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Abstract. A high-resolution, spatially explicit forest age map is essential for quantifying forest carbon stocks and carbon 16 

sequestration potential. Prior attempts to estimate forest age on a national scale in China have been limited by sparse resolution 17 

and incomplete coverage of forest ecosystems, attributed to complex species composition, extensive forest areas, insufficient 18 

field measurements, and inadequate methods. To address these challenges, we developed a framework that combines machine 19 

learning algorithms (MLAs) and remote sensing time series analysis for estimating the age of China’s forests. Initially, we 20 

identify and develop the optimal MLAs for forest age estimation across various vegetation divisions based on forest height, 21 

climate, terrain, soil, and forest-age field measurements, utilizing these MLAs to ascertain forest age information. Subsequently, 22 

we apply the LandTrendr time series analysis to detect forest disturbances from 1985 to 2020, with the time since the last 23 

disturbance serving as a proxy for forest age. Ultimately, the forest age data derived from LandTrendr is integrated with the 24 

result of MLAs to produce the 2020 forest age map of China. Validation against independent field plots yielded an R2 ranging 25 

from 0.51 to 0.63. On a national scale, the average forest age is 56.1 years (standard deviation of 32.7 years). The Qinghai-26 

Tibet Plateau alpine vegetation zone possesses the oldest forest with an average of 138.0 years, whereas the forest in the warm 27 

temperate deciduous-broadleaf forest vegetation zone averages only 28.5 years. This 30-m-resolution forest age map offers 28 

crucial insights for comprehensively understanding the ecological benefits of China’s forests and to sustainably manage 29 

China’s forest resources. The map is available at http://dx.doi.org/10.5281/zenodo.8354262 (Cheng et al., 2023b). 30 

1 Introduction 31 

Forest age is crucial for gaining insights into forest ecosystem succession and condition, thereby playing a pivotal role in 32 

comprehending the ecological benefits of forests (Lin et al., 2023). China's forests have undergone significant disruptions due 33 
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to natural disasters and human activities over the past few decades, leading to notable changes in the forest age structure (Niu 34 

et al., 2023). Consequently, this scenario presents considerable challenges in accurately assessing forest ecosystem carbon 35 

storage (Pan et al., 2011; Tong et al., 2020). The complexity of species composition, extensive forest areas, limited field 36 

measurements, and ineffective methods have led to existing national-scale estimates of China's forest age focusing on either 37 

sparse resolution (Zhang et al., 2017) or partial forest ecosystem coverage (Xiao et al., 2023). This has resulted in significant 38 

uncertainties in evaluating the carbon sources and sinks within China's forest ecosystem (Piao et al., 2022; Wang et al., 2022). 39 

Therefore, there is an urgent requirement for time-efficient, high-resolution mapping of forest age across China. 40 

At present, China's forest age data is primarily obtained via the national forest inventory, noted for its high accuracy (Xiao et 41 

al., 2023) but requires extensive labour and material resources and is time-consuming and costly (Liu et al., 2022). Additionally, 42 

most of China’s forests are in steep mountainous areas that are difficult to access (Cheng et al., 2023a), which limits the survey 43 

range and uneven distribution of field samples, making it difficult to estimate the age of China’s forests on a national scale. 44 

Thus, the traditional forest inventory method struggles to accurately and timely capture the complete age distribution and 45 

spatial characteristics of China's forests. 46 

Remote sensing technology has demonstrated effectiveness in estimating forest cover (Su et al., 2020; Tubiello et al., 2023) 47 

and forest structure (Yu et al., 2020; Maltman et al., 2023) across various scales. The availability and sharing of Landsat time 48 

series data, along with the development of Google Earth Engine (GEE) cloud-processing platform have significantly facilitated 49 

the application of remote sensing in forest age estimation. Several studies have been conducted to map China’s forest age. 50 

Xiao et al. (2023) mapped the age of China’s young forests at 30 m resolution using time series Landsat imagery. Yu et al. 51 

(2020) produced a 1-km resolution map of the age for planted forests in China. Zhang et al. (2017) developed a 1km stand age 52 

map using climate and forest height data. Zhang et al. (2014) mapped a national forest age map with 1 km resolution by using 53 

remote-sensing forest height and forest type data. However, the existing China’s forest age maps are typically undertaken at 54 

coarser spatial resolutions (e.g., 1 km), with finer resolutions (e.g., 30 m) being limited to young forests. There remains a lack 55 

of high-resolution forest age spatial dataset covering the entire forest region of China. 56 

Statistical models and disturbance detection approaches are two common methods utilized in remote sensing-based forest age 57 

estimations. Statistical models deduce forest age by establishing a coherent relationship between remote sensing features and 58 

field-collected empirical samples, including parametric regression approaches (Maltamo et al., 2020; Schumacher et al., 2020) 59 

and nonparametric machine learning algorithms (MLAs). Growth models represent one of the most widely used parametric 60 

models for estimating forest age (Zhang et al., 2014; Zhang et al., 2017; Yu et al., 2020). However, this type of model relies 61 

on tree species information, posing challenges in forest age derivation when such data is lacking, particularly at large scales. 62 

MLAs has been employed for forest age estimation, owing to their flexibility in addressing complex problems (Alerskans et 63 

al., 2022). For examples, Huang et al (2023) integrated random forest (RF) to derived forest age. Chen et al (2016) mapped 64 

forest stand age dynamics using RF and Landsat imagery. Nevertheless, the application of MLAs to estimate national forest 65 

age has not been deeply explored. Most previous studies used a single MLA, such as Random Forest (RF) (Besnard et al., 66 

2021b), to estimate forest age. The extensive distribution of forests, diverse forest types, and varying terrain and climate 67 
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conditions in China make it difficult in using a single model for accurately forest age determination on national scale. Therefore, 68 

exploring the applicability of MLAs for forest age estimation in various regions of China is essential.  69 

Disturbance detection approaches, capable of identifying the time of the most recent stand-replacing disturbance, have proven 70 

accurate in forest age estimation (Li et al. 2024), which mainly include Landsat-based Detection of Trends in Disturbance and 71 

Recovery (LandTrendr) (Kennedy et al. 2010), Continuous Change Detection and Classification (CCDC) (Zhu and Woodcock 72 

2014), the Vegetation Change Tracker (VCT) (Huang et al. 2010), Breaks for Additive Season and Trend (BFAST) (Verbesselt 73 

et al. 2010a; Verbesselt et al. 2010b). Among these algorithms, LandTrendr has been recognized for its efficiency in detecting 74 

forest disturbances such as fire, deforestation, and urban expansion (de Jong et al. 2021; Rodman et al. 2021). For instance, Li 75 

et al (2024) mapped planted forest age using LandTrendr algorithm, demonstrating its efficiency and reliable for forest age 76 

mapping. However, these approaches are limited to obtaining forest age in areas with disturbance recorded by remote sensing, 77 

thus restricting a comprehensive understanding of forest age structures. Consequently, it is necessary to develop a framework 78 

that can provide comprehensive forest age information on a large scale.  79 

The objective of the present study is to generate the first China’s forest age dataset at 30 m resolution using multi-source 80 

datasets through combining remote sensing time series analysis and MLAs. This involves: 1) identifying the most optimal 81 

MLA for age estimation across various vegetation zone in China and estimating the age of China’s forests. 2) Utilizing 82 

LandTrendr disturbance detection algorithm to identify the most recent forest disturbances from 1985 to 2020, and estimating 83 

the forest of these disturbed areas. 3) Using the forest age derived by LandTrendr algorithm to update the result of MLAs to 84 

generate China’s forest age map, which is then subjected to validation. The generated 30-m-resolution forest age map provides 85 

critical information to quantify forest carbon storage and to sustainably manage China’s forests. 86 

2 Materials and methods 87 

2.1 Dataset and pre-processing 88 

2.1.1 Forest inventory data 89 

The data from China’s seventh national forest inventory survey from 2004 to 2008 (http://www.forestry.gov.cn/) were 90 

collected to develop models to estimate forest age. The inventory involves systematically and accurately monitoring the 91 

national forest resources based on 667 m2 sample plots covering the whole country (Ren et al., 2011). The main information 92 

collected from the sample plots are tree species, stand age, average tree height, and geographic location. The stand age is 93 

determined based on the planting time or is estimated using tree diameter at breast height (Zhang et al., 2017). We totally 94 

collected 58,033 field plots ranging in age from 1 to 480 years (Figures 1b and 1c). The mean age of the samples is 34.0 years, 95 

with a standard deviation of 29.6 years. The sample plots were distributed across eight vegetation divisions (Liu et al. 2022) 96 

(Figure 1b), each containing at least 436 sample plots for building MLA models to estimate forest age (Figure 1d). 97 
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98 

Figure 1. Forest mask and field sample distribution. (a) Planted forest and natural forest mask generated by Cheng et al. (2023a). 99 

(b) Distribution of field samples over eight vegetation divisions. (c) Frequency distribution of field sample ages. (d) Frequency 100 

distribution of field samples for eight vegetation divisions. PF: planted forest, NF: natural forest, CT: Cold Temperate 101 

needleleaf forest, WT: Warm Temperate deciduous-broadleaf forest, QT: Qinghai-Tibet Plateau alpine vegetation, TM: 102 

Tropical Monsoon forest-rainforest, TS: Temperate Steppe, TD: Temperate Desert, TN: Temperate Needleleaf-broadleaf 103 

mixed forest, SE: Subtropical Evergreen broadleaf forest. N: the number of plots, Std: standard deviation, Mean: mean age. 104 

2.1.2 Landsat time-series data 105 

From the GEE platform, we collected Landsat TM, ETM+, OLI Tier 1 surface reflectance images dating from 1985 to 2020 106 

to estimate forest age for disturbed forest regions. All data were atmospherically corrected and processed by the Land Surface 107 

Reflectance Code and the Landsat Ecosystem Disturbance Adaptive Processing System algorithms. We removed the clouds 108 

or cloud shadows using the C function of the mask algorithm (Du et al., 2023), then we created composited images using a 109 

median compositing method for forest regions. Finally, we calculated the normalized burn ratio (NBR) to detect forest 110 
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disturbance. NBR has been proved effective in numerous studies detecting forest disturbance (Du et al., 2023; Tian et al., 111 

2023). It is calculated as follows by using the near-infrared (NIR) and short-wave infrared (SWIR) bands:  112 

𝑁𝐵𝑅 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
.  (Eq. 1) 

2.1.3 Forest mask 113 

This study uses the 2020 dataset of planted and natural forests at 30 m resolution in China (Figure 1a) as a mask for forest age 114 

mapping. This dataset is produced by integrating multisource remote-sensing data and a large number of crowdsourced samples, 115 

with an overall accuracy of over 80% (Cheng et al., 2023a). In this study, we employ this dataset as a forest mask and utilize 116 

a combination of time series change detection algorithms and MLAs to trace the age of these planted and natural forests. 117 

2.1.4 Forest height data 118 

The canopy height data for China was downloaded from the website (https://3decology.org/), which was generated based on 119 

deep learning by integrating Global Ecosystem Dynamics Investigation and Ice, Cloud and land Elevation Satellite -2 data. 120 

This dataset has a spatial resolution of 30 m and corresponds to 2019. The accuracy of this national forest canopy height data 121 

was assessed by comparing three independent validation datasets, indicating high accuracy for the canopy height product by 122 

neural network guided interpolation (R2 ≥ 0.55, RMSE ≤ 5.5 m) (Liu et al., 2022). Notably, the forest extent used in this dataset 123 

is consistent with the forest extent mentioned earlier for planted and natural forests, ensuring spatial consistency when 124 

estimating forest age. 125 

2.1.5 Climate data 126 

Climate data were acquired from WorldClim 2.1 (https://worldclim.org/), which offers 19 bioclimatic variables, including 127 

temperature and precipitation, with 30 arc-second resolutions. The 19 bioclimatic variables include annual trends, seasonality, 128 

and extreme environmental factors in temperature and precipitation. We resampled the 19 GeoTiff (.tif) files to 30 m resolution 129 

using a nearest-resampling method for spatial resolution consistency. To reduce the dimension of bioclimatic variables, we 130 

applied a principal component analysis to map the 19 bioclimatic variables into a new principal component (PC) space. We 131 

use the first three components PC1, PC2, PC3 to represent the climate factors. According to the results of the analysis, PC1 132 

gives annual trends in temperature and precipitation, PC2 gives seasonal variations in temperature and precipitation, and PC3 133 

gives precipitation and temperature extremes (Supplementary Table 1). 134 

2.1.6 Soil data 135 

Soil data were extracted from the harmonized world soil database, V1.2, developed jointly by the Food and Agriculture 136 

Organization of the United Nations, the International Institute for Applied Systems, the ISRIC-World Soil Information, the 137 

Institute of Soil Science, Chinese Academy of Sciences, and the Joint Research Centre of the European Commission with a 138 

about:blank
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resolution of 30 arc-seconds. As per previous studies, soil type and texture were selected from the soil dataset in this study to 139 

construct the model to estimate forest age (Besnard et al., 2021). We also resampled the soil data to 30 m using a nearest-140 

resampling method. 141 

2.1.7 Topographic data 142 

The Shuttle Radar Topography Mission (SRTM) V3 provides global digital elevation data at 30 m resolution and was used in 143 

this study to extract topographic variables (Su et al., 2020). Three topographic features, elevation, slope, and aspect, were 144 

calculated to estimate forest ages. 145 

Table 1. Descriptions of variables used to estimate the forest age of China. 146 

Data type Data source Resolution Time Variables 

Remote sensing 

images 
Landsat TM/ETM+/OLI  30m 

1985–

2020 
NBR 

Forest mask 
Planted and natural forest map (Cheng et 

al., 2023a) 
30m 2020 Planted and natural forest 

Forest canopy 

height data 
NNGI-Forest Canopy Height 30m 2019 Forest height 

Climate data WorldClim version 2.1 (Fick and 

Hijmans 2017) 

30 arc-second 1970–

2000 

PC1, PC2, PC3 

Soil data Harmonized World Soil Database 

V1.2(https://www.fao.org/soils-

portal/data-hub/soil-maps-and-

databases/harmonized-world-soil-

database-v12/en/) 

30 arc-second 1971–

1981 

Soil type, soil texture  

Topographic 

data 

SRTM DEM  30 m 2000 Elevation, slope, and aspect  

 147 

2.2 Forest age estimation 148 

To generate the forest age map for China and explore the performance of MLAs to retrieve forest age, we applied two 149 

approaches to estimate forest age in China: The MLA-based approach and the LandTrendr disturbance detection approach. 150 

First, the MLA-based approach estimates ages for forest regions using forest inventory and multi-source remote sensing data. 151 

Second, the LandTrendr algorithm is applied to detect stand-replacing disturbances based on the Landsat time series images. 152 

Third, we use the forest age map detected by LandTrendr to update the forest age map derived using MLA-based approach, 153 
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and generate the China’s forest age map with 30 m resolution. Figure 2 shows a detailed flowchart describing the framework 154 

for forest age estimation proposed in this study.  155 

Landsat time series images Forest mask Vegetation region Forest inventory data

Landtrendr 

change detection

Forest disturbance area Machine learning algorithms

DEM data

Soil data

Forest height data

Climatic data

Forest age in changed area Forest age in all forest area

China s forest age map

 156 

Figure 2. Framework of China’s forest age estimation. 157 

2.2.1 Machine learning approach 158 

(1) MLA selection 159 

This study used the following model-screening procedure to explore which model works best for each vegetation division. 160 

First, we used the automated machine learning (Auto-ML) open-source Python library LazyPredict to filter for alternative 161 

models. LazyRegressor (including 40 MLAs) was used to build stand-age estimation models based on all data, which helps to 162 

understand which MLA works well without tuning parameters. The performing models with R2 greater than 0.60 in each 163 

vegetation division were concentrated in thirteen MLAs (Supplementary Table 2). Second, by splitting training data and testing 164 

data, the top three MLAs for each vegetation division were determined (Supplementary Table 2). It can be found that the 165 

potential optimal models of eight vegetation divisions is concentrated in RF, Gradient Boosting Decision Tree (GBDT), 166 

Histogram Gradient Boosting (HistGradientBoost), Light Gradient Boosting Machine (LightGBM), and Categorical Boosting 167 

(CatBoost).  168 

RF is an ensemble learning method that combines multiple decision trees (Breiman 2001; Dutta et al., 2020). It leverages the 169 

wisdom of crowds to make accurate predictions. RF mitigates overfitting and provides robust results by training each tree on 170 

a random subset of the data and features (Lavanya et al., 2017; Guo et al., 2019). GBDT is an ensemble technique that builds 171 
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a strong predictive model by sequentially training decision trees (Jerome 2001). Each tree corrects the errors of its predecessor 172 

(Wei et al., 2019), resulting in a highly accurate and robust model. HistGradientBoost is a variant of GBDT that employs 173 

histogram-based techniques. It efficiently approximates data distributions and reduces memory consumption during training. 174 

This algorithm is particularly beneficial when dealing with large datasets and complex features (Tesfagergish et al., 2022). 175 

LightGBM is a gradient-boosting framework that prioritizes speed and efficiency. It employs a histogram-based approach and 176 

parallel computing, making it suitable for large datasets. CatBoost is a new modification gradient boosting algorithm that is 177 

designed specifically for handling categorical features. It automatically encodes categorical variables, simplifying the data pre-178 

processing stage. CatBoost is known for its robustness and efficiency, can achieve high accuracy on a small-scale dataset. 179 

We implemented RF, GBDT, and HistGradientBoost by using the Scikit-learn package of Python 3.9.11, while the LightGBM 180 

and CatBoost algorithms were constructed by using the lightgbm and catboost packages of Python 3.9.11.  181 

(2) Hyperparameter tuning 182 

Hyperparameter tuning of MLAs is critical in the ML model training process because it significantly enhances the model’s 183 

performance, generalization capability, and adaptability (Sandha et al., 2020). Bayesian optimization has been selected for 184 

hyperparameter tuning due to its complicated derivative evaluation, and nonconvex-function-related features (Mekruksavanich 185 

et al., 2022). It is implemented by using Optuna, an open source hyperparameter optimization framework to automate 186 

hyperparameter searches (Akiba et al., 2019). The hyperparameters and their searching range in MLAs are listed in 187 

Supplementary Table 3. 188 

(3) Model interpretation 189 

Furthermore, we used Shapley Additive explanations (SHAP) values (Lundberg and Lee, 2017; Lundberg et al., 2019), a 190 

model-agnostic technique for interpreting ML models, to explore functional correlations between the variables and forest age 191 

(Besnard et al. 2021). SHAP derives the Shapely additive contribution values from coalitional game theory (Kim et al. 2023). 192 

By examining the contribution of each input variable to the model's output, SHAP can identify the primary drivers of the 193 

model's predictions and provide insights into the underlying causes that influence forest age (Sun et al. 2023). The higher the 194 

SHAP value, the larger the contribution of the variable. Here we calculated SHAP value using shap package in Python. 195 

2.2.2 LandTrendr disturbance detection approach 196 

LandTrendr was designed to detect and analyse changes in surface features, particularly disturbances and recovery processes, 197 

and is commonly applied to multispectral remote sensing imagery from the Landsat satellite series to capture long-term forest 198 

disturbances (Du et al., 2022). Using LandTrendr to detect forest age involves the following steps: 199 

(1) Time series data transformation. LandTrendr transforms multiple temporal remote-sensing image datasets into a series of 200 

indices, such as the NBR. 201 

(2) Breakpoint detection. Using the generated time series indices, LandTrendr retraces from the state in 2020 in search of 202 

breakpoints in the time series. These breakpoints signify transition points in the time series, which indicate instances of surface 203 

disturbance or recovery. 204 
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(3) Age estimation. By pinpointing breakpoints, the time of occurrence for each breakpoint is established. Forest age estimates 205 

for the current location are accomplished by subtracting the breakpoint time from the latest time. 206 

LandTrendr was implemented on the GEE platform by using the function of runLT() provided by the LT_GEE API (Kennedy 207 

et al., 2018). Table 1 lists the main input parameters. 208 

Table 1. Parameters of LandTrendr used in this study. 209 

Parameters Definition Value 

maxSegments Maximum number of segments to be fitted on the time 

series 

10 

spikeThreshold Threshold for dampening the spikes (1.0 means no 

dampening) 

0.9 

vertexCountOvershoot The initial model can overshoot the maxSegments + 1 

vertices by this amount. Later, it will be pruned down to 

maxSegments + 1 

3 

preventOneYearRecovery Prevent segments that represent one-year recoveries False 

recoveryThreshold If a segment has a recovery rate faster than 1/recovery 

threshold (in years), then the segment is disallowed 

0.25 

pvalThreshold If the p-value of the fitted model exceeds this threshold, 

then the current model is discarded and another one is fit 

by using the Levenberg–Marquardt optimizer 

0.05 

bestModelProportion Takes the model with most vertices that has a p-value that 

is at most this fraction away from the model with the 

lowest p-value 

0.75 

minObservationsNeeded Minimum observations required to perform output fitting 6 

 210 

2.2.3 China’s forest age prediction 211 

Given the extensive forest coverage in China, it is challenging to handle such large forest area for ML and the LandTrendr 212 

algorithm to estimate forest age, even with our vegetation zoning efforts. To enhance the efficiency of forest age estimation 213 

and conserve computational resources, we have divided China into 1°×1° grids (see Supplementary Figure 2), limiting ML 214 

and LandTrendr algorithms to estimate forest age within each grid. Subsequently, we merge the predictive results from each 215 

grid using the Mosaic New Raster tool in ArcGIS Pro 3.0 to obtain nationwide forest age map. Finally, the forest age map 216 

estimated through LandTrendr algorithm is applied to update the ML-based results to produce China's forest age data. 217 
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2.3 Accuracy assessment 218 

2.3.1 Comparison with field samples 219 

We collected field samples through two sources to validate the generated final forest age map. The first is the forest inventory 220 

samples independent of training data. The second source involves validation samples obtained from the literatures. To ensure 221 

the samples collected were representative, we excluded samples dated before 2010. As validation metrics, we used the 222 

coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean error 223 

(ME). These are given mathematically as 224 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦

∧

𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

,  (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖

𝑛

𝑖=1

− 𝑦𝑖
∧
)2,  (3) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

∧
|

𝑛

𝑖=1

,  (5) 

𝑀𝐸 =
∑ (𝑦𝑖 − 𝑦𝑖̂)
𝑛
𝑖=0

𝑛
,  (6) 

where 𝑦𝑖 is the observed value for the ith analytic tree, 𝑦𝑖
∧

 is the predicted value of the ith observed value, n is the number of 225 

trees, and 𝑦𝑖  is the mean of the observed value. 226 

2.3.2 Comparison with existing forest age data 227 

To make our forest age map more reliable and comparable, we also downloaded global forest age data product produced by 228 

Besnard et al. (2021a), which is the only forest age map that can be publicly accessible covering entire China’s forests. Then, 229 

we resampled our result to the same resolution as this global map, and compared our resultant forest age map with it by 230 

assessing their differences in each cell. Additionally, we also collected estimated average forest ages of China by previous 231 

studies, and using these statistical numbers to further validate our estimation. 232 

3 Results 233 

3.1 MLA performance for China’s forest age estimation  234 

Through a rigorous hyperparameter-optimization process and independent validation, four distinct MLAs (RF, GBDT, 235 

LightGBM, and CatBoost) were selected across eight different vegetation divisions (Table 2). GBDT performed exceptionally 236 

well for estimating the forest age of cold temperate needleleaf forest (CT) vegetation zone, producing R2 of 0.47 and RMSE 237 

of 4.95 years (MAE=17.99, ME=-1.86). RF excelled at estimating the forest age of warm temperate deciduous-broadleaf forest 238 
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(WT) vegetation zone, producing an independent validation R2 of 0.61 and RMSE of 3.47 years (MAE=9.13, ME=-0.01). 239 

CatBoost consistently demonstrated strong performance for the Qinghai-Tibet Plateau alpine vegetation (QT), tropical 240 

monsoon forest-rainforest (TM), temperate steppe (TS), temperate desert (TD), and subtropical evergreen broadleaf forest (SE) 241 

zones, with R2 values ranging from 0.57 to 0.85 and RMSE values from 2.04 to 7.65 years. LGBMRegressor was the preferred 242 

choice in the temperate needleleaf-broadleaf mixed forest (TN) vegetation division, yielding an R2 of 0.63 and an RMSE of 243 

4.14 years. 244 

Table 2. MLA for eight vegetation divisions and their validation metrics. 245 

Vegetation division Algorithm R2 RMSE MAE ME 

CT GradientBoost 0.47 4.95 17.99 -1.86 

WT RF 0.61 3.47 9.13 -0.01 

QT CatBoost 0.57 7.65 42.58 10.43 

TM CatBoost 0.85 2.04 1.34 -0.08 

TS CatBoost 0.78 4.16 11.85 -0.87 

TD CatBoost 0.80 5.33 21.02 1.84 

TN LGBM 0.63 4.14 12.78 0.36 

SE CatBoost 0.70 3.49 7.97 0.00 

 246 

We further analysed the factors influencing the forest age estimation in each vegetation division, and the findings are illustrated 247 

in Figure 3. While the prioritization of factors affecting forest age estimation varies across different vegetation divisions, 248 

canopy height is unquestionably the predominant factor influencing this estimation. Its absolute value is the highest of the CT, 249 

WT, TN, TS, and TM vegetation zones (Figure 3). Moreover, it is among the top three most influential factors in all the 250 

remaining vegetation zones. Subsequently, topographical conditions assume prominence, with elevation consistently featuring 251 

among the top three factors in the SHAP value across all vegetation divisions. In the TD vegetation division, elevation becomes 252 

the most influential factor. Climate factors earn third-tier consideration, particularly in the SE vegetation zone, where the 253 

impact of PC2 of the climate factors surpasses that of both canopy height and topographical conditions. In the other vegetation 254 

divisions, the influence of climate factors generally falls to the mid-range. In contrast, across all eight vegetation divisions, 255 

factors related to soil, such as soil type and soil texture, do not exert a pronounced influence on forest age estimation. 256 
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 257 

Figure 3. Order of shape values of factors affecting the estimation of forest age in different vegetation zones 258 
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3.2 China’s forest age map 259 

Based on the optimal MLAs and the LandTrendr change detection algorithm, we have obtained forest age data for China as 260 

shown in Figure 4. Figure 4a presents the nationwide distribution of forest age as estimated by MLAs, whereas Figure 4b 261 

displays the age distribution from 1985 and 2020 as determined through change detection. The results reveal that reforestation 262 

activities from 1985 and 2020 are primarily situated in the southern, southeastern, and northern China, aligning with the 263 

findings from Xiao et al (2023). Furthermore, estimates derived from MLAs indicate that old-growth forests are primarily 264 

located in the northeast and southwest regions of China. 265 

The final forest age map for China obtained in this study is depicted in Figure 4c. Statistically, the mean of the estimated 266 

China’s forest age is 56.11 years with a standard deviation of 32.67 years. Geographically, forests in northeast and southwest 267 

China are relatively older than those in other regions (Figure 4c). At the provincial scale, the average forest age ranges from 268 

3.9 to 116.8 years (Figure 5a, Supplementary Table 6), whereas Qinghai province has the highest mean forest age, and Hong 269 

Kong has the lowest mean forest age. Forest ages in Sichuan province are more varied than in other provinces (Figure 5a). On 270 

the regional scale, the QT vegetation zones have the oldest forests with an average of 138.0 years, followed by CT (107.6 271 

years), TS (107.0 years), TN (68.3 years), TD (60.3 years), TM (53.0 years), and SE (49.2 years) (Figure 5b, Supplementary 272 

Table 7). The WT vegetation zones have the youngest forests (28.5 years). 273 
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 274 

Figure 4. Forest age estimated from LandTrendr (a), MLA (b), and final China’s forest age distribution (c) with 30 m resolution. 275 
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 276 

 277 

Figure 5. (a) Boxplot of China’s forest age grouped by provinces (b) Violin plot of the forest age grouped by vegetation divisions.  278 
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3.3 Evaluation 279 

3.3.1 Comparison with field samples 280 

We initially validated the forest age estimations by using forest inventory data. The forest inventory samples were acquired 281 

from 2004 to 2008. To align with the time frame of the forest age data obtained in this study, we shifted the predicted values 282 

corresponding to each sample forward by ~16 years. This strategy allows us to compare them with the inventory-measured 283 

forest ages. Figure 6a shows the comparison, which suggests that they have a significant linear relationship with R2 = 0.51 284 

(Figure 6a). We collected 99 field measurements of mean forest stand age after 2010 from published papers (Supplementary 285 

Table 8) and compared them with our estimated results. Figure 6b shows that the predicted forest ages also present a significant 286 

linear relationship with field measurements, with R2 = 0.62. 287 
 288 

 289 

Figure 6. Scatter plots of (a) forest inventory age vs predicted forest age for this study and (b) field measurements of forest stand age 290 
collected from published papers vs predicted forest. 291 

3.3.2 Comparison with existing forest age map 292 

Figure 7 shows the difference between our estimation and existing global forest age map, which suggests an average difference 293 

of 9.7 years. Our mapped forest age is older in northeast regions but younger forests in the middle regions than that from 294 

Besnard et al. (2021a) dataset. In addition, we gathered the existing forest age maps over China from published datasets and 295 

compared their average forest age with our estimation (Table 3). According to the available data, the average forest age in 296 

China ranged from 40 to 43 years between 2000 and 2013, corresponding to approximately 50 to 53 years in 2020. This aligns 297 
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closely with the average forest age of 56.1 years obtained in this study for the year of 2020, further underscoring the reliability 298 

of the forest age mapped in this study. 299 

 300 

Figure 7. Comparison with global forest age product. The inset at the top left shows the frequency distribution of differences between the 301 
global forest age map and our estimated forest age map. 302 

Table 3. China’s mean forest age collected from published papers. 303 

Source Mean forest age (years) Resolution Mapping year 

Zhang et al. (2017) 42.6 1 km 2013 

Zhang et al. (2014) 43 1 km 2005 

Dai Ming (2011) 40.6 8 km 1998 

Wang et al. (2007) <40 1 km 2001 

Xia et al. (2023) 44.0 1 km 2015 

This study 56.1 30 m 2020 
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4 Discussion 304 

A high-spatial resolution forest age map is an important input for accurately quantifying forest carbon storage and potential. 305 

Although several forest age maps for China were generated in the most recent decades, their spatial resolution is coarser, 306 

ranging from 1 to 8 km (e.g., Zhang et al., 2014; Zhang et al., 2017), which does not satisfy the application requirements for 307 

local-to-regional scales (Xiao et al., 2023). Therefore, we generated a 30 m resolution forest age map of China using remote 308 

sensing and inventory data for 2020. Validation against independent forest inventory samples, field measurements collected 309 

from published papers, and existing forest age products indicate that the estimated forest age map has R2 of 0.51 to 0.62, and 310 

presented well spatial agreement with the existing forest age product. Such a high-resolution and timely forest age dataset is 311 

vital to assess ecological benefits of China’s forests and to manage forest resources for sustainable development. 312 

 313 

The generated forest age map indicates that 40.08% of forests are younger than 40 years, 38.11% are 41–80 years old, and 314 

21.81% are over 80 years old. This result indicates that most forests in China are young, which is consistent with the findings 315 

of Zhang et al. (2017) and Zhang et al. (2014), even though the specific proportions might vary slightly, which is mainly 316 

because they produced forest age distribution data for the year of 2005, whereas our data represents forest age in 2020. 317 

Furthermore, similar to Zhang et al. (2017) and Zhang et al. (2014), forests younger than 40 years are primarily in southern 318 

and eastern China, whereas forests older than 80 years are predominantly in northeastern and southwestern China (Figure 4). 319 

We further analyse the forest age by using China’s planted and natural forest mask generated by Cheng et al. (2023a) for 2020. 320 

The results reveal that the average forest age for planted forests in China is 29.1 years with a standard deviation of 18.2 years, 321 

whereas natural forests have an average age of 69.7 years with a standard deviation of 30.6 years. This result aligns closely 322 

with the reported 16.5 years for China’s planted forests in 2005 (which equates to approximately 31 years in 2020) by Yu et 323 

al. (2020). 324 

 325 

This study combines two methods to estimate forest age across China. We first investigate in-depth the suitability of current 326 

mainstream MLAs for estimating forest age. For each vegetation division, we establish the optimal MLA and its optimal 327 

parameters (Table 2, Supplementary Table 4). Of the established MLAs, the ensemble learning approaches perform best for 328 

both training and evaluation compared with individual-based learners. Several previous studies support the idea that ensemble 329 

techniques have achieved better performance than that of its base learners (e. g. Rodriguez et al., 2006; Banfield et al., 2007; 330 

Canul-Reich et al., 2007; Rokach, 2009; De Stefano et al., 2011; Matloob et al., 2021). Bagging and boosting are two 331 

mainstream ensemble techniques in ensemble learning that combine multiple base models to improve predictive performance. 332 

Bagging reduces variance, whereas boosting reduces bias and improves overall model performance (Abbasi et al., 2022). 333 

However, most previous studies focus on bagging-based RF models to derive forest structure parameters in remote sensing 334 

fields (Simard et al., 2011; Cartus et al., 2012; Montesano et al., 2013; Matasci et al., 2018; Luther et al., 2019; Bolton et al., 335 

2020). The present study highlights that ensemble learning algorithms based on boosting, including GBDT, LightGBM, and 336 
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CatBoost, demonstrate higher accuracy in estimating China’s forest age compared to the bagging-based RF algorithm. 337 

Furthermore, within the current ensemble learning framework, the CatBoost algorithm based on boosting has a clear advantage 338 

for estimating forest age in China (Table 2). It produces optimal results in five vegetation zones and is as accurate as the best-339 

performing algorithms in the remaining vegetation zones (Supplementary Table 5). Therefore, we recommend giving priority 340 

to the utilization of the CatBoost algorithm in deriving the forest structural parameters in China.  341 

 342 

In the process of machine learning modelling for forest age estimation, we selected a total of 10 features, including canopy 343 

height, meteorological factors, soil factors, terrain factors, and human activities. Factor analysis indicates that canopy height 344 

has significantly influence forest age modelling, which is consistent with previous research, such as Zhang et al. (2017), who 345 

estimated forest age in China based on the relationship between canopy height and forest age. The main reason is that canopy 346 

height is typically correlated with the growth period (Sharma and Parton, 2007; Schumacher et al., 2020; Lin et al., 2023). 347 

Young trees usually have shorter canopy height and, and as trees age, canopy height gradually increases (Yu et al., 2020). 348 

Therefore, canopy height gives clues about tree age, and many age-estimation models are based on forest height (Lin et al., 349 

2023). Terrain conditions also play important roles in all vegetation zones, especially the elevation and slope features (Figure 350 

2). This is mainly because terrain factors are closely related to vegetation distribution, growth conditions, and hydrological 351 

processes (Fernández-Martínez et al., 2014) and affecting forest age estimation (Lin et al., 2008). Climate factors, including 352 

temperature and precipitation, also play a significant role in estimating forest age and have been applied to estimate global 353 

forest age (Besnard et al., 2021). Climate elements are most pronounced in the SE and QT vegetation zones because these two 354 

zones belong to areas with extreme climates and pronounced seasonal variations (Zhang et al., 2018). The SE region has a 355 

warm and humid climate with abundant rainfall (Zhang et al., 2018), which aligns with seasonal growth, making it influential 356 

in forest age estimation. The QT region experiences extreme temperature fluctuations, with extremely cold winters and short 357 

and cool summers, significantly affecting tree growth rates and cycles (Zhang et al., 2021). Although soil and human activities 358 

seem to have a relatively smaller impact in this study, the high accuracy achieved in this study is attributed to the combined 359 

contributions of all factors. 360 

 361 

The second method uses time-series remote sensing imagery and the LandTrendr algorithm to detect pixels that changed within 362 

the forest extent from 1985 to 2020. The forest age was estimated according the time since the last disturbance serving as a 363 

proxy for forest age. This approach has been extensively used to estimate forest age and is generally acknowledged to be 364 

accurate and reliable for detecting disturbance (Hermosilla et al., 2016). For instance, Du et al. (2022) used the LandTrendr 365 

algorithm to detect planting times of global planted forests, and Xiao et al. (2023) estimated the forest age of young forests in 366 

China since 1984 by using the CCDC time-series algorithm. These successful cases validate the feasibility of using time-series 367 

change-detection algorithms to estimate the age of disturbed forests. In this study, we compared our change-detection derived 368 

forest age with the age of young forests provided by Xiao et al. (2023) (Figure 8). These two outcomes have a mean difference 369 

of −3.79 years (Figure 8a) and have a significant linear relationship with R2 = 0.53 (Figure 8b).  370 
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 371 

Figure 8. (a) Age difference and (b) linear relationship between estimated forest age and China’s Young Forest Age dataset generated by 372 
Xiao et al. (2023).  373 

 374 

Overall, we produce a reliable forest age map for China. This forest age product has been validated by independent field 375 

samples and compared against existing datasets with a R2 ranging from 0.51 to 0.62 (Figure 6). However, there is still a slight 376 

overestimation of younger forest and an underestimation of older forest compared with validation samples, which is mainly 377 

related to dataset and methods used in this study. In terms of dataset, primarily, the utilization of forest mask that delineate 378 

planted and natural forests introduces an inescapable source of uncertainty, which is particularly high (approximately 10%) in 379 

the southern regions of China (Cheng et al., 2023a). Furthermore, the dependence on canopy-height data generated by Liu et 380 

al. (2022) as the crucial determinant in forest age estimation (Figure 2) necessitates meticulous consideration (Zhang et al., 381 

2017), giving the uncertainties in the canopy-height data (R2=0.55) could strongly affect the accuracy in forest age modelling. 382 

Finally, when benchmarked against extant products, conspicuous disparities in forest age estimates appear within the 383 

northeastern and southwestern regions (Figure 7). These disparities, coupled with insights from forest inventory data, highlight 384 

the prevalence of older forests (exceeding 100 years) within these regions (Figures 4). The unique challenge posed by 385 

estimating the age of such older forests, characterized by sluggish growth rates (Maltman et al., 2023), accentuates the 386 

sensitivity to crown height data. Consequently, the uncertainty associated with canopy height data is conspicuously accentuated 387 

in these regions. Regarding to methods, we combined MLA and disturbance detection approach to derive forest age, for MLA, 388 

overfitting is a common challenge, where a model learns the training data too well and fails to generalize to unseen data (Belgiu 389 

and Drăguţ 2016). The results presented in Supplementary Table 5 suggest that the constructed forest age models exhibit a 390 

certain degree of overfitting, which can cause some errors for forest age estimation. Addressing the issue of overfitting, data 391 
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augmentation and exploring new deep learning algorithms may be promising directions for further investigation. For 392 

LandTrendr approach, it is affected by different parameters such as input bands, vegetation parameters (NBR index), climates, 393 

vegetation, terrain and atmospheric conditions (Banskota et al. 2014; Hermosilla et al, 2015; Hua et al, 2021; Huang et al, 394 

2023; Yang et al, 2018). China's unprecedented development has led to extensive land cover changes, making it one of the 395 

most intensively managed forest regions globally (Tong et al., 2020). This has resulted in significant forest fragmentation, 396 

posing challenges in using NBR and other indices for change detection (Li et al 2024), and creating uncertainty in forest age 397 

identification. Furthermore, while the LandTrendr algorithm effectively captures sharp disturbances like fires, clearcutting, 398 

and reforestation, it falls short in detecting subtle changes such as silviculture and thinning (Huang et al. 2023; Zhu 2017), 399 

This limitation may lead to the omission of young trees and an overestimation of forest age. 400 

5 Data availability 401 

The 30 m resolution forest age map of China generated by this study is openly available at 402 

https://doi.org/10.5281/zenodo.8354262 (Cheng et al., 2023b). Please contact the authors for more detailed information 403 

6 Conclusion 404 

High-resolution and spatially explicit forest age mapping for China play a crucial role in accurately quantifying the current 405 

carbon sequestration of forest ecosystems and its potential in the future. Currently, publicly available China’s forest age data 406 

suffer from low resolution and incomplete coverage of age ranges, making it difficult to meet the requirements of studies at 407 

various spatial scales. Therefore, this study combines time-series analysis of remote sensing imagery with MLAs to create the 408 

first 30 m resolution China’s forest age map for the year of 2020. Validation against forest inventory data, field measurements, 409 

and existing products demonstrates the R2 values between 0.51 and 0.62. The estimated forest age data reveal an average forest 410 

age of 56.1 years for China, with a standard deviation of 32.7 years. This dataset holds significant importance for understanding 411 

the carbon source and sink dynamics in China’s forest ecosystem. 412 
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