A new habitat map of the Lena Delta in Arctic Siberia

2 based on field and remote sensing datasets

- 3 Simeon Lisovski^{1,*}, Alexandra Runge^{2,*}, Iuliia Shevtsova¹, Nele Landgraf³, Anne Morgenstern²,
- 4 Ronald Reagan Okoth^{1,4}, Matthias Fuchs², Nikolay Lashchinskiy^{5,6}, Carl Stadie^{2,7}, Alison
- 5 Beamish⁸, Ulrike Herzschuh^{1,9,10}, Guido Grosse^{1,11}, Birgit Heim¹
- 6
- 7 * Both authors contributed equally
- ¹ Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial
 9 Environmental Systems, 14473 Potsdam, Germany
- ² Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Permafrost Research, 14473
 Potsdam, Germany
- 12 ³ Humboldt University, Department of Geosciences, 12489 Berlin, Germany
- ⁴ Julius-Maximilians Universität Würzburg, Institute of Geography and Geology, Oswald-Külpe-Weg 86,
 97074 Würzburg, Germany
- ⁵ Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences, Novosibirsk,
 630090 Russia
- ⁶ Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch, Russian Academy of
 Sciences, Novosibirsk, 630090 Russia
- ⁷ University of Greifswald, Institute for Geography and Geology, Germany (current address: University of Copenhagen, Department of Earth Science and Nature Management, Denmark)
- 21 ⁸ GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam.
- ⁹ University of Potsdam, Institute of Environmental Sciences & Geography, Karl-Liebknecht-Str. 24-25,
 14476 Potsdam, Germany
- ¹⁰ University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476
 Potsdam, Germany
- 26 ¹¹ University of Potsdam, Institute of Geosciences, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- 27
 Correspondence to: Simeon Lisovski (Simeon.Lisovski@awi.de), Alexandra Runge

 28
 (alexandra.runge@gfz-potsdam.de), Birgit Heim (birgit.heim@awi.de)

 Deleted: (Simeon.Lisovski@awi.de)

29

31 Abstract. The Lena Delta is the largest river delta in the Arctic (about 30 000 km2) and prone to 32 rapid changes due to climate warming, associated cryosphere loss and ecological shifts. The delta is 33 characterized by ice-rich permafrost landscapes and consists of geologically and geomorphologically 34 diverse terraces covered with tundra vegetation and of active floodplains, featuring approximately 6 35 500 km of channels and over 30 000 lakes. Because of its broad landscape and habitat diversity the 36 delta is a biodiversity hotspot with high numbers of nesting and breeding migratory birds, fish, 37 caribou and other mammals and was designated a State Nature Reserve in 1995. Characterizing 38 plant composition, above ground biomass and application of field spectroscopy was a major focus of 39 a 2018 expedition to the delta. These field data collections were linked to Sentinel-2 satellite data to 40 upscale local patterns in land cover and associated habitats to the entire delta. Here, we describe 41 multiple field datasets collected in the Lena Delta during summer 2018 including foliage projective 42 cover (Shevtsova et al., 2021a), above ground biomass (Shevtsova et al., 2021b), and hyperspectral 43 field measurements (Runge et al., 2022, https://doi.pangaea.de/10.1594/PANGAEA.945982). We 44 further describe a detailed Sentinel-2 satellite image-based classification of habitats for the central 45 Lena Delta (Landgraf et al., 2022), an upscaled classification for the entire Lena Delta (Lisovski et 46 al., 2022), as well as a synthesis product for disturbance regimes (Heim and Lisovski, 2023, 47 https://doi.org/10.5281/zenodo.7575691) in the delta that is based on the classification, the 48 described datasets, and field expertise. We present context and detailed methods of these openly 49 available datasets and show how their combined use can improve our understanding of the rapidly 50 changing Arctic tundra system. The new Lena Delta habitat classification represents a first baseline 51 against which future observations can be compared. The link between such detailed habitat 52 classifications and disturbance regime may provide a better understanding of how Arctic lowland 53 landscapes will respond to climate change and how this will impact land surface processes.

Deleted: habitat types

(Deleted: they
(Deleted: distribution dataset
(Deleted: With the
(Deleted: type
~(Deleted: regimes future upscaling efforts

61 1 Introduction

Global warming has profound impacts on the polar regions (Serreze and Barry, 2011; Overland et
 al., 2019). Rapidly increasing temperatures and changing precipitation regimes result in declining
 sea ice, warming and thawing of permafrost, more frequent tundra fires, and changes in vegetation

65 (e.g., Biskaborn et al., 2019; Hu et al., 2015; Mauclet et al., 2022; Box et al., 2019; Amap, 2021).

66 The Arctic tundra biome, which is normally characterized by harsh living conditions and nutrient-

67 deficiency, has experienced rapid phenological shifts, such as earlier green-up in spring, which is

68 also associated with increasing shrubification rates (Mekonnen et al., 2021). Shifts in plant

69 communities are also driven by changing nutrient availability in permafrost soils (Mekonnen et al.,

70 2021; Mauclet et al., 2022), affecting the net primary productivity of tundra ecosystems.

71 Satellite-derived remote sensing can provide large-scale assessments of Arctic vegetation cover and

72 changes therein (Bartsch et al., 2016). For example, the Circumpolar Arctic Vegetation Map (CAVM)

73 project, from the Conservation of Arctic Flora and Fauna working group (CAFF), provided a first

74 panarctic vegetation composition map based on Advanced Very-High Resolution Radiometer

75 (AVHRR) false-color infrared (CIR) composites at a 1:4 million map scale (Walker, 1998; Raynolds

76 et al., 2019). Later, higher resolution land cover maps became available across all spatial scales

77 from national and international efforts such as the NASA Arctic-Boreal Vulnerability Experiment

78 (ABoVE) providing open-source data collections from boreal and arctic regions (ABoVE Science

79 Definition Team, 2014) specifically for Alaska, Canada, Northern Europe, and Western Siberia,

providing a better bridge to field measurements. Such products greatly assist in monitoring and
 upscaling of patterns and dynamics of soil properties, land-atmosphere fluxes, ecosystem states,

82 and changes therein (e.g., Walker, 1998; Beamish et al., 2020; Berner et al., 2020; Sweeney et al.,

83 2022; Macander et al., 2022; Endsley et al., 2022). For selected Eastern Siberian tundra regions,

84 land cover maps have been produced (e.g., Veremeeva and Gubin, 2009; Bartsch et al., 2019;

85 Schneider et al., 2009), including the Lena Delta (Bartsch et al., 2019; Schneider et al., 2009).

Arctic river deltas represent distinct and vulnerable geomorphological and ecological regions at the
 marine-terrestrial boundary. River deltas have been studied intensively to better understand land

88 cover and vegetation compositions (Jorgenson, 2000; Schneider et al., 2009; Frost et al., 2020;

89 Bartsch et al., 2020), carbon pools and fluxes (Bartlett et al., 1992; Schneider et al., 2009; Sachs et

90 al., 2008; Rossger et al., 2022), and land cover change caused by climate change impacts

91 (Jorgenson, 2000; Pisaric et al., 2011; Lantz et al., 2015; Nitze and Grosse, 2016; Vulis et al., 2021;

92 Juhls et al., 2021). With diverse habitats, Arctic river deltas are biodiversity hotspots (Gilg et al.,

93 2000), but at the same time are prone to rapid changes (Walker, 1998; Overeem et al., 2022). Arctic

94	deltas are affected by permafrost thaw (e.g., Pisaric et al., 2011; Nitze and Grosse, 2016; Vulis et
95	al., 2021), sea ice loss (Overeem et al., 2022), and increased sediment transport and organic load
96	during spring floods (Piliouras and Rowland, 2020; Juhls et al., 2021). Arctic river deltas are very
97	dynamic systems and high-resolution habitat information from these biodiversity hotspots is needed
98	to assess and predict changes and implications of Arctic warming.
00	The Long Delta is the longest Austic many delta segme estima a trained labor risk londer deservations
99 koo	The Lena Delta is the largest Arctic river delta representing a typical lake-rich lowland permatrost
100	landscape (Grigoriev, 1993). Over the past decades, the central Lena Delta pecame a place of
101	intensive international research. In addition to long-term permatrost monitoring at the Research
102	Station Samoylov Island (Hubberten et al., 2006; Boike et al., 2019), extensive records on
103	meteorology, soil and ecosystem characteristics (Zibulski et al., 2016; Boike et al., 2019; Boike et al.,
104	2008), hydrology (Fedorova et al., 2015), and greenhouse gas fluxes (Rossger et al., 2022; Holl et
105	al., 2019) are available, setting an important benchmark for further assessments of changes in an
106	Arctic river delta. During the summer season of 2018, an extensive field campaign to the Lena Delta
107	led to an unprecedented amount of field datasets including vegetation cover recordings, above
108	ground biomass estimates, and spectral characterisation of the different vegetation/land cover units.
109	These in situ datasets provide improved thematic detail allowing the development of habitat
110	classifications. In 2009, Schneider et al. (2009) developed the first land cover classification map for
111	the entire delta at 30 m spatial resolution based on Landsat-7 ETM+ satellite summer images from
112	2000 and 2001 to quantify delta-wide methane emissions. The availability of Sentinel-2 (S-2)
113	Multispectral Instrument (MSI) data from two orbiting satellite missions since 2016 and 2017 provide
114	high quality multispectral satellite data with a higher spatial resolution in the Visible and Near
115	Infrared wavelength of up to 10 m, and of 20 m in the Red Edge and the Short- Wave Infrared
116	wavelength regions (Drusch et al., 2012, ESA 2015). Together with the extensive ground
117	observations from the Lena Delta in 2018 this enables an updated classification, using the higher
118	resolution <u>S-2</u> images and improved thematic detail
119	In the following study, field datasets as well as derived multispectral satellite images from the
120	summer season 2018 for the Lena Delta were used to provide 1) an updated data-driven framework
121	for plant communities and associated habitat classes in the Lena Delta, 2) a high-resolution habitat
122	mapping product for the entire delta, and 3) a disturbance regime map linked to habitat classes.
123	These datasets enhance our understanding of the Lena Delta system and will build a baseline and

 123
 These datasets enhance our understanding of the Lena Delta system and will build a baseline and

 124
 framework for future spatio-temporal analysis of more detailed processes and changes within this

125 highly sensitive ecosystem.

Deleted: last Deleted: has been Deleted: projects

Deleted: increase

Deleted: datasets collected within
Deleted: higher resolution Sentinel-2 (S-2, 10 to 20 m pixel
Deleted:)
Deleted: based on extensive ground observations.
Deleted: and
Deleted: Earth Observation products based on
Deleted: , S-2
Deleted: data
Deleted: as an example for the application of such an habitat map
Deleted: an upscaling of information on
Deleted: regimes and links
Deleted: types. Integrating these
Deleted: enhances

145 2 Study Area

146 The Lena Delta is located in northeastern Siberia's continuous permafrost zone between 72° and 147 74°N and 123° to 130°E (Figure 1). With an area of about 30 000 km², it is the largest delta in the 148 Arctic and one of the largest in the world (Walker, 1998; Schneider et al., 2009). It is surrounded by 149 the Laptev Sea to the west, north, and east, and the Chekanovsky and Kharaulakh mountain ranges 150 border it to the south. The delta is characterized by numerous river channels and more than 1500 151 islands with a diverse geologic history (Grigoriev, 1993). Morphologically, the delta can be divided 152 into three distinct geomorphological main terraces (Grigoriev, 1993; Schwamborn et al., 2002). The 153 first main terrace, which comprises the Holocene fluvial terraces and the active floodplains, is the 154 youngest and most active part of the delta (Schwamborn et al., 2023), and covers most of the east-155 northeastern areas as well as the southern and southwestern-most parts This main terrace 156 predominantly consists of ice wedge-polygonal tundra (Nitzbon et al., 2020) as well as of barren and 157 vegetated floodplain areas (e.g., Rossger et al., 2022). The second main terrace, located in the 158 northwestern part, contains mostly sandy, comparably well-drained soils with low ground-ice content 159 (Schwamborn et al., 2002; Ulrich et al., 2009). Large, mostly north-to-south oriented lakes and 160 depressions are abundant in this area (Morgenstern et al., 2008). The third and oldest main terrace 161 consists mainly of remnants of a Late Pleistocene accumulation plain with ice- and organic-rich 162 sediments (so-called Yedoma deposits) and is characterized by polygonal tundra with large ice 163 wedges, deep thermokarst lake basins, and thermo-erosional valleys (Morgenstern et al., 2011; 164 Morgenstern et al., 2021). The third terrace is found on islands in the southern delta region 165 (Schirrmeister et al., 2003; Schirrmeister et al., 2011). Permafrost in the area has a thickness of 166 about 500-600 m (Romanovskii and Hubberten, 2001). The active layer depth, i.e., the seasonally 167 thawing upper soil layer, on the first terrace is usually in the range of 30 to 50 cm and 80 to 120 cm 168 on the floodplains (Boike et al., 2019). The larger region is characterized by an Arctic continental 169 climate with low mean annual air temperatures of -13 °C, a mean temperature in January of -32 °C, 170 and a mean temperature in July of 6.5 °C. The mean annual precipitation is low and amounts to 171 about 190 mm (World Weather Information Service).

As part of past Russian-German expeditions to the Lena Delta, most research during the last two
decades has been carried out on the islands of Samoylov and Kurungnakh in the central delta
(Figure 1). Samoylov Island (72°22' N, 126°29' E) covers an area of about 5 km² and is
representative of the first terrace together with an active floodplain (Boike et al., 2019; Boike et al.,
2008). The vegetation and soil types are diverse at local scales due to high lateral variability of the
polygonal microrelief consisting of drier polygon rims, and moist to wet polygonal depressions and
troughs (Nitzbon et al., 2020; Kienast and Tsherkasova, 2001). In contrast, Kurungnakh Island is

mainly composed of late Pleistocene Yedoma deposits that belong to the third delta terrace
(Grigoriev, 1993) with elevation up to 55 m above sea level (m a.s.l.) (Morgenstern et al., 2013).
Holocene cover deposits and peat-rich permafrost soils are distributed across the surface of the third
Lena River terrace and especially concentrated in the deep thermokarst basins called "alases".
Alases are important landscape-forming features of the ice-rich Yedoma permafrost zone, which are
mainly caused by extensive melting of excess ground ice in the underlying permafrost (Van

Several new datasets are presented for the Lena Delta that are spatially and thematically connected

185 Everdingen, 1998).

186

188

187 3 Datasets and methods

189 and support vegetation, habitat, and land cover applications for this region (Figure 1). 190 Two datasets feature field-measured vegetation data, providing information on foliage projective 191 cover (Dataset 1) and above ground biomass (Dataset 2) recorded in the central Lena Delta in 192 summer 2018 across 26 selected vegetation plot sites (supplementary table S1, S2). The field plots 193 of 30 x 30 m (900 m²) were chosen to be representative for typical vegetation communities (vascular 194 plants, moss and lichen cover) as largely homogenous sites representative for the surrounding area. 195 In addition, a total of 28 in-situ, canopy-level hyperspectral field measurements were acquired in 30 196 x 30 m plots with homogeneous vegetation or barren to partially vegetated areas (spectral 197 reflectance field measurements; Dataset 3). Of the 28 hyperspectral measurements, 15 were 198 conducted at the vegetation plot sites of Datasets 1,2 three measurements were repeat 199 measurements to capture vegetation senescence, and at 10 spectrometry plots we conducted 200 hyperspectral field measurements without floristic inventories but with detailed plot documentation. 201 Based on expert knowledge, we defined representative habitat classes and identified homogeneous 202 regions within the central Lena Delta to train and apply a classifier using a S-2 satellite image from 203 summer 2018 (Dataset 4). Due to the high reliability of the central Lena Delta vegetation 204 classification and positive evaluation by field experts, we used this vegetation classification as a 205 training dataset for a robust classifier that was subsequently applied to a S-2 image mosaic for the 206 entire Lena Delta for 2018 to develop a new Lena Delta habitat map (Dataset 5). 207 Finally, using the habitat classes, probability maps for exposed sandbars and water distribution, and 208 information from the in-situ dataset (Datasets 1 & 2), we extrapolated a classification of disturbance

regimes across the delta (Dataset 6) as an application example for the habitat classes.

Deleted: Here,

Deleted: and an upscaling application

Deleted: ,

(Deleted: land cover
(Deleted: vegetation
(Deleted: Sentinel
X	Deleted: (S2)
\geq	Deleted: accuracy
(Deleted: Sentinel

Deleted: empirical

220 3.1 Foliage projective cover (Dataset 1)

221	A detailed description of plant composition for the 26 vegetation plots of the 2018 expedition to the	
222	Lena Delta was compiled (see supplementary table S1, S2, S3). Prior to the field work, the	
223	approximate site locations were defined for establishing representative vegetation plots based on	
224	field knowledge and evaluation of Landsat and Sentinel-2 satellite imagery. The aim was to cover	
225	representative vegetation communities of the central delta. There are vegetation communities with	
226	large area coverage that show high homogeneity within larger areas (10s of meters). Therefore, at	
227	each site location, we defined a 30 x 30 m square plot with a homogeneous or repetitive vegetation	
228	composition that was also representative of the wider land surface serving as an Elementary	
229	Sampling Unit (ESU). ESUs according to the Committee on Earth Observing Satellites Working	
230	Group on Calibration and Validation (Duncanson et al., 2021) serve as spatial training and	
231	validation units representative for the land surface for quantitative and qualitative remote	
232	sensing operations. In case of more patchy and heterogeneous vegetation structure we selected 30	
233	x 30 m squares embedded in a minimum of 50 x 50 m square of the same vegetation composition.	
		11
234	"The detailed floristic composition was recorded around the plot center in four successive rings of 50	×.
235	cm diameter. In addition, the vegetation plot was mapped in detail from above with one Red-Green-	ľ
236	Blue (RGB) and one Red-Green-Near Infrared (RGNIR) MAPIR camera using telescope stick-based	/
237	field photography. The projective vegetation cover was recorded in at least three subplots (2 m x 2	
238	m) within the plot. If the vegetation cover was highly homogenous, three subplots were established.	
239	In the case of moisture differences, e.g. in polygonal tundra with dry rims and moist to wet	
240	depressions, we established higher numbers of subplots capturing moist as well as dry patches	\
241	(see, Figure 2 <u>& 3</u> describing the concept). We compiled the floristic composition to foliage projective	/
242	cover by plant taxa on each 2 x 2 m subplot for the different canopy levels and extrapolated for the	
243	30 m x 30 m plot. We used the RGB and NIR field photos to make an estimate on the share of moist	
244	and dry surface area to calculate an averaged projective vegetation cover. The ring survey data was	
245	not included in the plot average. The dataset of percentage foliage projective cover per vegetation	
246	plot is published in PANGAEA (Shevtsova et al., 2021a,	

248 3.2 Above ground plant biomass (Dataset 2)

Above-ground biomass (ABG) was sampled in the field in 25 of the 26 vegetation plots in 2018 (see supplementary table S1, S2, S3). Within each 2 x 2 m subplot a 0.5 m x 0.5 m representative plot Deleted: At

Deleted: plot centre in a
Deleted: type
Deleted:)

Deleted: patchier Deleted: patchier Deleted: were careful that the Deleted: were set Deleted: type Deleted: First, the projective vegetation cover Deleted: centre was recorded Deleted: optimized floristic composition Deleted: per ground cover vegetation type inside Deleted: ground Deleted: nore diverse vegetation, for example Deleted: upscaled to Deleted: using Deleted: photo maps.		
Deleted: , Deleted: were careful that the Deleted: were set Deleted: type Deleted: First, the projective vegetation cover Deleted: centre was recorded Deleted: width from the plot centre Deleted: Detailed floristic composition Deleted: per ground cover vegetation type inside Deleted: ground Deleted: nore diverse vegetation, for example Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: patchier	
Deleted: were careful that the Deleted: were set Deleted: type Deleted: First, the projective vegetation cover Deleted: centre was recorded Deleted: width from the plot centre Deleted: Detailed floristic composition Deleted: per ground cover vegetation type inside Deleted: ground Deleted: nore diverse vegetation, for example Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: ,	
Deleted: were set Deleted: type Deleted: First, the projective vegetation cover Deleted: centre was recorded Deleted: width from the plot centre Deleted: Detailed floristic composition Deleted: per ground cover vegetation type inside Deleted: ground Deleted: nore diverse vegetation, for example Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: were careful that the	
Deleted: type Deleted: First, the projective vegetation cover Deleted: centre was recorded Deleted: width from the plot centre Deleted: Detailed floristic composition Deleted: per ground cover vegetation type inside Deleted: ground Deleted: , only Deleted: more diverse vegetation, for example Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: were set	
Deleted: First, the projective vegetation cover Deleted: centre was recorded Deleted: width from the plot centre Deleted: Detailed floristic composition Deleted: per ground cover vegetation type inside Deleted: ground Deleted: nore diverse vegetation, for example Deleted: more subplots were Deleted: using Deleted: photo maps.	Deleted: type	
Deleted: centre was recorded Deleted: width from the plot centre Deleted: Detailed floristic composition Deleted: per ground cover vegetation type inside Deleted: ground Deleted: ground Deleted: nore diverse vegetation, for example Deleted: more subplots were Deleted: using Deleted: photo maps.	Deleted: First, the projective vegetation cover	
Deleted: width from the plot centre Deleted: Detailed floristic composition Deleted: Detailed floristic composition Deleted: per ground cover vegetation type inside Deleted: ground Deleted: ground Deleted: only Deleted: more diverse vegetation, for example Deleted: more subplots were Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: centre was recorded	
Deleted: Detailed floristic composition Deleted: per ground cover vegetation type inside Deleted: ground Deleted: ground Deleted: only Deleted: more diverse vegetation, for example Deleted: more subplots were Deleted: upscaled to Deleted: photo maps.	Deleted: width from the plot centre	
Deleted: per ground cover vegetation type inside Deleted: ground Deleted: ground Deleted: nore diverse vegetation, for example Deleted: more subplots were Deleted: upscaled to Deleted: photo maps.	Deleted: Detailed floristic composition	
Deleted: ground Deleted: , only Deleted: more diverse vegetation, for example Deleted: more subplots were Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: per ground cover vegetation type inside	
Deleted: , only Deleted: more diverse vegetation, for example Deleted: more subplots were Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: ground	
Deleted: more diverse vegetation, for example Deleted: more subplots were Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: , only	
Deleted: more subplots were Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: more diverse vegetation, for example	
Deleted: upscaled to Deleted: using Deleted: photo maps.	Deleted: more subplots were	
Deleted: using Deleted: photo maps. Deleted:	Deleted: upscaled to	
Deleted: photo maps.	Deleted: using	
Deleted:	Deleted: photo maps.	
Deleted:		
Deleteu.	Deleted: .	

Deleted: selected

274	was selected for ABG sampling. AGB sampling for moss and lichens was conducted within 0.1 $\underline{m}x$	
275	0.1 m subplots inside the 0.5 \underline{m} x 0.5 m subplots.	
276	In total, 174 fresh AGB samples were collected and weighed in the field or subsequently at the	
277	Samoylov research station. AGB samples with a weight exceeding 15 g were subsampled. The plant	
278	samples were then dried for two to four days in a warm dry place and finally oven-dried for ca. 24	
279	hours at a temperature of 60 °C before re-weighing. All AGB assessments per plant community type	
280	were upscaled to the 30 m x 30 m plot in g/m ² using the foliage projective cover data. The dataset of	Deleted: field photo maps.
281	AGB per vegetation plot has been published in PANGAEA (Shevtsova et al., 2021b,	
282	https://doi.pangaea.de/10.1594/PANGAEA.935923).	
283	3.3 Hyperspectral field measurements (Dataset 3)	
284	Hyperspectral field measurements were conducted in the central Lena Delta in August 2018 with the	
285	aim to collect surface reflectance spectra of different homogeneous land cover units across a variety	
286	of delta land surfaces, and vegetation composition. In total, we collected 28 hyperspectral field	Deleted: .
287	measurements in homogeneous 30 x 30 m spectrometry plots, (Table S5), with 15 of them equalling	Deleted: ,
288	the vegetation plots across Samoylov and Kurungnakh islands (see Dataset 1 & 2 and	
289	supplementary table S4), three as repeat measurements at the end of August to capture the change	
290	in spectral signature during senescence since the beginning of August and the remaining 10 field-	
291	spectroscopy plots focusing on non-vegetated areas such as sandy parts of the floodplain. We	
292	conducted the field-spectroscopy measurements with a Spectral Evolution SR-2500 field	
293	spectrometer with a 1.5 m Fiber Optic Cable. The instrument was calibrated to spectral radiance	
294	within a wavelength range of 350 to 2500 nm. Within the 30 x 30 m homogeneous spectrometry	
295	plots we acquired about 100 individual measurements, randomly scattered across the plot. Before	
296	and after each survey we conducted reference measurements by measuring the back reflected	
297	downwelling radiance from a Zenith Lite [™] Diffuse Reflectance Target of 50% reflectivity to normalize	
298	to surface reflectance percentages per wavelength. The averaged individual measurements of the	
299	reflectance of each spectrometry plot was published in the PANGAEA data repository (Runge et al.,	
300	2022, https://doi.pangaea.de/10.1594/PANGAEA.945982).	
301	3.4 Central Lena Delta habitat classification (Dataset 4)	
302	3.4.1 Habitat <u>classes</u>	Deleted: Classes
000		
303	Based on the vegetation plots (Dataset 1 & 2) and from field knowledge, different habitat classes	Deleted: types
304	characterized by distinct plant communities, moisture regimes and soil properties were defined. Non-	

310	vegetated areas ((e.g., sand)) and water were	added as additional	classes using band thresholds
-----	-------------------	--------------	------------------	---------------------	-------------------------------

- B11 (Table 1). During an iterative process within aS-2 based supervised classification, additional habitat
- 312 classes that were not covered by the vegetation plots (Dataset 1 & 2) were added: i) The polygonal
- 313 tundra complex could spectrally be separated into distinct classes related to different surface water
- 314 abundance in the form of intra- and interpolygonal ponds, therefore, we implemented three different
- 315 polygonal tundra complex classes, with up to 10%, 20%, 50% surface water cover respectively, and
- 316 ii) one class of 'sparsely vegetated' representing the areas of transition zones between vegetated
- 817 and barren. Table 1 provides details on habitat class descriptions and established methods to
- 318 distinguish habitats.
- 319 3.4.2 Satellite data processing
- 320 The central Lena Delta habitat classification is based on one high quality cloudless S-2) image from
- 321 August 6 in 2018, representing the late summer. The S-2 top of atmosphere reflectance, (TOA)
- 322 image data was processed by the German Space Agency DLR (B. Pflug, oral communication, 2019)
- 323 to bottom of atmosphere (BOA) surface reflectance using the newest version of the atmospheric
- 324 correction processor Sen2Cor later released as ESA Sen2Cor in 2020. Atmospheric correction
- 325 processing was performed with the default rural aerosol model. All spectral bands were resampled to 326
- the 10 m pixel resolution bands. The 60 m pixel resolution bands (B1, B9, B10) that support
- 327 atmospheric correction, but are not optimal for land surface classification, were removed. We added
- 328 the normalized difference vegetation index (NDVI; NIR-RED / NIR + RED) to the band collection.
- 329 3.4.3 Central delta habitat classification
- S-2 pixels from the 30 x 30 m ESUs (dataset 1, Shevtsova et al. 2021a), and additional polygons 330
- 331 defined by expert knowledge, led to 8 626 training pixels <u>(50% to train</u> the classifier and 50% for
- 332 validation) for the habitat classification, (training points shown in Appendix A4 and are published in
- 333 the Landgraf et al 2022a data collection). We tested several classifiers and different selected band
- 334 combinations (spectral bands and NDVI). Water (transparent to turbid) and sandbanks were omitted
- 335 in the classification processing by masking them as inactive using a band threshold, water mask was
- 336 based on the NIR 10 m band 8 (NIR < 0.02) and the sand mask was based on the blue 10 m band 2
- 337 (Blue > 0.07, Table 1). The classification was tuned to depict vegetation composition and was
- 338 gualitatively assessed well known to the classification developers. Best results for the habitat
- 339 classification were obtained using a random forest classification with a band combination of all S-2
- 340 VIS, Red-Edge, NIR and SWIR bands, and the NDVI. The chosen classifier was able to distinguish
- 341 between relevant classes (Table 1) and could even identify patchy spots of specific habitat classes.
- 342 In addition to the defined water and sand classes, the final central Lena Delta classification contains

Deleted: the S	
Deleted: types	
Deleted: three	

Deleted: vegetated	
Deleted: as	
Deleted: type	

 Deleted: 2A Level 2A
 Deleted: Level-1C (
 Deleted: ,
 Deleted: Level-2A (
 Deleted:

(Deleted: The Sentinel
(Deleted: vegetation plots,
(Deleted: for
·····(Deleted: .
-(Deleted: The classification was forced to express vegetation composition, biomass and moisture regimes. We omitted the water class

Deleted:	he sandbank surfaces from
Deleted:	method. The

Deleted: The final central Lena Delta habitat
classification contains 12 classes (including water and
barren/sand as distinct classes, see Table 1).

10 habitat classes (Table 1). The here defined central Lena Delta covers an area of 644.9 km² with a

367 <u>55.2 % vegetation cover.</u>

- 368 <u>To assess the classification performance we applied a cross-validation on an independent random</u>
- 369 selection of the training pixels (50 %). Based on a confusion matrix (supplementary table S5), the
- 370 classification accuracy was 96.78 %. However, this is partly due to strong autocorrelation resulting
- from pixel selection within polygons. More importantly, the accuracy was qualitatively tuned and
- 872 <u>evaluated based on ground-truthed knowledge of the development team.</u> The published dataset of
- Argent Standgraf et al. (2022, https://doi.pangaea.de/10.1594/PANGAEA.945057) provides the central Lena
- B74 Delta habitat classification map, the ESUs and the polygons used to train the classifier. The training
- dataset includes data from 23 of the 26 vegetation plots (dataset 1). The dataset provides additional
- 69 ESUs defined with expert knowledge gathered during several field expeditions to the Lena Delta.
- 377 <u>labeled as pseudo ESUs for potential future investigations.</u>

as an additional habitat class to the training data set.

378 3.5 Lena Delta habitat classification (Dataset 5)

379 3.5.1 Lena Delta habitat classes

380 In order to extend the habitat classification map to the entire Lena Delta, (29873.7 km²), we included 381 all the habitat classes covering the central Lena Delta (dataset 4, table 1). In addition, and based on 382 expert knowledge as well as extensive visual satellite image investigations, we added one habitat 383 class that is not present in the central Lena Delta: the second terrace in the northwest of the Lena 384 Delta is lithologically and geomorphologically different from the other two terraces present in the 385 central delta, and characterized by sandy substrates. In a hyperspectral CHRIS PROBA satellitebased geomorphological classification, Ulrich et al. (2009) described the second terrace featuring 386 387 very dry elevated sandbanks, barren or poorly vegetated areas with isolated lichens, moss, herbs, 388 dwarf shrubs or grasses (vegetation cover 0-60%, growth height: max. 20 cm, average active layer 889 depth of 1 m on the upland plain with old, vegetation-arrested sand dunes). Based on photos taken 390 at few locations in the field during past expeditions (see supplementary table S3) the habitat class 391 shows well-drained areas dominated by sandy substrate and diverse, sparse vegetation cover; some 392 areas are dominated by sedges, cotton grass and mosses with rare occurrences of lichens and 393 dwarf shrubs, while some areas are dominated by the latter. Schneider et al. (2009) defined the 394 same class as 'dry moss-, sedge- and dwarf shrub-dominated tundra (DMSD)'. We selected 35 395 ESUs for this habitat class characterized by high SWIR reflectance (S-2 band 11) due to dry land 396 surface conditions. The habitat class was named 'dwarf shrub - herb communities' and was added

Deleted: The chosen classifier was able to distinguish all relevant classes (Table 1) and was even able to identify patchy habitat spots. The result of

Deleted: indicated

Deleted: overall class accuracy of 96.78% . For the test,

Deleted: dataset, consisting of data points from the vegetation plots (Dataset 1, 2), was split in half and 4 313 pixel samples were used for a second run through the classification algorithm. The precision of each class was calculated with

Deleted:).

Deleted: and

Deleted: Dataset 1, 2), as well as

(Deleted: ,
(Deleted: habitats
-(Deleted: delta (Dataset
(Deleted: and
)(Deleted: an additional
(Deleted: type

Deleted: land cover

Deleted: this

Deleted: type

398

10

421 3.5.2 Satellite data processing

1	
422	The Lena Delta habitat classification was based on a 2-2 mosaic (top of atmosphere (TOA)
423	reflectance, Google Earth Engine Dataset) with images taken of the area between June 1 and
424	September 15, 2018. The images (N = 1685, distributed across 15 S-2 tiles) were filtered to discard
425	images with cloud cover above 20%. A cloud mask was applied to the remaining 262 images,
426	masking pixels where the quality band 'QA60' indicates clouds (band 10) or cirrus (band 11). All
427	spectral bands with 20 m resolution were resampled to match the 10 m resolution bands. Next, NDVI
428	was computed (see 3.4) for each image and one high-quality mosaic of all images based on the
429	maximum NDVI value per pixel was produced representing a snapshot of the peak summer
430	vegetation period. Using the median NIR band values across the 262 cloud-masked images, we
431	classified water with a threshold of < 0.07 reflectance. The remaining non-vegetated areas defined
432	by a threshold of NDVI < 0.4 were classified as barren/sand. The water- and sand-masked image
433	mosaics were then used in the classification pipeline with the following bands: B2 (blue), B3 (green),
434	B4 (red), B5 (red edge 1), B6 (red edge 2), B7 (red edge 3), B8 (NIR), B11 (SWIR 1), B12 (SWIR 2),
435	and NDVI.
136	2.5.2 Long Dolta Habitat alogsification

436 3.5.3 Lena Delta Habitat classification

437	From the central Lena Delta habitat classification (dataset 4) we sampled 7 500 random pixels to
438	train a random forest classifier (smileRandomForest in Google Earth Engine). In addition we added
439	35 pixels from the ESUs selected within the 'dwarf shrub - herb communities' of the north-western
440	Lena Delta. Unfortunately, no vegetation recording/monitoring schemes exist outside the central
441	Lena Delta. Therefore, independent validation of the classification across the Delta is not possible.
442	Similar to the validation of the central Lena Delta habitat classification, the results were carefully
443	checked with expert knowledge from the central Delta and a few adjacent regions that are known to
444	the developer team. Together with visual comparison of high resolution ESRI RGB satellite
445	background images, we consider the results accurate. A formal validation based on another random
446	sample of 5 000 points from the central Delta showed expected high accuracy of > 95 %.
447	Since the barren/sandy areas are highly dynamic with variable water levels mainly within (due to
448	flooding in spring and decreasing river flow during the summer season) but also across years
449	(discharge dynamics), we computed a sandbar probability map for the Lena Delta using cloud
450	masked S-2 (TOA reflectance) images between April 1 and October 15 from 2015 to 2021 (6.026
451	jmages). In each image, we <u>Jabeled</u> sandy pixels by NDVI < 0.4 AND NDWI > 0.095 AND NIR < 0.09
452	reflectance. Next, for each pixel in the Lena Delta, we computed the percentage of sandy pixels
453	across all images resulting in a sand probability map. The training dataset (random 7500 points, plus

Deleted: Sentinel

Deleted: 1684

 validation of the ...

 Deleted: Dataset

 Deleted: used the result

Deleted: Given the high accuracy and thorough

Deleted: To this end,

 Deleted: selected 7500 random points within the vegetated area of the central Lena Delta (labelled according to the underlying vegetation class of Dataset 4), plus...

 Deleted: Visual inspection of experts found high accuracy in ...

 Deleted: spatial distribution of

 Deleted: classes across the delta. Formal validation was based on ...

 Deleted: between the classification result and

 Deleted: training dataset (Dataset 4). In addition, and since...

 Deleted: Sentinel

Deleted: surface Deleted: n =

Deleted: . Deleted: image tiles

Deleted: labelled

Deleted: 9%

480 35 points with label 'dwarf shrubs - herb communities'), the habitat classification, and the sandbar

481 probability map was published in the PANGAEA repository (Figure 5, Lisovski et al., 2022,

482 https://doi.pangaea.de/10.1594/PANGAEA.946407).

483 **3.6 Lena Delta disturbance regimes (Dataset 6)**

484 The Lena Delta experiences different disturbance regimes, mapped and described in dataset 6.

485 Mainly annual flooding, but also local rapid thaw processes on the land surface of the terraces with

486 ice-rich permafrost, result in disturbance regimes forming distinct habitat <u>classes</u> (Table 2). The 487 floodplains experience seasonal flooding as a regularly occurring disturbance in spring after ice-

- floodplains experience seasonal flooding as a regularly occurring disturbance in spring after icebreak up (the spring flood). Very high disturbance regimes due to the most intense scour, erosion
- 489 and sedimentation result in barren sandbanks or in early-stage plant communities equalling the
- 490 'sparsely vegetated' habitat class. <u>The classes</u> 'moist to wet sedge communities', 'wet sedge
- 491 communities', 'moist equisetum and shrubs', 'dry shrub communities', 'dry grass to wet sedge
- 492 communities' represent the mid to advanced successional stages on the floodplain within areas of
- 493 high disturbance that are also described as shifting habitat class (Stanford et al., 2005; Driscoll and
- 494 Hauer, 2019).

In contrast to the high disturbance regimes on the floodplain, habitats on the first, second and third

- delta terraces are less extensively disturbed (low disturbance). In these areas typical mature-state
- tundra plant communities, are able to develop; 'polygonal tundra complex', 'tussock tundra', and
- 498 'dwarsh shrub herb communities'. However, locally, high disturbance occurs by rapid thaw
- processes of ice-rich permafrost on the first and third delta terraces with habitats characterized by
- 500 mid to advanced-stage plant succession; 'moist to wet sedge communities', 'wet sedge
- 501 communities', 'dry shrub communities', and 'dry grass to wet sedge' communities. Very high
- 502 disturbance due to intense rapid thaw processes occurs at eroding cliffs and lake margins, in steep
- 503 valleys and actively developing gullies resulting in barren surfaces with rims of sparsely vegetated
- transition zones. Given the link between plant communities and flooding as well as rapid thaw
- processes, we <u>characterized</u> the disturbance regimes for each habitat class (Table 2) and provide
- 506 <u>mapped</u> disturbance based on the habitat class of dataset 5 and the corresponding disturbance
- 507 regime for the entire Lena Delta (Figure 6, Heim and Lisovski, 2023,
- 508 https://doi.org/10.5281/zenodo.7575691).

Deleted: types

Deleted: (
Deleted: regime) with	
Deleted: types according to .	

Deleted:) allowin	g the	development of	the
2			

Deleted: :

Deleted: (

Deleted:)
Deleted: :

Deleted: characterised

Deleted: an upscaling product in the form of a Deleted: map

4 Results and Discussion 522

523 We deliver a detailed description and associated data products of the most prominent habitat 524 classes in the largest Arctic river delta, the Lena Delta. Supported by ecological field data of plant 525 composition, hyperspectral field measurements from the same sites, and regional expert knowledge 526 collected over decades, we develop a high-resolution S-2 based habitat map for the entire delta. The 527 compiled datasets, provide the necessary baseline for future investigations of the biochemical 528 processes, ecological dynamics, and responses to global warming within the Arctic tundra system of 529 the delta.

530 4.1 Habitat classes of the Lena Delta

531 Based on the floristic composition and biomass of the vegetation plots (Dataset 1, 2), the spectral 532 properties from hyperspectral field measurements (Dataset 3) as well as expert knowledge, we 533 defined 11 distinct habitat classes linked to different vegetation composition for the Lena Delta 534 (Figure 4). The selected S-2 spectral bands and the derived NDVI values allow a separation of the Deleted: 3 535 habitat classes into two distinct groups (the first separation level between habitat classes in Figure 536 4a, 1st hierarchical level). Three habitat classes ('wet sedge communities', 'moist Equisetum and 537 shrub communities', 'dry grass to wet sedge communities') formed in areas of high disturbance by 538 rapid thaw processes and regular flooding represent a distinct cluster with highest vegetation vitality 539 (high NDVI), and separated from the more stable and mature tundra communities ('polygonal tundra 540 complex', 'dry (tussock) tundra', and 'dry dwarf-shrub and herb communities'), and the other 541 successional plant communities ('moist to wet sedge complex', 'dry low shrub communities' and 542 'sparsely vegetated') all characterised by a lower NDVI range. The 'dry dwarf-shrub and herb 543 communities' form a separate cluster with the least overlap with other habitat classes within the two-544 dimensional non-metric multidimensional scaling (NMDS) space (2nd hierarchical level, Figure 3a; 545 Figure 4c) due to very low vegetation vitality and surface moisture (lowest NDVI, high red and SWIR 546 reflectance). There are two remaining habitat classes on the 3rd and 4th hierarchical level, which are 547 successional plant communities, the 'moist to wet sedge complex' and 'dry low shrub communities'. 548 The separation on the 3rd and 4th hierarchical level is mainly driven by higher NDVI of these 549 successional plant community classes in comparison with the mature state tundra plant communities 550 with lower NDVI (Figure <u>4a-b</u>). The 'dry grass to wet sedge communities' and the 'sparsely 551 vegetated area' habitat <u>class</u> (not covered by vegetation plots but added during the classification 552 process), show the largest overlap with the other habitat classes due to a high variability in 553 vegetation cover, biomass and moisture. In general, the ordination method (Figure <u>4b</u>) shows that

554 distinct plant communities and the associated habitat classes are mostly separated by a biomass Deleted: Combining

Deleted: as well as S-2 satellite data, allowed us to Deleted: and analyses

Deleted: and S-2 satellite data.

Deleted: 1, Figure 3a

Deleted: types Deleted: 2 Deleted: 3c

Deleted: 3a/	
Deleted: type	
Deleted: types	
Deleted: 3b	

gradient for which the NDVI is a good approximator. A further separation linked to potential spectral
proxies for biomass exists with the far red-edge and NIR bands (B6,7,8) but is less distinct than the
NDVI axis. Together with the SWIR (B11,12) the red (B4) and near red-edge (B5) bands, and less
strongly the blue and green bands (B2,3), the results indicate a habitat class separation based on

572 moisture, biomass and vegetation colour characteristics.

- 573 The vegetation plot selection was made in relation to the most typical habitats (e.g., Mueller-
- 574 Bombois and Ellenberg, 1974). For 15 of the 26 vegetation plots, we collected and provided
- 575 hyperspectral surface reflectance data (Runge et al., 2021). These measurements cover a variety of
- 576 landscape units including Yedoma uplands, floodplains (vegetated and non-vegetated), drained
- 577 thermokarst lake basins (old and recently drained), and areas covered by low shrub layers.
- 578 Comparing the hyperspectral surface reflectance with multispectral S-2 data, we found
- 579 commonalities in the discrimination of habitat classes along moisture gradients. Unfortunately, the
- 580 hyperspectral field measurements do not cover the biomass gradient. Plot measurements with the
- 581 field spectrometer are conducted with the hand-held instrument held at shoulder height, hence it was
- 582 not possible to acquire field spectroscopy measurements in disturbed patches with tall shrubs or
- 583 very sloped terrain. This highlights the difficulty in deriving high spectral resolution surface
- 584 reflectance measurements representative of fine scale differences between Arctic tundra habitat
- 585 classes if the plot properties become too challenging to measure.

586 In general, mature-state tundra plant communities have relatively similar spectral properties due to 587 low vascular plant cover (e.g., Beamish et al., 2017). In addition, the tundra vegetation communities 588 contain a wide range of accessory pigment composition (carotenoids and anthocyanins) that result in 589 a very similar spectral response (Beamish et al., 2018). Only the highly disturbed communities such 590 as wetlands or areas with tall shrubs are more spectrally distinct due to a high NIR reflectance 591 plateau (Buchhorn et al., 2013). Since the hyperspectral field measurements provide a higher spatial 592 resolution and thus also a measure of variability within areas of the same general habitat type, we 593 consider the measurements valuable for applications that aim at analysing ecological and

594 biochemical processes within distinct habitats in more detail.

595 4.2 Sentinel-2 based habitat classification

- Based on the identified habitat classes (Table 1) we applied a random forest classifier to map habitat
- 597 classes in the central Lena Delta and subsequently in the entire Lena Delta. Both maps represent
- 598 <u>the summer season of 2018 for which we could use a sufficient number of satellite images with low</u> 599 <u>cloud cover.</u>

Deleted: provide

Deleted: conditions

Deleted: 4.2 Habitat class mapping

The identified habitat classes (Table 1) in the central Lena Delta were mapped with S-2 satellite data and a random forest classifier, achieving an overall class accuracy of 96.78% (Dataset 4). Additionally, the classification contains a water and a sand class, which were derived separately based on band masking thresholds. The central Lena Delta classification depicts both the different vegetation types, such as 'wet sedge', 'dry tundra' and 'dry shrub communities', but also the varying moisture regimes and surface water contributions, for example for the 'polygonal tundra complex' in the central delta. ¶

Polygonal tundra is characterized by high spatial heterogeneity; at the meter-scale plant composition and diversity is defined by the polygonal microrelief and water level.

619 The Lena Delta habitat map shows the ice-rich first and third terraces mainly covered by i) the 620 'polygonal tundra complex' due to impeded drainage on the terrace plateaus and by ii) drier tundra 621 communities on well drained areas due to older degraded permafrost forms (detailed description in 622 Morgenstern et al., 2008, 2011). On the second terrace, the classified 'dry dwarf shrub and herb 623 communities' occur well separated from the moist habitat classes covering the floor of the alases. 624 On the floodplains, the rich mosaic outlines a wide spectrum of very diverse classes, the dry versus 625 moist and wet substrate habitats, in the active delta area.

626 Polygonal tundra is characterized by high spatial heterogeneity; at the decimeter to meter-scale

plant composition and diversity is defined by the polygonal microrelief and water level (Whitaker and 627

628 Woodwell, 1968; Forman and Godron, 1981; Zibulski et al., 2016; Nitzbon et al., 2020, Siewert et al.,

629 2021), Therefore, within a single S-2 pixel, dry polygonal rims, moist slopes, wet patches and

630 surface water can all be present. The spatial resolution of S-2 cannot capture the meter-scale, but

631 captures the heterogeneity between the different surface water contributions of the 'polygonal tundra

632 complex' on the first and third terrace. In the Lena Delta, the 'polygonal tundra complex with up to

633 50% surface water' represents the dominant habitat class with 25% of the delta area (about 7 434

634 km²). All other habitat classes represent 1-6% of the delta area with 'dwarf shrub-herb communities'

- 635 and 'moist to wet sedge complex' reaching 5.4% and 5.9%, respectively (Figure 6). Based on the
- 636 summer S-2 mosaic, the classes 'Water' and 'Sand' cover more than 40% of the delta. However,
- those two classes are extremely variable within and across years, depending on the river water level 637
- 638 during image acquisition time. To provide information on this variability, we calculated how often

639 each pixel in the delta (cloud free S-2 pixels from 2015 to 2022) was classified as sand (threshold

640 approach). This led to an additional sand probability layer with values between 0-100%.

641 Despite extensive research within the area, only a few classification products are available for the

642 Lena Delta. The new Lena Delta classification is a high-resolution (S-2, 10 m) map that focuses on 643 the delta-specific habitat classes and emphasizes the high level of heterogeneity across the delta.

644

We compared the Lena Delta habitat classification to existing classifications: the first published Lena 645

- Delta-wide land cover classification targeted towards tundra environments and the upscaling of 646 methane emissions with 30 m resolution (Schneider et al., 2009), the global ESA Climate Change
- 647 Initiative <u>CCI</u> land cover classification with 300 m resolution (<u>Defourny</u>, 2019), and a circum-arctic

648 standardized ESA GlobPermafrost land cover map of the Lena Delta with 20 m resolution (Bartsch

- 649 et al., 2019). We sampled the classification results with a regular point grid of more than 3 million
- 650 points which have an equal distance of 100 m to one another to compare the classification results.
- 651 Figures and tables with more information on class comparisons can be found in the supplements

652 (Table 1, Figure S3, S4m, S5). Overall, the classifications of the Lena Delta overlap well for 'water' Moved down [1]: Therefore, within a single S-2 pixel. dry polygonal rims, moist slopes, wet patches and surface water can all be present. The spatial resolution of S-2 cannot capture the meter-scale, but captures the heterogeneity between the different surface water contributions of the 'polygonal tundra complex' on the first and third terrace

Deleted: Field expertise and expert knowledge were key to accomplish the classification and verify its high accuracy.

The central Lena Delta classification was the basis for a delta-wide classification (Figure 5a, Dataset 5). We defined ESUs for the missing habitat class on the second terrace, produced an optimized standardized input dataset (S-2, Jun-Sept 2018), and applied the best performing classification algorithm (random forest classifier), to obtain a similarly high classification accuracy (98.6 % within the central Lena Delta), covering all three geomorphological terraces. The

Moved (insertion) [1]

Deleted: 5

Deleted: Sentinel

(Deleted: ,
(Deleted: ,
(Deleted: .

Deleted: XX

679	(water bodies (Defourny, 2019), shallow water (Schneider et al., 2009), water (different depths and		Deleted: ,
680	sediment yields, Bartsch et al. 2019)) and 'sand' (bare areas (Defourny, 2019), mainly non-		Deleted: ,
681	vegetated areas (Schneider et al., 2009), sand, seasonally inundated and disturbed (Bartsch et al.		
682	2019)) areas. Besides this, the mapped classes differ greatly from one another. For example, the		
683	dominant classes in the coarse ESA CCI land cover 2018 product (300 m) for the Lena Delta are		
684	'shrub or herbaceous cover', 'flooded', 'fresh / saline / brackish water', 'sparse vegetation (tree,		
685	shrub, herbaceous cover) (<15%)', and 'mosaic tree and shrub (>50%)', 'herbaceous cover (>50%)'.		
686	These broad classes describe the major land cover in the Arctic delta but fail to depict the		
687	heterogeneity of habitats and plant communities not only because of its coarse spatial resolution but		
688	also because of the broad class descriptions. Furthermore, smaller areas are classified as 'tree		
689	cover', 'needleleaved', 'evergreen / deciduous', 'closed to open (>15%)' and 'mosaic tree and shrub		
690	(>50%) / herbaceous cover (<50%)' which is an inaccurate depiction of the delta.		
691	This habitat map and the land cover classification from Schneider et al. (2009) resemble each other		
692	more closely, however, this habitat map shows more differentiation in the classes and spatial		
693	resolution, 10 m to 30 m, respectively. The only class description that is identical in both		
694	classifications, besides water and sand / mainly non-vegetated areas, is 'dry tussock tundra'.		
695	However, there is only a small match between these classes in the point comparison and most 'dry		Deleted: (Fig. Sx)
696	tussock tundra' areas from the Schneider et al. (2009) classification fall into the PC_50%:, PC_20%,		
697	'moist wet sedge complex' and 'dwarf shrub-herb communities'. The habitat map shows the mosaic		Deleted: dwarsh
698	of habitats on the floodplain with 'moist equisetum and shrubs on floodplain', 'dry low shrub		
699	community', 'moist to wet sedge' and 'wet sedge complex' which match with 'moist to dry dwarf		
700	shrub-dominated tundra' in the land cover classification of Schneider et al. (2009). Also, for the		Deleted: .
701	polygonal tundra complex, our habitat map shows more differentiation with three classes of up to		
702	50% 20% 10% surface water contribution versus two classes in Schneider et al. (2009) 'wet sedge		
703	and moss dominated tundra' and 'moist grass and moss dominated tundra' The areas covered by		
704	'PC_50%' and 'PC_20%' match with 'wet sedge- and moss-dominated tundra', and 'PC_20%' and		
705	'PC_10%' match with 'moist grass and moss-dominated tundra'. The overall aim of both maps is to		
706	differentiate between dry to wet land cover habitats as these describe the heterogeneity in the delta		Deleted: types/
707	well and determine factors related to methane emissions (see Schneider et al. 2009) and the	Ì	
708	different habitat classes.		
709	The land cover classification from ESA GlobPermafrost differentiates between 21 classes which are		
710	associated to eight broader groups, such as sparse vegetation, shrub tundra, forest, grassland,		
711	floodplain, disturbed, barren and water <u>(Bartsch et al., 2019).</u> With a spatial resolution of 20 m, the		Deleted: .
712	latter product is the closest to this habitat map. The major class 'wet ecotopes' of ESA		

720	GlobPermafrost match with our 'PC 50%:' on the first terrace and the 'moist to wet sedge complex'	
721	on the floodplains. On the floodplain however, other classes show less agreement. The ESA	
722	GlobPermafrost one class 'floodplain mostly fluvial' does not differentiate the floodplain classes	
723	further, in contrast to our habitat map differentiating between 'moist to wet sedge complex', 'wet	Deleted: beweeen
724	sedge complex', 'moist equisetum and shrubs' and 'dry low shrub community' on floodplain.	
725	Whereas the ESA GlobPermafrost class 'disturbed' (defined as forest fire scars, seasonally	
726	inundation and landslide scars can be found in 'PC 50%' predominantly, in 'sand', 'PC 20%' and	
727	'sparsely vegetated areas' in our habitat map. This underlines the complex structure of match and	Deleted: ,
728	mismatch between classifications.	
729	The land cover map from Schneider et al. (2009) is based on two cloud-free Landsat images from	
730	June/July 2000 and 2001, the ESA CCI land cover 2018 map is based on summer images as well.	
731	Hence, the images used for this habitat classification were acquired at a similar time as for the ESA	
732	CCI product and we do not expect differences based on changes on the ground due to this temporal	
733	concurrence. In the almost 20-year difference between Schneider et al. (2009) and this habitat map	
734	we do expect changes in vegetation composition. Overall, it is challenging to obtain sufficient cloud-	
735	free images during the summer months to fully cover the entire Lena Delta for a classification project	
736	and to depict a specific phenological state. Therefore, we created a Sentinel-2 composite mosaic	
737	based on the maximum NDVI value per pixel from June to September. With this we ensure to have	
738	the peak vegetation and phenology season represented as input for the habitat classification as	
739	much as possible and increase comparability to other classification studies despite a temporal	
740	mismatch.	
741	The habitat map gives an accurate and detailed description of the Arctic Lena Delta that	Deleted: a highly
742	incorporates extensive field data and expert knowledge. The habitat map is superior to the ESA CCI	
743	land cover map (2018) in both spatial resolution and class description as it depicts the	
744	heterogeneous habitat distribution. The 20m ESA GlobPermafrost classification matches the	
745	resolution of the habitat map closely but due to its wider geographical application with circum-Arctic	
746	standardized classes it does not optimally represent Lena Delta-specific habitats, such as the widely	
747	distributed polygonal tundra complex. Furthermore, the habitat map is an update to Schneider et al.	
748	(2009), which was based on three Landsat images from 2000 and 2001 and shows further	
749	differentiation of habitats, specifically representing the floodplain mosaics of this Arctic delta.	
750	4.2 Habitat linked disturbance regimes	Deleted: 2
751	Parts of the Lena Delta are characterised by disturbances due to annual floodings or rapid	
752	permafrost thaw processes leading to specific habitat classes. We provide, habitat linked disturbance	Deleted: an upscaling product of

758	regimes (describing the type and intensity of disturbances) across the delta. Our product (Dataset 6,	
759	Figure <u>6a</u>) shows that the largest part of the vegetated delta (excluding 12 439 km ² of 'sand' and	Deleted: 5a
760	'water' classes) is impacted by low disturbance, resulting in mature-state plant communities on the	
761	terrace plateaus (Figure 6b, 72%, 12 806 km ²). Specifically, the second terrace in the northwest of	Deleted: 5b
762	the delta, with low ice content, is least impacted by rapid thaw processes and not part of the active	
763	delta. In contrast, the habitats in the active delta are all linked to high disturbance (27%, 4 875 km ²).	
764	The 'moist to wet sedge complex' (10% of the vegetated Lena Delta) is the largest class considered	
765	to be formed by high disturbance. This class is found in larger patch sizes on the riverine floodplains,	
766	smaller patches on the floor of thermo-erosional valleys. Overall, 27.5% of the vegetated area of the	
767	Lena Delta experiences some level of high disturbance from either regular spring floods or from	
768	rapid thaw processes.	
769	Species richness, relative abundance and biomass characteristics are important habitat features that	
770	are influenced by landscape characteristics such as topography, water fluxes, soil types and	
771	disturbance regimes (Forman and Godron, 1981; Naiman et al., 1986; Pickett et al., 1989;	
772	Montgomery, 1999). Greig-Smith (1964), Woodwell and Whittaker (1968), and Forman and Godron	
773	(1981) described fragmentation of land surfaces due to disturbance (defined by type and intensities)	
774	and topography. In the Lena Delta, the terrace-related topography and active floodplain areas are	
775	major determinants of plant communities and habitat classes and are thus well reflected in the Lena	
776	Delta habitat map.	
777	The high disturbance regime on floodplains results in 'shifting habitats' (Stanford et al., 2005; Driscoll	
778	and Hauer, 2019). The annual spring floods and rapid thaw processes result in areas of high	
779	disturbances, habitats of mid to advanced plant successional stages showing high vascular plant	
780	above ground biomass (Figure \underline{bc}) due to the higher nutrient availability, a deeper active layer and	Deleted: 5c
781	more moisture (e.g., Myers-Smith et al., 2020). Within the low disturbance habitat classes, a thick	
782	moss layer as well as a low vascular plant coverage characterise the tundra community	
783	assemblages representing mature state plant communities. Because high disturbance patches are	
784	characterized by high vascular biomass, they can be well classified specifically in the NDVI, but also	
785	NIR and red edge bands of optical medium resolution sensors such as <u>S-2</u> . Within the vegetation	Deleted: S2
786	plots (Dataset 1), we did not find clear differences in species richness and in the Shannon diversity	
787	index between the disturbed and the undisturbed classes (Figure 6d). Since most disturbed habitat	Deleted: 5d
788	classes such as the 'moist to wet sedge', the 'wet sedge' as well as homogeneous patches of high	
789	shrubs (as part of the habitat class 'dry grass to wet sedge complex'), were not sampled in the field	
790	due to too challenging conditions, however they are clearly representing habitats with low species	
791	richness. In the extreme case disturbance can lead to barren and sparsely vegetated surfaces.	

797 <u>4.4 Classification accuracy and representativeness</u>

798 The field data was acquired during a field trip in July-August 2018, primarily focusing on 30 m x 30 m 799 homogeneous vegetation and land cover plots. Additionally, we relied on Sentinel-2 images for the 800 different classifications that were also acquired in summer 2018, covering the same period as the 801 field trip, and have a spatial resolution of 20 m. The temporal overlap of the field work and the 802 satellite image acquisitions ensures consistency across the different datasets and represents a close 803 relationship between datasets and products obtained in the field (dataset 1, 2 and 3) and the results 804 derived from the satellite images that use the field data as input. As Sentinel-2 images have a small 805 geolocation error, we could link our field plot locations directly with the satellite images. Furthermore, 806 the sampling and measurement design of the plots with 30 m x 30 m ensured a reliable link to the 807 satellite data with similar spatial resolution, as we followed the recommendations on ESU. The 808 RGBNIR Sentinel-2 bands have a spatial resolution of 10 m and the red edge (NIR) and SWIR 809 bands a spatial resolution of 20 m, and even if we downsampled the bands to 10 m the spectral 810 information is sustained. More information on datasets and their spatial and temporal resolutions are 811 provided in supplementary Table S3. 812 The presented datasets are limited by the regional in-situ observations and expert knowledge 813 collected mainly in the central Lena Delta. The remoteness of the area and extremely difficult B14 logistics to conduct research in the second terrace and the outer rims of the delta are major reasons 815 for these limitations. However, the delta is relatively homogeneous in habitat classes that develop 816 based on underlying geomorphology and the disturbance regime (annual flooding and permafrost 817 thaw processes). Only one major habitat class is absent from the well studied central Lena Delta and 818 only occurs across the second terrace. Thus, even though detailed knowledge and in-situ 819 observations are derived from a relatively small subset of the Delta, we are confident that our 820 mapping results from the entire region are valuable and accurate. Also due to the inaccessibility of 821 large areas of the delta, quantitative accuracy assessments of the classifier and the final mapping 822 product are lacking. We had to rely on qualitative evaluation procedures by experts. Analysis of 823 similarity of habitat classes and S-2 spectral reflectance as well as NDVI values provide additional 824 guantitative and gualitative assessments on the extent to which the different classes are identifiable 825 and separated between classes. 826 In-situ observations (Datasets 1-3) as well as mapping products (Datasets 4-6) represent conditions 827 and vegetation composition of 2018. The timing of the summer 2018 expedition coincided with a 828 relatively high number of cloud free S-2 images necessary for a high quality habitat classification. 829 Overall, the described datasets are of appropriate quality to serve as a basis for additional studies

830 and most importantly as a baseline to identify changes in the future.

831 5 Conclusions

832 The described datasets provide coherent and complementary information of the major habitat

833 classes in the Lena Delta in Arctic Siberia, the largest delta in the Arctic. Based on extensive

834 knowledge collected during fieldwork that included habitat-related measurements of plant

835 composition, biomass, and hyperspectral field measurements we provide a validated and high-

resolution habitat classification map of the delta. In addition, we linked ecologically important

837 characteristics of disturbances in the delta to habitat classes, providing a baseline for future studies

838 of Arctic change as well as a foundation for potential upscaling of related processes such as

biodiversity, ecosystem functions, and biochemical dynamics such as greenhouse gas emissions.

840 With this update of previous land cover and habitat-related mapping products of the Lena Delta we

841 strive to facilitate and promote future investigations leading to a better understanding of this highly

842 sensitive arctic delta system.

843 Acknowledgements

844 Field work in the Lena River Delta was conducted in the frame of the Russian-German LENA

845 Expeditions based at Research Station Samoylov Island. We thank all colleagues and station staff

846 involved in the organization and logistics for their great support.

847 Code/Data availability

A48 Dataset 1: Shevtsova et al., 2021a, https://doi.pangaea.de/10.1594/PANGAEA.935875, Foliage

849 projective cover of 26 vegetation sites in the central Lena Delta from 2018, is published as Foliage

projective cover for all major taxa estimated as percent, as tab-delimited text files.

Dataset 2: Shevtsova et al., 2021b, https://doi.pangaea.de/10.1594/PANGAEA.935923, Total above-

ground biomass of 25 vegetation sites in the central Lena Delta from 2018, is published as biomass

853 aboveground dry mass per major taxa, as well as for 'moss and lichen', 'litter' and the remaining minor

taxa (called 'other plants') and the total biomass in the units [g/m2], as tab-delimited text.

Dataset 3: Runge et al., 2022, https://doi.pangaea.de/10.1594/PANGAEA.945982, Hyperspectral field

spectrometry of Arctic vegetation units in the central Lena Delta, is published as an overview of the

plot details and field spectrometer reflectance spectra in the unit [%] of 28 vegetation plots, as tab-

858 delimited text files.

Deleted: Dataset 1: ¶ Dataset 2: ¶ Dataset 3: ¶ Dataset 4: ¶ Dataset 5: ¶ Dataset 6:

865	Dataset 4: Landgraf et al., 2022 a,b,c. The Sentinel-2-derived central Lena Delta land cover (habitat)
866	classification consists of the following three data publications: i) Landgraf et al. 2022a,
867	https://doi.pangaea.de/10.1594/PANGAEA.945056: a raster file with assigned land cover classes and an
868	ESRI polygon shape file containing the 10 training classes representing the different vegetation
869	compositions, as geotiff file. Both datasets are based on 2018 satellite images and informed by the in-
870	situ vegetation plots and expert knowledge. Datasets are in Universe Transverse Mercator (UTM) Zone
871	52 North projection. ii) Landgraf et al. 2022b, https://doi.pangaea.de/10.1594/PANGAEA.945054. This
872	data set includes training elements representing different vegetation composition in the form of
873	Elementary Sampling Units ESUs: 69 pseudo ESUs set with expert knowledge from the field and from
874	Lena Delta expedition field reports. iii) Landgraf et al. 2022c.
875	https://doi.pangaea.de/10.1594/PANGAEA.945055. This data set includes training elements representing
876	different vegetation composition in the form of Elementary Sampling Units ESUs: 23 true ESUs
877	representing the LD18 vegetation plots.
878	Dataset 5: Lisovski et al., 2022, https://doi.pangaea.de/10.1594/PANGAEA.946407. The Lena Delta
879	Habitat Map (2018, Sentinel-2) contains i) the Lena Delta habitat map (13 classes), ii) the sand probability
880	map, both as geotiff files in WGS84 geographic projection, iii) the habitat class description as comma
881	delimited csv table, and iv) the training dataset (n = 4 278 classified pixels) in geographic decimal
882	coordinates comma delimited csv table. The data collection also contains the Lena Delta Region of
883	Interest (ROI) ESRI shapefile outlining the Lena Delta including a coastal water buffer.
884	Dataset 6: Heim and Lisovski, 2023, https://doi.org/10.5281/zenodo.7575691. The Lena Delta habitat
885	disturbance regime map is published in the form of two geotiff files (tiles) in WGS84 geographic
886	projection.
887	Code developed in Google Earth Engine to derive habitat classes based in the central Lena Delta
888	classification, as well as R code for figures can be accessed from the following repository: Lisovski,
889	S. (2024). Code for 'A new habitat map of the Lena Delta in Arctic Siberia based on field and remote
890	sensing datasets'. V0.1. Zenodo. 10.5281/zenodo.11197641.

891 Competing interests

892 Birgit Heim is a member of the editorial board of ESSD. Otherwise, we declare no competing interests.

Funding 893

894 SL acknowledges funding from the Geo.X Network for Geosciences in Berlin and Brandenburg. This

895 study was supported by BMBF KoPf (Grant Number 03F0764B), KoPf Synthesis (Grant Number

- 896 03F0834B), and AWI base funds. AR was partially funded by ESA GlobPermafrost and an ESA CCI
- 897 postdoctoral fellowship. BH acknowledges HGF REKLIM.

Authors contribution 898

- 899 SL: Conceptual framework, habitat classification, data analysis, writing
- 900 AR: Conceptual framework, field work, spectral field data collection, habitat classification, spectral
- 901 data processing, data analysis, writing

902	IS: Field work, biomass and projective cover measurement in vegetation plots, habitat classification	2000-00-00-00-00-00-00-00-00-00-00-00-00	Deleted: data collection, concept of
903	RRO: Habitat classification	*********	Deleted: sampling
904	NL: habitat classification, spectral data processing		Deleted: Habitat
905	MF: Field work, spectral field data collection		
906	<u>NiL</u> : habitat <u>class</u> definition, field work		Deleted: NL
907	AM: Project management, writing		
908	<u>CS: Spectral data processing</u>		Deleted: AB: Protocol and code for field spectrometry
909	AB: Spectral data processing		Deleted: CS: Field spectrometry
910	UH: Conceptual framework, project management		
911	GG: Conceptual framework, project management, habitat classification, writing		Deleted: Project
912	BH: Conceptual framework, field work, habitat classification, project management, writing		Deleted: UH: Project management, concept of vegetation & biomass sampling, co-supervision of field data analyses
913			Deleted: field work, data collection,

Figure A3: Subset of the central Lena Delta with 30 x 30 m ESUs (white points, dataset 1) and polygons defined by expert knowledge (published with dataset 4). Together the ESUs and polygons served areas to sample 8 626 training pixels for the central Lena Delta landcover/habitat classification (dataset 4, Landgraf et al. 2022a).

Figure A4: Training pixels for the Lena Delta habitat classification (dataset 5). (Left) 7.500 random pixels samples across the habitat classes from the central Lena Delta landcover/habitat map (dataset 4). (Right) 35 pixels selected by expert knowledge for the 'dwarf shrub - herb communities' that are missing in the central Lena Delta.

962 References

963	AMAP: AMAP Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring
964	and Assessment Programme (AMAP), Tromsø, Norway, viii+148pp, 2021.
965	Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C., and Dise, N. B.: Methane Emissions from
966	Tundra Environments in the Yukon-Kuskokwim Delta, Alaska, Journal of Geophysical
967	Research-Atmospheres, 97, 16645-16660, doi: 10.1029/91jd00610, 1992.
968	Bartsch, A., Hofler, A., Kroisleitner, C., and Trofaier, A. M.: Land Cover Mapping in Northern
969	High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining
970	Challenges, Remote Sensing, 8, 979. doi: 10.3390/rs8120979, 2016.
971	Bartsch, A., Widhalm, B., Pointner, G., Ermokhina, K., Leibman, M., and Heim, B.: Landcover
972	derived from Sentinel-1 and Sentinel-2 satellite data (2015-2018) for subarctic and arctic
973	environments [dataset], https://doi.org/10.1594/PANGAEA.897916, 2019.
974	Bartsch, A., Widhalm, B., Leibman, M., Ermokhina, K., Kumpula, T., Skarin, A., Wilcox, E. J.,
975	Jones, B. M., Frost, G. V., Hofler, A., and Pointner, G.: Feasibility of tundra vegetation height
976	retrieval from Sentinel-1 and Sentinel-2 data, Remote Sensing of Environment, 237, 111515,
977	<u>doi: 10.1016/j.rse.2019.111515, 2020.</u>
978	Beamish, A., Raynolds, M. K., Epstein, H., Frost, G. V., Macander, M. J., Bergstedt, H., Bartsch,
979	A., Kruse, S., Miles, V., Tanis, C. M., Heim, B., Fuchs, M., Chabrillat, S., Shevtsova, I.,
980	Verdonen, M., and Wagner, J.: Recent trends and remaining challenges for optical remote
981	sensing of Arctic tundra vegetation: A review and outlook, Remote Sensing of Environment,
982	246, ARTN 111872, doi: 10.1016/j.rse.2020.111872, 2020.
983	Beamish, A. L., Coops, N., Chabrillat, S., and Heim, B.: A Phenological Approach to Spectral
984	Differentiation of Low-Arctic Tundra Vegetation Communities, North Slope, Alaska, Remote
985	<u>Sensing, 9, 1200, doi: 10.3390/rs9111200, 2017.</u>
986	Beamish, A. L., Coops, N. C., Hermosilla, T., Chabrillat, S., and Heim, B.: Monitoring pigment-
987	driven vegetation changes in a low-Arctic tundra ecosystem using digital cameras, Ecosphere,
988	<u>9, e02123, doi: 10.1002/ecs2.2123, 2018.</u>

989	Berner, L. T., Mas	sey, R., Jantz,	P., Forbes, B. C.	., Macias-Fauria, M.	., Myers-Smith, I.,

- 900 Kumpula, T., Gauthier, G., Andreu-Hayles, L., Gaglioti, B. V., Burns, P., Zetterberg, P., D'Arrigo,
- 91 R., and Goetz, S. J.: Summer warming explains widespread but not uniform greening in the

992 <u>Arctic tundra biome, Nature Communications, 11, 4621, doi: 10.1038/s41467-020-18479-5,</u>

- 993 <u>2020.</u>
- Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich,
- 995 P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L.,
- 996 Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmuller, B., Grosse, G.,
- 997 Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H.,
- Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kroger, T., Lambiel, C., Lanckman, J. P.,
- 299 Luo, D. L., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M.,
- 1000 Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q. B., Yoshikawa, K.,
- 1001 Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nature
- 1002 <u>Communications, 10, 264, doi: 10.1038/s41467-018-08240-4, 2019.</u>

1003 Boike, J., Wille, C., and Abnizova, A.: Climatology and summer energy and water balance of

- 1004 polygonal tundra in the Lena River Delta, Siberia, Journal of Geophysical Research-
- 1005 Biogeosciences, 113, G03025, doi: 10.1029/2007jg000540, 2008.

1006 Boike, J., Nitzbon, J., Anders, K., Grigoriev, M., Bolshiyanov, D., Langer, M., Lange, S.,

- 1007 Bornemann, N., Morgenstern, A., Schreiber, P., Wille, C., Chadburn, S., Gouttevin, I., Burke, E.,
- 1008 and Kutzbach, L.: A 16-year record (2002-2017) of permafrost, active-layer, and meteorological
- 1009 conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern
- 1010 Siberia: an opportunity to validate remote-sensing data and land surface, snow, and permafrost
- 1011 models, Earth System Science Data, 11, 261-299, doi: 10.5194/essd-11-261-2019, 2019.
- 1012 Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M., Parmentier, F. J. W.,
- 1013 Brown, R., Bhatt, U. S., Euskirchen, E. S., Romanovsky, V. E., Walsh, J. E., Overland, J. E.,
- 1014 Wang, M. Y., Corell, R. W., Meier, W. N., Wouters, B., Mernild, S., Mard, J., Pawlak, J., and
- 1015 Olsen, M. S.: Key indicators of Arctic climate change: 1971-2017, Environmental Research
- 1016 Letters, 14, 045010, doi: 10.1088/1748-9326/aafc1b, 2019.
- 1017 Buchhorn, M., Walker, D. A., Heim, B., Raynolds, M. K., Epstein, H. E., and Schwieder, M.:
- 1018 Ground-Based Hyperspectral Characterization of Alaska Tundra Vegetation along
- 1019 <u>Environmental Gradients, Remote Sensing, 5, 3971-4005, doi:</u> 10.3390/rs5083971, 2013.

1020	Driscoll, K. P. and Hauer, F. R.: Seasonal flooding affects habitat and landscape dynamics of a
1021	gravel-bed river floodplain, Freshwater Science, 38, 510-526, doi: 10.1086/704826, 2019.
1022	Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola,
1023	C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P.,
1024	Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Rem. Sens.
1025	Environ., 120, 25–36, doi: 10.1016/j.rse.2011.11.026 , 2012.
1026	Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S.,
1027	Chave, J., Herold, M., MacBean, N., McRoberts, R., Minor, D., Paul, K., Réjou-Méchain, M.,
1028	Roxburgh, S., Williams, M., Albinet, C., Baker, T., Bartholomeus, H., Bastin, J. F., Coomes, D.,
1029	Crowther, T., Davies, S., de Bruin, S., De Kauwe, M., Domke, G., Dubayah, R., Falkowski, M.,
1030	Fatoyinbo, L., Goetz, S., Jantz, P., Jonckheere, I., Jucker, T., Kay, H., Kellner, J., Labriere, N.,
1031	Lucas, R., Mitchard, E., Morsdorf, F., Næsset, E., Park, T., Phillips, O. L., Ploton, P., Puliti, S.,
1032	Quegan, S., Saatchi, S., Schaaf, C., Schepaschenko, D., Scipal, K., Stovall, A., Thiel, C.,
1033	Wulder, M. A., Camacho, F., Nickeson, J., Román, M., and Margolis, H.: Aboveground Woody
1034	Biomass Product Validation Good Practices Protocol. Version 1.0, Land Product Validation
1035	Subgroup (WGCV/CEOS), doi:10.5067/doc/ceoswgcv/lpv/agb.001, 2021.
1036	Endsley, K. A., Kimball, J. S., and Reichle, R. H.: Soil Respiration Phenology Improves Modeled
1037	Phase of Terrestrial net Ecosystem Exchange in Northern Hemisphere, Journal of Advances in
1038	Modeling Earth Systems, 14, e2021MS002804, doi: 10.1029/2021MS002804, 2022.
1039	ESA, 2015. Sentinel-2 User Handbook. ESA Standard Document.
1040	ESA Land Cover CCI project team; Defourny, P. (2019): ESA Land Cover Climate Change
1041	Initiative (Land_Cover_cci): Global Land Cover Maps, Version 2.0.7. Centre for
1042	Environmental Data Analysis, downloaded 2022, [dataset]
1043	https://catalogue.ceda.ac.uk/uuid/b382ebe6679d44b8b0e68ea4ef4b701c
1044	Fedorova, I., Chetverova, A., Bolshiyanov, D., Makarov, A., Boike, J., Heim, B., Morgenstern,
1045	A., Overduin, P. P., Wegner, C., Kashina, V., Eulenburg, A., Dobrotina, E., and Sidorina, I.:
1046	Lena Delta hydrology and geochemistry: long-term hydrological data and recent field
1047	observations, Biogeosciences, 12, 345-363, doi: 10.5194/bg-12-345-2015, 2015.

1048	Forman, R. T. T. and Godron, M .: Patches and Structural Components for a Landscape
1049	Ecology, Bioscience, 31, 733-740, doi 10.2307/1308780, 1981.
1050	Frost, G. V., Loehman, R. A., Saperstein, L. B., Macander, M. J., Nelson, P. R., Paradis, D. P.,
1051	and Natali, S. M.: Multi-decadal patterns of vegetation succession after tundra fire on the
1052	Yukon-Kuskokwim Delta, Alaska, Environmental Research Letters, 15, 025003, doi:
1053	10.1088/1748-9326/ab5f49, 2020.
1054	Gilg, O., Sané, R., Solovieva, D. V., Pozdnyakov, V. I., Sabard, B., Tsanos, D., Zöckler, C.,
1055	Lappo, E. G., Syroechkovski, J. E. E., and Eichhorn, G.: Birds and Mammals of the Lena Delta
1056	Nature Reserve, Siberia, ARCTIC, 53, 118-133, doi: 10.14430/arctic842, 2000.
1057	Greig-Smith, P.: Quantitative plant ecology, Butterworths1964.
1058	Grigoriev, M. N.: Crio Morphogenesis in the Lena Delta, Permafrost Institute Press, Yakutsk
1059	<u>1993.</u>
1060	Heim, B. and Lisovski, S.: Lena Delta habitat disturbance regimes (0.0) [dataset], Zenodo,
1061	https://doi.org/10.5281/zenodo,7575691, 2023.
1062	Holl, D., Wille, C., Sachs, T., Schreiber, P., Runkle, B. R. K., Beckebanze, L., Langer, M., Boike,
	Province F. M. Fodorova, J. Bolshianov, D. V. Grigoriov, M. N. and Kutzbach, J.: A long
1063	
1063 1064	term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem
1063 1064 1065	term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi:
1063 1064 1065 1066	term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019.
1063 1064 1065 1066 1067	 b., Pteiner, E. M., Feddrova, I., Bolsmanov, D. T., Grigonev, M. N., and Ruzbach, E. Along- term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and
1063 1064 1065 1066 1067 1068	 b., Pteliter, L. M., Feddrova, I., Bolshanov, D. T., Grigonev, M. N., and Rubbach, L. Along² term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.: Arctic tundra fires: natural variability and responses to climate change, Frontiers
1063 1064 1065 1066 1067 1068 1069	 b., Pteller, E. M., Feddrova, I., Bolshanov, D. T., Grigonev, M. N., and Rubbach, E. Along- term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.: Arctic tundra fires: natural variability and responses to climate change, Frontiers in Ecology and the Environment, 13, 369-377, doi: 10.1890/150063, 2015.
1063 1064 1065 1066 1067 1068 1069 1070	 b., Ptellier, E. M., Feddrova, I., Bolshanov, D. T., Grigonev, M. N., and Rubbach, E. Along- term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.: Arctic tundra fires: natural variability and responses to climate change, Frontiers in Ecology and the Environment, 13, 369-377, doi: 10.1890/150063, 2015. Hubberten, HW., Wagner, D., Pfeiffer, EM., Boike, J., and Gukov, A. Y.: The Russian-
1063 1064 1065 1066 1067 1068 1069 1070 1071	 b., Pteller, E. M., Feddova, I., Bolshanov, D. T., Grigonev, M. N., and Kulzbach, E.: A long- term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.: Arctic tundra fires: natural variability and responses to climate change, Frontiers in Ecology and the Environment, 13, 369-377, doi: 10.1890/150063, 2015. Hubberten, HW., Wagner, D., Pfeiffer, EM., Boike, J., and Gukov, A. Y.: The Russian- German research station samoylov, Lena delta -A key site for polar research in the Siberian
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072	 b., Pteller, E. M., Feddrova, I., Bolshanov, D. T., Grigonev, M. N., and Rubbach, E. Along- term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.: Arctic tundra fires: natural variability and responses to climate change, Frontiers in Ecology and the Environment, 13, 369-377, doi: 10.1890/150063, 2015. Hubberten, HW., Wagner, D., Pfeiffer, EM., Boike, J., and Gukov, A. Y.: The Russian- German research station samoylov, Lena delta -A key site for polar research in the Siberian arctic, Polarforschung, 2006.
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073	 b., Ptellier, E. M., Feddrova, I., Bolshlanov, D. T., Gligonev, M. N., and Rubbach, E. Along- term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.: Arctic tundra fires: natural variability and responses to climate change, Frontiers in Ecology and the Environment, 13, 369-377, doi: 10.1890/150063, 2015. Hubberten, HW., Wagner, D., Pfeiffer, EM., Boike, J., and Gukov, A. Y.: The Russian- German research station samoylov, Lena delta -A key site for polar research in the Siberian arctic, Polarforschung, 2006. Jorgenson, M. T.: Hierarchial organisation of ecosystems at multiple spatial scales on the
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074	 b., Pteller, E. M., Feddova, I., Bolshanov, D. T., Gligonev, M. N., and Rubbach, E. Along- term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.: Arctic tundra fires: natural variability and responses to climate change, Frontiers in Ecology and the Environment, 13, 369-377, doi: 10.1890/150063, 2015. Hubberten, HW., Wagner, D., Pfeiffer, EM., Boike, J., and Gukov, A. Y.: The Russian- German research station samoylov, Lena delta -A key site for polar research in the Siberian arctic, Polarforschung, 2006. Jorgenson, M. T.: Hierarchial organisation of ecosystems at multiple spatial scales on the Yukon-Kuskokwim Delta, Alaska, USA, Arctic Antarctic and Alpine Research, 32, 221-239, doi
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075	 b., Ptelner, E. M., Feddrova, I., Bolshanov, D. T., Grigonev, M. N., and Rubbach, E. Along- term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth System Science Data, 11, 221-240, doi: 10.5194/essd-11-221-2019, 2019. Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.: Arctic tundra fires: natural variability and responses to climate change, Frontiers in Ecology and the Environment, 13, 369-377, doi: 10.1890/150063, 2015. Hubberten, HW., Wagner, D., Pfeiffer, EM., Boike, J., and Gukov, A. Y.: The Russian- German research station samoylov, Lena delta -A key site for polar research in the Siberian arctic, Polarforschung, 2006. Jorgenson, M. T.: Hierarchial organisation of ecosystems at multiple spatial scales on the Yukon-Kuskokwim Delta, Alaska, USA, Arctic Antarctic and Alpine Research, 32, 221-239, doi 10.2307/1552521, 2000.

1076	Juhls, B., Antonova, S., Angelopoulos, M., Bobrov, N., Grigoriev, M., Langer, M., Maksimov, G.,		
1077	Miesner, F., and Overduin, P. P.: Serpentine (Floating) Ice Channels and their Interaction with		
1078	Riverbed Permafrost in the Lena River Delta, Russia, Frontiers in Earth Science, 9, 689941, doi:		
1079	10.3389/feart.2021.689941, 2021.		
1080	Kienast, F. and Tsherkasova, J.: Comparative botanical recent-studies in the Lena River Delta		
1081	[Field Report], Alfred Wegener Institute, Germany, 2001.		
1082	Landgraf, N., Shevtsova, I., Pflug, B., and Heim, B: Sentinel-2 derived central Lena Delta land		
1083	cover classification, PANGAEA [dataset], https://doi.pangaea.de/10.1594/PANGAEA.945057,		
1084	<u>2022a.</u>		
1085	Landgraf, N., Shevtsova, I., Pflug, B., and Heim, B.: Raster file with assigned land cover classes		
1086	and ESRI polygon shape file training classes representing different vegetation composition,		
1087	PANGAEA [dataset], https://doi.pangaea.de/10.1594/PANGAEA.945056, 2022b.		
1088	Landgraf, N., Shevtsova, I., Pflug, B., and Heim, B.: 23 true Elementary Sampling Units (ESUs)		
1089	set in the Lena Delta representing the LD18 vegetation plots, PANGAEA [dataset],		
1090	https://doi.pangaea.de/10.1594/PANGAEA.945055, 2022c.		
1091	Landgraf, N., Shevtsova, I., Pflug, B., and Heim, B.: 69 pseudo Elementary Sampling Units		
1092	(ESUs) set in the Lena Delta derived with expert knowledge, PANGAEA [dataset],		
1093	https://doi.pangaea.de/10.1594/PANGAEA.945054, 2022d.		
1094	Lantz, T. C., Kokelj, S. V., and Fraser, R. H.: Ecological recovery in an Arctic delta following		
1095	widespread saline incursion, Ecological Applications, 25, 172-185, doi: 10.1890/14-0239.1,		
1096	<u>2015.</u>		
1097	Lisovski, S., Runge, A., Okoth, R. R., Shevtsova, I., and Heim, B.: Lena Delta Land Cover		
1098	Classification (2018, Sentinel-2), PANGAEA [dataset], doi: 10.1594/PANGAEA.946407, 2022.		
1099	Lorang, M. S. and Hauer, F. R.: Fluvial geomorphic processes, in: Methods in stream ecology,		
1100	edited by: Hauer, F. R., and Lamberti, G. A., Academic Press/Elsevier, San Diego, 145–168,		
1101	2006.		
1102	Macander, M. J., Nelson, P. R., Nawrocki, T. W., Frost, G. V., Orndahl, K. M., Palm, E. C.,		
1103	Wells, A. F., and Goetz, S. J.: Time-series maps reveal widespread change in plant functional		
1			

1104	type cover across Arctic and boreal Alaska and Yukon, Environmental Research Letters, 17,
1105	ARTN 054042, doi: 10.1088/1748-9326/ac6965, 2022.
1106	Mauclet, E., Agnan, Y., Hirst, C., Monhonval, A., Pereira, B., Vandeuren, A., Villani, M.,
1107	Ledman, J., Taylor, M., Jasinski, B. L., Schuur, E. A. G., and Optergelt, S.: Changing sub-Arctic
1108	tundra vegetation upon permafrost degradation: impact on foliar mineral element cycling,
1109	<u>Biogeosciences, 19, 2333-2351, doi: 10.5194/bg-19-2333-2022, 2022.</u>
1110	Mekonnen, Z. A., Riley, W. J., Berner, L. T., Bouskill, N. J., Torn, M. S., Iwahana, G., Breen, A.
1111	L., Myers-Smith, I. H., Criado, M. G., Liu, Y. L., Euskirchen, E. S., Goetz, S. J., Mack, M. C., and
1112	Grant, R. F.: Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem
1113	carbon balance, Environmental Research Letters, 16, 053001, doi: 0.1088/1748-9326/abf28b,
1114	<u>2021.</u>
1115	Montgomery, D. R.: Process domains and the river continuum, Journal of the American Water
1116	Resources Association, 35, 397-410, doi: 10.1111/j.1752-1688.1999.tb03598.x, 1999.
1117	Morgenstern, A., Grosse, G., and Schirrmeister, L.: Genetic, morphological, and statistical
1118	characterization of lakes in the permafrost-dominated Lena Delta, Ninth International
1119	Conference on Permafrost, 2008.
1120	Morgenstern, A., Grosse, G., Gunther, F., Fedorova, I., and Schirrmeister, L.: Spatial analyses
1121	of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta, Cryosphere, 5, 849-
1122	867, doi:10.5194/tc-5-849-2011, 2011.
1123	Morgenstern, A., Overduin, P. P., Gunther, F., Stettner, S., Ramage, J., Schirrmeister, L.,
1124	Grigoriev, M. N., and Grosse, G.: Thermo-erosional valleys in Siberian ice-rich permafrost,
1125	Permafrost and Periglacial Processes, 32, 59-75, doi: 10.1002/ppp.2087, 2021.
1126	Morgenstern, A., Ulrich, M., Gunther, F., Roessler, S., Fedorova, I. V., Rudaya, N. A., Wetterich,
1127	S., Boike, J., and Schirrmeister, L.: Evolution of thermokarst in East Siberian ice-rich
1128	permafrost: A case study, Geomorphology, 201, 363-379, doi:
1129	10.1016/j.geomorph.2013.07.011, 2013.
1130	Mueller-Bombois, D. and Ellenberg, H.: Aims and methods of vegetation ecology, Wohn Wiley &
1131	Sons, New York, USA1974.

Sons, New York, USA1974.

1132 Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., A	Assmann, J. J.,
---	-----------------

- 1133 John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck, P. S. A., Berner, L. T., Bhatt, U. S.,
- 1134 Bjorkman, A. D., Blok, D., Bryn, A., Christiansen, C. T., Cornelissen, J. H. C., Cunliffe, A. M.,
- 1135 Elmendorf, S. C., Forbes, B. C., Goetz, S. J., Hollister, R. D., de Jong, R., Loranty, M. M.,
- 1136 Macias-Fauria, M., Maseyk, K., Normand, S., Olofsson, J., Parker, T. C., Parmentier, F. J. W.,
- 1137 Post, E., Schaepman-Strub, G., Stordal, F., Sullivan, P. F., Thomas, H. J. D., Tommervik, H.,
- 1138 Treharne, R., Tweedie, C. E., Walker, D. A., Wilmking, M., and Wipf, S.: Complexity revealed in
- 1139 the greening of the Arctic, Nature Climate Change, 10, 106-117, doi: 10.1038/s41558-019-0688-
- 1140 <u>1, 2020.</u>
- 1141 Naiman, R. J., Melillo, J. M., and Hobbie, J. E.: Ecosystem Alteration of Boreal Forest Streams
- 1142 by Beaver (Castor-Canadensis), Ecology, 67, 1254-1269, doi: 10.2307/1938681, 1986.
- 1143 <u>Nitzbon, J., Westermann, S., Langer, M., Martin, L. C. P., Strauss, J., Laboor, S., and BOike, J.:</u>
- 1144 <u>Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate, Nature</u>
- 1145 <u>Communications, 11, 2201, doi: 10.1038/s41467-020-15725-8, 2020.</u>
- 1146 Nitze, I. and Grosse, G.: Detection of landscape dynamics in the Arctic Lena Delta with
- 1147 temporally dense Landsat time-series stacks, Remote Sensing of Environment, 181, 27-41, doi:
- 1148 <u>10.1016/j.rse.2016.03.038, 2016.</u>
- 1149 Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G., Heim, B.,
- 1150 Hugelius, G., Irrgang, A., Kääb, A. M., Kroisleitner, C., Matthes, H., Nitze, I., Pellet, C., Seifert,
- 1151 F. M., Strozzi, T., Wegmüller, U., Wieczorek, M., and Wiesmann, A.: ESA permafrost Climate
- 1152 <u>Change Initiative (permafrost_cci): Permafrost extent for the Northern Hemisphere, v2.0</u>
- 1153 [dataset], https://doi.org/10.5285/28E889210F884B469D7168FDE4B4E54F, 2020.
- 1154 Overeem, I., Nienhuis, J. H., and Piliouras, A.: Ice-dominated Arctic deltas, Nature Reviews
- Earth & Environment, 3, 225-240, doi: 10.1038/s43017-022-00268-x, 2022.
- 1156 Overland, J., Dunlea, E., Box, J. E., Corell, R., Forsius, M., Kattsov, V., Olseng, M. S., Pawlak,
- 1157 J., Reiersen, L. O., and Wang, M. Y.: The urgency of Arctic change, Polar Science, 21, 6-13,
- 1158 doi: 10.1016/j.polar.2018.11.008, 2019.
- 1159 Pickett, S. T. A., Kolasa, J., Armesto, J. J., and Collins, S. L.: The Ecological Concept of
- 1160 Disturbance and Its Expression at Various Hierarchical Levels, Oikos, 54, 129-136, doi:
- 1161 <u>10.2307/3565258, 1989.</u>

1162	Piliouras, A. and Rowland, J. C.: Arctic River Delta Morphologic Variability and Implications for		
1163	Riverine Fluxes to the Coast, Journal of Geophysical Research-Earth Surface, 125, ARTN		
1164	e2019JF005250, doi: 10.1029/2019JF005250, 2020.		
1165	Pisaric, M. F. J., Thienpont, J. R., Kokelj, S. V., Nesbitt, H., Lantz, T. C., Solomon, S., and Smol,		
1166	J. P.: Impacts of a recent storm surge on an Arctic delta ecosystem examined in the context of		
1167	the last millennium, Proceedings of the National Academy of Sciences of the United States of		
1168	<u>America, 108, 8960-8965, doi: 10.1073/pnas.1018527108, 2011.</u>		
1169	Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M., Cherosov, M. M., Daniels, F.		
1170	J. A., Eidesen, P. B., Emiokhina, K. A., Frost, G. V., Jedrzejek, B., Jorgenson, M. T., Kennedy,		
1171	B. E., Kholod, S. S., Lavrinenko, I. A., Lavrinenko, O. V., Magnusson, B., Matveyeva, N. V.,		
1172	Metusalemsson, S., Nilsen, L., Olthof, I., Pospelov, I. N., Pospelova, E. B., Pouliot, D.,		
1173	Razzhivin, V., Schaepman-Strub, G., Sibik, J., Telyatnikov, M. Y., and Troeva, E.: A raster		
1174	version of the Circumpolar Arctic Vegetation Map (CAVM), Remote Sensing of Environment,		
1175	232, ARTN 111297, doi: 10.1016/j.rse.2019.111297, 2019.		
1176	Romanovskii, N. N. and Hubberten, H. W.: Results of permafrost modelling of the lowlands and		
1177	shelf of the Laptev Sea region, Russia, Permafrost and Periglacial Processes, 12, 191-202, doi:		
1178	<u>10.1002/ppp.387, 2001.</u>		
1179	Rossger, N., Sachs, T., Wille, C., Boike, J., and Kutzbach, L.: Seasonal increase of methane		
1180	emissions linked to warming in Siberian tundra, Nature Climate Change, 12, 1031-+, doi:		
1181	<u>10.1038/s41558-022-01512-4, 2022.</u>		
1182	Runge, A., Fuchs, M., Shevtsova, I., Landgraf, N., Heim, B., Herzschuh, U., and Grosse, G .:		
1183	Hyperspectral field spectrometry of Arctic vegetation units in the central Lena Delta [dataset].		
1184	https://doi.org/10.1594/PANGAEA.945982, 2022.		
1185	Sachs, T., Wille, C., Boike, J., and Kutzbach, L.: Environmental controls on ecosystem-scale		
1186	CH4 emission from polygonal tundra in the Lena River Delta, Siberia, Journal of Geophysical		
1187	Research-Biogeosciences, 113, Artn G00a03, doi: 10.1029/2007jg000505, 2008.		
1188	Schirrmeister, L., Grosse, G., Schwamborn, G., Andreev, A. A., Meyer, H., Kunitsky, V. V.,		
1189	Kuznetsova, T. V., Dorozhkina, M. V., Pavlova, E. Y., Bobrov, A. A., and Oezen, D.: Late		
1190	Quaternary History of the Accumulation Plain North of the Chekanovsky Ridge (Lena Delta,		

1191	Russia): A Multidisciplinary Approach, Polar Geography, 27, 277-319, doi: 10.1080/789610225,
1192	<u>2003.</u>
1193	Schirrmeister, L., Grosse, G., Schnelle, M., Fuchs, M., Krbetschek, M., Ulrich, M., Kunitsky, V.,
1194	Grigoriev, M., Andreev, A., Kienast, F., Meyer, H., Babiy, O., Klimova, I., Bobrov, A., Wetterich,
1195	S., and Schwamborn, G.: Late Quaternary paleoenvironmental records from the western Lena
1196	Delta, Arctic Siberia, Palaeogeography Palaeoclimatology Palaeoecology, 299, 175-196, doi:
1197	<u>10.1016/j.palaeo.2010.10.045, 2011.</u>
1198	Schneider, J., Grosse, G., and Wagner, D.: Land cover classification of tundra environments in
1199	the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of
1200	methane emissions, Remote Sensing of Environment, 113, 380-391, doi:
1201	<u>10.1016/j.rse.2008.10.013, 2009.</u>
1202	Schwamborn, G., Rachold, V., and Grigoriev, M. N.: Late Quaternary sedimentation history of
1203	the Lena Delta, Quaternary International, 89, 119-134, doi: 10.1016/S1040-6182(01)00084-2,
1204	2002.
1205	Schwamborn, G., Schirrmeister, L., Mohammadi, A., Meyer, H., Kartoziia, A., Maggioni, F., and
1206	Strauss, J.: Fluvial and permafrost history of the lower Lena River, north-eastern Siberia, over
1207	late Quaternary time, Sedimentology, 70, 235-258, doi: 10.1111/sed.13037, 2023.
1208	Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research
1209	synthesis, Global and Planetary Change, 77, 85-96, doi: 10.1016/j.gloplacha.2011.03.004,
1210	<u>2011.</u>
1211	Shevtsova, I., Laschinskiy, N., Heim, B., and Herzschuh, U.: Foliage projective cover of 26
1212	vegetation sites of central Lena Delta from 2018 [dataset],
1213	https://doi.pangaea.de/10.1594/PANGAEA.935875, 2021a.
1214	Shevtsova, I., Heim, B., Runge, A., Fuchs, M., Melchert, J., and Herzschuh, U.: Total above-
1215	ground biomass of 25 vegetation sites of central Lena Delta from 2018 [dataset],
1216	https://doi.pangaea.de/10.1594/PANGAEA.935923, 2021b.
1217	Stanford, J. A., Lorang, M. S., and Hauer, F. R.: The shifting habitat mosaic of river ecosystems,

1218 <u>SIL Proceedings, 1922-2010, 29, 123-136, doi: 10.1080/03680770.2005.11901979, 2005.</u>

1219	Sweeney, C., Chatterjee, A., Wolter, S., McKain, K., Bogue, R., Conley, S., Newberger, T., Hu,			
1220	L., Ott, L., Poulter, B., Schiferl, L., Weir, B., Zhang, Z., and Miller, C. E.: Using atmospheric			
1221	trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations and			
1222	GEOS simulations for the ABoVE domain, Atmospheric Chemistry and Physics, 22, 6347-6364,			
1223	doi: 10.5194/acp-22-6347-2022, 2022.			
1224	Ulrich, M., Grosse, G., Chabrillat, S., and Schirrmeister, L.: Spectral characterization of			
1225	periglacial surfaces and geomorphological units in the Arctic Lena Delta using field spectrometry			
1226	and remote sensing, Remote Sensing of Environment, 113, 1220-1235, doi:			
1227	<u>10.1016/j.rse.2009.02.009, 2009.</u>			
1228	van Everdingen, R. O.: Multi-language glossary of permafrost and related ground-ice terms,			
1229	Arctic Institute of North America University of Calgary, Calgary, Canada1998.			
1230	Veremeeva, A. and Gubin, S.: Modern Tundra Landscapes of the Kolyma Lowland and their			
1231	Evolution in the Holocene, Permafrost and Periglacial Processes, 20, 399-406, doi:			
1232	<u>10.1002/ppp.674, 2009.</u>			
1233	Vulis, L., Tejedor, A., Zaliapin, I., Rowland, J. C., and Foufoula-Georgiou, E.: Climate			
1234	Signatures on Lake And Wetland Size Distributions in Arctic Deltas, Geophysical Research			
1235	Letters, 48, ARTN e2021GL094437, doi: 10.1029/2021GL094437, 2021.			
1236	Walker, H. J.: Arctic deltas, Journal of Coastal Research, 14, 718–738, 1998.			
1237	Whitaker, R. H. and Woodwell, G. M.: Dimension, and Production Relations of Trees and			
1238	Shrubs in the Brookhaven Forest, New York., Journal of Ecology, 56, 1-25, doi: 10.1038/2325,			
1239	<u>1968.</u>			
1240	Zibulski, R., Herzschuh, U., and Pestryakova, L. A.: Vegetation patterns along micro-relief and			
1241	vegetation type transects in polygonal landscapes of the Siberian Arctic, Journal of Vegetation			
1242	<u>Science, 27, 377-386, doi: 10.1111/jvs.12356, 2016.</u>			

- 1261 <u>central Lena Delta. For</u> subplots (2 x 2 m), the projective vegetation cover was recorded and
- 1262 Jabeled according to vegetation and moisture properties (H-Type: homogeneous, M-Type:
- 1263 moist, D-Type: dry). Figures illustrate example plots in a) tussock tundra. (VP14), b) dry shrub
- 1264 communities (VP05), c) polygonal tundra (VP13). Photos: AWI.

Deleted: plot set up with 2 x 2 m

Deleted: for

Deleted: estimation for different canopy layers

Deleted: above ground biomass sampling on $0.5 \times 0.5m$ inside the 2 x 2 m subplots. The background photo shows a...

Deleted: plot within the

Deleted:, a relatively homogenous vegetation class that would account for one class only. Schematically we here added green and red polygons that would define sub-vegetation classes, e.g., with different moisture regimes)....

weighted (wet biomass), dried in an oven and again weighted (dry biomass). Fotos: AWI.

1290 Figure 4: Similarity of habitat classes based on Sentinel-2 spectral reflectance and NDVI values. 1291 The dendrogram in panel a) indicates the multidimensional hierarchical similarity of the classes based on Sentinel-2 top of atmosphere reflectance (bands 2-8, 10-12, and NDVI). Panel b) 1292 1293 shows the location of the habitat classes within a two-dimensional NMDS space. The arrows 1294 with the Sentinel-2 bands and NDVI indicate the correlation of these variables across the two axes. The lower matrix of panel c) depicts the calculated percentage overlap of 3,500 pixels 1295 (grey dots in panel b) across the two NMDS axes of panel b). 1296

1308 Figure <u>6</u>: Habitat linked disturbance regimes across the Lena Delta. The map (a) includes all

1309 vegetated areas (excluding water and sand). The pie chart (b) shows the contribution of

1310 vegetated classes across the Lena Delta grouped by high and low disturbance regimes. The

bottom panels show c) the measured dry above ground biomass (Dataset 2) and d) the speciesrichness and Shannon index (from Dataset 1) of the vegetation plots for different habitat classes

1313 and disturbance regimes.

Tables 1318

1319 1320 Table 1: Habitat <u>classes</u>, descriptions as well as methods used to characterize the distinct

- habitats. In-situ vegetation plot numbers correspond to the vegetation plots of Dataset 1 and 2 $\,$
- 1321 (see also Table S1, S2, S3).

1322

Habitat types	Description	Method
Moist <i>Equisetum</i> and shrubs	<i>Equisetum</i> and shrub communities form a early-to-middle successional stage growing on the active floodplain. Low moss contribution	In-situ vegetation plot (VP17); extended to representative larger polygon shape files using field knowledge.
Dry shrub communities	Patch forming shrub communities dominated by dwarf willow (<i>Salix</i>) thickets, frequently occurring on dry elevated areas on floodplains and stream floodplains and in topographically sheltered areas below basin and valley rims. Low moss contribution	In-situ vegetation plots (VP04, VP16); extended to representative larger polygon shape files using field knowledge.
Polygonal tundra complex up to 10% 20% 50% surface water (3 distinct classes)	Mature-state plant communities dominated by sedge, moss and herb species. Sparse vascular plant coverage (dwarf willows, dwarf birches) on thick continuous moss cover. Occurring on the plateaus of the ice-rich holocene and pleistocene terraces, and at the bottom of alases. Intersected by intra- and interpolygonal ponds resulting in up to 10%, 20%, 50% surface water contribution.	In-situ vegetation plots (VP01, VP02, VP07, VP08, VP14, VP15, VP18, VP21, VP22, VP23, VP26, VP27); extended to representative larger polygon shape files using field knowledge. The different surface water contributions were defined based on the result from unsupervised classification.

Deleted: types

Dry grass to wet sedge communities	These early-to-middle successional plant communities cover unstable valley slopes and a <u>young drained</u> lake basin, they are mostly composed of sedges and grasses, but also willows (<i>Salix</i>) are part of this habitat.	In-situ vegetation plots (VP05, VP06, VP11, VP19, VP20); extended to representative larger polygon shape files using field knowledge.	Deleted: yound drined
Dry tundra communities	The mature-state dry tundra communities represent the zonal tundra type, one subclass is dominated by tussock forming <i>Eriophorum</i> and the other by less tussock forming dry-herb communities, dominated by <i>Dryas</i> . Occurring on well-drained slopes of valleys and alases, and other well-drained areas on the terraces. High moss contribution	In-situ vegetation plots (VP03, VP13) extended to representative, larger polygon shape files using field knowledge (including 'dry tundra communities type tussock' and 'dry tundra communities').	
Moist to wet sedge communities	These mid to advanced successional plant communities occur on moist to water- logged soils characteristically mostly in topographic depressions on the floodplains, in valleys and alases. They constitute the rims of the wetland areas on the floodplains in more dynamic parts the moss ground cover is missing.	Polygon shape files derived from high resolution satellite image and ESRI GE with regional expert knowledge. No vegetation plots (too wet).	
Wet sedge communities	These mid to advanced successional plant communities occur at permanently wet sites with stagnant water in the topographic depressions and are typical for wetland areas on the floodplains. In more dynamic parts the moss ground cover is missing.	Polygon shape files derived from high resolution satellite image and ESRI GE with regional expert knowledge. No vegetation plots (too wet).	

Sparsely vegetated areas	These early successional plant communities are characterized by low vegetation establishment and coverage. No to low moss contribution	Defined based on the result from unsupervised classification, polygon shape files. No vegetation plots.
Barren/Sand	Representing the wide-open sand flats of the floodplain and barren ground on valley slopes or along cliffs. In a few cases, this class represents vegetation-free bedrock outcrops.	Threshold using high reflectance in S2-band 2 blue.
Water	Represents all surface water bodies in the delta: the Lena River with river branches, streams, lakes and large ponds.	Threshold using low reflectance in S2-band 8 NIR.

1326 Table 2: Habitat class and description of disturbance regimes and the component stand

1β27 structure in form of contributions of vascular plants, and moss to total biomass. <u>* (Driscoll and</u>

1328 Hauer, 2019; Stanford et al., 2005), ** (Lorang and Hauer, 2006).

Deleted: * , ** .

Habitat class	Disturbance regime	Stand structure
Moist <i>Equisetum</i> and shrubs	High; regular (annually), predicted - spring floodings, - shifting habitat * - advanced-stage regeneration **	high vascular plant growth, low abundance of moss & lichens.
Dry shrub communities	High; mixed disturbance types: -regular spring floodings -rapid thaw processes (permafrost degradation) - shifting habitat - advanced-stage regeneration	high vascular plant growth, low abundance of moss.
Polygonal tundra complex	Low; mixed disturbance types - low for most of the habitat, except for actively eroding shores of ponds and channels - mature-state plant community	low vascular plant growth, high abundance of moss.
Dry grass to wet sedge communities	High; mixed disturbance types: - regular spring floodings - rapid thaw processes (permafrost degradation) - shifting habitat	high vascular plant biomass, low abundance of moss.

Dry tundra communities	Low; mixed disturbance types - low for most of the habitat - mature-state plant community	low vascular plant biomass high abundance of moss.
Moist to wet sedge communities	High; mixed disturbance types: - regular spring floodings - rapid thaw processes (permafrost degradation) - shifting habitat - mid to advanced-stage regeneration	high vascular plant biomass Almost impossible to measure in-situ biomass (wet conditions and difficult access).
Wet sedge communities	High; mixed disturbance types: - regular spring floodings - rapid thaw processes (permafrost degradation) - shifting habitat - mid to advanced-stage regeneration	high vascular plant biomass. Almost impossible to measure in-situ biomass (wet conditions and difficult access).
Dwarf shrub herb communities	Low; mixed disturbance types - low for most of the habitat - mature-state plant community	low vascular plant biomass, high abundance of moss.

- advanced-stage regeneration

Sparsely vegetated areas	Very high; mixed disturbance types	lowest vascular plant biomass, no moss.
	 regular spring floodings rapid thaw processes (permafrost degradation) 	
	 shifting habitat early-stage regeneration 	
Sand banks/barren	Very high: mixed disturbance types - regular spring floodings - rapid thaw processes (permafrost degradation) - shifting habitat - no regeneration	Barren, constant shifting of sediments and movement of soils.