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Abstract. In the western United States, prolonged drought, warming climate, and historical fuel build-up have contributed to 

larger and more intense wildfires, as well as longer fire seasons. As these costly wildfires become more common, new tools and 

methods are essential for improving our understanding of the evolution of fires and how extreme weather conditions, including 

heatwaves, windstorms, droughts, and varying levels of active fire suppression, influence fire spread. Here we develop the 

GOES-Observed Fire Event Representation (GOFER) algorithm to derive the hourly fire progression of large wildfires and 15 

create a product of hourly fire perimeters, active fire lines, and fire spread rates. Using GOES-East and GOES-West 

geostationary satellite detections of active fires, we test the GOFER algorithm on 28 large wildfires in California from 2019-

2021. The GOFER algorithm includes parameter optimizations for defining the burned-to-unburned boundary and correcting for 

the parallax effect from elevated terrain. We evaluate GOFER perimeters using 12-hourly data from the VIIRS-derived Fire 

Event Data Suite (FEDS) and final fire perimeters from California’s Fire and Resource Assessment Program (FRAP). Although 20 

the GOES imagery used to derive GOFER has coarser resolution (2 km at the equator), the final fire perimeters from GOFER 

correspond reasonably well with those obtained from FRAP, with a mean Intersection-over-Union (IoU) of 0.77, in comparison 

to 0.83 between FEDS and FRAP; the IoU indicates the area of overlap over the area of the union relative to the reference 

perimeters, in which 0 is no agreement and 1 is perfect agreement. GOFER fills a key temporal gap present in other fire tracking 

products that rely on low-earth-orbit imagery, where perimeters are available at 12-hour intervals or longer, or at ad hoc intervals 25 

from aircraft overflights. This is particularly relevant when a fire spreads rapidly, such as at maximum hourly spread rates of 

over 5 km/h. Our GOFER algorithm for deriving the hourly fire progression using GOES can be applied to large wildfires across 

North and South America and reveals considerable variability in rates of fire spread on diurnal time scales. The resulting GOFER 

product has a broad set of potential applications, including the development of predictive models for fire spread and 

improvement of atmospheric transport models for surface smoke estimates. 30 

1 Introduction 

Severe wildfire seasons in the western United States, such as in 2018, 2020, and 2021, generate large negative economic and 

public health impacts, displacing communities in the wildland-urban interface and inducing hazardous smoke pollution (Burke et 

al., 2021; Zhou et al., 2021). Following the legacy of total forest fire suppression in the 20th century, the enhanced drying of 

fuels from anthropogenic climate warming and a lack of prescribed burns for fuel reduction have increased the likelihood of 35 

destructive, fast-spreading megafires, such as the Creek Fire in 2020 (1537 km2) and Dixie Fire in 2021 (3898 km2) (Juang et al., 

2022; Williams et al., 2019; Kolden, 2019; Brown et al., 2023). However, these extreme fire events, which are infrequent and 
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outliers in terms of fire size, are often poorly characterized in statistical models of burned area or fire intensity (Wang et al., 

2021; Joseph et al., 2019). As a consequence, it is important that we first understand how large fires evolve through both time 

and space to sufficiently model how meteorology, suppression, and fuels modulate fire spread and emissions. 

Recent efforts to map the progression of fire perimeters include the Global Fire Atlas (Andela et al., 2019), GlobFire (Artés et 

al., 2019), Fire Events Delineation (FIRED) (Balch et al., 2020), and the Fire Event Data Suite (FEDS) (Chen et al., 2022). These 50 

products use satellite observations of fires from MODIS or VIIRS, and cluster burned pixels or active fire detections into 

individual fire events. The Global Fire Atlas, GlobFire, and FIRED use the 500-m MODIS burned area product to map daily fire 

progression, while FEDS uses the 375-m VIIRS active fire product to map 12-hourly fire progression. The Global Fire Atlas and 

GlobFire operate on a global scale, while FIRED and FEDS are restricted to a regional level – the contiguous United States for 

FIRED and California for FEDS. 55 

Here we improve the temporal scale of existing mapping methods for fire perimeters to hourly intervals by leveraging 

geostationary satellite observations from the GOES-East and GOES-West satellites. Our baseline algorithm is based on Google’s 

initial method used to produce the wildfire layer in Google Maps (Restif and Hoffman, 2020). The wildfire layer, which updates 

within 30 minutes of GOES retrievals, displays the current perimeter of large fires based on GOES active fire observations and 

aims to provide stakeholders with up-to-date information on how current fires may endanger nearby structures and lead to 60 

evacuations. To create the wildfire layer, Google Maps leverages the Google Earth Engine (GEE) cloud-based geospatial 

computing platform (Gorelick et al., 2017; Restif and Hoffman, 2020). GEE’s petabyte-scale public data catalog maintains the 

GOES datasets and automatically adds and preprocesses new images as soon as they are available. GEE empowers rapid 

processing of large amounts of data and enables the tracking of fire progression at high temporal resolution. 

In this study, we develop the GOES-Observed Fire Event Representation (GOFER) algorithm to derive the hourly fire 65 

progression of large wildfires. Our algorithm includes an optimized threshold for delineating the fire perimeter from unburned 

areas, parallax terrain correction for GOES images, a dynamic smoothing kernel, and scaling adjustment for early perimeters. As 

a test case of the GOFER algorithm, we create a product that includes hourly fire perimeters, active fire lines, and fire spread 

rates for large fires that burned over 50,000 acres (202 km2) in California from 2019-2021. A set of 28 fires met this criterion, 

including some of the largest (August Complex and Dixie) and most destructive fires (North Complex and Glass) in California’s 70 

history. Over this 3-year span, these fires approximately accounted for 85% of the total burned area and 77% of all the structures 

destroyed. We evaluate GOFER perimeters and active fire lines using FEDS at 12-h intervals and validate the spatial accuracy of 

the final perimeter with FRAP, a fine-resolution dataset of fire perimeters derived from incident reports, remote sensing, and 

ground surveys. Finally, we discuss the limitations, future development, and applications of the GOFER algorithm and product. 

2 Data and Methods 75 

2.1 Study region 

Table 1: Metadata and GOFER-Combined summary statistics for the 28 large wildfires in California from 2019-2021 
over 50,000 acres (202 km2). The area (km2) refers to that of the final perimeter. Also shown are the maximum hourly 
concurrent (𝑓𝑙𝑖𝑛𝑒!"#.#%) and retrospective (𝑓𝑙𝑖𝑛𝑒&) active fire line lengths, in km, and the fire spread rates, in km/h, calculated 
from the maximum axis of expansion (𝑓𝑠𝑝𝑟𝑒𝑎𝑑'()) and area-weighted expansion methods (𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*)). 80 

# Fire Name Year 
Area 
(km2) 

𝒇𝒍𝒊𝒏𝒆𝒄"𝟎.𝟎𝟓 
(km) 

𝒇𝒍𝒊𝒏𝒆𝒓 
(km) 

𝒇𝒔𝒑𝒓𝒆𝒂𝒅𝑴𝑨𝑬 
(km/h) 

𝒇𝒔𝒑𝒓𝒆𝒂𝒅𝑨𝑾𝑬 
(km/h) 

1 Kincade 2019 347 45.7 25.3 4.9 2.7 

Deleted: (Joseph et al., 2019; Wang et al., 2021)

Deleted: (Andela et al., 2019)

Deleted: (Artés et al., 2019)

Deleted: (Balch et al., 2020)

Deleted: (Chen et al., 2022)85 
Deleted: data

Deleted: sets

Deleted: (Restif and Hoffman, 2020)

Deleted: (Gorelick et al., 2017; Restif and Hoffman, 2020)

Deleted: data90 
Deleted: set 

Deleted: data

Deleted: set



 3 

2 Walker 268 62.4 23 5.6 3.2 
3 August Complex* 2020 4343 210.5 92.2 5.1 1.7 
4 Bobcat* 584 62.2 34 4.3 1.9 
5 Creek* 1615 121.7 52.1 11.3 4.2 
6 CZU Lightning Complex* 283 61.5 37.7 5 1.6 
7 Dolan 501 63.1 27.9 3.6 1.9 
8 Glass 353 65.5 29.4 7.6 3.5 
9 July Complex 174 40.1 27.6 4.6 1.4 
10 LNU Lightning Complex* 1539 264 114 10.5 1.8 
11 North Complex* 1344 126.2 65.6 9.9 3.1 
12 Red Salmon Complex* 575 59.7 26.4 3.1 1.3 
13 SCU Lightning Complex* 1526 134.7 62.9 4.8 1.5 
14 Slater and Devil* 697 113.9 39.1 6 2.9 
15 SQF Complex* 786 71.4 22.1 5.2 2.8 
16 W-5 Cold Springs 364 57.7 22.8 3.5 1.2 
17 Zogg 223 49.1 19.1 6.2 10.8 
18 Antelope 2021 599 52.9 32.7 4.8 2.3 
19 Beckwourth Complex 558 76.3 31.1 4.7 1.7 
20 Caldor 994 88.7 42.6 4.3 2.3 
21 Dixie 4389 187.1 67.2 10.2 2.9 
22 KNP Complex 389 64.2 22.6 2.6 1.6 
23 McCash 406 67.7 28.6 2.7 1.5 
24 McFarland 567 62.7 30.4 4.1 1.4 
25 Monument 925 83.6 41 3.8 1.5 
26 River Complex 931 124.2 39.8 5.2 1.5 
27 Tamarack 375 64.2 23.7 3.7 3.9 
28 Windy 427 64.2 30 2.2 0.9 

* Fires used in parameter optimization 
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Figure 1: Map of the final perimeters for 28 large fires in California in the GOFER product. In total, GOFER contains 2 
fires in 2019, 15 fires in 2020, and 11 fires in 2021; all the fires mapped are over 50,000 acres (202 km2). The footprints of the 
fires shown are from GOFER-Combined. 100 

 

We map the hourly progression of 28 large wildfires in California (CA) from 2019-2021 (Tables 1, A1; Figures 1, A1). Here we 

define a large wildfire as a fire that burns over 50,000 acres (202 km2). The 28 wildfires include three “cross-border” fires (Slater 

and Devil, W-5 Cold Springs, and Tamarack) that burned across the California border into neighbor states. 

2.2 Datasets and products 105 

We use active fire detections from the Advanced Baseline Imager (ABI) aboard NOAA’s Geostationary Operational 

Environmental Satellites (GOES)-16/East and 17/West, which observe North and South America with a spatial resolution of 2 

km at the equator and temporal resolution of 10-15 minutes for its full disk view (Schmit et al., 2017; Schmidt et al., 2020). The 

nominal product mapping accuracy for the GOES-R Series Fire/Hot Spot Characterization product is 1 km (https://www.goes-

r.gov/syseng/docs/MRD.pdf). The different longitudinal positions of GOES-East (75°W) and GOES-West (137°W) yield views 110 

of the same fire from two different perspectives, generating images with two different spatial footprints for a given location. The 

Level-2 GOES Fire/Hot Spot Characterization product includes information on the data quality of the active fire retrieval (“fire 

mask categories”), fire temperature, fire area, and fire radiative power (FRP), which is a proxy for fire intensity (Hall et al., 

2019; Xu et al., 2010; Schroeder et al., 2010). To correct the terrain-induced parallax displacement in GOES images, we use the 
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USGS 3D elevation program (3DEP) digital elevation model (DEM) at 10-m (1/3 arc second) spatial resolution (Archuleta et al., 120 

2017). 

We retrieve the ignition time and location of each fire from the California Department of Forestry and Fire Protection (CAL 

FIRE; https://www.fire.ca.gov/) and InciWeb, the U.S. interagency all-risk incident information system 

(https://inciweb.nwcg.gov/). When CAL FIRE does not report detailed information on fires outside of its jurisdiction (i.e., on 

federal lands), we rely on InciWeb to fill the gap. This metadata is used to check the fire ignition time against the GOES active 125 

fire time series and to limit the amount of GOES data spatially and temporally to process and avoid GEE computational limits. 

For optimization, validation, and evaluation of GOFER, we use several datasets and products derived from higher spatial 

resolution observations: FEDS, Monitoring Trends in Burn Severity (MTBS), Fire and Resource Assessment Program (FRAP), 

National Interagency Fire Center (NIFC), and the CAL FIRE Damage Inspection Program (DINS). MTBS uses Landsat (30 m) 

imagery to map the final fire perimeter and burn severity from 1984-present and is available with about a 2-year lag time; MTBS 130 

maps all fires over 1000 acres (4 km2) in the western U.S. (Picotte et al., 2020). FEDS uses object-based tracking of VIIRS active 

fires (375 m) to map the progression of fires in California at 12-h timesteps from 2012-2021 (Chen et al., 2022). The historical 

fire perimeters dataset from CAL FIRE’s FRAP is the most detailed and complete dataset for California wildfires, which are 

mapped by GPS, aerial infrared observations, and other imagery (https://frap.fire.ca.gov/). FRAP standardizes and combines 

perimeters from federal agencies (U.S. Forest Service, Bureau of Land Management, National Park Service, and Fish and 135 

Wildlife Service). NIFC provides high-resolution intermediate perimeters derived from airborne infrared (IR) imagery by trained 

analysts (https://data-nifc.opendata.arcgis.com/). The availability of these perimeters is sparse, varying from fire to fire and 

affected by cloud cover, thick smoke, and availability of flights and coverage area. For example, almost all flights are during 

nighttime, and some sections of the fire may not be mapped during a particular flight. We use the IR perimeters from the U.S. 

Forest Service National Infrared Operations (NIROPS) Unit. After filtering the NIROPS perimeters for data quality (e.g. missing 140 

metadata, small flight coverage) and matching with GOFER perimeters by the nearest hour, our reference dataset comprises over 

650 snapshots across the 28 fires. For select fires (20 of 28 fires), the CAL FIRE Damage Inspection Program (DINS) database 

also provides the location of permanent structures inside or within 100 m of the perimeter and the level of damage sustained by 

each structure (accessed from the CAL FIRE Records Center at the GovQA Portal). These data are used to calculate the number 

of affected and destroyed structures contained by our derived fire perimeters. 145 

2.3 Using GOES active fire detections to derive hourly perimeters 

2.3.1 Overview of the GOFER algorithm 

Restif and Hoffman (2020) show a step-by-step example of a GOES-based image-to-vector method to map fire perimeters in 

GEE for the 2019 Kincade Fire in California. After filtering GOES-East and GOES-West observations over a 2-week period and 

over an AOI defined as a 40-km buffer of the point location of the Kincade Fire, the GOES “fire mask codes” provided by the 150 

Fire Detection and Characterization (FDC) algorithm are remapped to fire detection “confidence” values (Table B1). This 

remapping arbitrarily weights the fire pixels and non-fire pixels on a continuous, interpretable scale that ranges from 0-1. Based 

on threshold tests, the GOES FDC algorithm categorizes the quality of the fire pixels as “processed,” “saturated,” "cloud 

contaminated,” “high probability,” “medium probability,” or “low probability” (Schmidt et al., 2012). “Processed” and 

“saturated” codes refer to the highest quality fire pixels, while “cloud contaminated,” “high probability,” “medium probability,” 155 

and “low probability” codes refer to lower-quality fire pixels that may be false alarms. For each satellite, the maximum fire 

detection confidence is calculated from GOES images retrieved within the input temporal limits, and the GOES-East and GOES-
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West maximum fire detection values are combined by taking the minimum. Next, the combined GOES fire detection confidence 

map is smoothed using a 2-km square kernel. A confidence threshold of 0.6 is applied to mask low-confidence areas, and the 170 

image is then converted into a vector at a spatial resolution of 200 m. Since the resulting vector retains unnatural edges from the 

footprint of the image pixels, the vector is simplified within a maximum error of 500 m, thereby smoothing any jagged edges. 

  
Figure 2: Pictorial depiction of the GOFER workflow used to produce fire perimeters from GOES active fire detections 
in Google Earth Engine. The gray shaded area represents the state of California, and the black box shows the location of the 175 
Creek Fire in 2020. This example shows the workflow for producing the final fire perimeter of the Creek Fire and uses all GOES 
images from the hour of ignition to the last fire detection. The GOES nominal spatial resolution is 2 km at the equator but varies 
based on the pixel’s location relative to the longitudinal position of the GOES satellite; the GOES resolutions inset are specific to 
the Creek Fire. The background map data is from ©2023 Google Maps, rendered on Google Earth Engine. 
 180 

Here we expand and improve the Restif and Hoffman (2020) method by adding four optimizations or adjustments in our GOFER 

algorithm: (1) dynamic smoothing kernel size, (2) early perimeter adjustment, (3) parallax terrain correction, and (4) confidence 

threshold optimization. Specifically, we reduce the arbitrary selection of parameters by optimizing against perimeters derived 
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from high-resolution satellite imagery, increase the geolocation accuracy of GOES fire pixels with a parallax terrain correction, 

and improve the mapping of early perimeters. In Figure 2, we pictorially depict the steps to produce the final perimeter of the 

2020 Creek Fire as an example. 190 

In step 1, following Restif and Hoffman (2020), we assign GOES-East and GOES-West fire mask codes as fire detection 

confidence values (Table B1), and for each satellite, calculate the maximum fire detection confidence over the temporal stack of 

images from ignition to the end hour. For the Creek Fire, the average spatial resolution is about 3.2 km for GOES-East and 2.5 

km for GOES-West, calculated from the GOES pixel area within a bounding box covering the fire’s extent. Due to the different 

pixel orientations and resolutions of the GOES-East and GOES-West grids, we overlay them to create a combined grid at a 195 

downscaled spatial resolution. The combined grid is heterogenous in pixel size with an area-weighted spatial resolution of 1.7 

km. The spatial resolution of the combined grid is later used in step 3 to determine the kernel radius to smooth the fire detection 

confidence image (Section 2.3.3.1). 

In step 2, we apply scaling factors from the early perimeter adjustment to the stack of hourly fire detection confidence images 

(Section 2.3.3.2). The early perimeter adjustment ensures that perimeters are formed at the start of a fire despite dilution from 200 

neighborhood smoothing in step 3 and despite possible absence of high fire confidence pixels to overcome the confidence 

threshold applied in step 4. We combine the GOES-East and GOES-West maximum fire detection confidence by taking the 

average. We also correct the terrain-induced parallax displacement in each satellite (Section 2.3.3.3). Due to the elevation and 

location of the fire relative to the satellite’s viewing angle, the GOES-observed fire pixels are displaced from their actual 

location; displacements are greater for fires at high elevations and located toward the edge of the GOES disk. The early 205 

perimeter adjustment and parallax correction are needed steps to improve the temporal and spatial accuracy, respectively, of the 

perimeter but not accounted for in Restif and Hoffman (2020).  

In step 3, we smooth the values using a square kernel with a radius equal to the area-weighted spatial resolution of pixels within 

the area of interest. Restif and Hoffman (2020) set an arbitrary kernel size of 2 km, whereas our dynamic calculation of the 

kernel size accounts for the heterogenous pixel size of the combined grid (Section 2.3.3.1). Using the kernel to apply a 210 

neighborhood mean, the smoothing transforms the fire detection confidence values into a continuous gradient and removes 

blockiness at the edges. 

In step 4, we apply a threshold mask of 0.95 to the smoothed confidence values. Restif and Hoffman (2020) arbitrarily set the 

confidence threshold to 0.6, while we optimize for the confidence threshold, as discussed in Section 2.3.3.3. In addition, Restif 

and Hoffman (2020) use a spatial resolution of 200 m for the intermediate image with the smoothed fire detection. We opt for a 215 

higher spatial resolution of 50 m to reduce blockiness at the edges of the polygon formed in step 5. At coarser resolution, the 

edges of the polygon are more staircase-like, mirroring the pixel edges of the raster.  

In step 5, the image is converted to a polygon that represents the fire perimeter. To further smooth the geometric complexity 

induced by the image-to-vector conversion and reduce the file size of the polygon, we simplify the polygon with a maximum 

error margin of 100 m, which is in a 2:1 ratio with the spatial resolution of the smoothed confidence image. This ratio is similar 220 

to Restif and Hoffman (2020), who set the maximum error margin to 500 m, versus 200 m, for the smoothed fire confidence 

image. 

In addition to the combined GOES method, we also create perimeters and related fire metrics solely using GOES-East imagery 

or GOES-West imagery to test the efficacy of using just one satellite. We separately optimize the confidence threshold and 

parallax adjustment factor and calculate the smoothing kernel size and early perimeter adjustment for each GOFER version. 225 
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Hereafter, we refer to the three GOFER versions as GOFER-Combined, GOFER-East and GOFER-West. For this study, 

GOFER-Combined uses GOES-16 and GOES-17 observations; GOFER-East uses only GOES-16 observations, and GOFER-

West uses only GOES-17 observations. We note that GOES-17 has been replaced by GOES-18 in early 2023. 

2.3.2 Pre-processing: Input metadata dictionary 

 235 
Figure 3: Overview of the GOFER workflow used to produce the GOES-derived fire perimeters and ancillary fire 
metrics (active fire line and fire spread rate). The confidence threshold and parallax adjustment factor values are optimized 
using the 10 largest wildfires in California in 2020. The dark blue boxes are headings to denote the different input data. 

 

In the pre-processing stage, we create a metadata dictionary of input values for each fire (Figure 3). Here, "dictionary” refers to 240 

the data structure in code stored as “key” and “value” pairs, where the keys, or user-specified words, are used to retrieve the 

corresponding values.  In particular, we set temporal and spatial constraints for calculating fire progression, i.e., the start and end 

time bounds and area of interest (AOI) polygon. For start time, we use the ignition time as reported by CAL FIRE, when 

possible, or InciWeb and round down by hour (e.g., 6:37 to 6:00). However, GOES can detect active fires prior to the ignition 

time for some fires – mainly lightning-caused fires; for such cases, we set the hour of the earliest GOES active fire detection as 245 

the start time. We set the end time as the hour with the last GOES active fire detection that occurs within a few days of previous 

detections, provided that the fire has converged to close its final size recorded by CAL FIRE or InciWeb. This is an approximate 

estimate of the end time, as a later quality control step sets the end hour as when the fire perimeter last expanded (Section 2.3.4). 

For the AOI polygon, we start with the CAL FIRE or InciWeb ignition coordinates and expand to a simple rectangle or polygon 

that includes the footprint of GOES active fire detections related only to that fire. 250 

2.3.3 Processing: Development, optimizations, and improvements 

In the processing stage, we implement the four optimizations or adjustments in the GOFER fire perimeter mapping method: (1) 

dynamic smoothing kernel size (Section 2.3.3.1), (2) early perimeter adjustment (Section 2.3.3.2), (3) parallax terrain correction 

(Section 2.3.3.3), and (4) confidence threshold optimization (Section 2.3.3.3) (Figure 3). For GOFER-East and GOFER-West, 
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we separately optimize the confidence threshold and parallax adjustment factor and calculate the smoothing kernel size and early 255 

perimeter adjustment. Software details specific to GEE are provided in Appendix B.1. 

2.3.3.1 Dynamic kernel size 

As described above, the radius of the square kernel used for smoothing is calculated as the spatial resolution of the combined 

GOES grid within the AOI polygon. Opting for a dynamic kernel size, instead of a static value of 2 km used in Restif and 

Hoffman (2020) for example, allows the algorithm to be applied more effectively to fires outside California. The GOES spatial 260 

resolution per pixel decreases away from the equator and toward the edge of the disk (Figure B1). The kernel size is calculated in 

the pre-processing stage and added to the input metadata dictionary. 

2.3.3.2 Early perimeter adjustment 

 
Figure 4: Parameter optimization and early perimeter adjustments for deriving the GOFER-Combined fire progression 265 
perimeters. (a) Parameter optimization of the confidence threshold and parallax adjustment factor. The optimization is 
based on the Intersection-over-Union (IoU) of GOFER and MTBS perimeters at the final extent of the fire, averaged across the 
10 largest CA fires in 2020. At the maximum IoU, the optimized confidence threshold is 0.95, and the parallax adjustment factor 
is 0.85. (b) Early perimeter scaling. Adjustment for the fire confidence of early perimeters is shown as a function of hours after 
ignition, with individual lines depicting each of the 28 largest fires in CA from 2019-2021. The hourly fire confidence is divided 270 
by the early perimeter scaling to calculate the scaled fire confidence. The minimum scaling, denoted by the dashed gray line, is 
set at 0.1 to prevent overly inflating early perimeters. The optimized confidence threshold of 0.95 for GOFER-Combined is 
denoted by the dashed red line. When the early perimeter scaling is lower than the confidence threshold, a perimeter cannot be 
formed without any adjustment. The four fires depicted would have had their first perimeter formed hundreds of hours after 
ignition without the early perimeter scaling. 275 
 
 
Some fires smolder at low intensity, leading to low confidence detections at the beginning of their lifetime. Consequently, the 

GOFER algorithm fails to output these early perimeters as the confidence values do not meet the required threshold. We add an 

adjustment to “anchor” the first perimeter at or close to the first available GOES fire detection by scaling the fire detection 280 

confidence. For each hour, the scaling factor is calculated as the maximum of all values in the cumulative maximum confidence 

image up to that hour. The scaling factor ranges from 0 to 1, where 1 indicates no scaling; however, we set the minimum scaling 
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factor to 0.1 to prevent overinflation of early perimeters (Figure 4b). To perform the early perimeter adjustment, the hourly 285 

maximum confidence is divided by the scaling factor. 

2.3.3.3 Confidence threshold optimization and parallax correction 

Next, we simultaneously optimize for the confidence threshold and parallax adjustment factor. The confidence threshold applies 

a mask to the smoothed fire detection confidence and removes values lower than the threshold. The parallax adjustment factor 

ranges from 0-1 and is multiplied by the parallax displacement in the x and y-components; this range allows us to test the 290 

efficacy of the parallax correction on the spatial accuracy of the final perimeter. The parallax correction algorithm is a function 

of the terrain elevation, the height of the satellite, the longitudinal position of the satellite, Earth’s semi-minor and semi-major 

axis, and GRS-80 eccentricity (Spestana et al., 2022). We use the USGS 10-m 3DEP DEM as input. The displacement is 

smoothed using the same square kernel for smoothing the GOES fire detection confidence. This prevents extreme displacements 

of smaller 10-m pixels within a coarse GOES pixel that may contain large variations in elevation. 295 

For optimization, we test the confidence threshold in increments of 0.01 from 0.75 to 0.99 and the parallax adjustment factor in 

increments of 0.05 from 0 to 1 (Figure 4a). For each combination of the tested confidence threshold and parallax adjustment 

factor, we calculate the IoU of the GOFER and MTBS final perimeters. The IoU, or Jaccard index, is a common metric for 

evaluating spatial accuracy against ground truth data in object detection. Here the IoU is calculated as the area of overlap over 

the area of union using the fire perimeters, in which an IoU of 0 indicates no agreement and an IoU of 1 indicates perfect 300 

agreement. We take the optimal values at the maximum IoU (Table B2). As this process is computationally intensive, the 

parameter search uses the 10 largest fires in California in 2020, a subset of the 28 fires in this study.  

2.3.4 Post-processing: Quality control 

In the post-processing stage, we undertake quality control of the hourly perimeters. For each timestep, we ensure that the 

perimeter is spatially inclusive of previous perimeters by taking the union of that perimeter and previous perimeters. We set the 305 

last timestep as when the perimeter last grew and remove extraneous perimeters. 

Deleted: (Spestana et al., 2022)

Deleted: . 



 11 

2.4 Derived fire metrics 

 310 
Figure 5: Pictorial overview of definitions for delineating active fire lines and calculating the fire spread rates. A 
simplified representation of perimeters is shown with the ignition point at timestep t=0, the current perimeter at timestep t=1, and 
the next perimeter at timestep t=2. We use a 1) concurrent and 2) retrospective method for delineating active fire lines. The 
“concurrent” method relies on the intersection between the fire perimeter and concurrent active fire detections, while the 
retrospective method uses future perimeters to determine which portion of the current perimeter leads to a growth in area. We 315 
also define the fire spread rate from the 1) maximum axis of expansion (MAE) and 2) area-weighted expansion (AWE). The 
MAE fire spread rate is calculated from the maximum shortest distance between two perimeters, while the AWE fire spread rate 
is calculated as the area of growth normalized by the retrospective active fire line length. 

 

From the GOES-derived progression perimeters, we compute several key fire metrics, including the diurnal cycle of the fire 320 

growth in units of area (km2), active fire line length (km), and fire spread rate (km/h). Figure 5 illustrates the methods for 

calculating the active fire line and fire spread rate. We use simple polygons to depict hypothetical perimeters at timesteps t = 0 to 

t = 2, or from ignition (t = 0) to the current hour (t = 1) to the next hour (t = 2). The ignition point is defined as the centroid of the 

perimeter at t = 1. 

2.4.1 Active fire line  325 

We identify the active fire line in two ways, as either the “concurrent” or the “retrospective” active fire line. Both active fire line 

lengths are in units of km.  
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The concurrent active fire line (𝑓𝑙𝑖𝑛𝑒!) is defined as the segments of a given fire perimeter that intersect with active fire 

detections of that hour above a certain threshold. For each hour, we separately output 𝑓𝑙𝑖𝑛𝑒! at confidence thresholds c of 0.05, 

0.1, 0.25, 0.5, 0.75, and 0.9; this set of 𝑓𝑙𝑖𝑛𝑒! at varying thresholds allows us to narrow down perimeter segments with the most 330 

intense burning progressively. A lax threshold, such as 𝑓𝑙𝑖𝑛𝑒!"#.#%, uses most of the active fire detections during that hour, while 

a strict threshold, such as 𝑓𝑙𝑖𝑛𝑒!"#.3, only uses high confidence detections to create the hourly GOES fire perimeters. The 

𝑓𝑙𝑖𝑛𝑒!"#.#% is most comparable to active fire lines in other satellite-derived products such as FEDS, which uses all active fire 

pixels intersecting with the perimeter. 𝑓𝑙𝑖𝑛𝑒! with stricter thresholds correspond to areas with higher fire intensity. We convert 

the perimeters from polygons to linestrings and use a buffer of 100 m around the perimeter to extract intersecting active fire 335 

pixels with fire detection confidence above the defined threshold.  

The retrospective active fire line (𝑓𝑙𝑖𝑛𝑒&) is defined as the segments of a given fire perimeter that leads to growth in the next 

hour’s perimeter. Because of this strict definition, the 𝑓𝑙𝑖𝑛𝑒& is generally shorter than the 𝑓𝑙𝑖𝑛𝑒! that is defined using low 

confidence thresholds (e.g., c = 0.05), as the latter may include segments of the perimeter that may be actively burning but have 

not yet expanded during that hour. 340 

For both the 𝑓𝑙𝑖𝑛𝑒! and 𝑓𝑙𝑖𝑛𝑒&, we consider the perimeter as “growing” in a given time step if the active fire line length is > 0 

and “dormant” otherwise. We fill in “dormant” timesteps with the most recent 𝑓𝑙𝑖𝑛𝑒! prior to that timestep and the most 

immediate 𝑓𝑙𝑖𝑛𝑒& after that timestep. 

In general, the 𝑓𝑙𝑖𝑛𝑒! can be calculated in near-real-time along with perimeters and is most useful for identifying potential areas 

of spread along the perimeter and testing predictive models of future fire growth. The set of 𝑓𝑙𝑖𝑛𝑒! at different confidence 345 

thresholds can be used in tandem to identify the least to most probable segments of future perimeter expansion. Whereas the 

𝑓𝑙𝑖𝑛𝑒! is not necessarily associated with perimeter expansion (e.g., indicates smoldering or natural/human barriers), the 𝑓𝑙𝑖𝑛𝑒& 

requires knowledge of future perimeters but offers a more precise estimate of where the perimeter expanded. The 𝑓𝑙𝑖𝑛𝑒& is a 

stricter definition of the active fire line, more similar in length to 𝑓𝑙𝑖𝑛𝑒! at high confidence thresholds. The 𝑓𝑙𝑖𝑛𝑒& can be used 

for retrospective analysis to assess the drivers and barriers of fire growth. 350 

2.4.2 Fire spread rate 

To quantify the apparent horizontal expansion of the fire perimeter, we define the fire spread rate, in units of km/h, in two ways, 

as either the maximum axis of expansion (𝑓𝑠𝑝𝑟𝑒𝑎𝑑'()) or the area-weighted expansion (𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*)), between two hourly 

timesteps. Similar to the approach in (Benali et al., 2023), 𝑓𝑠𝑝𝑟𝑒𝑎𝑑'() represents the partial fire spread along the longest axis of 

expansion, while 𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*) represents the overall fire spread. While the fire perimeter and active fire line describe the state of 355 

the fire at the end of the hour (t = 1,2,3…), the fire spread rate, along with the growth in the area, describes the change in state 

between consecutive perimeters; we thus set these latter variables at the half hour (t = 0.5,1.5,2.5…). For example, the fire spread 

rate at t = 1.5 is calculated from the perimeters at t = 1 and t = 2. 

The MAE fire spread rate (𝑓𝑠𝑝𝑟𝑒𝑎𝑑'()) is calculated as the maximum shortest distance between consecutive perimeters. For the 

𝑓𝑠𝑝𝑟𝑒𝑎𝑑'() at t = 1.5, we calculate the shortest distance from the perimeter at t = 1 outward to all pixels within a search radius 360 

of 100 km. We then extract the maximum distance value within the area of growth between the perimeters at t = 1 and t = 2. In 

the case where there is no previous perimeter, such as the 𝑓𝑠𝑝𝑟𝑒𝑎𝑑'() at t = 0.5, we set the previous perimeter, at t = 0, as the 

centroid of the perimeter at t = 1. In the case of fires merged from smaller fires, we disaggregate multipolygons into separate 
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polygons and search for new ignitions or polygons that do not overlap with the previous perimeter. If no overlap exists for a 380 

polygon, we add the centroid of that polygon to the previous perimeter. 

The AWE fire spread rate (𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*)) is calculated as the fire-wide growth in area divided by the retrospective active fire line 

length. The 𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*) at t = 1.5, for example, is calculated as the change in area, in km2, from the perimeter at t = 1 to the 

perimeter at t = 2 divided by the 𝑓𝑙𝑖𝑛𝑒& length at t = 1. The calculation of 𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*) for the special case of when there is no 

𝑓𝑙𝑖𝑛𝑒& at ignition, or during the timestep just prior to the first formed perimeter (here depicted as t = 0), is similar to that for 385 

𝑓𝑠𝑝𝑟𝑒𝑎𝑑'(), except here we take the average rather than the maximum. 

2.5 GOFER product structure and variables 

Table 2: Variables in the GOFER product. 

Name Short Name Units 

Global variables   
Fire name fname  
Fire year fyear  
   
End-of-hour variables (t=1,2,3…) 
Hours after ignition, end of hour timestep hours 
UTC time tUTC  
Local time, with daylight savings tLocal  
Local time, without daylight savings tLocalGMT  
Area within fire perimeter farea km2 
Area within fire perimeter, as a percentage of 
the final area 

fareaPer % 

Active fire line length (concurrent) cflinelen km 
Active fire line length (retrospective) rflinelen km 
Length of the perimeter fperim km 
State of the fire fstate 0 = dormant, 

1 = active 
   
Half-hour variables (t=0.5,1.5,2.5…) 
Hours after ignition, half hour timestep_hh hours 
Growth in fire-wide area dfarea km2 
Fire spread rate (MAE) maefspread km/h 
Fire spread rate (AWE) awefspread km/h 

 

The GOFER product for the 28 large CA fires contains hourly fire perimeters, active fire lines, and fire spread rates for three 390 

GOFER versions: GOFER-Combined, GOFER-West, and GOFER-East (Liu et al., 2023). Table 2 describes variables contained 

in the GOFER product. We provide shapefiles (.shp) of the perimeters and concurrent and retrospective active fire lines and a 

summary table (.csv) of all end-of-hour and half-hour variables. End-of-hour variables record the state of the fire each hour, 

while half-hour variables record the change in the fire between two consecutive hours. 
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2.6 Validation and evaluation 

In our framework, the spatial accuracy of the perimeters directly affects that of the active fire lines and fire spread rates, both of 405 

which are derived from the perimeters. Due to limitations in high-resolution reference data, here we focus on the validation of 

the perimeters with FRAP and NIROPS and evaluation of active fire lines with comparisons to FEDS. 

To validate the spatial accuracy of the GOFER perimeters, we calculate the IoU of GOES and FRAP final perimeters. We 

compare this to the IoU of the FEDS and FRAP final perimeters. Further, to quantify the spatial error between the GOFER and 

FRAP final perimeters, we calculate “breakpoints” in the distribution of shortest distances from the GOFER perimeter to the 410 

FRAP perimeter. These breakpoints are defined by the mean and several percentiles, including the median and maximum, and 

the magnitude of these distances represents the deviation of the GOFER perimeter from the ground truth. This spatial error is 

induced by a combination of coarse spatial resolution, geolocation error, and missing fire detections in GOES. Our analysis is 

similar to the evaluation described in Ben-Haim and Nevo (2023) for GOES-derived fire perimeters but incorporates both false 

positives and false negatives in one metric. We use the fire structure status dataset from CAL FIRE as another way to validate 415 

the GOFER perimeters by calculating the number of affected and destroyed structures contained by the final perimeter. 

Specifically, this evaluates omission error, since damaged and destroyed structures should be located within the final perimeter. 

To validate the temporal progression of GOFER perimeters, we use NIROPS perimeters derived from airborne IR imagery. We 

track the change in fire area between snapshots and the cumulative fire area relative to the final fire size. Because NIROPS 

perimeters are relatively sparse and almost all during nighttime, we additionally evaluate the performance of GOFER relative to 420 

FEDS over each fire’s lifetime to check when the GOFER perimeters are relatively stable in spatial accuracy. This provides a 

partial test of GOFER’s performance. To do so, we track the IoU of GOFER and FEDS perimeters, as well as the fraction of 

false positives and false negatives, at 12-hourly intervals. As a caveat, the perimeters and active fire lines in FEDS are labeled as 

day or night, and the exact timing of the overpass, which can differ by more than half an hour from day to day, is not provided 

with the product. Based on the approximate 1:30 am/pm overpasses for VIIRS, we compare FEDS to GOFER at 2 am/pm.  425 

We evaluate the GOFER concurrent active fire lines at the different confidence cutoffs (0.05,0.1,0.25,0.5,0.75,0.9) compared to 

the FEDS active fire lines. We determine which cutoff leads to the highest agreement with the FEDS active fire lines. However, 

the GOFER and FEDS algorithms still inherently differ. FEDS can take advantage of the higher spatial resolution of 375-m 

VIIRS detections to identify fire locations more accurately than GOES, whose raw active fire detections can lead to large biases 

due to its much coarser spatial resolution. Thus, the different GOES confidence cutoffs provide a range of concurrent active fire 430 

lengths loosely tied to varying levels fire intensity at the fire front. As another check, we calculate the aggregate 12-h 

retrospective active fire line lengths for both GOFER and FEDS perimeters. 
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3 Results and Discussion 

3.1 Evaluating the accuracy of the GOFER fire progression perimeters 450 

 
Figure 6: Maps of the GOFER-Combined hourly fire progression perimeters of the 10 large fires over 100,000 acres in 
CA in 2020. For each fire, the official burned area in acres and km2 from CAL FIRE is inset. Cooler colors represent timesteps 
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early in the fire’s lifetime, while warmer colors represent timesteps later in the fire’s lifetime. The timesteps are normalized 
across fires and expressed as the % of hours elapsed relative to the timestep at 95% of total area burned. 

 

Figure 6 shows the hourly GOFER-Combined perimeters for the 10 largest CA fires in 2020 that were used to optimize the 

confidence threshold and parallax adjustment factor (Figure 4). The optimized confidence threshold is 0.95 for GOFER-460 

Combined, higher than GOFER-East (0.76) and GOFER-West (0.83). The optimized parallax adjustment factor ranges from 0.8 

to 1 among the GOFER versions, suggesting that the parallax correction is a needed step to improve the spatial accuracy of 

GOES active fire pixels (Table B2). Specifically for GOFER-Combined, the mean IoU for the 10 fires is 0.78 when no parallax 

adjustment is applied (adjustment factor = 0), compared to 0.81 at the optimized adjustment factor of 0.85 (Figure 4a). The effect 

of the parallax correction is apparent in the Creek Fire, which was located on mountainous terrain at a mean elevation of about 465 

1.8 km above sea level. Its uncorrected final perimeter deviates from the FRAP perimeter on the northern and eastern edges, 

lowering the IoU by 0.09. (Figure B3). 

We evaluate the spatial accuracy of GOFER fire perimeters at the final timestep compared to FRAP, on select days compared to 

NIROPS, and at 12-h intervals compared to FEDS. For the 28 large fires, the mean IoU of GOFER and FRAP perimeters is 0.77 

for GOFER-Combined, 0.67 for GOFER-East, and 0.75 for GOFER-West (Table C1). In general, the lower IoU for GOFER-470 

East, due to the coarser resolution of GOES-East compared to GOES-West in California, suggests that GOES-West drives the 

improved spatial accuracy of the GOFER-Combined perimeters. Because of the larger smoothing kernels used in GOFER-East, 

the perimeters generally smooth over burned peninsula and inlet-type features where the fire conforms to the sinuous, 

mountainous terrain (Figure C1, Tables B2, C2). 

The overall temporal progression of the cumulative change in fire-wide area in GOFER agrees well with NIROPS. For example, 475 

for hours that NIROPS perimeters are available, we find a strong correlation between the change in fire area (r = 0.86, RMSE = 

52.8 km2) between NIROPS snapshots and fractions of final fire size (r = 0.99, RMSE = 0.05) from GOFER-Combined and 

NIROPS (Figure C2). High RMSE in the change in fire area mainly stems from a few instances of high bias between some 

snapshots in complex fires. The median absolute bias is 6.7 km2, while the mean absolute bias is 16.7 km2. GOFER has a median 

positive bias of 0.02 in the fractions of final fire size, suggesting that perimeter growth accumulates slightly earlier for GOFER 480 

than for NIROPS. As a caveat, NIROPS does not fully map the fire for some snapshots, so some areas of active growth may be 

missing. The discrepancies may also indicate that GOFER is unable to pick up small increments of growth later in the fire’s 

lifetime when fire front is less active. 
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 485 
Figure 7: Spatio-temporal progression and comparison of the 2020 Creek Fire. (Top panels) Maps of the hourly GOES-
derived GOFER-Combined progression (left), 12-hourly VIIRS-derived FEDSv2 progression (middle), and comparison of the 
GOFER-Combined, FEDSv2, and FRAP final perimeters of the Creek Fire (right). (Bottom panel) Timeseries of the hourly 
growth in area for the Creek Fire from GOFER-Combined. 

 490 

Figure 7 compares the Creek Fire progression mapped by GOFER-Combined and FEDSv2. Although the FEDS perimeters are 

more detailed, GOFER fills in gaps in the fire progression when the fire spreads rapidly (< 50 h after ignition for the Creek Fire), 

thereby providing insights into the fire’s behavior when it is most explosive. We also compare the IoU of GOFER to FEDS 

relative to FRAP for 25 large fires, which excludes the three cross-border fire that are not fully mapped in FEDSv2 (Section 2.1).  
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 495 
Figure 8: Spatial accuracy of GOFER perimeters compared to FRAP and FEDS. (a) IoU of GOFER and FEDS final 
perimeters compared to FRAP for large fires in 2019-2021. The vertical lines connect GOFER and FEDS IoU for the same fires. 
(b) Accuracy metrics for evaluating GOFER against FEDS perimeters at 12-h intervals for large fires in 2019-2021. Along with 
the IoU, we show the fraction of false positives (FP) and false negatives (FN) within the union of the GOFER and FEDS 
perimeters (TP+FN+FP). In equivalent terms, IoU is the fraction of true positives (TP) within the union. Lines show the accuracy 500 
metrics for individual fires, while dots show the average of all fires in 50-h bins. The size of the dots represents the number of 
fires in each 50-h bin. Fires that straddle the border between CA and a neighbor state (i.e., Slater and Devil, Tamarack, W-5 Cold 
Springs) were excluded since FEDS perimeters cut off at the CA border. 

 

The IoU for FEDS is 0.83, higher than the IoU of 0.77 for GOFER-Combined, 0.68 for GOFER-East, and 0.76 for GOFER-West 505 

(Figure 8a, Table C1). This discrepancy is reasonable considering the higher spatial resolution of the input active fires in FEDS 

(375 m) compared to GOFER (GOES-East: 3.1-3.6 km, GOES-West: 2.5-2.7 km, Combined: 1.6-1.7 km) (Table B2). In 

addition, the average IoU for the 10 megafires in 2020 that we used to optimize parameters is similar to the IoU for the 7 

megafires in 2021 (e.g., the IoU for GOFER-Combined and FRAP is 0.8 for 2020 fires and 0.78 for 2021 fires). The lack of a 

significant drop in IoU suggests that our parameters are not over-tuned to those 10 fires in 2020. 510 
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Using FEDS perimeters as 12-h references, we find that the IoU of GOFER and FEDS begins to stabilize around 100 h after 

ignition (IoU > 0.6) (Figure 8b). We find a similar pattern using NIROPS perimeters. At < 100 h, the fires are small and 515 

therefore harder to map accurately at GOES resolution, as any small shift in the perimeter can lead to a sizeable decrease in IoU. 

Another reason for the low IoU < 100 h after ignition is that some fires required extensive early perimeter adjustment to scale the 

fire detection confidence and output a rough estimate of these early perimeters. In particular, the fraction of false positives is 

higher than that of false negatives close to ignition due to overinflation in GOFER early perimeters. At the cost of spatial 

accuracy, we anchor the first perimeter close or at the timestep with the first GOES active fire detection. If the scaling factor 520 

from the early perimeter adjustment is lower than the confidence threshold, this indicates that a perimeter could not be formed. In 

extreme cases, such as the Windy, Tamarack, Red Salmon Complex, and McCash fires for GOFER-Combined, we see this 

inability to form an initial perimeter hundreds of hours after ignition (Figure 4b). 

Certain conditions or features lower the spatial accuracy or IoU – namely, the obscuration of the satellite view due to clouds and 

heavy smoke, location of a fire along a coastal boundary or water bodies, and presence of unburned islands and narrow burn scar 525 

features. Of the 28 fires, the main outlier is the July Complex Fire, which has a low IoU of 0.44 for GOFER-Combined and 0.48 

for FEDS (Table C1). Because active fire detection relies on discovering instantaneous thermal anomalies, clouds or thick smoke 

could prevent both satellite sensors from detecting active fires. On the other hand, burned area mapping, such as in MTBS or 

FRAP, incorporates a timeseries of pre-fire to post-fire land cover changes, so is possible to infer burned area during very cloudy 

or smoky periods from later observations. In addition, GOFER tends to underestimate the perimeter extent for fires that hug the 530 

coast (e.g., Dolan) or have narrow burn scar features (e.g., LNU Lightning Complex) (Figures 1,6). The neighborhood smoothing 

in GOFER yields low fire detection confidence values along the edge of the coast and around narrow burn scars, which shrinks 

the perimeter and can even lead to fragmentation (e.g., SCU Lightning Complex). This issue is more acute in GOFER-

Combined, which uses a higher, and therefore stricter, confidence threshold than GOFER-East and GOFER-West. As such, we 

observe a lower percentage of damaged and destroyed structures within GOFER-Combined (92%) and GOFER-East (93%) 535 

perimeters compared to GOFER-West (99%), signifying that the higher omission error in GOFER-Combined is largely due to 

missed or low-quality observations by GOES-East (Table C3). 

Based on the distribution of shortest distances from the GOFER to FRAP final perimeters, we estimate the spatial errors of 

GOFER-Combined as 0.75 ± 0.21 km for the mean and 2.86 ± 1.14 km for the maximum along its perimeter edges (Figure C3). 

The spatial errors of GOFER-West are comparable with a mean of 0.87 ± 0.31 km and a maximum of 2.94 ± 1.04 km, while 540 

those of GOFER-East are higher with a mean of 1.44 ± 0.44 km and a maximum of 5.08 ± 1.8 km. The coarse resolution and 

geolocation errors of GOES affect the overall error along perimeter edges, while missing fire detections can cause large 

maximum errors, such as for the July Complex Fire. 

3.2 The fire diurnal cycle derived from GOFER 

The fire diurnal cycle is commonly derived from the FRP associated with active fires (Li et al., 2022; Giglio, 2007; Andela et al., 545 

2015; Mu et al., 2011; Wiggins et al., 2020). Here we instead track the fire diurnal cycle as the growth in fire-wide area, which 

the GOFER algorithm makes possible by resolving fire expansion at hourly intervals. Traditionally, burned area products, 

available at daily to monthly timescales due to algorithm constraints, have lower temporal precision and frequency than needed 

to resolve diurnal variation (Giglio et al., 2018). As the fire front progresses, we expect the diurnal cycle of the fire-wide growth 

in area to coincide with or even precede that of active fires and FRP. This is because of lingering fuel load behind the fire front 550 

that takes more time to fully burn through, resulting in active fire detections inside the fire perimeter. Maxima in the diurnal 
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cycle occur when the weather is hot, dry, and windy, such as in the afternoon, allowing the fire to easily burn through nearby dry 560 

fuels. Minima tend to occur when the weather is cool, wet, and stagnant, such as at night, when nearby fuels are too moist to 

catch on fire, thereby preventing fire spread (Balch et al., 2022). 

 
Figure 9: Average GOFER-derived fire diurnal cycle for 28 large CA wildfires from 2019-2021. The diurnal cycle is shown 
as the normalized hourly fraction of the (a) growth in area derived from the GOFER progression perimeters and (b) GOES fire 565 
detection confidence. For (b), the spatial average is calculated from the maximum fire detection confidence of each pixel for 
each hour. The shaded areas represent ±1 standard deviation. 
 

We derive the fire diurnal cycle from the hourly fire-wide growth in area of the GOFER perimeters. For GOFER-Combined, we 

observe two peaks in fire perimeter expansion during the afternoon (2-3 pm PDT) and evening (7-8 pm PDT), while GOFER-570 

East and GOFER-West yield a single peak in growth during the afternoon (2-4 pm PDT) (Figure 9a). The diurnal cycle of fire 

growth in GOFER-Combined closely mirrors that of GOES FRP (Wiggins et al., 2020). During afternoon to evening hours (1-10 

pm PDT), GOES-East, when compared to GOES-West, has higher peak-to-valley differences in FRP (-66% vs. -27%) and fire 

detection confidence (-18% vs. -8%), with noticeable minimums occurring during the day-to-night transition period (4-8 pm 

PDT) (Figure 9b); similarly, the GOES-East active fire pixel count deviates from that of GOES-West by -7% on average during 575 

the same hours. Because GOES-East observes California toward the edge of its disk view (Figure B1), high solar zenith angles, 

sun glint issues, and mountainous terrain may explain the missed fire detections and lower fire detection confidence (Li et al., 

2022). There may also be a positive nighttime fire detection bias as smaller, cooler thermal anomalies are more easily 
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distinguishable relative to the cooler background. Since the GOES-East and GOES-West fire detection confidence are averaged, 

missed GOES-East detections can lead to false negatives, or burned area that is excluded from the perimeter. An example of this 

issue is seen on the southeastern edge of the Creek Fire, where the lack of GOES-East active fires led to an unburned inlet carved 

into the GOFER-Combined perimeter (Figure C1). 585 

As GOES-East is closer to the edge of its full disk of view than GOES-West in California, GOES-East observations are 

inherently less reliable and more subject to issues such as sun glint and viewing zenith angles. As such, the lower reliability of 

GOES-East during the day-to-night transition period likely drives the temporal artifacts in the fire diurnal cycle in GOFER-

Combined. Since GOFER-Combined uses a higher confidence threshold, the algorithm is more sensitive to missed or low-

confidence detections, and the fire growth in those late afternoon hours will then be misallocated to evening hours. Even though 590 

GOFER-East relies only on GOES-East observations, its optimized confidence threshold (0.76) is less stringent than GOFER-

Combined (0.95). Low-confidence active pixels are less likely to be rejected in forming the hourly perimeter, thus resulting in 

more realistic diurnal cycles of fire growth in GOFER-East and GOFER-West compared to GOFER-Combined. This is a main 

limitation and area of future work for the GOFER-Combined algorithm, as corrections are needed to boost the fire detection 

confidence during the day-to-night transition and assign different weights to GOES-East and GOES-West observations. 595 

3.3 Assessing the GOFER active fire lines and fire spread rates 

For GOFER-Combined, the maximum 𝑓𝑙𝑖𝑛𝑒!"#.#% lengths range from 40 to 264 km, while 𝑓𝑙𝑖𝑛𝑒& lengths range from 19 to 114 

km (Table 1). 
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Figure 10: A comparison of GOFER-Combined and FEDS concurrent and retrospective active fire line lengths for the 
2020 Creek Fire. (a) Concurrent active fire lengths derived from GOFER perimeters and concurrent active fire detections are 610 
shown in colored lines for different fire detection confidence cutoffs (0.05, 0.1, 0.25, 0.75, and 0.9). The 12-h FEDSv2 active fire 
line lengths are depicted by the black line. The correlation coefficient (r) and slope (m) between GOFER and FEDSv2 active fire 
line lengths are shown in the inset. (b) Retrospective active fire line lengths derived from GOFER perimeters are depicted by the 
black line. The fraction of the active fire line length with respect to the total perimeter length is depicted by the gray line. The 
bottom bar shows when the perimeter is growing (red) or dormant (orange). (c) 12-h aggregate retrospective active fire line 615 
lengths derived from GOFER (red line) and FEDSv2 (black line) perimeters. All correlations shown are statistically significant at 
p < 0.05. 

0 300 600 900 1200 1500
Hours Since Ignition

0

35

70

105

140

A
ct

iv
e 

Fi
re

 L
in

e 
(k

m
)

conf. > 0.05 (r = 0.5, m = 0.68)
conf. > 0.1 (r = 0.49, m = 0.62)
conf. > 0.25 (r = 0.47, m = 0.49)
conf. > 0.5 (r = 0.42, m = 0.34)
conf. > 0.75 (r = 0.43, m = 0.19)
conf. > 0.9 (r = 0.46, m = 0.1)
FEDSv2

0 300 600 900 1200 1500
Hours Since Ignition

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

of
 T

ot
al

 P
er

im
et

erGrowing
Dormant

0

12

24

36

48

60

A
ct

iv
e 

Fi
re

 L
in

e 
(k

m
)

0 300 600 900 1200 1500
Hours Since Ignition

0

30

60

90

120

A
ct

iv
e 

Fi
re

 L
in

e 
(k

m
)

r = 0.41
RMSE = 24.2 km

GOFER
FEDSv2

b

a

c

concurrent active fire line length

retrospective active fire line length

12-h retrospective active fire line length



 23 

 

Figure 10 shows the timeseries of the GOFER-Combined 𝑓𝑙𝑖𝑛𝑒! and 𝑓𝑙𝑖𝑛𝑒& active fire lengths and FEDSv2 active fire lengths 

for the Creek Fire. Both 𝑓𝑙𝑖𝑛𝑒! and 𝑓𝑙𝑖𝑛𝑒& lengths peak soon after ignition and gradually decrease as the fire expansion slows 620 

down (Figure 10a-b). Based on the correlation coefficient and slope, the FEDSv2 active fire line lengths are the closest to 

𝑓𝑙𝑖𝑛𝑒!"#.#% (r = 0.5, m = 0.68, p < 0.05) at 12-h intervals (Figure 10a). The calculation of 𝑓𝑙𝑖𝑛𝑒! in the FEDS algorithm is 

slightly different from the GOFER method as the FEDS input active fire data are represented as points rather than images of the 

fire detection confidence. To directly compare the two products, we use the same method to derive the 12-h aggregate 𝑓𝑙𝑖𝑛𝑒& 

from FEDS and GOFER perimeters. For the Creek Fire, the 𝑓𝑙𝑖𝑛𝑒& lengths are moderately correlated (r = 0.41, p < 0.05) with a 625 

RMSE of 24.2 km (Figure 10c). GOFER tends to underestimate the 𝑓𝑙𝑖𝑛𝑒& length, with more values of 0, suggesting that some 

areas of expansion are not as well captured. This is partly because GOFER perimeters are less sinuous due to the lower spatial 

resolution of GOES and the neighborhood smoothing applied in the algorithm (Table C3). Slight day-to-day differences in the 

retrieval times of VIIRS fire detections also affect the comparison between GOFER and FEDS active fire lines. While GOFER 

uses all 10-min full disk GOES images within each hour, VIIRS can only observe the state of the fire at its retrieval time, so the 630 

spatial extent and state of fire may have changed substantially at the end of the hour when GOFER and FEDS are compared. 

For the 25 large CA fires, excluding cross-border fires, the overall correlation coefficient and slope between 𝑓𝑙𝑖𝑛𝑒! and FEDS 

active fire line lengths decrease as the confidence threshold increases, while the RMSE increases (Figure C4). As such, the 

𝑓𝑙𝑖𝑛𝑒!"#.#% should be considered as the default 𝑓𝑙𝑖𝑛𝑒!, with the 𝑓𝑙𝑖𝑛𝑒! at higher confidence thresholds representing areas with 

increased likelihood of fire perimeter expansion. Relative to FEDS, GOFER-East 𝑓𝑙𝑖𝑛𝑒& and 𝑓𝑙𝑖𝑛𝑒4 have consistently lower 635 

accuracy than GOFER-Combined and GOFER-West. For GOFER-Combined, the 𝑓𝑙𝑖𝑛𝑒!"#.#% has an average r = 0.45 ± 0.26, 

slope = 0.44 ± 0.25, and RMSE = 21 ± 11 km; the 12-h aggregate 𝑓𝑙𝑖𝑛𝑒& has an average r = 0.64 ± 0.19, slope = 0.59 ± 0.23, and 

RMSE = 17 ± 10 km (Figure C4). 

 
Figure 11: Hourly fire spread rate derived from GOFER-Combined perimeters for the 2020 Creek Fire. The fire spread 640 
rate is calculated using two methods: maximum axis of expansion (MAE, black line), and area-weighted expansion (AWE). The 
correlation coefficient (r) between the MAE and AWE fire spread rates and MAE/AWE ratio are shown inset. The bottom bar 
shows when the perimeter is growing (red) or dormant (orange). 
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Figure 11 shows the timeseries of fire spread rates calculated using two different methods (𝑓𝑠𝑝𝑟𝑒𝑎𝑑'(), 𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*)) for the 

Creek Fire. The hourly 𝑓𝑠𝑝𝑟𝑒𝑎𝑑'() and 𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*) are strongly correlated (r = 0.88, p < 0.05), with 𝑓𝑠𝑝𝑟𝑒𝑎𝑑'() 2.59 times 

as high as 𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*). For all 28 large CA fires, we find strong correlations of r = 0.93 ± 0.05 for GOFER-Combined, of r = 650 

0.94 ± 0.02 for GOFER-East, and of r = 0.95 ± 0.02 for GOFER-West (Table C4). The ratio of 𝑓𝑠𝑝𝑟𝑒𝑎𝑑'() to 𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*) is 

2.74 ± 0.12 for GOFER-Combined, 2.48 ± 0.15 for GOFER-East, and 2.56 ± 0.13 for GOFER-West. For GOFER-Combined, the 

maximum 𝑓𝑠𝑝𝑟𝑒𝑎𝑑'() ranges from 2.2 to 11.3 km/h, while 𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*) range from 0.9 to 10.8 km (Table 1). In rare cases, 

usually early in the fire’s lifetime, we find higher 𝑓𝑠𝑝𝑟𝑒𝑎𝑑(*) than 𝑓𝑠𝑝𝑟𝑒𝑎𝑑'() (e.g., Zogg Fire). This happens when the fire 

grows explosively from a small perimeter and active fire line in the previous timestep. 655 

3.4 Limitations, future work, and potential applications 

3.4.1 Limitations 

Here we use 28 large fires in California from 2019-2021 to test the potential of the GOFER algorithm to track the hourly 

progression of large wildfires using 2-km GOES active fire detections. While GOFER fills in temporal gaps in tracking fire 

progression, there are inherent limitations arising from the low spatial resolution of GOES observations, missed active fire 660 

detections, and potential geolocation errors in the perimeters and the active fire lines. In particular, GOFER is less reliable 

around water bodies and mountainous terrain. While GOES-East and GOES-West observations can be combined to increase the 

overall spatial accuracy of GOES-derived perimeters, we find that in California, GOFER-West is comparable to GOFER-

Combined, and the use of GOES-East observations can detract from the spatial and temporal accuracy of GOFER-Combined. 

We expect that the suitability of the GOFER product for scientific applications, such as improving the fire diurnal cycle in 665 

emissions estimates or understanding the controls on extreme fire behavior, will grow as the algorithm is refined and additional 

fires are processed. However, GOFER cannot be used to understand fine-scale physical fire behavior, such as spotting or 

convection along the fire line, due to unnatural textures arising from the spatial limitations of GOES. Importantly, lessons 

learned in developing the GOFER algorithm may be applied to observations from future geostationary satellites over North and 

South America, such as NOAA’s planned GeoXO (Geostationary Extended Observations) satellite system in the 2030s to 670 

replace the current GOES-R series with higher spatial resolution and additional bands (Adkins, 2022), and existing geostationary 

satellites over other regions, such as Himawari over East Asia, Equatorial Asia, and Australia and Meteosat over Europe and 

Africa (Hally et al., 2016; Roberts and Wooster, 2008). 

3.4.2 Future work and development 

A useful direction for future work would be to apply the GOFER algorithm to a diverse sample of large fires across the GOES 675 

domain and test how its performance varies using observations from one or both satellites. Ground truth data for other regions 

may include perimeters provided by state and federal agencies or high-resolution burned area mapping from Landsat and 

Sentinel. How GOFER-East and GOFER-West perform relative to each other depends largely on the longitudinal location of a 

given fire relative to the longitudinal position of the GOES satellites. We show that GOFER-West (IoU = 0.75) outperforms 

GOFER-East (IoU = 0.67) in mapping California fires, but we can also hypothesize that the reverse is true for fires in the 680 

Amazon and other biomes in South America. The spatial accuracy of mapping perimeters is influenced by substantial 

heterogeneity in the magnitude in parallax displacement and GOES pixel resolution across the GOES domain (Figures B1, B2). 

We can thus expect higher mapping accuracy for fires located at the center of the disk, near the equator, and/or low elevation 

than those at the edge of the disk, far from the equator, and/or high elevation. 
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As the GOFER algorithm is applied to fires outside California, small adjustments may include further optimizing tunable 

parameters. We currently implement a dynamic smoothing kernel size, the optimization for the confidence threshold and parallax 

adjustment factor, and early perimeter adjustment. First, the smoothing kernel, which applies a neighborhood mean, removes the 845 

“blockiness” of the fire perimeter polygon that conforms to the pixelated footprint of the fire confidence image. Dynamically 

setting the smoothing kernel size equal to the GOES spatial resolution at a fire’s location eliminates this “blockiness” and 

provides a universal method to calculate the smoothing kernel size for fires across the GOES domain. However, this smoothing 

induces errors in some fire perimeters that hug the coast, contain unburned islands (e.g., water bodies), or encompass narrow 

swaths of burned area. To address these limitations, rules can be implemented for how the smoothing kernel is applied, such as 850 

according to nearby land cover. Second, we optimize the confidence threshold and parallax adjustment factor based on the IoU 

of GOFER and MTBS of the 10 largest fires in California in 2020. The two parameters can be tuned per fire, but this may lead to 

over-tuning and substantially increases computation time. Additional optimization metrics may be considered, such as the 

maximum distance between true positive and either false positive or false negative pixels, used by Google’s current wildfire 

tracking system based on machine learning methods (Ben-Haim and Nevo, 2023). The kernel size for smoothing the fire 855 

detection confidence, and the shape of the kernel itself, can also be tested as an additional tunable parameter. Future development 

of GOFER should consider how the optimal set of parameters differs by region and land cover by tuning the parameters on 

subsets of fires. Third, we apply early perimeter adjustment to anchor the first perimeter close to or at the first GOES active fire 

detection. The early perimeter adjustment works by increasing the fire confidence if the maximum value is between 0.1 and 1. 

This adjustment targets fires that smolder for a long time before rapidly expanding, where the confidence of the GOES detections 860 

does not meet the threshold to create a perimeter. Additionally, since the footprint of a fire early in its lifetime (< 50 h after 

ignition) often encompasses only one to a few GOES active fire pixels, the spatial accuracy of the GOFER early perimeters is 

low compared to FEDS (IoU < 0.5). One potential adjustment is shrinking each perimeter by its scaling factor (i.e., if < 1) to 

prevent overly inflating early perimeters derived from low confidence detections. This process can then be tested on timesteps 

with a maximum confidence below the minimum threshold of 0.1, which currently yield no perimeters; if successful, this 865 

adjustment will anchor the first perimeter of every fire to the timestep with the first GOES active fire detection. 

Additional potential development areas include the adjustment of the fire detection confidence and the automation of the GOFER 

algorithm for use in near-real-time. First, in GOFER, we currently convert the GOES fire mask codes to fire detection confidence 

following Restif and Hoffman (2020). While we optimize the confidence threshold against reference MTBS perimeters in the 

GOFER algorithm, resulting in spatial accuracy comparable to FEDS, we note that the initial remapping of fire mask codes 870 

includes user-specified elements, such as assigning a lower confidence value to “saturated” pixels versus “processed” pixels. In 

future work, it may be possible to use the detection confidence in 1-km MODIS active fires (MCD14ML), which ranges from 0 

to 100, and the 375-m VIIRS active fires (VNP14IMGML), which consists of “low,” “medium,” and “high” confidence 

categories, to readjust the conversion of GOES fire mask codes to fire detection confidence. Alignment of the fire detection 

confidence across GOES, MODIS, and VIIRS also enables integration of MODIS and VIIRS observations within the GOFER 875 

workflow and may ultimately improve GOFER’s spatial accuracy. Second, the GOFER algorithm is currently semi-automated 

and processes each fire separately, relying on manual updates to a metadata dictionary containing that fire’s bounding box and 

start and end time. Here we tested the GOFER algorithm on fires over 50,000 acres (202 km2), but the lower size limit of fires 

that GOFER can map effectively should be explored. For operational, near-real-time use, GOFER needs to be able to identify 

individual fire events and determine these constraints automatically.  880 

Finally, here we rely on FEDS to evaluate the active fire lines and fire spread rates, both of which rely on the accuracy of the 

perimeters. More extensive evaluation and validation can be performed using aerial data and ground measurements. For 
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example, future development of the concurrent active fire lines in GOFER could use FRP to threshold and segment active fire 

lines into fire intensity classes; however, this approach must account for uncertainties in the FRP calculated for saturated and 900 

low-quality fire pixels. To compare more directly to spread rates measured on the ground, the GOFER fire spread rates could be 

calculated for specific points or each grid cell in a predefined grid with the 𝑓𝑠𝑝𝑟𝑒𝑎𝑑'() approach. 

3.4.3 Potential applications 

We foresee several extensions and applications of the GOFER algorithm and product. First, GOFER can be used to improve the 

fire diurnal cycle for atmospheric modeling of smoke emissions. In current global fire emissions databases, the diurnal cycle is 905 

broadly generalized by land cover and generally static from day to day throughout a fire’s lifetime; for example, the 3-hourly fire 

diurnal cycles in the Global Fire Emissions Database (GFED) are derived from historical GOES observations from 2007-2009 

and implemented as climatological means based on three land cover types (van der Werf et al., 2017; Mu et al., 2011). As is 

evident from GOFER, however, large fires may have explosive days of growth where burning extends from the afternoon to 

evening. In contrast, other days with slower fire spread are generally marked only by growth during the afternoon peak. 910 

Recently, GOES observations have been merged with VIIRS observations to estimate hourly fire emissions at 3-km spatial 

resolution in a top-down, FRP-based approach for the Regional ABI and VIIRS fire Emissions (RAVE) product (Li et al., 2022). 

Similarly, for a bottom-up, burned area-based approach, the GOFER diurnal cycle of the fire-wide growth in area can be used to 

downscale the perimeters of select fires in existing fire progression products, such as FEDS, to hourly intervals. Second, the 

GOFER product can be used to build statistical and machine learning models to understand how temporal variations in weather, 915 

topography, fuels, and active fire suppression at the active fire line drive fire spread rate and fire-wide growth in area at an 

hourly scale. Owing to limitations in spatial resolution in both the input and output data, GOFER is most suitable for 1D time 

series models. For example, the GOFER product can be used to explore periods of critical stress on firefighting resources, such 

as in mid-August and early September of 2020 when 8-9 large fires were simultaneously active (Figure A1). Using the set of 

available fires in GOFER as case studies, we can identify periods when large fires are explosive or quiescent, including extreme 920 

cases when nighttime “brakes” on fire spread fail (Balch et al., 2022), causing evacuations and damaging structures. For spatial 

analyses, GOFER could be used as a secondary product to FEDS and high-resolution perimeters from state and federal agencies. 

GOFER and FEDS can be used to improve the parameterization of 3D fire spread models, such as ELMFIRE and WRF-Fire, 

during periods of extreme fire spread and active nighttime burning, which are often poorly estimated compared to satellite and 

aircraft observations (Stephens et al., 2022; Turney et al., 2023). The high temporal resolution of GOFER may enable advances 925 

in the initialization of the actively burning fire line in prognostic fire spread models (Stephens et al., 2022; Turney et al., 2023); 

however, potential geolocation errors should be accounted for. This could be done, for example, by perturbing the location and 

length of active fire line segments using an ensemble approach, with the sampling drawing upon the distribution of errors relative 

to reference perimeters. 

4 Conclusion 930 

In summary, we use GOES observations to develop the GOFER algorithm for deriving the hourly fire progression perimeters, 

active fire lines, and fire spread rates of large wildfires. We test the algorithm for 28 fires over 50,000 acres (202 km2) in 

California from 2019-2021. We implement a parallax terrain correction with optimizations for the parallax adjustment factor and 

confidence threshold, early perimeter adjustment, and a dynamic kernel for neighborhood smoothing. Relative to reference 

perimeters provided by FRAP, the spatial accuracy of GOFER (IoU = 0.77) is reasonable compared to the VIIRS-derived 935 
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FEDSv2 (IoU = 0.83) at 375-m spatial resolution. We apply two different methods to map active fire lines (concurrent and 

retrospective) and calculate fire spread rates (MAE and AWE). GOFER resolves the time dimension of fire progression mapping 

to hourly intervals and can identify critical, explosive periods of fire spread. Opportunities for future development of the GOFER 

algorithm include resolving the day-to-night transition issues that skew the fire diurnal cycle of the fire-wide growth in area and 

testing GOFER in different ecosystems and regions across the GOES domain. Additionally, our GOFER product for the 28 large 940 

wildfires in California from 2019-2021 is a useful case study reference for modeling weather-human-fire relationships and 

improving estimates of fire emissions and smoke pollution. 
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Appendix A: Study Area: Large Wildfires in California 

Table A1: Metadata for the 28 large wildfires in California from 2019-2021 over 50,000 acres (202 km2). Statistics are from 
the annual CAL FIRE Red Books, which provide detailed information on each fire. The coordinates (longitude, latitude) and 950 
ignition times (year-month-day hour) are from CAL FIRE and InciWeb; some ignition times are adjusted earlier if there are 
preceding GOES active fire detections. 

# Fire Name Year Area 
(acres) 

Area 
(km2) Lon Lat Ignition (UTC) 

1 Kincade 2019 77758 315 -122.78 38.79 2019-10-24 04 
2 Walker 54608 221 -120.68 40.06 2019-09-04 21 
3 August Complex* 2020 1032648 4179 -122.67 39.78 2020-08-16 21 
4 Bobcat* 115997 469 -117.87 34.24 2020-09-06 19 
5 Creek* 379895 1537 -119.26 37.19 2020-09-05 01 
6 CZU Lightning Complex 86509 350 -122.22 37.17 2020-08-16 15 
7 Dolan* 124924 506 -121.60 36.12 2020-08-18 18 
8 Glass 67484 273 -122.50 38.56 2020-09-27 10 
9 July Complex 83261 337 -121.48 41.70 2020-07-22 17 
10 LNU Lightning Complex* 363220 1470 -122.15 38.48 2020-08-17 13 
11 North Complex* 318935 1291 -120.93 40.09 2020-08-17 16 
12 Red Salmon Complex* 144698 586 -123.43 41.19 2020-07-27 18 
13 SCU Lightning Complex* 396625 1605 -121.30 37.44 2020-08-16 11 
14 Slater and Devil* 166127 672 -123.38 41.77 2020-09-08 13 
15 SQF Complex* 175019 708 -118.50 36.26 2020-08-19 14 
16 W-5 Cold Springs 84817 343 -120.28 41.03 2020-08-18 18 
17 Zogg 56338 228 -122.57 40.54 2020-09-27 21 
18 Antelope 2021 145632 589 -121.93 41.50 2021-08-01 17 
19 Beckwourth Complex 105670 428 -120.37 39.88 2021-06-30 23 
20 Caldor 221835 898 -120.54 38.59 2021-08-15 01 
21 Dixie 963309 3898 -121.38 39.88 2021-07-14 00 
22 KNP Complex 88307 357 -118.81 36.57 2021-09-10 14 
23 McCash 94962 384 -123.40 41.56 2021-08-01 02 
24 McFarland 122653 496 -123.03 40.35 2021-07-30 01 
25 Monument 223124 903 -123.34 40.75 2021-07-31 01 
26 River Complex 199359 807 -123.06 41.39 2021-07-30 21 
27 Tamarack 68637 278 -119.86 38.63 2021-07-04 18 
28 Windy 97528 395 -118.63 36.05 2021-09-10 00 

* Fires used in parameter optimization  
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Figure A1: Timeseries of the hourly growth in area from 2019-2021 in the GOFER-Combined product. For each year, the 
growth in area (km2) is summed across all fires in each year. The horizontal lines above the timeseries represent the duration of 
active growth of each fire, ordered by start time. Annual maps of the locations of the fires are shown on the right.  965 
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Appendix B: Development and Optimizations for GOES-based Mapping of Fire Progression 

Table B1: Remapping of GOES pixels by converting fire mask codes to continuous fire detection confidence values. All 
other pixels are presumed to be non-fire and assigned a fire detection confidence of 0.  970 

Fire Mask Category Fire Detection 
Confidence Description Code 

Processed fire 10 
1 

Processed fire, filtered 30 
Saturated fire 11 

0.9 
Saturated fire, filtered 31 
Cloud contaminated fire 12 

0.8 
Cloud contaminated fire, filtered 32 
High probability fire 13 

0.5 
High probability fire, filtered 33 
Medium probability fire 14 

0.3 
Medium probability fire, filtered 34 
Low probability fire 15 

0.1 
Low probability fire, filtered 35 

 

B.1 Software details 

Input metadata dictionary. For each fire, we set the spatial and temporal constraints for processing GOES active fires by 

examining the GOES active fire timeseries and spatial footprint. They are necessary to avoid computational timeouts in GEE. 

Dynamic kernel. The reduce neighborhood function to smooth the fire detection confidence uses the boxcar optimization, which 975 

is a fast method for computing the mean but only works with square and rectangular kernels in GEE. 

Parallax correction. To implement the GOES parallax correction in Earth Engine, we convert the Python code in the goes-ortho 

package to JavaScript (Spestana et al., 2022). In GEE, we use the displace function to correct the location of GOES active fire 

detections. We separately computed the x- and y-component of the displacement for GOES-East and GOES-West, in meters, 

between the coordinates (longitude, latitude) of the DEM and satellite perspective as inputs to this function. As a caveat, we must 980 

use high-resolution or downscaled DEM, as we find the displace function in Earth Engine to be inaccurate if the displacement is 

less than half the spatial resolution of the DEM.  
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Table B2: The optimized confidence thresholds and parallax adjustment factors and smoothing kernel sizes used in 985 
GOFER. 

Version Confidence 
Threshold 

Parallax Adjustment 
Factor 

Smoothing Kernel 
Size 

GOFER-Combined 0.95 0.85 1.6-1.7 km 
GOFER-East 0.76 0.8 3.1-3.6 km 
GOFER-West 0.83 1 2.5-2.7 km 

 

 
Figure B1: Spatial resolution of GOES-East, GOES-West, and combined GOES across the domain over land. The GOES 
spatial resolution, in km, is calculated on the 0.25° x 0.25° grid used by the Global Fire Emission Database, version 4s 990 
(GFED4s). Vertical lines depict the longitudinal position of the GOES-East (75°W) and GOES-West (137°W) satellites.  
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Figure B2: Parallax displacement in GOES-East and GOES-West images across the domain. The total, x-component, and 
y-component of the parallax displacement, in km, are calculated for a hypothetical object at 1 km in elevation throughout the 995 
domain. For the x-component, negative values indicate that the object is displaced westward, while positive values that the object 
is displaced eastward. For the y-component, positive values indicate that the object is displaced northward, while negative values 
indicate that the object is displaced southward. The vertical purple lines depict the longitudinal position of the GOES-East 
(75°W) and GOES-West (137°W) satellites.  
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 1000 
Figure B3: Effect of the parallax terrain correction on the final perimeter, using the Creek Fire as an example. The final 
perimeter of the Creek Fire with the parallax correction (red polygon) and without parallax correction for GOFER-Combined is 
shown alongside the FRAP perimeter (black polygon). For the uncorrected perimeter, we use a confidence threshold of 0.91, 
which yields the highest mean IoU among the 10 largest CA fires in 2020 when the parallax adjustment factor is 0 (Figure 4a).  
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Table B3: Tunable parameters in the GOFER algorithm. 1005 

Tunable Parameter Definition 
Fire mask codes to fire confidence 
conversion 

Definition: converts the codes indicating the quality of active fire detections 
to numeric values 
Format: float, [0,1] 

Confidence threshold Definition: delineates the border between burned and unburned area and 
indicates where to draw the fire perimeter 
Format: float, [0,1] 

Smoothing kernel size Definition: the radius of the kernel used to apply the neighborhood mean, 
and smooth the GOES fire confidence 
Format: float, > 0 

Parallax adjustment factor Definition: the degree to which the parallax terrain adjustment is applied 
Format: float, [0,1] 

Early perimeter scaling Definition: a scalar used to adjust the maximum fire confidence, relevant for 
timesteps where the maximum value up to that timestep falls below 1 
Format: float, [0,1] 
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Appendix C: Evaluation and Validation of the GOFER Product 

 
Figure C1: Spatio-temporal progression and comparison of the 2020 Creek Fire. Maps of the hourly GOFER progression 
for GOFER-Combined (left), GOFER-East (middle), and GOFER-West (right).  1010 
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Table C1: IoU calculated for GOFER-Combined, GOFER-East, GOFER-West, FEDSv2, and MTBS relative to FRAP. 

# Fire Name Year 
IoU (GOFER, FRAP) IoU 

(FEDS, 
FRAP) 

IoU 
(MTBS, 
FRAP) 

GOFER-
Combined 

GOFER-East GOFER-
West 

1 Kincade 2019 0.79 0.72 0.76 0.85 0.99 
2 Walker 0.7 0.61 0.71 0.82 0.93 
3 August Complex* 2020 0.88 0.83 0.87 0.92 0.95 
4 Bobcat* 0.76 0.63 0.68 0.79 0.98 
5 Creek* 0.86 0.77 0.83 0.87 0.98 
6 CZU Lightning Complex 0.77 0.73 0.87 0.92 0.97 
7 Dolan* 0.75 0.76 0.74 0.91 0.97 
8 Glass 0.73 0.62 0.69 0.8 0.99 
9 July Complex 0.44 0.52 0.49 0.48 0.97 
10 LNU Lightning Complex* 0.71 0.68 0.73 0.81 0.97 
11 North Complex* 0.87 0.73 0.87 0.9 0.98 
12 Red Salmon Complex* 0.82 0.73 0.83 0.88 0.97 
13 SCU Lightning Complex* 0.84 0.79 0.84 0.85 0.97 
14 Slater and Devil*† 0.77 0.64 0.78 – 0.98 
15 SQF Complex* 0.76 0.66 0.71 0.73 0.96 
16 W-5 Cold Springs† 0.79 0.59 0.74 – 0.98 
17 Zogg 0.7 0.56 0.76 0.88 0.99 
18 Antelope 2021 0.73 0.6 0.73 0.67 0.95 
19 Beckwourth Complex 0.75 0.53 0.71 0.81 0.96 
20 Caldor 0.8 0.71 0.8 0.89 0.97 
21 Dixie 0.8 0.68 0.78 0.88 0.97 
22 KNP Complex 0.79 0.67 0.76 0.81 0.98 
23 McCash 0.74 0.65 0.73 0.82 0.97 
24 McFarland 0.79 0.75 0.71 0.9 0.97 
25 Monument 0.84 0.76 0.84 0.91 0.98 
26 River Complex 0.77 0.65 0.74 0.82 0.92 
27 Tamarack† 0.69 0.53 0.63 – 0.95 
28 Windy 0.82 0.7 0.77 0.84 0.99 
Mean IoU (all fires) 0.77 ± 0.08 0.67 ± 0.08 0.75 ± 0.08 – 0.97 ± 0.02 
Mean IoU (excludes cross-border fires) 0.77 ± 0.09 0.68 ± 0.08 0.76 ± 0.08 0.83 ± 0.09 0.97 ± 0.02 

* Fires used in parameter optimization 
The IoU for cross-border fires are omitted for FEDS since the perimeter of these fires are not fully mapped 1015 
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Figure C2: Comparison of the temporal progression of the 28 large fires in GOFER-Combined with NIROPS IR-based 
perimeters from NIFC. (a-b) Timeseries of the fraction of the final fire size for each fire from GOFER (black lines) and (red 
lines) for fires (a) over 500 h in duration and (b) under 500 h in duration. For NIROPS, dots represent the availability of the IR 1030 
imagery, which are almost all from nighttime flights. (c-d) Scatterplots of the (c) change in area between perimeter snapshots (d) 
fractions of final fire size from GOFER and NIROPS for timesteps when NIROPS perimeters are available. The correlation 
coefficient and RMSE are inset.  
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Figure C3: Distribution of shortest distances from GOFER to FRAP final perimeters for the 28 fires in this study. Each 1035 
boxplot represents the distribution of the shortest distances among the 28 fires at different breakpoints in the distribution for each 
fire: mean, median, and the 5th, 10th, 25th, 75th, 90th, 95th, and 99th percentiles. Separate analyses are shown for GOFER-
Combined, GOFER-East, and GOFER-West perimeters.  
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Table C2: Comparison of the final perimeter sinuosity for the 25 non-cross border fires. The sinuosity of the fire perimeter 1040 
is defined as the length of the perimeter divided by the diameter of a circle with the same area. 

Source Sinuosity (±1SD) 

GOFER-Combined 4.9 ± 1.2 
GOFER-East 4.3 ± 0.8 
GOFER-West 4.6 ± 0.9 
FEDSv2 5.9 ± 1.9 
FRAP 14.3 ± 6.7 

 

 

Table C3: The number of damaged and destroyed structures within GOFER-Combined, GOFER-East, and GOFER-
West final perimeters. Undamaged and inaccessible structures are excluded. 1045 

# Fire Name Year 
Within Perimeter (%) Total 

(n) GOFER-
Combined 

GOFER-East GOFER-
West 

1 Kincade 2019 96 98 96 434 
3 August Complex* 2020 95 98 95 99 
4 Bobcat* 99 100 100 216 
5 Creek* 96 99 100 929 
6 CZU Lightning Complex* 72 83 96 1630 
8 Glass 97 97 100 1810 
10 LNU Lightning Complex* 91 95 97 1723 
11 North Complex* 98 98 98 2471 
13 SCU Lightning Complex* 100 100 100 251 
14 Slater and Devil* 100 100 100 377 
15 SQF Complex* 100 100 100 244 
17 Zogg 100 100 100 231 
18 Antelope 2021 100 100 100 24 
19 Beckwourth Complex 100 100 100 171 
20 Caldor 100 100 100 1086 
21 Dixie 90 91 99 1405 
24 McFarland 94 94 100 47 
25 Monument 97 100 97 30 
27 Tamarack 100 100 100 17 
28 Windy 10 10 100 21 
Mean 92 ± 20 93 ± 20 99 ± 2  

* Fires used in parameter optimization 

  

Deleted: Dataset



 40 

 
Figure C4: Comparison of GOFER and FEDSv2 active fire line lengths. The violin plots show the distribution of (a) 1050 
correlation coefficients, (b) slopes, and (c) RMSEs for 25 non-cross border CA fires from 2019-2021. GOFER 𝑓𝑙𝑖𝑛𝑒! lengths are 
compared to the out-of-box FEDSv2 active fire line lengths, while the 12h aggregate 𝑓𝑙𝑖𝑛𝑒& lengths are calculated using the 
same method for GOFER and FEDSv2. 𝑓𝑙𝑖𝑛𝑒!"#.3 was not derived for GOFER-East and GOFER-West as the optimized 
confidence thresholds used to map perimeters were lower than 0.9. 
 1055 

Table C4: Comparison of GOFER fire spread rates derived from the MAE (maximum axis of expansion) and AWE 
(area-weighted expansion) methods. 

Version Correlation Coefficient 
(r, ±1SD) 

MAE/AWE 
(±1SD) 

GOFER-Combined 0.93 ± 0.05 2.74 ± 0.12 
GOFER-East 0.94 ± 0.02 2.48 ± 0.15 
GOFER-West 0.95 ± 0.02 2.56 ± 0.13 
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