (a) spatial patterns; (b) predicted livestock number and census data at county scale; (c) accuracy evaluation 458 

between predicted livestock number and census data at township scale. 459 
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4.2 Spatial heterogeneity of grazing intensities 460 

In general, the multiyear average grazing intensity on the QTP increased from west to east during 461 

1990 to 2020, with broad spatial heterogeneity (Figure 8). Highest grazing intensity was found mainly 462 

in the northeastern and south-central regions of the Plateau (mostly higher than 5.0 SU/hm²), while 463 

they were lowest in the northwest (mostly less than 1.0 SU/hm²). Over the past 31 years, the average 464 

grazing intensity decreased across most of the Plateau, but 36.05% of the entire QTP grassland still 465 

encountered continuous grazing intensity increase, especially in the northeastern regions (Figure 8). 466 

The spatial heterogeneity of grazing intensities on the QTP may be attributed to the following 467 

reasons. First, complex geographic and climatic conditions on the QTP determine the heterogeneity of 468 

grassland, which in turn affects livestock distribution (Wang et al., 2018; Wei et al., 2022). In general, 469 

the grazing intensity patterns shown in the GDGI maps are basically consistent with the stocking rate 470 

threshold patterns in the QTP grasslands, both decreased from east to west (Zhu et al., 2023a). This 471 

phenomenon partially reflects the heterogeneity of the grasslands, as the alpine meadows and the 472 

steppes mainly distributed in the east and the west, respectively. Second, the dynamics of 473 

socio-economic development are obviously another important factors determining grazing intensity. In 474 

areas falling behind in terms of the socio-economic indicators, herders prefer to increase livestock in 475 

efforts to improve household incomes, leading to greater pressure on grasslands in these regions (Fang 476 

and Wu, 2022). In addition, the perceived increases in human population also resulted in the 477 

considerably increased need to more livestock (Wei et al., 2022).  478 

The grazing intensity dynamics across the QTP are partly reflective of the impacts of various 479 

management policies that have been implemented over distinct periods. For example, a significant 480 

increase in grazing intensity on the QTP was observed in the early 1990s, potentially a direct result of 481 

the introduction of the household contract responsibility system. Moreover, the grazing intensity 482 

experienced a pronounced decline from 1997 to 2001, as illustrated in Figure 8d, indicative of the 483 

adverse effects of natural disasters. Notably, the severe snowstorms that struck Naqu in the central QTP 484 

during 1997-1998 are documented to have caused the mortality of over 820,000 livestock (Ye et al., 485 

2020). Figure 8d further delineates a considerable upsurge in grazing intensity on the QTP between 486 

2000 and 2010, aligning with the trends reported by Sun et al. (2021) and Li et al. (2021). This 487 

observed increase may be attributed to a rebound in grazing activity following the aforementioned 488 

natural disasters. In addition, Figure 8d indicates a sustained decrease in grazing intensity post-2010 489 

across the plateau, which can be predominantly ascribed to the implementation of extensive ecological 490 

conservation projects. 491 

4.3 Implications for grazing management 492 

Nearly half of the grasslands on the QTP have been reported to be degraded over the past four 493 

decades (Wang et al., 2018; Dong et al., 2020), with some reports even indicating that the degraded 494 

grassland has reached 90% (Wang et al., 2021). It is widely recognized that overgrazing is the 495 

predominant and most pervasive unsustainable human activity continuing to drive grassland 496 

degradation on the QTP (Wang et al., 2018; Chen et al., 2019). Generally, these degraded grassland on 497 

the QTP can be effectively restored by adaptive management (Wang et al., 2022). However, better 498 

management of grasslands requires a deeper understanding of the anthropogenic activities, which still 499 

remain an important challenge and can be effectively addressed by the GDGI dataset. 500 
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According to the GDGI maps generated in this study, high-intensity grazing activities are mainly 501 

concentrated in the northeastern as well as the south-central part of the QTP, with the grazing intensity 502 

in some areas even nearly more than ten times than the average value of the entire plateau (Figure 6b), 503 

and have exceeded the stocking rate threshold of these grasslands (Zhu et al., 2023a). Population 504 

growth and the related increasing livelihood demands is one of the main reasons for this increase. To 505 

meet daily needs and enhance household income, the herders have endeavored to increase livestock, 506 

thereby intensifying grazing pressures on the grasslands over the QTP (Fang and Wu, 2022; Abu 507 

Hammad and Tumeizi, 2012). Although the current average grazing intensity in the northwest QTP 508 

(around 1.0 SU/hm²) is below their average stocking rate threshold (around 1.5 SU/hm²) (Zhu et al., 509 

2023a), the grassland management should still be given adequate attention. Because as the most arid 510 

areas with low stocking rate threshold on the QTP, the grazing intensity in this region has been 511 

increasing in recent years. Nevertheless, it must be noted that the stocking rate threshold may exceed 512 

the carrying capacity, because it is predicted to lead to an extreme grassland degradation (Zhu et al., 513 

2023a). The GDGI dataset also showed a similar pattern between the grazing intensity data and the 514 

WorldPop data near the built-up areas, indicating higher grazing intensity around settlements than other 515 

regions on the QTP. In addition, the GDGI dataset also indicate that from 1990 to 2020, although the 516 

grazing intensity of the Plateau has generally decreased, the hotspot areas for grazing activities have 517 

remained almost unchanged. This implies that these regions should be the focus of adaptive grassland 518 

management to effectively prevent grassland degradation, mainly based on the grass–livestock balance 519 

which varies by time and space.  520 

Encouragingly, the GDGI dataset show that the grazing intensity for two-thirds of the entire QTP 521 

grassland decreased over the past 31 years, which is also consistent with other studies (Sun et al., 2021; 522 

Li et al., 2021). Recent decades of biodiversity protection, active restoration projects as well as 523 

management measures, such as nature reserves, grazing exclusion, part grazing ban combined with 524 

fencing enclosure, are believed to have driven these decrease (Deng et al., 2017; Li and Bennett, 2019). 525 

In addition, most grassland in the eastern Sanjiangyuan, the mid-eastern Changtang, and the northern 526 

foothills of the Himalayas, showed a significant decrease with grazing intensity (Figure 6e), indicating 527 

the importance of protected areas on preventing overstock and grassland degradation. Meanwhile, the 528 

GDGI maps also show that the grazing density varies greatly among protected areas, possibly owing to 529 

the difference in policy implementation. For instance, it can be seen from the GDGI maps that grazing 530 

intensity are increasing in some protected areas, especially several wetland nature reserves on the Zoige 531 

plateau (Figure 6e). Moreover, the average grazing intensity in all nature reserves on the QTP has 532 

overall increased from 1990 to 2020, although their increase rate is much lower than the non-protected 533 

areas (0.0125 SU/hm2·10a vs. 0.0304 SU/hm2·10a), which implies that grassland management in 534 

protected areas still needs to be strengthened on the QTP. 535 

The grazing initiatives in alignment with the Sustainable Development Goals (SDGs) on the QTP 536 

can benefit from the GDGI dataset. Firstly, determination a reasonable stocking rate is vital to prevent 537 

overstocking of the pastures, which will possibly induce extreme grassland degradation (Zhu et al., 538 

2023a). Stocking rate determination can be optimized by using our grazing intensity maps and the 539 

stocking rate threshold maps of the QTP. Secondly, the GDGI maps can contribute to strategic 540 

placement of fence, which is a common practice adopted to prevent grassland degradation on the QTP. 541 

Building fences in areas with high grazing intensity and exceeding the carrying capacity can improve 542 

the effectiveness of fence construction (Zhou et al., 2023; Zhang et al., 2023). Thirdly, the GDGI 543 
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dataset can provide a solid support for promoting effective nature reserve management, which in total 544 

covering nearly one third of the entire QTP. For example, the GDGI maps showed that grazing 545 

activities still exist in most nature reserves on the Plateau, although most of them have significantly 546 

lower grazing intensities compared with their adjacent non-protected areas. By using the GDGI maps, 547 

the conflict between ecological protection and grazing activities in nature reserves can be alleviated. 548 

Finally, our grazing intensity maps can act as a basic dataset to support other grassland-related policies. 549 

Currently, these policies on the QTP often adopt a one-size-fits-all approach to determine the carrying 550 

capacity and carry out ecological compensation, which may lead to overstock or unfair financial 551 

distribution (Wang et al., 2022). The grassland management strategies balancing carrying capacity and 552 

stocking rates are more likely to result in optimal management choices for policymakers and 553 

stakeholders, and our GDGI maps can contribute to this decision-making processes. 554 

4.4 Uncertainties and limitations 555 

Although this study has collected as reliable datasets as possible, users of the GDGI products 556 

should be cognizant of inherent uncertainties and limitations within these datasets. Notably, the mean 557 

relative error of the GDGI dataset spanning 1990 to 2020 was recorded at 4.2% (Figure 4a), calculated 558 

from the average errors across 182 counties within the QTP that had accessible livestock census data. 559 

Furthermore, approximately 8.26% of grassland areas exhibited a relative error exceeding 1.0 SU/hm2 560 

(Figure 4b). Such discrepancies arise from several limitations that were subsequently propagated to the 561 

final grazing intensity maps, thereby contributing to the dataset's overall uncertainties. 562 

Firstly, the estimations of grazing intensities were fundamentally conservative, primarily due to the 563 

lack of comprehensive input data. Livestock numbers, derived from year-end data at the county level, 564 

inadvertently led to underestimations of grazing intensity by not accounting for livestock off-take rates. 565 

Likewise, the evaluation focused solely on livestock grazing intensity, excluding wild herbivores and 566 

forage-dependent livestock, which potentially underestimate actual grazing pressures on the QTP. 567 

Additionally, despite identifying seven main factors influencing livestock distribution, the study did not 568 

encompass all potential factors, such as fencing, forage availability, road proximity, and season 569 

transformation in grazing practices. Moreover, to align with county-scale livestock census data, we 570 

averaged the environmental factors at the county-scale. Although this approach have been widely used 571 

on the hypothesis that a consistent causal relationship between livestock intensity and environmental 572 

factors persists across various scales (Robinson et al., 2014; Nicolas et al., 2016; Li et al., 2021; Meng 573 

et al., 2023), it might oversimplify the intricate dynamics between grazing intensity and lead to a 574 

certain degree of estimation inaccuracies. In addition, the reliance on linear extrapolation to 575 

Supplementary missing gridded 100-m population density data from 1990-1999 introduced further 576 

uncertainties due to the limited resolution (1-km) and interval (5-year) of the ChinaPop dataset. 577 

Secondly, the modeling process for mapping grazing intensity also suffered from several challenges. 578 

Specifically, this study adopted the FAO's assumption that the relationship between environmental 579 

factors and livestock intensity is uniform across both administrative and pixel levels. However, it is 580 

unlikely that these relationships are entirely consistent across scales, and the county-level model's 581 

approach inevitably smooths spatial details, potentially reducing the precision of the data. Furthermore, 582 

For instance, this research employs the FAO's assumption that the relationship between environmental 583 

factors and livestock intensity is identical at both the administrative and pixel level. Nevertheless, it is 584 

improbable for the relationship at these two scales to be completely consistent, and the county-level 585 

model unavoidably smooths spatial details, leading to a reduction in data precision. What’s more, the 586 
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ET model was trained with a limited sample size of 4,998 and applied to a vast area consisting of 150 587 

million pixels, which could compromise the model's accuracy. In addition, despite the ET model's 588 

design to reduce overfitting risks by using randomly selected features and partition decision, the 589 

potential for overfit effects still remained, particularly when faced with a high number of output classes 590 

or insufficient sample sizes (Geurts et al., 2006; Galelli and Castelletti, 2013). In fact, this limitation 591 

was evident in this study, as the generalization capability of the ET model was restricted by the 592 

disparity between the number of training samples and the total number of pixels, leading to predictions 593 

that often exceeded actual livestock census (Figure 4a). 594 

 595 

Thirdly, our methodological framework for high-resolution gridded grazing dataset mapping was 596 

developed based on the assumption that all grassland were accessible to livestock. However, in reality, 597 

the amount of available grassland was less due to fencing and grazing bans on the QTP (Zhan et al., 598 

2023). Moreover, transhumant herders generally follow a seasonal calendar for summer pastures and 599 

winter pastures on the QTP. However, we did not consider this seasonal movements due to data 600 

limitations, which further restrict the analysis of seasonal livestock distribution patterns (Kolluru et al., 601 

2023). Additionally, the model's reliance on human population as a proxy for livestock locations 602 

overlooked the possibility of high grazing intensity in areas with low human populations on the QTP, 603 

particularly in regions designated for summer pastures. 604 

Finally, it is important to note that gathering livestock census data in the Qinghai-Tibet Plateau 605 

presents significant challenges, leading to a scarcity of livestock validation data in this study, 606 

particularly at the township and pixel scales. This limitation may, to some extent, impact the reliability 607 

of the grazing intensity data we have presented. 608 

In summary, all these limitations associated with input data, the modeling process, and the 609 

methodological framework collectively contribute to the uncertainties and reduce accuracy of the 610 

GDGI maps. We henceforth recommend that future research should aim to incorporate more detailed 611 

data, consider additional influential factors, enhance key dataset's time-series consistency, and refine 612 

the methodological framework to improve the accuracy of grazing intensity mapping. 613 

5 Data availability 614 

The annual gridded grazing intensity maps of the QTP spanning from 1990 to 2020 are accessible 615 

at the following link: 616 

https://doi.org/10.5281/zenodo.https://doi.org/10.5281/zenodo.1085111913141090 (Zhou et al., 2024). 617 

Each map is catalogued by year and recorded in GeoTIFF format, with values represented in SU/hm2 618 

per year. These datasets, with a spatial resolution of 100 m and annual temporal resolution, utilize the 619 

WGS-1984-Albers geographic coordinate system. To streamline data transfer and download processes, 620 

the comprehensive 31-year dataset has been compressed into a ZIP file, readily available for download 621 

and compatible with Geographic Information System (GIS) software for viewing. 622 

6 Conclusions 623 

In this study, we introduce a framework utilizing ET machine learning algorithms to achieve 624 

fine-scale livestock spatialization, subsequently generating the GDGI dataset across the QTP. The 625 

GDGI has a spatial resolution of 100 m and expands 31 years from 1990 to 2020. It is consistent with 626 

county livestock census data of the QTP, and has a relatively higher precision than previous datasets 627 
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with MAE of 0.006 SU/hm2 based on 4,998 independent test samples. In addition, tthe accuracy 628 

evaluations at both pixel-level and township-level underscore the outstanding reliability and 629 

applicability of the GDGI dataset, which can successfully capture the spatial heterogeneity and 630 

variation in grazing intensities in greater details. Moreover, comparisons between the GDGI dataset and 631 

other existing grazing map products further proved the robust and efficient of our dataset, and 632 

demonstrate the validity of the proposed framework in the research of livestock spatialization. 633 

Nonetheless, it is imperative for data users to recognize that the GDGI may still contain inherent 634 

uncertainties. Our Monte Carlo simulations have estimated the average MRE for grazing intensity 635 

across the QTP to vary between 6.84% and 9.08%. The GDGI dataset, as presented in this study, can 636 

enhance the understanding of grazing activities on the QTP. This, in turn, can aid in the rational 637 

utilization of grasslands and facilitate the implementation of informed and sustainable management 638 

practices. 639 

However, data users should be aware that the GDGI still harbors some potential uncertainties. 640 

Monte Carlo simulations indicate that the average MRE for grazing intensity across the QTP ranged 641 

from 6.84% to 9.08%. Notably, the data before 2001 show a sharp decline and should be interpreted 642 

with caution. The GDGI dataset presented in this study can address existing limitations and enhance the 643 

understanding of grazing activities on the QTP. This, in turn, can aid in the rational utilization of 644 

grasslands and facilitate the implementation of informed and sustainable management practices. 645 

Supplementary.  646 

For gridded datasets influencing grazing that are not directly available, or that do not meet 647 

spatio-temporal resolution requirements—such as those pertaining to population density, temperature, 648 

precipitation, and HNPP—we have delineated the processing or creation procedures in the 649 

Supplementary file. 650 
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