Thank you very much for carefully reading our manuscript and for the constructive feedback, which helps us to improve the quality of the manuscript. We addressed all the points raised in the review. We will provide a point-by-point response to each comment below. The responses to the comments are in blue.

General comments:

The data set presented here is definitely valuable for a detailed insight into the surface currents on different temporal and spatial scales and should be published. However, the manuscript itself and analysis presented therein have a number of weaknesses. Thus, altogether I suggest major revisions of the manuscript.

1. The English language, in some parts, is not satisfying. I recommend to work through the whole text with a native speaker.

Thank you for raising this point. We have carefully revised the English language of the manuscript.

1. The presentation of the used instrument and data set is too scarce. Of course, in Meyerjürgens et al., 2019, a detailed description of the development of the instrument, the measurements and the sampling is given. Yet, Meyerjürgens et al., 2019 is only based on a subset of the data presented here and the reviewed text should stand on its own, as far as the basic information is concerned.

For example:

Determining the position of the drifter and transmitting the position data ashore are key components of the measurements. However, these two components are not correctly described in the text (see lines 129 to 130 and for comparison Meyerjürgens et al., 2019 “Positioning and Telemetry”.

Thank you for the comment. We have added a section describing the housing and the components of the drifter in more detail. The used GPS tracker and the satellite transmission are also explained (lines 115-126).

The picture of the instrument in this manuscript (Figure 2) is less helpful than the pictures of the instrument in Meyerjürgens et al., 2019 (Figure 2).

Thanks for pointing this out. We have changed Fig. 2. The drifter is shown as a drawing, as a photo and during a deployment. The main components of the drifter have also been added (lines 112-122).

A reflection on the seasonal coverage of the data set is missing. On top of that, other statistical information such as the number of individual measurement from which the box-averages (Figure 5) were calculated is missing.

The manuscript refers to Lilly and Perez-Brunius, ESSD 2021, which is a good example for how to present a data set of this kind.
Thank you for the comment. For a general overview and statistical information on the dataset, we have added an illustration of the number of observations (Fig. 5, lines 246-249). In the section where the Skagerrak is considered in detail, we have also added the number of observations to ensure better transparency of the current velocity data (Fig. 6, line 264/265).

We have decided that we do not want to use a seasonal reflection like Lilly and Perez-Brunius (2021), as our dataset differs in this respect. The dataset for the Gulf of Mexico includes measurements from more than 28 years, so it is much larger and evenly distributed. This point has not yet been reached in the North Sea (see attached figure). Our dataset, on the other hand, provides high resolution coverage for some areas in the North Sea, or for seasonal events, and can be used for model validations and offers the possibility to analyze submesoscale dynamics (lines 308-316 and 338-345).

For this reason, we have decided to remove the analysis of residual currents across the entire North Sea from the paper. We agree that for an overall view, in addition to spatial averaging, the temporal view and seasonal fluctuations must also be considered. However, the transfer to an Eulerian approach should remain part of the paper, but only for seasonal deployments such as the one in the Skagerrak (Fig. 6). The approach for individual deployments is common, see for example Coquereau and Foukal (2023) or Qian et al. (2013). The results and the discussion were largely revised (lines 250-269 and 317-345).

1. When dealing with different scales of motion, I expect at first some reflections on the time and length scales of the different processes in the research area and considerations if and how these processes can be observed with the data set at hand.
See for example Cushman-Roisin and Beckers, Introduction to geophysical fluid
dynamics, Elsevier 2011, or search for “baroclinic Rossby radius”.

It is definitely not possible to sort out different scales by only decreasing the grid-cell length!

Thanks for the comment. As mentioned above, we have largely revised our approach to clarify
our statement and intention. We have supplemented the number of observations (lines 246-249), removed the figure with the mean residual currents for the entire North Sea and
significantly revised the results and discussion (lines 250-269 and lines 297-345).

We have continued to present the currents in the Skagerrak, as these originate from a
seasonal deployment. We did not want to eliminate individual scales with the different
resolutions. We chose different resolutions to emphasize that the dataset offers a high area-
wide resolution and that the submesoscale processes can better be represented with a high
resolution. The high resolution dataset offers the possibility to analyze submesoscale
dynamics.

I will not go into detail for this part of the manuscript but also go along with the comments
from reviewer #1.

1. Figure 5 a/b: Although a and b are meant to show the zonal/meridional component of
the velocities, the arrows are similar in both pictures. I recommend having only one
picture and show in colors the magnitude of the absolute value of the velocity and the
direction; red – eastward, blue – westward.

Thanks for pointing this out. As we have decided against averaging and gridding (see above)
the figure with the currents for the entire North Sea have been removed.

Individual comments:

English language:

Line 45: I suggest “..consisted of mooring arrays with...” instead.

We have revised it as suggested (line 45).

Line 65/66: I don’t understand the logical implication of “.. resulting in..” in this sentence.
Please rewrite.

We have revised the paragraph regarding your comment (lines 65-69).

Line 68: I don’t understand the logical implication of “..due to..” in this sentence. Please
rewrite.

We have revised the paragraph regarding your comment (lines 65-69).

Line 92: I don’t understand the logical implication of “In addition” in this sentence. Please
rewrite.

We have rephrased the sentence to clarify our statement (line 90/91).
Line 92: “These are partly due to nonlinear tidal interactions.” I don’t understand this statement. Please explain and rewrite.

We have revised the paragraph to clarify our statement. A nonlinearity occurs due to nonlinear advection terms in shallow coastal regions and bottom friction (lines 90-95).

Line 122: I suggest “..and measured for up to several month”.

We have removed this part (line 134).

Line 180: “…a grid is created that is composed of several cells.” I have no idea of what else a grid can consist of. This part of the sentence give the same information two times. Please rewrite or rather shorten.

As we have decided against averaging and gridding (see above), with the exception of seasonal deployments (e.g. Skagerrak), this paragraph and sentence in the methods section have generally been removed.

Content:

Line 31: The North Sea is also influenced by river-runoff from Forth, Humber, Thames, Seine, Meuse, Glomma. See for example “North Sea Region Climate Change Assessment”, Editors Markus Quante and Franciscus Colijn, Springer 2016. DOI 10.1007/978-3-319-39745-0.

We have revised it as suggested and added the citation (line 31/32).

Line 36/37: The residual currents are driven by density gradients and wind.

We have revised it as suggested (line 37).

Line 51-53: This is basically correct, but whether or not the data set is able to resolve small scales of motion depends on the time increment of the measurements. And this also holds for Eulerian measurements. This part is not really describing the difference between Lagrangian and Eulerian measurements. Please rewrite.

Thanks for pointing this out. We have revised this paragraph to clarify our statement (line 51/52).

Line 75. Please write southwest instead of south.

We have revised it as suggested (line 72).

Line 81-83: Please add a reference.

We have added the references of Otto et al. (1990) and Vindenes et al. (2018) (lines 79-81).

Line 87: I suggest giving all numbers in m/s and not changing the units within the paper.

We have revised it as suggested.
Line 93-94: Interaction needs different components: please specify.

We have revised the paragraph to clarify our statement. A nonlinearity occurs due to nonlinear advection terms in shallow coastal regions and bottom friction (lines 90-95).

Line 103-104: “... the residual circulations are assumed to be smaller compared to tidal currents and wind-induced currents”. Please rewrite this sentence, because wind-induced currents are part of the residual currents.

We have rephrased the sentence to clarify our statement (line 102).

Line 114: Please specify why this drifters can be deployed in shallow water and others cannot.

We have revised the text according to your comment (lines 123-126).

Table 1: Is the number of trajectories similar to the number of instruments?

Yes it is. To clarify our statement, we added in the table header: “number of drifter trajectories” and added in line 140/141, that we measured the 85 trajectories with 85 surface drifters.

Line 134: I don’t understand the terminus “typical circulation trend” – do you mean “mean residual circulation”? Please explain.

We have rephrased the sentence to clarify our statement (line 146).

Line 135: It should be: “moved westward”.

You are right, please excuse the mistake. We changed it (line 147).

Line 173: I have never heard about “the complex-valued velocity”. The vector of the surface velocity consists of a zonal and a meridional component. But why is it complex? Please explain.

We have removed “complex-valued”. Mathematically, it is used to facilitate the calculation of the velocity data. However, you are right that from the physical perspective presented here, a “complex-valued velocity” does not exist.

Line 188/89: How many data gaps (percentage) in the grid have been filled by this method?

To improve the transparency, we have decided to remove the data gaps and present them as NaN (not a number) (Fig. 6, line 255/256). It can be seen that the drifter measurements covered most of the Skagerrak.
Line 211 and 220: Please explain why you need a time series of “at about 14.2 days” and “at least 10.4 days”?

Thank you for pointing this out. We have added comparable studies and revised the sections (lines 208-217 and 225-228). In principle, time series are required where distinct peaks can be seen in the analysis in order to obtain statistically significant results. This is reached for our dataset after 10.4 days (3000 measurements).

For the power spectral density we took slightly more measurements (14.2 days = 4096 measurements), as a power of 2 is required for the calculation ($2^{12} = 4096$).

Line 243/244: I think “which results in” is the wrong logical implication.

Additionally, you can have “long residence times” in a grid cell, if velocities are small. Thus, you have to explain this statement or show it is proven.

We have removed this section (see above).

Line 248-252: The naming “eastern inflow of the North Atlantic” is not correct, especially if you are dealing with surface currents.

Thank you for the comment. We changed the inflow to the Jutland current and added the reference Christensen et al. (2018) (lines 240-269 and 321-326).

I miss some information about variability of the features “inflow of the North Atlantic”, “Norwegian Coastal Current” and “outflow from the Baltic Sea”. They are highly variable and thus averaging about all data in a grid cell, independent of the time resolution/coverage can produce artefacts (more information about this topic/problem can be found at Lilly and Perez-Brunius, ESSD 2021 and Lilly and Perez-Brunius, Nonlin. Processes Geophys, 2021 from your references).

We have added a small section to the discussion (lines 321-326).

I don’t see any “small eddies” in the map (Figure 5).

We have revised the text according to your comment (line 260-269).

Line 260/261: “..which means that the north-south motion increases”. This is a change in direction of only 6%. I suggest to write “slightly increases”.

We have revised it as suggested (line 279).

Line 260: see Line 87.

We have revised it as suggested.
Line 270/271: Please explain or rewrite: “Other irregularities are difficult to distinguish from the rest of the noise”. What do you mean with “the rest of the noise”?

We have revised the sentence to clarify our statement (line 289/290).

5 Discussion, first paragraph: It is difficult to distinguish between general statements, taken from the literature, and results from the analyses of the presented data set. Please clarify. From this study we do not “gain an understanding of the transition processes between the mesoscale ocean circulation and” smaller scales.

We have revised the paragraph in order to better distinguish our own results, general statements and the literature (lines 297-316). We rephrased the sentence to clarify our statement (lines 300-303).