
Multi-Source Synthesis, Harmonization, and Inventory of Critical
Infrastructure and Human-Impacted Areas in Permafrost Regions
of Alaska (SIRIUS)
Soraya Kaiser1,2, Julia Boike1,2, Guido Grosse1,3, and Moritz Langer1,4

1Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg
A45, 14473 Potsdam, Germany
2Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
3Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
4Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, Netherlands

Correspondence: Soraya Kaiser (soraya.kaiser@awi.de)

Abstract. The Arctic region has undergone warming at a rate more than three times higher than the global average. This

warming has led to the degradation of near-surface permafrost, resulting in decreased ground stability. This instability not only

poses a primary hazard to Arctic infrastructure and human-impacted areas, but can also lead to secondary ecological hazards

from infrastructure failure associated with hazardous materials. This development underscores the need for a comprehensive

inventory of critical infrastructure and human-impacted areas. The inventory should be linked to environmental data to assess5

their susceptibility to permafrost degradation as well as the ecological consequences that may arise from infrastructure failure.

Here, we provide such an inventory for Alaska, a vast state covering approximately 1.7 million km2, with a population of over

733,000 people and a history of industrial development on permafrost. Our Synthesized Inventory of CRitical Infrastructure

and HUman-Impacted Areas in AlaSka (SIRIUS) integrates data from (i) the Sentinel-1/2 derived Arctic Coastal Human Impact

dataset (SACHI), (ii) OpenStreetMap, (iii) the pan-Arctic Catchment Database (ARCADE), (iv) a dataset of permafrost extent,10

probability and mean annual ground temperatures, and (v) a contaminated sites database and reports to create a unified new

dataset of critical infrastructure and human-impacted areas as well as permafrost and watershed information for Alaska. The

integration process included harmonizing spatial references, extents, and geometries across all datasets, as well as incorporat-

ing a uniform usage type classification scheme for the infrastructure data. Additionally, we employed text mining techniques to

generate supplementary geospatial data from textual reports on contaminated sites, including details on contaminants, cleanup15

duration, and affected media. The combination of SACHI and OSM enhanced the detail of the usage type classification for

infrastructure from 5 to 13 categories, allowing the identification of elements critical to Arctic communities beyond industrial

sites. Further, the new inventory integrates the high spatial detail of OSM with the unbiased infrastructure detection capability

of SACHI, accurately representing 94 % of polygonal infrastructure and 78 % of linear infrastructure, respectively. The SIR-

IUS dataset is presented as a GeoPackage, enabling spatial analysis and queries of its components, either in dependence or20

combination with one another. The dataset is available on Zenodo under DOI 10.5281/zenodo.8311242.
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1 Introduction

In the past decades, the Arctic has experienced a pronounced warming, entailing an increase in air temperature that is more than

three times as high as the global average (Rantanen et al., 2022), referred to as Arctic Amplification (Cohen et al., 2014). These

increasing air temperatures led to a warming and thawing of permafrost since the 1980s, as borehole measurements across25

the Arctic demonstrate (Biskaborn et al., 2019; Smith et al., 2022). Modeling studies indicate that the initiation of permafrost

warming can be traced back to as early as 1900 (Langer et al., 2024). As 15 % of the exposed land surface of the Northern

Hemisphere are underlain by permafrost (Obu et al., 2019), this warming trend affects a vast area and has major implications

for ecosystems and livelihoods in the Arctic and subarctic. With permafrost degrading, we not only expect the mobilization of

one of the largest soil carbon pools (Schuur et al., 2015, 2022), but also substantial land surface changes that result from ground30

subsidence and thermal erosion (Kokelj and Jorgenson, 2013). Permafrost warming trends can also be observed in mountain

regions worldwide (Biskaborn et al., 2019), leading to the destabilization of slopes and increased movement of rock glaciers

(Haeberli, 2013; Haeberli et al., 2024). Numerous studies demonstrate intensifying land surface changes in the permafrost

region which encompass for example processes such as thaw slumping (e.g. Runge et al., 2022; Ramage et al., 2017; Leibman

et al., 2021), the development of thermokarst ponds and lakes (e.g. Muster et al., 2017; Jones et al., 2011), thermo-erosional35

gullying (e.g. Fortier et al., 2007; Godin et al., 2012), ice wedge degradation (e.g. Liljedahl et al., 2016; Jorgenson et al., 2006)

and mass movement processes such as rock avalanches and falls in mountainous regions (e.g. Bessette-Kirton and Coe, 2020;

Smith et al., 2023; Stoffel et al., 2024) all pointing to an increasing loss in ground stability. Some of these processes such as

thaw slumps have impacts not just locally but even far away in downstream areas as sediments, solubles, and organic matter are

eroded from thaw features and may follow different trajectories of transport, biogeochemical processing, and sedimentation40

depending on environmental conditions (Lamhonwah et al., 2016; Keskitalo et al., 2021; Kokelj et al., 2013) and can also

impact ecosystems in these downstream areas (Levenstein et al., 2020).

For Arctic settlements, the destabilization of the ground can cause severe infrastructure failure. Damage to housing units,

transport networks (roads and airstrips), and water supply and sewage systems are frequently reported (Liew et al., 2022).

Degradation of permafrost also poses a hazard to industrial infrastructure, including sites relevant for natural resource extrac-45

tion and energy production whose failure can result in environmental contamination (Rajendran et al., 2021; Langer et al.,

2023). With the expansion of human activities and infrastructure development in the Arctic (Bartsch et al., 2021), increasing

human-induced effects on snow and vegetation, as well as permafrost degradation, are observed in their vicinity, which further

accelerates the destabilization of the ground (Walker et al., 2022; Bergstedt et al., 2022; Raynolds et al., 2014; Hammar et al.,

2023). Model projections focusing on RCP 4.5 (Representative Concentration Pathways) (van Vuuren et al., 2011) indicate50

that approximately 69 % of Arctic infrastructure will face impacts of near-surface permafrost degradation by 2050 (Hjort et al.,

2018). This will influence the lives of about 5 million people living in more than 1000 settlements across the Arctic permafrost

region (Ramage et al., 2021) (see Figure 1a). Given the potential impact of near future permafrost degradation, it becomes

imperative to generate comprehensive inventories of critical Arctic infrastructure and areas of human activity, allowing the

assessment of their specific usage types, potential to failure, and relevance to local and regional livelihoods. Such an inventory55
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is a prerequisite for determining exposure to natural hazards such as thaw induced ground destabilization, coastal erosion, and

�ooding which is pivotal to risk assessments.

Figure 1. Figure a) shows pan-Arctic permafrost extent as modeled by Obu et al. (2019) together with population numbers of settlements

in the Arctic Circumpolar Permafrost Region (ACPR) (Wang et al., 2021). The different sizes of the circles represent logarithmic scaling of

the population numbers. Our study focuses on the state Alaska as shown in inset map b). Basemap was made with Natural Earth: Free vector

and raster map data @www.naturalearthdata.com.

Therefore, substantial efforts are being made to map settlements, areas of human activity, and industrial sites throughout the

Arctic. Extensive databases have been compiled regarding population numbers (Wang et al., 2021; Ramage et al., 2021), the

occurrence and development of infrastructure along coastlines (Bartsch et al., 2020, 2021), and the distribution of industrial60

sites in the Arctic (Langer et al., 2023). The datasets focusing on Arctic infrastructure in particular and areas of human activities

in general, however, are limited in spatial coverage (coastal areas, north of treeline (e.g. Bartsch et al., 2021; Xu et al., 2022)),

spatial resolution and lack speci�c detail regarding usage type. Furthermore, because of their diverse research approaches,

these datasets are inconsistent with respect to spatial references and geometry types (vector/ raster). To date, there is no

comprehensive inventory that synthesizes various information about infrastructure and areas of human activity in the Arctic65
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and combines these information with essential environmental data such as permafrost occurrence and watersheds. In addition,

for Canada and the U.S. there is a substantial volume of state and federal data on contaminated sites available (Langer et al.,

2023). However, the geospatial data provided by government agencies is highly heterogeneous, offering the full range of

detailed site chronologies (e.g. affected containment structures, mandated cleanup measures) as well as data about the polluting

substances to sometimes only basic information about location, cleanup status, and responsible personnel. Additional details70

can then be found in written reports (Langer et al., 2023; State of Alaska Department of Environmental Conservation, 2023a)

and each have to be extracted �rst, before they can be put into a spatial context. However, this detailed information is urgently

required in a geospatial data format over large regions, not only to estimate the vulnerability of critical infrastructure and

human-affected areas to permafrost degradation but also to assess the ecological consequences of contamination resulting from

industrial infrastructure site failures.75

Focusing on Alaska, we thus (i) harmonised existing multi-source data on infrastructure and human-impacted areas into a

coherent usage type classi�cation scheme, (ii) created a statewide inventory of these elements and enriched it with data on

permafrost characteristics (extent, probability, and ground temperatures), watersheds, and sites of contamination, for which we

extracted information on contaminants, cleanup duration, and the affected medium from available text reports, and (iii) enabled

the spatial analysis and queries of the inventory together with ecological information in a database-like structure.80

Following the CIIP manual (Critical Information Infrastructure Protection, CIIP2008) (Brunner and Suter, 2008), we de�ne

critical infrastructure as those sectors essential for the reliable functioning of communities. These core categories include

among others food and water supply, and health and sanitation. To better align with the modern and traditional ways of life

in the Arctic and subarctic region, we have adjusted the internationally recognized core categories and extended them. Please

refer to Section 2.2.1 (Infrastructure Usage Types) and Table 1 for a full list of categories.85

2 Material & Methods

2.1 Study Site

Alaska is the largest and northernmost state of the United States of America (U.S.). With a population of over733;000inhabi-

tants and a land area of approx.1:7 million km2 (The Information Architects of Encyclopaedia Britannica, 2023), it is also the

least densely populated state in the U.S., with a population density of 0.5 people per square kilometer (1.3 people per square90

mile), compared to the rest of the U.S. with a density of 35.9 per square kilometer (93 people per square mile) (Department

of Labor and Workforce Development, 2020; World Bank, 2024). Alaska is home to over 300 communities, with Anchorage,

Juneau and Fairbanks City being the biggest municipalities, housing49 % of the overall population. The other near half of

the population (44 %) resides in smaller settlements with fewer than10;000 people (Department of Labor and Workforce

Development, 2020), dispersed across the entire state. Many of these smaller settlements are only reachable by air or barge95

(Hamilton et al., 2016).

Alaska encompasses a range of different landscapes, from glaciers in the Brooks Range to tundra in the North Slope and

boreal forests in the Alaska-Yukon region (Raynolds et al., 2019; Jorgensen and Meidlinger, 2015). There are also substantial
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variations in meteorological and permafrost characteristics, following a North-South gradient. In the North, a cold polar tundra

climate (Beck et al., 2018) prevails, with mean annual air temperatures (MAAT) of� 10:4° C (Climate Normals 1991-2010100

of Deadhorse, see NCEI, 2023a) and a continuous permafrost extent (see Figure 1). The South on the other hand, is still

characterized by a cold climate (Beck et al., 2018), but with much higher temperatures (4:5° C MAAT for Homer, see NCEI,

2023b) and a permafrost extent transitioning to a sporadically underlain land surface and isolated patches.

It is important to note that approx.80 % of the state's area – accounting for nearly 200 settlements (refer to Figure 1) – fall

within the permafrost region (Jorgenson et al., 2008; Ramage et al., 2021), which is projected to undergo massive changes in105

the upcoming decades (Chadburn et al., 2017; McGuire et al., 2018). Challenges such as ground subsidence across the region

and coastal erosion along the extensive and populated coastline (occupied by 83% of the population (NOAA Of�ce for Coastal

Management, 2023)), will pose a high risk to the Alaskan population and economy (Melvin et al., 2016; Liew et al., 2022;

Wang et al., 2023).

The most important contribution to Alaska's economy stems from the mining, quarrying, and oil and gas extraction industry110

(Bureau of Economic Analysis, 2023a). Notably, the oil exploration units in the North Slope and Cook Inlet play a vital role

in Alaska's revenue, having contributed38 % of the general funds in the 2019 �scal year (Alaska Oil and Gas Association,

2020, 2021). In addition to the signi�cant impact of oil and gas, Alaska's �shing industry also plays a crucial role in the econ-

omy. The Alaska Seafood Marketing Institute (Alaska Seafood Marketing Institute, 2024) reports that, in 2021/22, the �shing

industry employed 17,000 Alaskans (from a total of 48,000 workers) from more than 142 communities, making it the top em-115

ployer in the Alaskan manufacturing sector. Moreover, more than 60 % of the total U.S. seafood harvest comes from Alaska's

�sheries (Alaska Seafood Marketing Institute, 2024). Further industries contributing to the economy are: transportation and

warehousing (including cargo, passengers but also tourism), �nance, insurance, real estate, and government and government

enterprises (including community services such as military, postal service, etc.) (Bureau of Economic Analysis, 2023a, b).

However, the economic growth comes with environmental consequence. The continued development of infrastructure, expan-120

sion of human-impacted areas and oil exploration sites in the North, along with the associated transportation and infrastructure

networks, have already led to an increase in thermokarst occurrence (Raynolds et al., 2014; Walker et al., 2022). Furthermore,

given the extensive oil and gas production operations, there is an inherent risk of environmental contamination resulting from

infrastructure failures. This, in conjunction with both natural and human-induced degradation processes, underscores the need

for a comprehensive and freely accessible database encompassing critical infrastructure and human-impacted areas on one125

hand and environmental information concerning watersheds and permafrost on the other.

2.2 Data Harmonization & Mining

The SIRIUS (SynthesizedInventory of CRitical Infrastructure and HUman-Impacted Areas in AlasSka) dataset synthesizes

data from �ve different sources:

(i) Sentinel-1/2 derived Arctic Coastal Human Impact dataset (SACHI) (Bartsch et al., 2021) (acquired June 11, 2021),130
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(ii) OpenStreetMap dataset for the infrastructure and land use information (OpenStreetMap Contributors and Geofabrik

GmbH, 2018) (acquired January 20, 2023),

(iii) Pan-Arctic Catchments Database (ARCADE) for the watersheds (Speetjens et al., 2022) (acquired January 17, 2023),

(iv) Modeled Northern Hemisphere permafrost map by Obu et al. (2018) (acquired August 31, 2023), and

(v) Contaminated sites database and reports by the State of Alaska Department of Environmental Conservation (2023a)135

(DEC) (acquired March 2, 2023).

The primary task was to harmonize them to create a semantically and geometrically coherent and uniform data product (see

Figure 2). Initially a thorough homogenization of the spatial reference was required. All datasets were reprojected to the

the World Geodetic System 1984 with an Alaska polar stereographic map projection (EPSG Code 5936). Subsequently, we

clipped every dataset's spatial extent to the state boundary of Alaska as provided by the National Weather Service (2023).140

Each dataset had to undergo further geometric harmonization processes such as merging individual vector �les, creating buffer

zones along linear features, and clipping to layer spatial extents. Thereafter, we performed spatial analyses such as spatial

overlays and joins to determine overlapping features and retrieve their information. All data processing was done using Python

with its geospatial data processing libraries geopandas, pandas, numpy, gdal, rasterio, and rioxarray (Jordahl et al., 2022;

pandas development team, 2023; Harris et al., 2020; Rouault et al., 2023; Gillies et al., 2013–; Rio, 2024). The data processing145

scripts are downloadable from our Zenodo repository (Kaiser et al., 2023).

2.2.1 Infrastructure and Human-Impacted Areas

Sentinel-1/2 derived Arctic Coastal Human Impact

The Sentinel-1/2 derived Arctic Coastal Human Impact (hereafter SACHI) dataset contains buildings, road and railway net-

works and other human-impacted areas in the Arctic coastal regions up to100km inland (Bartsch et al., 2020). The infrastruc-150

ture features in SACHI were derived from Sentinel satellite imagery using machine learning and were blended with auxiliary

information from other datasets (Bartsch et al., 2021). Each infrastructure feature holds among others information on the set-

tlement name, the feature's class, the primary economic activity (attribute "Use") and the general economic activity (attribute

"Use main") (Bartsch et al., 2021). The value of the attribute "settlement name" was assigned on the basis of the settlement

dataset by Wang et al. (2021), with a40km buffer applied to also incorporate surrounding infrastructure. Features outside this155

buffer were labeled following the Google hybrid data layer (Bartsch et al., 2021). Each settlement (and surrounding) was then

assigned one economic activity category. This procedure resulted in a rather coarse de�nition of use categories. For example,

the settlement of Nome is assigned the general use category "Mining", with no further distinction, and for the Nome-Teller

highway connecting the settlements Nome and Teller, the southern part (Nome) is assigned "Mining", while the northern part

counts towards the "Fishing" industry in Teller City. This generalization does not allow the differentiation of use categories160

within settlements and beyond. As the SACHI dataset was derived using a pixel-based approach, linear infrastructure is also

represented as polygons. The "class" attribute speci�es whether a feature corresponds to linear transport infrastructure (class

= 1), a building (class = 2), or another human-impacted area (class = 3). When we visually examined the linear transport in-
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Figure 2. Flowchart of Harmonization Process. If not indicated otherwise, all input datasets are of ESRI Shape�le format.
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frastructure, we observed some gaps in the data, particularly in settlements: extracting narrow paths or distinguishing between

a linear gravel road and other human-impacted areas, such as driveways or exploration pads, were dif�cult with the limited165

spatial resolution of the Sentinel sensors (10 m). In addition, the "road" class showed a particularly low mapping accuracy

compared to the "building" class (Bartsch et al., 2021). As OSM on the other hand is estimated to represent83% of the global

road network (Barrington-Leigh and Millard-Ball, 2017; Hjort et al., 2018), we decided to use OpenStreetMap data to represent

the linear transport infrastructure.

OpenStreetMap170

The OpenStreetMap (hereafter OSM) project is a collaborative initiative involving mappers from around the globe, aiming to

provide highly detailed and comprehensive map data (OpenStreetMap Foundation, 2023). It offers a wide range of geographic

features, encompassing various categories such as settlement types (e.g., cities, hamlets, villages), road classi�cations (e.g.,

motorways, footways, primary and secondary roads), railway networks, amenities, man-made structures, and more (Open-

StreetMap Wiki, 2023). Notably, the road and railway networks in OSM are represented as line features. This trait facilitates175

queries about the total length of road network sections situated on different types of permafrost or within speci�c catchment

areas, as well as the identi�cation of potential contamination along transportation routes. Another advantage of OSM is its data

availability for the entire region of Alaska. Our focus is on areas (farmland, commercial areas, etc.) and elements (small-scale

features such as hunting stands, memorials, etc.) that are directly in�uenced by human activities and are shaped by practical

land use. Therefore, we excluded OSM �les which contained information about water bodies and natural features: "waterways"180

for the linear infrastructure �les and "natural" and "water" for the polygonal and point infrastructure �les. We also excluded in-

formation on the orientation (Buddhist, Jewish, etc.) of religious sites: "pofw" (places of worship). Buildings such as churches,

chapels, and burial grounds (cemeteries) were retained. Subsequently, we merged the linear OSM infrastructure �les into one

dataset. To assess how the linear OSM infrastructure dataset compares to the pixel-based SACHI dataset, we compared their

polygonal representations. For this, we converted the linear OSM infrastructure to polygons by applying a buffer around each185

linear feature: major highways and roads (OpenStreetMap Wiki, 2023) were assigned a width of20 m to account for possible

embankments, sliproads or ramps. For the rest of the road network and the railway lines, we assumed a width of10 m. Sub-

sequently, we clipped the polygonal OSM dataset - representing the linear infrastructure features - to the spatial extent of the

SACHI dataset and compared their respective areas to each other.

After merging the linear railway and road network OSM data, we combined the polygonal OSM infrastructure data into190

a single GeoDataFrame. The attribute "fclass" of the polygonal OSM GeoDataFrame contains the tag, which people use to

describe the mapped feature. In the OSM Wiki (OpenStreetMap Wiki, 2023), these tags are listed following a certain key and

value combination, a mapping standard most members of the community follow. As a �rst step, we derived the unique values

of the attribute "fclass" and compared them to the OSM values de�ned in the Wiki (OpenStreetMap Wiki, 2023). Generally,

the tags under "fclass" were in agreement with the OSM values of the Wiki. Some mismatches originated from different ex-195

pressions, e.g. „town_hall“ instead of „townhall“, „archaeological“ instead of „archaeological_site“ or „mobile_phone_shop“

instead of „mobile_phone“. Some tags were unof�cial additions created individually by the OSM mapping community, e.g.

parking_multistorey, recycling_paper. Further, we removed any occurring tags describing natural features (waterfalls, etc.) and
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places (island, heath, village, etc.), which portray localities and their population in which multiple usage types are possible.

Table A1 shows the retrieved values of "fclass" and their corresponding OSM keys and values, which we assigned manually200

following the above mentioned Wiki. The predominant tag under "fclass" was "building“. This tag represented 81% of the

polygonal OSM dataset. To determine the usage type for these buildings, we analyzed their attribute "osm_type" of the dataset

and once again compared the tags under "osm_type" to the OSM keys and values of the OSM Wiki. Having identi�ed all of the

tags under "fclass" and "osm_type" and assigned them an OSM key and value, we had gathered information on the features's

main usage and purpose and could categorize them into usage categories.205

Infrastructure Usage Types

For this, we followed the Land Use / Cover Area frame statistical Survey (LUCAS) of Eurostat (E4.LUCAS (ESTAT), 2018),

which provides a framework for a consistent classi�cation and harmonization of land use/ land cover data (see Table 1).

Table 1.LUCAS categories with their respective sectors critical to Arctic and subarctic communities.

Category Nr. LUCAS Critical Sector

01 Agriculture Food Supply

02 Commerce, �nance and business Banking & Finance

03 Community services Health & Sanitation, Government services,

Ecological & Traditional Sustainability

04 Construction –

05 Energy production Energy Production

06 Fishing Ecological & Traditional Sustainability

07 Forestry Ecological & Traditional Sustainability

08 Hunting Ecological & Traditional Sustainability

09 Industry and manufacturing Environmental Protection

10 Mining and quarrying Environmental Protection

11 Recreational, leisure and sport –

12 Residential –

13 Transport, communication networks, stor-

age and protective works

Transport & Mobility, Information & Com-

munication

14 Unused –

15 Water and waste treatment Water Supply, Health & Sanitation

This categorization allows us to incorporate the aspect of sectors critical to the functioning of Arctic communities. Our core

categories of critical infrastructure align with internationally de�ned sectors (Brunner and Suter, 2008), which include food and210

water supply, banking and �nance, government services and institutions, transport and mobility, information and communica-

tion, energy production, health and sanitation. In addition, we introduce two supplementary categories: ecological & traditional

sustainability, and environmental protection. The latter category refers to any infrastructure that may pose environmental haz-

9



(a) (b)

Figure 3. Comparison of level of detail of original (a) OSM and (b) SACHI dataset. OSM shows a higher detail in mapping buildings, land

use boundaries and linear transport infrastructure in contrast to SACHI, where the delineation is done with a pixel-based classi�er (Bartsch

et al., 2021). Background RGB high-resolution imagery of Deadhorse is from WorldView-3 (Copyright: DigitalGlobe, 2016). OSM data

copyrighted by OpenStreetMap contributors, licensed under the Open Data Commons Open Database License (ODbL).

ards in the event of failure. This category is particularly signi�cant for traditional lifestyles, such as hunting and �shing, which

we consider within the ecological & traditional sustainability category, as they rely on intact terrestrial and aquatic ecosystems.215

In this category, we also include sites of cultural heritage (cemeteries, tents, yert, etc., see e.g. Irrgang et al. (2019)).

Table A1 shows the assigned LUCAS category for each OSM tag. As the linear OSM data only consists of railway and road

network data, no further classi�cation was needed.

After implementing the initial assignment based on the given scheme, we noticed that all of the tags under "fclass" were

effectively categorized except for one: the "building" tag posed a challenge as the corresponding "osm_type" attribute lacked220

detailed information on the usage type for86% out of144;000building features. To address this, we sub-sampled the features

with the "fclass" building that hadn't been assigned a usage type yet and "internally" overlaid them with features of any other

"fclass" (other than building) that already had a usage type assigned. We then assigned the usage type of the non-building

feature to the building feature in the overlapping areas. This analysis revealed that the features with the tag building (e.g. a

shopping mall) frequently contain various smaller features and, thus, usage types, such as shops, of�ces, parking areas, and225

more. To harmonize this, we aggregated these diverse usage types and assigned the predominant usage type.
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We processed the point OSM infrastructure data �les in the same way: generating one GeoDataFrame containing all point

features and assigning them a LUCAS category based on their tag under "fclass". Eventually, we repeated the LUCAS category

assignment for the SACHI dataset: each usage value was assigned a LUCAS category, see table A2.

Combining SACHI and OSM230

When visually examining subsets of the SACHI and OSM datasets, we again observed that the OSM data had a higher level of

detail. The buildings' boundaries of the OSM dataset were delineated accurately (see Fig. 3a), while the buildings' outlines of

the SACHI dataset were coarse and contained adjacent non-building areas due to the pixel-based approach (Fig. 3b). However,

the SACHI approach detected more building area. Therefore, we implemented a decision tree structure for the last harmoniza-

tion step of the infrastructure and usage type datasets. As a �rst step, we retrieved all overlapping features of the OSM and235

SACHI dataset with a spatial join (see Figure 2). When the OSM feature already had a LUCAS category assigned, we stored it

in the �nal infrastructure and usage type dataset. If not, we assigned it the LUCAS category of the overlapping SACHI feature.

All other non-overlappping SACHI and OSM features were also stored in the �nal infrastructure and usage type dataset.

2.2.2 Accuracy Assessment

To assess and quantify the accuracy of our data integration of infrastructure and human-impacted areas, we sub-sampled240

an area of0:3 km2 of the coastal settlement Shishmaref for which very high-resolution imagery was available. We built a

reference dataset by manually digitizing all presumably permanent infrastructure elements using multi-spectral (RGB+NIR)

orthophotos with a spatial resolution of10cm acquired in 2021 with the Modular Aerial Camera System (MACS) by Rettelbach

et al. (2023). Buildings and other polygonal infrastructure features, such as repurposed shipping containers, small sheds, and

coastal protection structures were mapped at a scale of 1:500. An infrastructure feature was considered permanent when it245

exhibited characteristics indicating a �xed location, such as supply pipes for shipping containers or �xed roo�ng. Roads were

mapped at a scale of 1:2500 and solely if they exhibited an approximate width of10 m or more to comply with the spatial

resolution of the Sentinel sensors of SACHI. Subsequently, we created a grid layer spanning the mapped area with a size of

10 by 10 m for each grid cell. Each grid cell was assigned the corresponding values of the i) reference dataset and ii) the

SIRIUS infrastructure and human-impacted area dataset: the OSM keys and values, "fclass", and the binary information if an250

infrastructure feature intersected with the grid cell (yes/ no). This allowed the calculation of a confusion matrix for the linear

and polygonal infrastructure to determine the performance of the SIRIUS dataset.

In a confusion matrix, the classi�ed dataset – in our case the SIRIUS infrastructure and human-impacted areas data – is

compared with the reference dataset to determine the performance of the classi�cation (Maxwell et al., 2021). The matrix

provides information on correctly classi�ed pixels (true positives: a "true" infrastructure feature of the reference dataset is also255

represented in the SIRIUS inventory; true negatives: a grid cell of the reference dataset does not show an infrastructure feature,

neither does the SIRIUS inventory) and missclassi�cations (false positives and false negatives). A common metric derived

from a confusion matrix is the overall accuracy (OA), the ratio of correctly classi�ed pixels (true positive and true negative) to

the total number of pixels (true or false) (Albertini et al., 2022).
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2.2.3 Contaminated Sites of Alaska260

The Contaminated Sites Program (CSP) of the Alaskan Department of Environmental Conservation (DEC) provides statewide

information about the contamination by hazardous substances and manages their cleanup (State of Alaska Department of En-

vironmental Conservation, 2023a). The DEC dataset entails information on the site name, address, geographic coordinates,

cleanup status, responsible staff, contact person and the URL to a detailed site report. This site report contains complementary

information on the contaminated medium (soil, groundwater, etc.), the substances (diesel, petroleum, etc.), and the date and265

type of cleanup measurements. We downloaded the detailed site report for each location to provide a harmonized dataset on

contamination and infrastructure and human-impacted areas which allows users to assess their interrelation with permafrost

degradation and hydrological watersheds in Alaska. With basic text mining tasks (regular expressions, �ltering for words in

uppercase, etc.), we �rstly derived all abbreviations of the site report. We compared the abbreviations to the DEC glossary

(State of Alaska Department of Environmental Conservation, 2023b) and saved the ones indicating a substance or containment270

structure associated with contamination (e.g. LUST - Leaking Underground Storage Tank, PCBs - Polychlorinated Biphenyls,

etc.) to a new attribute "contaminants" of the dataset. Subsequently, we deemed the dates followed by the expressions "Site

Added to Database" and "Site Closure Approved" or "Cleanup Complete" (after 2008, (State of Alaska Department of En-

vironmental Conservation, 2023c)) as the start and end date of the cleanup and saved them to the attributes "�rst_date" and

"last_date", which allowed us to calculate the total cleanup time (attribute "cleanup_days"). If these expressions didn't appear275

in the site chronology report, we assumed the �rst and last mentioned date to be the start and �nish of the cleanup. From

this, we calculated the total cleanup time in days and saved it as an additional attribute. These simple text mining analyses

were suf�cient for deriving dates and abbreviations in uppercase letters as well as for comparing our list of toxic substances

and containment related keywords against the full-text reports. However, we also wanted to provide information on the pre-

dominantly contaminated medium, so whether the groundwater, soil, or adjacent waterbodies were impacted. Here, we had to280

deal with a high heterogeneity in the structure of each report. Some reports listed the contaminated medium under the section

„Contaminant Information“. By comparing a set of medium keywords (soil, groundwater, river, etc.) against this section, we

retrieved the contaminated media.

2.2.4 Permafrost Data

As described for the infrastructure and contamination datasets, we assigned the joint spatial reference to the permafrost datasets285

and clipped their extent to the state boundary of Alaska. We derived the permafrost information from the modeled Northern

Hemisphere permafrost map for 2000-2016 by Obu et al. (2018). The dataset comprises three GeoTIFF raster �les containing

the mean annual ground temperature (MAGT), the MAGT standard deviation, the permafrost probability fraction, and one

vector �le (ESRI Shape�le) giving information on the permafrost extent. The dataset is an estimation based on the TTOP

(temperatures at the top of permafrost) model, which uses the mean annual air temperatures (MAAT) to model the MAGT290

and subsequently the permafrost probability and zonation (Obu et al., 2019). It has a resolution of1 km2 and was validated

by borehole data (Obu et al., 2019). Within our study, we integrated the data on permafrost probability fraction and �ltered

12



for raster values where the probability of permafrost occurrence was greater than 50%, complying with the de�nition of the

permafrost model domain (Langer et al., 2023). The �ltering step provides users with an additional �ltering option for relevant

permafrost information, as it allows the integration of mean annual ground temperatures. Subsequently, we vectorized the raster295

data to ensure compatibility with the other vector datasets. Given that each pixel value in the MAGT raster �le was provided

with precision to �ve decimal places, our initial step involved rounding these values to a single decimal place before proceeding

with the vectorization process. We also included the vector data on the permafrost extent (zones) to allow the user to query

data in dependence of permafrost zone, e.g. continuous, sporadic, etc..

2.2.5 ARCADE Watershed Database300

The pan-Arctic Catchments Database, referred to as ARCADE, comprises a comprehensive collection of over 40 000 catch-

ments draining into the Arctic Ocean down to a Strahler order of �ve (Speetjens et al., 2022). The geometries of the watersheds

were derived from the Copernicus Digital Elevation Model with a spatial resolution of 30 arc seconds (approximately1 km).

Additional information regarding the catchments' characteristics (elevation, slope, etc.), climatology (precipitation, snowfall,

runoff, etc.) and physiography (soil characteristics, permafrost parameters and extent, land surface data, etc.) were already305

incorporated to enrich the dataset (Speetjens et al., 2022). However, the permafrost extent and information on the MAGT were

averaged over the extent of each watershed, which reach sizes of up to3:1x106 km2 (Speetjens et al., 2022). Therefore, we

chose to include the information on every1 km2 grid cell of the permafrost MAGT dataset by Obu et al. (2019), see section

2.2.4.

2.3 Data Usability310

To enhance spatial queries involving different usage types, contaminated sites, watersheds, and permafrost information, it was

necessary to consolidate the individual pre-processed �les into a single container. For this, we chose the GeoPackage format,

as speci�ed by the Open Geospatial Consortium (OGC). The GeoPackage format facilitates the exchange of geospatial data

across different platforms, is open-source (Open Geospatial Consortium, 2023), and eliminates the need to handle multi�le data

formats like ESRI Shape�les. Thus, it is highly suitable for accommodating the diverse data handling preferences of potential315

users. As GeoPackage uses a SQLite database container, the user is able to conduct their analyses within established geographic

information systems such as ArcGIS, QGIS or spatial databases (Geopackage Contributors, 2020; Warmerdam et al., 2023).

3 Results

3.1 Data Harmonization & Mining

In this section, we outline the enhancements made to the infrastructure and human-impacted areas dataset of Alaska, as well as320

the information on contaminated sites. To showcase the advancements achieved by combining the SACHI and OSM data, we

focused on two coastal regions, Nome and Prudhoe Bay, by sub-sampling their respective datasets. Furthermore, we investi-
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