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Abstract. Glaciers cover 10% of Earth’s land area and are a pool of carbon and nitrogen for downstream ecosystems. Microbes, 

including bacteria, fungi, algae, and other microeukaryotes, are the primary inhabitants of glacier ecosystems and are key 

drivers of carbon and nitrogen transformation. Here, we present a dataset on supraglacial bacterial and archaeal (referred to as 15 

microorganisms prokaryotic hereafter) communities across the Antarctic, Arctic, Tibetan Plateau, and other alpine regions. 

The dataset comprises 2,039 815 amplicon sequencing data, 999 cultured bacterial genomes, and 208 metagenomes, covering 

ice, snow, and cryoconite habitats. The dataset contains 64,510 67,224 amplicon sequencing phylotypes, with a higher 

microbialprokaryotic diversity in the Tibetan glaciers than in the Antarctic and Arctic glaciers, which were respectively 

enriched with Gammaproteobacteria, Bacteroidota, and Alphaproteobacteria. Additionally, 2,517 potential pathogens were 20 

identified, accounting for 1.9% of the total microorganisms identified. Snow and ice exhibited a higher relative abundance of 

pathogens than cryoconite, which could be attributed to the similar adaptation mechanisms for microbial survival in aerosol 

and immune evasion. The dataset also contains 62,595,715 unique genes and 4,498 501 microbialprokaryotic genomes, a 

3535.5% expansion from previous publications. Genes were annotated for those associated with carbohydrate-active enzymes, 

nitrogen cycling, methane cycling, antimicrobial resistance, and microbial virulence, revealing the dynamic microbial 25 

functions in glacial habitats. This comprehensive dataset provides standardized microbialprokaryotic diversity, taxonomy, 

community structure, and genetic functions of glacial microbiomes. The data can be leveraged to elucidate ecological 

principles governing the distribution of microorganisms, to gain insights into the key functional genes for supraglacial 

microbiomes, to build mechanistic models, and to identify any potential biohazards for policymakers to make informed 

decisions regarding climate change. The dataset is available at the Global Glacier Genome and Gene Database National Tibetan 30 

Plateau Data Center(https://nmdc.cn/4gdb/https://doi.org/10.11888/Cryos.tpdc.300830, Liu et al., 2023) 
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1 Introduction 35 

Glaciers cover 10% of Earth’s land area (Cauvy-Fraunié and Dangles, 2019) and are mainly distributed in the Antarctic, Arctic, 

and Tibetan Plateau (the Three Poles) (Qiu et al., 2008). Glaciers store approximately three-quarters of Earth’s freshwater 

(Boetius et al., 2015) and are also a pool of carbon and nitrogen. It has been estimated that The ssix Pg of carbon are stored in 

global glaciers. These carbon may be is readily released into downstream ecosystems with glacier runoff (Hood et al., 2015), 

influencing key elemental cycling in downstream ecosystems. Before carbons and nitrogen are released, they undergo 40 

extensive biological transformation (Guo et al., 2022), primarily microbial-driven. Microbes, including bacteria, fungi, algae, 

and other microeukaryotes are the main inhabitants of glacier ecosystems (Cauvy-Fraunié and Dangles, 2019). These 

microorganisms employ strategies to survive the glacial conditions, such as strong UV radiation, low temperature, and low 

carbon and nitrogen nutrients (Ciccazzo et al., 2016). As microorganisms are the key driver of carbon and nitrogen 

transformation in glacier ecosystems, knowledge of their biogeography and functions can greatly enhance our understanding 45 

of the biogeochemical cycling in glacial ecosystems and aid in predicting the impact of climate change. 

The glacier as a habitat is not homogeneous and is divided into supraglacial, englacial, and subglacial ecosystems. 

Comparedecosystems. Compared with other glacier-related habitats, Of these, the microorganisms in supraglacial ecosystems 

are the most active, due to their exposure to external environment and ambient temperature. Supraglacial ecosystems can be 

further separated into snow, ice, and cryoconite holes (cylindrical depressions formed by the preferential melting of dark debris 50 

into the surface, typically comprising surface water and cryoconite at the bottom) (Cook et al., 2016), each of which has distinct 

microbial composition (Anesio and Laybourn-Parry, 2012). Algae and Cyanobacteria are the primary producers in supraglacial 

ecosystems, with other heterotrophic microorganisms participating in the transformation and degradation of endogenous and 

exogenous nutrients (Hotaling et al., 2017, Anesio et al., 2017). Active metabolism is reported in glacial ecosystems; for 

instance, cryoconite is a source of methane but a sink of carbon dioxide, with a rate of 4.60 µmol m-2d-1 and −1.77 µmol m-2d-55 

1, respectively (Zhang et al., 2021). Furthermore, organisms with photosynthesis, nitrification, and denitrification functions are 

also widespread in glacier cryoconite (Cameron et al., 2012; Stibal et al., 2020).  

It was estimated that the mean microbial abundance in glacier surface meltwater is 104 cells mL-1 (Stevens et al., 2022), this 

quantity may further increase with the enhanced climate glacier retreatwarming (Segawa et al., 2005). Some of these naturally 

occurring microorganisms are known as emerging contaminants, which are not commonly monitored in the environment but 60 

have the potential to enter the environment and cause known or suspected adverse ecological and/or human health effects 

(Taheran et al., 2018). A previous study cultivated hemolytic bacteria from Spitsbergen glacier meltwater with potential 

pathogenicity (Mogrovejo-Arias et al., 2020). Other emerging contaminants in glaciers such as antibiotic resistance genes and 

microbial virulence factors have also received increased attention (Mao et al., 2023). 
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Here, we present a glacier dataset on supraglacial prokaryotes (bacteria and archaea (referred to as microorganisms hereafter) 65 

for the Three Polesacross the globe. This dataset includes amplicon sequencing data from 815 2039 samples, 999 cultured 

bacterial genomes, as well as shotgun metagenomic sequencing from 208 224 samples (Fig. 1). From an ecological perspective, 

this dataset with standardized microbial diversity, taxonomy, and community structure can improve understanding of the 

ecological principles governing the distribution of microorganisms across glaciers, as well as their partitioning across the 

various habitats in the supraglacial ecosystem. From a geochemical cycling perspective, the database can provide insights into 70 

the key functional genes for supraglacial microbiomes, which can be used to better comprehend carbon and nitrogen cycling 

and allow the building of a model to anticipate glacial carbon and nitrogen dynamics in the future. The dataset archives glacial-

specific microorganisms and unique genes in digital form, thus representing an invaluable resource for bioprospecting 

alternative method for preserving biodiversity. Additionally, the dataset can be employed to identify any potential biohazards 

(pathogens and emerging contaminants) of glaciers and evaluate the impact of glacier melting on downstream ecosystems from 75 

a biosafety perspective, thereby assisting policymakers in making informed decisions regarding climate change. 

2 Materials and methods 

2.1 Data acquisition 

Amplicon data: Based on the keywords of “glacier” OR “snow” OR “ice” OR “cryoconite” with sample type being DNA and 

instrument of Illumina, we retrieved 225,378 SRA initially. Then the results were filtered manually to remove non-supra-80 

glacier habitats (such as glacier forefield, subglacial sediment, proglacial lakes, ice cave), metagenome data, and primers that 

do not amplify the V4 region of the 16S rRNA gene (i.e., those amply V3V4, V4, and V4V5 were retained)485 amplicon 

sequencing results are first time released in the present work, while the rest were downloaded from NCBI Short Read Archive 

based on keyword search by terms “Antarctic”, “Arctic”, or “Tibetan Plateau”. After careful manual curation, any samples 

that are not from ice, snow, or cryoconite-related habitats (cryoconite and cryoconite water) were removed  (Table Table S1 85 

and S2). 

Metagenome data: All articles containing the keyword “glacier metagenome” were retrieved using the Web of Science 

(searched on the 1st of December 2022). Only studies with sequenced ice, snow, or cryoconite samples with raw sequence data 

uploaded on the NCBI Short Read Archive were kept. Additionally, a few metagenome data without published articles were 

added from IMG/M database and NMDC database based on keyword search by terms “ice”, “snow” and “cryoconite”. In 90 

addition to metagenomes from the Antarctic, Arctic, and Tibetan Plateau, metagenomes from the Andes and Alps were also 

downloaded. (Table S2S3).  

Cultivated bacterial genome data: 883 isolate genome data of Tibetan Plateau glaciers were obtained from the TG2G dataset 

(Liu et al., 2022) and other 116 genomes of bacterial isolates genome data offrom glaciers beyond the Non-Tibetan Plateau 

glaciers were downloaded from the NCBI Genome database based on keyword search by terms “Antarctic”, and “Arctic”. 95 

After careful manual curation, only samples from ice, snow, and cryoconite habitats were kept (Table S3S4). 
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2.2 Amplicon sequencing data processing 

Sequencing data were processed using the USEARCH v11 pipeline (Edgar, 2010) on a sequencing project basis. For each 

NCBI sequencing project, the reads associated with the project were first . Paired-end reads were merged and quality screened 

with a max expected error threshold of 0.5, while single-end reads were directly quality screened with using the same threshold. 100 

The quality-filtered reads from each bioproject were aligned against the SILVA reference alignment (release 128) to ensure 

that the V4 hypervariable region is covered, using the align.seqs command in Mothur. After removing any sequences that do 

not cover the V4 region (using screen.seqs in Mothur), the remaining sequences were dereplicated. After this pre-processing 

was completed for all bioprojects, the dereplicated sequences of different bioproject were combined, and dereplicated again. 

Then, these further dereplicated sequences were clustered with 97% identity and chimeric sequences were identified and 105 

removed using the cluster_otus command in USEARCH. The representative sequences were used as the references for OTU 

table construction. Additionally, the phylotype representative sequences were taxonomically classified using the Bayesian 

classifier against the Silva database (release 132) (Quast et al., 2012). Then mitochondria, chloroplast, and eukaryotic 

sequences were removed from the OTU table. After removing samples with less than 5000 reads, the final OTU table comprises 

2,039 samples and 64,510 OTUs. The sequencing depth (number of reads) ranges from 5036 to 1492659 per sample. We 110 

retained two datasets, one without rarefaction (Table S5) and another were subsampled to 5036 reads (Table S6). 

We calculated the Shannon diversity, richness (number of phylotypes), evenness, and Good’s Coverage indices for both 

original and subsampled data using R. Sequences from all samples were merged and aligned against SILVA reference 

alignment (release 128), then were trimmed to common start and end positions, so that all samples are directly comparable. 

Phylotypes were clustered with 97% identity and chimeric sequences were identified and removed. The phylotype 115 

representative sequences were taxonomically classified using the Bayesian classifier against the Silva database (release 128) 

(Quast et al., 2012), and then eukaryotic, mitochondrial, and chloroplast sequences were removed. After the phylotype table 

was constructed, samples were randomly sub-sampled at an equal depth of 10,014. Samples with lower sequencing reads than 

this threshold and those missing metadata were removed, this ended with 815 samples with a total of 67,224 microbial 

phylotypes (bacteria and archaea) for downstream analysis. The presence of potential pathogens was identified by comparing 120 

the 16S gene sequences against the bacterial pathogens database (Wardeh et al., 2015) using BLAST (Mcginnis and Madden, 

2004) with the thresholds of 97% identity and 100 % coverage. 

The Shannon diversity, richness (number of phylotypes), and evenness indices were calculated from the rarefied phylotype 

table using Primer-E V6 (Clarke and Warwick, 2006). The alpha diversity indices (richness, evenness, and Shannon diversity) 

and the relative abundance of dominant taxonomy lineages were compared using Kruskal-Wallis one-way ANOVA by region 125 

(Antarctic, Arctic, and Tibetan Plateau, and other alpine regions) and habitats (snow, ice, and cryoconite, and cryoconite water), 

multiple testing was performed based on the Dunn’s post-hoc test using FSA package in the R environment (Ogle et al., 2022).  

The community structure variations were visualized using an NMDS ordination plot based on the Hellinger-transformed Bray-

Curtis distance matrix. Permutational analysis of variance (PERMANOVA) was used to test the significance of community 
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differences in samples by region and habitat (Anderson, 2017) using Primer-E V6 (Clarke and Warwick, 2006) the “vegan” 130 

package in R with 999 permutations. PERMDISP analysis was performed using the betadisper command in the vegan package.  

Core phylotypes were defined as occurring in more than 55% of the samples with average relative abundance > 0.1%  of the 

samples in each habitat-region pair (Delgado-Baquerizo et al., 2018). If a phylotype was identified as a core phylotype for all 

habitats of a region, then it was designated as the core phylotype for the region. This classification was modified from Delgado-

Baquerizo et al. , so that the dominant phylotype designation is less affected by the unbalanced samples for each habit-region 135 

pair. 

2.3 Metagenome data processing 

Metagenome data processing has been described previously (Liu et al., 2022). Briefly, it includes raw data quality filtering, 

assembly, open reading frames prediction, and genome binning. Gene open reading frames (ORFs) for the metagenomic 

assemblies were predicted using Prodigal (Hyatt et al., 2010), and dereplicated by clustering at 80% aligned region with 95% 140 

nucleotide identity using MMseqs2 (Steinegger and Söding, 2017) with parameters: easy-linclust -e 0.001, --min-seq-id 0.95, 

-c 0.80.  

Metagenomic assemblies were binned using MetaBAT 2 (v2.12.1) (Kang et al., 2019), MaxBin 2 (v2.2.7) (Wu et al., 2016), 

and VAMB (v2.0.1) (Nissen et al., 2021) separately respectively. The resulting bins (or MAGs) were then refined using 

RefineM (v0.0.20) (Parks et al., 2017) by removing contigs with divergent GC content, coverage, or tetranucleotide signatures. 145 

Then only MAGs meeting the medium and higher quality of MIMAG (Bowers et al., 2017a) were retained (completeness > 

50%, contamination <10%). These The obtained MAGs together were combined with the downloaded isolate genomes, and 

these genomes were dereplicated using the thresholds of 3010% aligned fraction and a genome-wide average nucleotide 

identity (ANI) threshold of 95%,. tThey were then taxonomically annotated using the Genome Taxonomy Database Toolkit 

(GTDB-Tk, v0.3.22.4) (Chaumeil et al., 2019) against the GTDB release R06-RS202220. 150 

2.4 Gene function annotation 

The functions of the dereplicated genes were also annotated using eggNOG-mapper (Huerta-Cepas et al., 2017) and the 

eggNOG Orthologous Groups (OGs) database (v5.0) (Huerta-Cepas et al., 2019). This includes the KEGG functional orthologs 

(Kanehisa et al., 2017), the carbohydrate-active enzymes database (CAZy) (Levasseur et al., 2013), and the COG categories 

(Tatusov et al., 2003). Antibiotic resistance genes (ARGs) were annotated against the Comprehensive Antibiotic Resistance 155 

Database (CARD) (Jia et al., 2017) and Resistance Gene Identifier (RGI v3.1.4) (Alcock et al., 2020) with the loose model (-

-include_loose). Virulence factors were annotated by aligning gene sequences against the Virulence Factors Database (VFDB 

2019) (Liu et al., 2019) with DIAMOND blastp (Buchfink et al., 2021) (e-value threshold of 1e-5). 
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3 Results 

3.1 Amplicon-based dataset 160 

A total of 815 2,039 glacier-related samples were retained after quality filtering (Fig. 1a and Table S1), comprising 517 1077 

from cryoconite sediment-related habitats (cryoconite and cryoconite water), 184 601 from snow, and 114 from or ice, 216 

from glacial melting water (including cryoconite hole meltwater and supraglacial melting water), 79 from ice core, 34 from 

snow during algal blooming (Algal material), and 32 from subglacial basal ice (Table 1). Spatially, 6929.7% of all samples (n 

= 568574) were from Tibetan glaciersthe Antarctic, 2428% (n = 196574) were from Antarctic Arctic glaciers, 16% (n=335) 165 

from the Tibetan Plateau (n = 335), while those from Arctic glaciers were slightly under-represented (6.3%, n = 51)and 27% 

from other alpine regions (n = 545, the Alps, Keniya, Japan, and Montana Glacier National Park). 

 

Table 1 Number of samples by habitat and region. 

 Snow Ice Cryoconite 

Supraglacial 

meltwater 

Ice 

core 

Algal 

material 

Basal 

ice 

Antarctic 119 58 335 59 0 1 13 

Arctic 107 74 286 59 6 23 19 

Tibetan Plateau 67 8 172 30 58 0 0 

Other non-polar 

glaciers 89 79 284 68 15 10 0 

 170 

3.1.1 Microbial Prokaryotic diversity 

The amplicon sequencing dataset comprised 67,22464,510 phylotypes. Due to the large variation in sequencing depth among 

samples, here we only presented patterns that are consistently observed in the original and subsampled OTU tables (Tables 2, 

3, and Table S7). Across all habitats, the number of OTU observed (prokaryotic richness) was significantly lower in other 

non-polar glaciers than those in the three poles (Antarctic, Arctic, and Tibetan Plateau). This pattern is also significantly 175 

observed for the alpha diversity indices including the Chao1, ACE, and Gini Simpson, but not in the Shannon diversity. 

Specifically, the prokaryotic Shannon diversity of the Arctic glaciers was not significantly different from non-polar glaciers.,  

Across habitats (Table 3), supraglacial meltwater had the highest prokaryotic diversity compared with other habitats (except 

the ice core). These alpha diversity indices typically follow orders of supraglacial meltwater > snow > ice core > ice > 

cryoconite > algae-influenced snow > basal ice. This may reflect the strength of environmental filtering among the habitats. 180 

We further compared the alpha diversity indices of the same habitats across different regions (Table S8). Due to the bias in 

the number of samples across habitats, here we only compared the cryoconite, snow, ice, and supraglacial water. For 

cryoconites, their prokaryotic diversity (Shannon diversity and Gini Simpson indices) was the highest in the Antarctic, which 

was followed by the Arctic, Tibetan Plateau, and other non-polar glaciers. For snow, its prokaryotic diversity (Richness, Chao1, 

and ACE indices) was the highest in Tibetan glaciers, followed by Antarctic, Arctic, and other non-polar glaciers. For ice, the 185 
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diversity indices were not significantly different across all regions, with only significantly higher values of diversity being 

observed in the Antarctic than those in the Arctic and Tibetan Plateau. For supraglacial meltwater, other non-polar glaciers 

demonstrated the highest diversity (Shannon diversity and Gini Simpson diversity indices, all P < 0.05), while the Antarctic 

had the lowest values. In summary, the biogeographic pattern for prokaryotic diversity is the same habitat differed among 

regions. 190 

Table 2 Diversity metrices of the bacterial community in glacier microbiomes of global glaciers. 

Region Antarctic Arctic Non-polar glacier Tibetan Plateau 

Original dataset     

Species observed 1025.1±722.5b 981.4±784.4b 868±676.3c 1185±825.9a 

Chao1 1400±912.5b 1492.4±1308.7b 1223.2±941.8c 1768.2±1279.3a 

ACE 1422.5±948.1b 1526.9±1340.8ab 1232.3±959.5c 1767.5±1295.4a 

Shannon diversity 4.3±1.03a 3.97±1.05b 4.17±1.19b 4.2±1.3a 

Subsampled dataset    

Region Antarctic Arctic Non-polar glacier Tibetan Plateau 

Species observed 475.7±232a 467.9±275.9a 468.1±384.2b 507.1±317.3a 

Chao1 809.6±458.3a 847.9±575.3a 777.5±679.4b 884.4±622a 

ACE 825.7±482.6b 881.6±619.9ab 796.6±715.3c 903.4±651.8a 

Shannon diversity 4.23±1a 3.9±1.02b 4.1±1.16b 4.11±1.25a 

Statistical test is based on Kruskal-Wallis one-way ANOVA, multiple testing is performed based on the Dunn’s post-hoc test. 

Different letters indicate significant differences at P = 0.05.Spatially, Tibetan glaciers exhibited a significantly higher microbial 

richness than Arctic and Antarctic glaciers (Kruskal-Wallis One-way ANOVA Dunn’s post-hoc analysis, P < 0.05, Figs. 1b 

and Table S4), but not significant difference detected between Arctic and Antarctic glaciers (P = 1.00), In comparison, the 195 

richness was similar among different habitats (P = 0.738, Fig. 1c). In Tibetan glaciers, microbial richness in cryoconite was 

significantly greater than those in snow and ice (Fig. S1). This pattern, however, was distinct from that observed in Arctic 

glaciers, wherein cryoconite had lower richness compared to snow, which is consistent with a report previously (Franzetti et 

al., 2017). 

  200 
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Table 3 Diversity metrices of the bacterial community in glacier microbiomes of different habitats. 

Habitats Algal material Basal ice Cryoconite 
Supraglacial 

Ice 
Ice core Snow 

Supraglacial 

meltwater 

Original dataset       

Species 

observed 
596.3±451.7ab 489.6±306.3a 904.4±532.6c 929.2±695.9bc 999.9±438.3cd 1178.8±1121.6c 1344.3±910.3d 

Chao1 873.5±648.2ab 646.8±379.1a 1316.9±786.1c 1285.8±962.3bc 1452.8±618.7cd 1726.4±1736.5bc 1898.4±1307.7d 

ACE 905.1±682.1ab 641.8±388.3a 1335.5±806.4c 1296±979bc 1430.8±599cd 1760.1±1777.7bc 1914.2±1339.1d 

Shannon 

diversity 
3.18±1.38a 3.4±0.99a 4.21±0.84b 3.67±1.09a 4.6±0.8c 3.8±1.5a 5±1.2c 

Subsampled dataset       

Species 

observed 
317.5±293ab 239.2±129.5a 464.8±223c 356.1±205.1ab 521.7±207.9cd 471.9±386.5bc 710.1±458.2d 

Chao1 568.6±544.6abc 357.4±201.4a 798.9±424.1d 613.7±405.5b 799.5±325.4de 883.2±807.7cd 1176.4±836.6e 

ACE 588.9±581.2abc 353.4±207.7a 818.5±442.6d 626.1±419.2b 795.6±339.9de 921.9±868.7cd 1207.6±888.5e 

Shannon 

diversity 
3.14±1.35a 3.37±0.99a 4.14±0.82b 3.6±1.06a 4.5±0.8c 3.7±1.4a 4.9±1.1c 

Statistical test is based on Kruskal-Wallis one-way ANOVA, multiple testing is performed based on the Dunn’s post-hoc test. 

Different letters indicate significant differences at P = 0.05.Spatially, Tibetan glaciers exhibited a significantly higher microbial 

richness than Arctic and Antarctic glaciers (Kruskal-Wallis One-way ANOVA Dunn’s post-hoc analysis, P < 0.05, Figs. 1b 205 

and Table S4), but not significant difference detected between Arctic and Antarctic glaciers (P = 1.00), In comparison, the 

richness was similar among different habitats (P = 0.738, Fig. 1c). In Tibetan glaciers, microbial richness in cryoconite was 

significantly greater than those in snow and ice (Fig. S1). This pattern, however, was distinct from that observed in Arctic 

glaciers, wherein cryoconite had lower richness compared to snow, which is consistent with a report previously (Franzetti et 

al., 2017). 210 

 

Spatially, the evenness was significantly higher in Antarctic glaciers across all samples (both P < 0.001, Fig. S2a). Across 

different habitats, the microbiome of cryoconite displayed significantly higher evenness in comparison to cryoconite water, 

snow, and ice (P < 0.001, Table S4, and Fig. S2b). The higher evenness in cryoconite was observed in both Tibetan and Arctic 

glaciers, but not in the Antarctic glaciers (Fig. S3). 215 

3.1.2 MicrobialProkaryotic taxonomy composition in the glaciers of the Three Poles 

We identified 50 53 bacterial and archaeal phyla across the dataset. The glacier microbiomes across the three poles had similar 

microbial taxonomy composition, dominated by GammaproteobacteriaProteobacteria (averaged 37.8%), 

BacteroidotaCyanobacteria (22.2%), AlphaproteobacteriaBacteroidetes (20.3%), and Cyanobacteria, Actinobacteria (9.2%), 
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and Firmicutes (Fig. 1d 2 and Tables S5S9). At the class level (Tables S10), the microbiome was dominated by 220 

Gammaproteobacteria (22.7%, Proteobacteria), Oxyphotobacteria (22.1%, Cyanobacteria), Bacteroidia (22.2%, Bacteroidetes), 

Alphaproteobacteria (13%, Proteobacteria), and Actinobacteria (class) (8.1%, Actinobacteria).  

Cryoconite was enriched with Cyanobacteria, but had lower relative abundances of Gammaproteobacteria and 

Alphaproteobacteria; conversely, cryoconite water was enriched with Bacteroidota (Table S6). Snow samples had a high 

relative abundance of Crenarchaeota, suggesting a potential for nitrification capacity, which is consistent with the wet 225 

deposition (snowfall) being a major source of nitrogen for glacier ecosystems (Telling et al., 2011). Spatially, Tibetan glaciers 

had a significantly lower relative abundance of Actinobacteriota and Cyanobacteria (Fig. 1e), but were enriched with 

Gammaproteobacteria. In comparison, Antarctic and Arctic glaciers showed enrichment of Bacteroidota and 

Alphaproteobacteria, respectively (Tables S5 and S7). 

3.1.3 Bacteria community structure in the glaciers of the Three Poles 230 

NMDS ordination plot revealed distinct microbialprokaryotic communities among various habitats (Fig. 2a3a, PERMANOVA, 

P < 0.001). Analysis of Bray-Curtis similarity revealed that snow and ice microbiomes were more similar (average Bray-Curtis 

similarity 18.9%) compared with that among other habitats (Fig. S4). Additionally, cryoconite water was more similar to ice 

(14.3%) than to either snow (11.5%) or cryoconite (13.1%), contrary to the native instinct that microorganisms in cryoconite 

and cryoconite water should be more similar due to their close connection. Additionally, PERMANOVA analysis showed that 235 

significantly different the microbialprokaryotic community structures across among Antarctic, Arctic, and Tibetan glaciers 

Plateau, and other non-polar glacierswere distinct (P < 0.001),. The influence of location exhibited with a similar higher R2- 

value (R2 = (0.11710535) compared tothan the habitat influence of habitat effect (R2 = 0.11006299), suggesting that spatially 

location (dispersal limitation) and may have a greater influencehabitat (environmental filtering) play comparable roles in 

shaping glacier microbiomes. PERMDISP analysis showed that snow samples exhibited a significantly (at the threshold of P 240 

= 0.05) higher dispersal from centroid (67.4%) compared to cryoconite (65.1%). Comparatively, those of ice core and algae 

were lower (57.9% and 58.9%, respectively), possibly due to the low sample numbers. 

 

We identified the three top three most abundant phylotypes for each habitat-region pair (Fig. 2b3b and Table S11). These 

abundant phylotypes were mainly affiliated with Proteobacteria, Cyanobacteria, and Bacteroidetes. The results distribution of 245 

these abundant phylotypes clustered predominantly by geographical location, reflecting exhibited strong spatial effects, with 

all habitats from the Tibetan glaciers clustering together.  

We identified ubiquitous phylotypes for each region-habitat pair (i.e., identified in more than 55% of samples). There were 

five phylotypes identified as ubiquitous in all region-habitat pairs (Table S8), affiliated with Gammaproteobacteria 

(Comamonadaceae) or Actinobacteria (Microbacteriaceae). These phylotypes accounted for 5.0% of microbial communities 250 

by relative abundance across all samples on average, suggesting wide dispersal capacity and can adapt to various glacier-

related habitats. We then attempted to identify ubiquitous phylotypes for each region-habitat pair, defined as those present in 
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more than 55% of samples with a relative abundance greater than 0.1%. However, we found no phylotypes that were common 

across any regions or habitats (Table S12). The number of ubiquitous phylotypes varied, ranging from nine in Arctic ice to 

129 in Tibetan-supraglacial meltwater. Notably, we did not identify any ubiquitous phylotypes in Arctic-snow or other non-255 

polar-snow. Most of the ubiquitous phylotypes were associated with Gammaproteobacteria (29% of the total), followed by 

Bacteroidetes (19%), Alphaproteobacteria (16%), Cyanobacteria (13%), and Actinobacteria (11%). This distribution may 

indicate their ability to disperse and adapt to different environmental conditions. 

In addition, 161, 13, and 52 phylotypes were identified as regional core phylotypes that were ubiquitously distributed in 

Antarctic, Arctic, and Tibetan glaciers, respectively. These phylotypes accounted for 22%, 26%, and 4% of the Antarctic, 260 

Arctic, and Tibetan glaciers’ microbial community by relative abundance on average, respectively. Furthermore, 31, 41, and 

44 phylotypes were identified as habitat core phylotypes for cryoconite, cryoconite water, and snow, accounting for 17%, 27%, 

and 22% of microbial communities on average, respectively. These region- and habitat-specific core microbes may be useful 

in elucidating the distribution of key microbiomes in glacier ecosystems. 

3.1.4 Potential pathogens 265 

We compared the amplicon data with a curated pathogen database and identified 2,517 potential pathogen phylotypes at a 

sequence identity threshold of 97% and a complete sequence alignment coverage (Table S9). Acinetobacter baumannii or A. 

junii were the most abundant, accounting for 1.9% of the total sequences recovered. These pathogens may be capable of 

causing diseases in humans, rodents, insects, and plants (Wardeh et al., 2015). Significant differences in the relative abundance 

of potential pathogens were detected across the habitats (P < 0.001) (Fig. 3). Specifically, snow and ice exhibited a higher 270 

relative abundance of potential pathogens than cryoconite water and cryoconite. There were snow and ice samples exhibited 

an extremely high relative abundance of potential pathogens. We propose that this could be explained by the similar selection 

mechanisms for long-distance dispersal survival and host-immune evasion. For example, Staphylococcus can express wall 

teichoic acid and lipoteichoic acid that assists in host infection and immune evasion (Xia et al., 2010), while the latter can also 

enhance bacterial cryo-survival in Gram-positive bacteria (Percy and Gründling, 2014). Spatially, the relative abundance of 275 

potential pathogens in Antarctic and Arctic glaciers were similar (13.5% and 7.8%, respectively), both of which were 

significantly lower than that in Tibetan glaciers (18.2%, P < 0.05). 

3.2 Metagenome- and genome-dataset 

We acquired 208 226 glacier metagenome data (Table S2) and 999 bacterial genomes from bacteria isolated from glacial 

environments (Table S3). After quality filtering and assembly, 62,595,7153,294,073 unique Open Reading Frames (ORFs) 280 

were obtained. Of these dereplicated ORFs, 47.8% (29,947,128) were functionally annotations annotated using eggNOG. 



11 

 

3.2.1 Overall features glacier metagenome-assembled genomes 

After binning, the dataset generated 3,375 3,546 502 metagenome-assembled genomes of medium quality (Genome 

completion ≥ 50%, contamination < 10%) and higher (Bowers et al., 2017b). After combining the genomes of cultivated glacier 

bacteria (952999), this expanded the total genome number to 4,3274,498 501 from the previously published 3,322 (Liu et al., 285 

2022) (Table S10S13), a 343535.5% increase. The median genome size was 3.46 Mb ranging between from 0.42 Mb and to 

10.49 Mb; the GC% was 60%, ranging from 30% to 76%. The MAGs were taxonomically affiliated with 3333 phyla, 7980 

classes, 159 1554 orders, 282 272271 families, and 689 552549 genera (Fig. S54). Additionally, 3490 3470 (77.1% of all 

MAGs) were unable to be classified at the species level, reflecting substantial genomic novelty in the glacier microbiome. 

These genomes were dereplicated into 1400 genomic OTUs (gOTUs), which are typically considered species.  290 

 

 

3.2.2 Key functional genes 

Carbohydrate-active enzymes: The dataset contains 1,052,7451,082,125 genes encoding carbohydrate-active enzymes 

(CAZY, Fig. 5a), i.e., those enzymes involved in the metabolism of glycoconjugates, oligosaccharides, and polysaccharides 295 

(Zerillo et al., 2013). Genes associated with carbohydrate hydrolysis and biosynthesis were the most abundant, accounting for 

4845.21% and 4744.44%, respectively. In contrast, those genes associated with non-hydrolytic cleavage of glycosidic bonds, 

hydrolysis of carbohydrate esters, and assisting in degrading biomass substrates were relatively scarce, accounting for 0.89%, 

3.1.4%, and 0.2% of the predicted CAZY, respectively. This indicates that the glacier microbiome is competent in a diverse 

range of carbon transformation processes, mediating the delivery of carbon to downstream ecosystems. 300 

Nitrogen cycling: The dataset contained 1386,4241 unique genes associated with nitrogen cycling, most of which (99.34%) 

were associated with nitrate reduction and/or denitrification pathways (Fig. 4b5b). These genes included the nirB gene 

responsible for the nitrite reduction to ammonia in the assimilatory nitrate reduction pathway, the narB and nirA genes 

responsible for sequential nitrate reduction to ammonia in dissimilatory nitrate reduction pathways, and the nirK gene 

responsible for nitrite reduction to nitric oxide in denitrification pathway. This suggests that microbial-driven nitrate reduction 305 

is widespread in glacial habitats for both nitrogen assimilation and energy supply, highlighting their potential roles in NOx 

formation. In comparison, genes involved in nitrogen fixation (nifH, nifK, nifD, and anfG) and nitrification (hao) were 

relatively rare, with only 638 678 (0.49% of the nitrogen cycling-related genes) and 292 240 (0.17%) unique genes identified, 

respectively. This suggests that microorganisms capable of these high-energy demand processes only account for a small 

fraction of the glacial microbiome, which is consistent with the low nitrogen fixation rates reported in glacier-related habitats 310 

(Telling et al., 2011). 

Methane cycling: The dataset contained 154 methane cycling-related genes. Of these, 93 were the soluble form of methane 

oxidase (mmoX), accounting for 61% of the total methane-cycling genes identified (Fig. 4c5c). More mmoX genes were 
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identified from cryoconite (34.4% of the total methane-cycling genes identified) than from ice (20.8%) or snow (5.2%). 

Conversely, genes associated with the particulate form of methane oxidation (pmoA, pmoB, and pmoC) were more frequently 315 

identified from ice (21.4%) than from cryoconite (5.8%) and snow (3.2%). The different partition of soluble- and particulate-

form methane oxidizers likely reflects their distinct environmental selection process. Only six unique methanogenesis-related 

genes (mcrA) were identified, almost exclusively in cryoconite metagenomes. This is consistent with the cryoconite as a 

methane source in the literature (Zhang et al., 2021). 

Antimicrobial resistance genes: Using thresholds of 80% identity and 80% sequence coverage, we identified 960 1166 ORFs 320 

that exhibited high sequence similarity to 224 antibiotic resistance genes (ARG). Of these identified ARGs, MexF, beta-

lactamase, and mexK were the most abundant, accounting for 8.1%, 4.2%, and 3.7% of the ARGs identified, respectively 

(Table S11S14). The predominant antibiotic resistance mechanisms were antibiotic efflux and antibiotic inactivation, 

accounting for 44% and 41% of the total ARGs identified, respectively. These ARGs were predicted to confer resistance 

against 30 different antibiotics, with penam, tetracycline, and macrolide being the most commonly encountered resistant targets. 325 

Additionally, 54% of the identified ARGs provided multiple drug resistance, with the OprM, CpxR, and tolC genes conferring 

resistance to 16, 15, and 15 types of antibiotics, respectively. ARGs were identified in 566 genomes (13% of total genomes 

obtained). This low proportion of ARG-bearing genomes suggests that the glacier habitats are only weakly affected by 

antibiotic contamination. Of the genomes containing ARGs, 48.6% and 34.1% were affiliated with Proteobacteria and 

Firmicutes, respectively (Table S12, Fig. 4d5d). However, the resistance mechanisms exhibited by these two bacterial phyla 330 

were markedly distinct, with antibiotic efflux (MexF) and antibiotic target alternation (vanZf)/inactivation (FosB) being the 

most common mechanisms for Proteobacteria and Firmicutes, respectively. Most of the genomes (n=224) carried only a single 

ARG, while seven genomes possessed more than ten ARG genes, with Pseudomonas aeruginosa genomes hosting up to 48 

ARGs. 

Virulence factors: Using thresholds of 80% identity and 80% coverage, the dataset contains 66,017 822 virulence factors, 335 

accounting for 0.11% of the total ORFs identified (Table S13S15). Virulence factors were predominately associated with 

adherence, motility, and immune modulation functions, while those associated with toxin production accounted for only 0.489% 

(Fig. 4e5e). We did not detect any toxin genes from the genomes obtained using the same thresholds, with only those associated 

regulation, effector delivery systems, and metabolic factors being identified from Proteobacteria, Actinobacteria, and 

Deinococcota genomes. Nevertheless, 878 potential toxin genes were identified from the genomes if the criteria were loosened, 340 

with sequence identified ranging from 20.1% to 67.8%, these genes may represent novel toxins without references in the 

dataset, or non-toxin genes homologues to known toxin genes. These candidate toxin genes were most abundantly identified 

in Gammaproteobacteria (Table S14), followed by Bacteroides (15.9%) and Alphaproteobacteria (10.0%). 
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4 Data availability 

The data introduced here is the first step in archiving global glacier microbial data. For this purpose, the data is deposited into 345 

the Global Glacier Genome and Gene Database (4GDB, https://nmdc.cn/4gdb/ https://tp.lzu.edu.cn/4gdb/) and the National 

Tibetan Plateau Data Center (https://doi.org/10.11888/Cryos.tpdc.300830, Liu, et al., 2023), which provides a comprehensive 

solution for glacier microbial studies, featuring amplicon sequencing phylotype table, representative sequences, taxonomic 

annotations, metagenomic raw sequences, assembled contigs, annotated gene sequences, sequences of metagenome-assembled 

genomes, and the growth characteristics of cultivated microorganisms, into a user-friendly website. The 4GDB website is 350 

mainly structured into three sections, comprising amplicon sequencing, metagenome/genome sequences, and function 

prediction. The user-friendly web interface allows data filtering based on sample type, sample location, habitat type, gene type, 

and taxonomy, enabling seamless download of the filtered results. In conclusion, 4GDB (Reviewer link: 

https://nmdc.cn/4gdb/downloadtemp) provides an open-access genome- and gene-orientated resource platform that is regularly 

updated to include newly published and in-house generated sequence data. 355 
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Fig. 1 The location of glacier samples across the Antarctica, Arctic, and Tibetan glaciers, as well as their diversity indices and 

community taxonomic compositions.  370 
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(a): The location of the glacier samples retained; (b): Microbial richness comparison by region; (c): microbial richness 

comparison by habitat; (d): Microbial taxonomic compositions by region; and e: Microbial taxonomic compositions by habitat. 

Microorganisms includes bacteria and archaea. Significance is based on Kruskal-Wallis one-way ANOVA, multiple testing 

was performed based on the Dunn’s post-hoc test. 375 
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Fig. 2 Taxonomy composition of supraglacial ecosystems in glaciers of the Antarctic, Arctic, Tibetan 

Plateau, and other alpine regions. 380 

Taxonomy is inferred based on amplicon sequencing results. 
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Fig. 3 The community structure of glacier microbiomes across the Antarctica, Arctic, and Tibetan Plateau.  385 

 

(a): Microbial community structure differences visualized using the non-metric multidimensional scaling ordination plot; (b): 

The heatmap highlights the distribution pattern of dominant phylotypes for each habitat-region pair. 
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Fig. 4 Taxonomy classified of the obtained prokaryotic genomes 

A: The phylogenetic tree contains the representative bacterial genomic OTUs with genome size and GC% being shown; b: 

The taxonomic classified of the obtained genomes. Classified refers to valid taxonomic classification, place holders are 

genomes that have been deposited in the GTDB R220 database, while unclassified are genomes that have not been deposited 395 

in the GTDB database. 

Fig. 3 The relative abundance of potential pathogens identified in the glacier microbiomes across the Antarctica, Artic, and Tibetan 

Plateau.  

 

(a): Relative abundance comparison by habitat; and (b): Relative abundance comparison by region.  400 

The Ssignificance comparisons among regions (a) and habitats (b) is are based on Kruskal-Wallis one-way ANOVA, multiple 

testing was performed based on the Dunn’s post-hoc test. The significance is marked by the different letters (a, b, c) above the 

box. 
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Fig. 5 Features of the functional genes across the glacier metagenomes from the Antarctica, Arctic, and Tibetan Plateau.  

 

a: Genes associated with carbohydrate-active enzymes (GH: Glycoside hydrolases; GT: glycosyl transferases; PL: 410 

Polysaccharide lyases; CE: Carbohydrate esterases; AA: Auxiliary activities); b: nitrogen-cycling (The numbers indicate the 

number of genes identified, Hdh and Hzs gene of the anaerobic ammonium oxidation pathway are not identified in the glacier 

metagenomes); c: methane cycling (mcrA gene is responsible for methanogenesis; mmoX gene is the soluble form methane 

oxidation gene, while pmoA is the particulate form methane oxidation gene, both of which are associated with methane 

oxidation); d: genes associated with antibiotic resistance; and e: the number of genes associated with virulence factors., the 415 

numbers have been square root-transformed. 
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